1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 16 #include "MILexer.h" 17 #include "llvm/ADT/StringMap.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/AsmParser/Parser.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/CodeGen/MIRPrinter.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineModuleInfo.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/ModuleSlotTracker.h" 35 #include "llvm/IR/ValueSymbolTable.h" 36 #include "llvm/Support/SourceMgr.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Target/TargetInstrInfo.h" 39 #include "llvm/Target/TargetIntrinsicInfo.h" 40 #include "llvm/Target/TargetSubtargetInfo.h" 41 #include <cctype> 42 43 using namespace llvm; 44 45 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 46 SourceMgr &SM, const SlotMapping &IRSlots, 47 const Name2RegClassMap &Names2RegClasses, 48 const Name2RegBankMap &Names2RegBanks) 49 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 50 Names2RegBanks(Names2RegBanks) { 51 } 52 53 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 54 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 55 if (I.second) { 56 MachineRegisterInfo &MRI = MF.getRegInfo(); 57 VRegInfo *Info = new (Allocator) VRegInfo; 58 Info->VReg = MRI.createIncompleteVirtualRegister(); 59 I.first->second = Info; 60 } 61 return *I.first->second; 62 } 63 64 namespace { 65 66 /// A wrapper struct around the 'MachineOperand' struct that includes a source 67 /// range and other attributes. 68 struct ParsedMachineOperand { 69 MachineOperand Operand; 70 StringRef::iterator Begin; 71 StringRef::iterator End; 72 Optional<unsigned> TiedDefIdx; 73 74 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 75 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 76 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 77 if (TiedDefIdx) 78 assert(Operand.isReg() && Operand.isUse() && 79 "Only used register operands can be tied"); 80 } 81 }; 82 83 class MIParser { 84 MachineFunction &MF; 85 SMDiagnostic &Error; 86 StringRef Source, CurrentSource; 87 MIToken Token; 88 PerFunctionMIParsingState &PFS; 89 /// Maps from instruction names to op codes. 90 StringMap<unsigned> Names2InstrOpCodes; 91 /// Maps from register names to registers. 92 StringMap<unsigned> Names2Regs; 93 /// Maps from register mask names to register masks. 94 StringMap<const uint32_t *> Names2RegMasks; 95 /// Maps from subregister names to subregister indices. 96 StringMap<unsigned> Names2SubRegIndices; 97 /// Maps from slot numbers to function's unnamed basic blocks. 98 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 99 /// Maps from slot numbers to function's unnamed values. 100 DenseMap<unsigned, const Value *> Slots2Values; 101 /// Maps from target index names to target indices. 102 StringMap<int> Names2TargetIndices; 103 /// Maps from direct target flag names to the direct target flag values. 104 StringMap<unsigned> Names2DirectTargetFlags; 105 /// Maps from direct target flag names to the bitmask target flag values. 106 StringMap<unsigned> Names2BitmaskTargetFlags; 107 108 public: 109 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 110 StringRef Source); 111 112 /// \p SkipChar gives the number of characters to skip before looking 113 /// for the next token. 114 void lex(unsigned SkipChar = 0); 115 116 /// Report an error at the current location with the given message. 117 /// 118 /// This function always return true. 119 bool error(const Twine &Msg); 120 121 /// Report an error at the given location with the given message. 122 /// 123 /// This function always return true. 124 bool error(StringRef::iterator Loc, const Twine &Msg); 125 126 bool 127 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 128 bool parseBasicBlocks(); 129 bool parse(MachineInstr *&MI); 130 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 131 bool parseStandaloneNamedRegister(unsigned &Reg); 132 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 133 bool parseStandaloneRegister(unsigned &Reg); 134 bool parseStandaloneStackObject(int &FI); 135 bool parseStandaloneMDNode(MDNode *&Node); 136 137 bool 138 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 139 bool parseBasicBlock(MachineBasicBlock &MBB, 140 MachineBasicBlock *&AddFalthroughFrom); 141 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 142 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 143 144 bool parseNamedRegister(unsigned &Reg); 145 bool parseVirtualRegister(VRegInfo *&Info); 146 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 147 bool parseRegisterFlag(unsigned &Flags); 148 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 149 bool parseSubRegisterIndex(unsigned &SubReg); 150 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 151 bool parseRegisterOperand(MachineOperand &Dest, 152 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 153 bool parseImmediateOperand(MachineOperand &Dest); 154 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 155 const Constant *&C); 156 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 157 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 158 bool parseTypedImmediateOperand(MachineOperand &Dest); 159 bool parseFPImmediateOperand(MachineOperand &Dest); 160 bool parseMBBReference(MachineBasicBlock *&MBB); 161 bool parseMBBOperand(MachineOperand &Dest); 162 bool parseStackFrameIndex(int &FI); 163 bool parseStackObjectOperand(MachineOperand &Dest); 164 bool parseFixedStackFrameIndex(int &FI); 165 bool parseFixedStackObjectOperand(MachineOperand &Dest); 166 bool parseGlobalValue(GlobalValue *&GV); 167 bool parseGlobalAddressOperand(MachineOperand &Dest); 168 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 169 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 170 bool parseJumpTableIndexOperand(MachineOperand &Dest); 171 bool parseExternalSymbolOperand(MachineOperand &Dest); 172 bool parseMDNode(MDNode *&Node); 173 bool parseMetadataOperand(MachineOperand &Dest); 174 bool parseCFIOffset(int &Offset); 175 bool parseCFIRegister(unsigned &Reg); 176 bool parseCFIOperand(MachineOperand &Dest); 177 bool parseIRBlock(BasicBlock *&BB, const Function &F); 178 bool parseBlockAddressOperand(MachineOperand &Dest); 179 bool parseIntrinsicOperand(MachineOperand &Dest); 180 bool parsePredicateOperand(MachineOperand &Dest); 181 bool parseTargetIndexOperand(MachineOperand &Dest); 182 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 183 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 184 bool parseMachineOperand(MachineOperand &Dest, 185 Optional<unsigned> &TiedDefIdx); 186 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 187 Optional<unsigned> &TiedDefIdx); 188 bool parseOffset(int64_t &Offset); 189 bool parseAlignment(unsigned &Alignment); 190 bool parseOperandsOffset(MachineOperand &Op); 191 bool parseIRValue(const Value *&V); 192 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 193 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 194 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 195 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 196 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 197 198 private: 199 /// Convert the integer literal in the current token into an unsigned integer. 200 /// 201 /// Return true if an error occurred. 202 bool getUnsigned(unsigned &Result); 203 204 /// Convert the integer literal in the current token into an uint64. 205 /// 206 /// Return true if an error occurred. 207 bool getUint64(uint64_t &Result); 208 209 /// Convert the hexadecimal literal in the current token into an unsigned 210 /// APInt with a minimum bitwidth required to represent the value. 211 /// 212 /// Return true if the literal does not represent an integer value. 213 bool getHexUint(APInt &Result); 214 215 /// If the current token is of the given kind, consume it and return false. 216 /// Otherwise report an error and return true. 217 bool expectAndConsume(MIToken::TokenKind TokenKind); 218 219 /// If the current token is of the given kind, consume it and return true. 220 /// Otherwise return false. 221 bool consumeIfPresent(MIToken::TokenKind TokenKind); 222 223 void initNames2InstrOpCodes(); 224 225 /// Try to convert an instruction name to an opcode. Return true if the 226 /// instruction name is invalid. 227 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 228 229 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 230 231 bool assignRegisterTies(MachineInstr &MI, 232 ArrayRef<ParsedMachineOperand> Operands); 233 234 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 235 const MCInstrDesc &MCID); 236 237 void initNames2Regs(); 238 239 /// Try to convert a register name to a register number. Return true if the 240 /// register name is invalid. 241 bool getRegisterByName(StringRef RegName, unsigned &Reg); 242 243 void initNames2RegMasks(); 244 245 /// Check if the given identifier is a name of a register mask. 246 /// 247 /// Return null if the identifier isn't a register mask. 248 const uint32_t *getRegMask(StringRef Identifier); 249 250 void initNames2SubRegIndices(); 251 252 /// Check if the given identifier is a name of a subregister index. 253 /// 254 /// Return 0 if the name isn't a subregister index class. 255 unsigned getSubRegIndex(StringRef Name); 256 257 const BasicBlock *getIRBlock(unsigned Slot); 258 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 259 260 const Value *getIRValue(unsigned Slot); 261 262 void initNames2TargetIndices(); 263 264 /// Try to convert a name of target index to the corresponding target index. 265 /// 266 /// Return true if the name isn't a name of a target index. 267 bool getTargetIndex(StringRef Name, int &Index); 268 269 void initNames2DirectTargetFlags(); 270 271 /// Try to convert a name of a direct target flag to the corresponding 272 /// target flag. 273 /// 274 /// Return true if the name isn't a name of a direct flag. 275 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 276 277 void initNames2BitmaskTargetFlags(); 278 279 /// Try to convert a name of a bitmask target flag to the corresponding 280 /// target flag. 281 /// 282 /// Return true if the name isn't a name of a bitmask target flag. 283 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 284 }; 285 286 } // end anonymous namespace 287 288 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 289 StringRef Source) 290 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 291 {} 292 293 void MIParser::lex(unsigned SkipChar) { 294 CurrentSource = lexMIToken( 295 CurrentSource.data() + SkipChar, Token, 296 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 297 } 298 299 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 300 301 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 302 const SourceMgr &SM = *PFS.SM; 303 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 304 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 305 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 306 // Create an ordinary diagnostic when the source manager's buffer is the 307 // source string. 308 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 309 return true; 310 } 311 // Create a diagnostic for a YAML string literal. 312 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 313 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 314 Source, None, None); 315 return true; 316 } 317 318 static const char *toString(MIToken::TokenKind TokenKind) { 319 switch (TokenKind) { 320 case MIToken::comma: 321 return "','"; 322 case MIToken::equal: 323 return "'='"; 324 case MIToken::colon: 325 return "':'"; 326 case MIToken::lparen: 327 return "'('"; 328 case MIToken::rparen: 329 return "')'"; 330 default: 331 return "<unknown token>"; 332 } 333 } 334 335 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 336 if (Token.isNot(TokenKind)) 337 return error(Twine("expected ") + toString(TokenKind)); 338 lex(); 339 return false; 340 } 341 342 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 343 if (Token.isNot(TokenKind)) 344 return false; 345 lex(); 346 return true; 347 } 348 349 bool MIParser::parseBasicBlockDefinition( 350 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 351 assert(Token.is(MIToken::MachineBasicBlockLabel)); 352 unsigned ID = 0; 353 if (getUnsigned(ID)) 354 return true; 355 auto Loc = Token.location(); 356 auto Name = Token.stringValue(); 357 lex(); 358 bool HasAddressTaken = false; 359 bool IsLandingPad = false; 360 unsigned Alignment = 0; 361 BasicBlock *BB = nullptr; 362 if (consumeIfPresent(MIToken::lparen)) { 363 do { 364 // TODO: Report an error when multiple same attributes are specified. 365 switch (Token.kind()) { 366 case MIToken::kw_address_taken: 367 HasAddressTaken = true; 368 lex(); 369 break; 370 case MIToken::kw_landing_pad: 371 IsLandingPad = true; 372 lex(); 373 break; 374 case MIToken::kw_align: 375 if (parseAlignment(Alignment)) 376 return true; 377 break; 378 case MIToken::IRBlock: 379 // TODO: Report an error when both name and ir block are specified. 380 if (parseIRBlock(BB, *MF.getFunction())) 381 return true; 382 lex(); 383 break; 384 default: 385 break; 386 } 387 } while (consumeIfPresent(MIToken::comma)); 388 if (expectAndConsume(MIToken::rparen)) 389 return true; 390 } 391 if (expectAndConsume(MIToken::colon)) 392 return true; 393 394 if (!Name.empty()) { 395 BB = dyn_cast_or_null<BasicBlock>( 396 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 397 if (!BB) 398 return error(Loc, Twine("basic block '") + Name + 399 "' is not defined in the function '" + 400 MF.getName() + "'"); 401 } 402 auto *MBB = MF.CreateMachineBasicBlock(BB); 403 MF.insert(MF.end(), MBB); 404 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 405 if (!WasInserted) 406 return error(Loc, Twine("redefinition of machine basic block with id #") + 407 Twine(ID)); 408 if (Alignment) 409 MBB->setAlignment(Alignment); 410 if (HasAddressTaken) 411 MBB->setHasAddressTaken(); 412 MBB->setIsEHPad(IsLandingPad); 413 return false; 414 } 415 416 bool MIParser::parseBasicBlockDefinitions( 417 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 418 lex(); 419 // Skip until the first machine basic block. 420 while (Token.is(MIToken::Newline)) 421 lex(); 422 if (Token.isErrorOrEOF()) 423 return Token.isError(); 424 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 425 return error("expected a basic block definition before instructions"); 426 unsigned BraceDepth = 0; 427 do { 428 if (parseBasicBlockDefinition(MBBSlots)) 429 return true; 430 bool IsAfterNewline = false; 431 // Skip until the next machine basic block. 432 while (true) { 433 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 434 Token.isErrorOrEOF()) 435 break; 436 else if (Token.is(MIToken::MachineBasicBlockLabel)) 437 return error("basic block definition should be located at the start of " 438 "the line"); 439 else if (consumeIfPresent(MIToken::Newline)) { 440 IsAfterNewline = true; 441 continue; 442 } 443 IsAfterNewline = false; 444 if (Token.is(MIToken::lbrace)) 445 ++BraceDepth; 446 if (Token.is(MIToken::rbrace)) { 447 if (!BraceDepth) 448 return error("extraneous closing brace ('}')"); 449 --BraceDepth; 450 } 451 lex(); 452 } 453 // Verify that we closed all of the '{' at the end of a file or a block. 454 if (!Token.isError() && BraceDepth) 455 return error("expected '}'"); // FIXME: Report a note that shows '{'. 456 } while (!Token.isErrorOrEOF()); 457 return Token.isError(); 458 } 459 460 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 461 assert(Token.is(MIToken::kw_liveins)); 462 lex(); 463 if (expectAndConsume(MIToken::colon)) 464 return true; 465 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 466 return false; 467 do { 468 if (Token.isNot(MIToken::NamedRegister)) 469 return error("expected a named register"); 470 unsigned Reg = 0; 471 if (parseNamedRegister(Reg)) 472 return true; 473 lex(); 474 LaneBitmask Mask = LaneBitmask::getAll(); 475 if (consumeIfPresent(MIToken::colon)) { 476 // Parse lane mask. 477 if (Token.isNot(MIToken::IntegerLiteral) && 478 Token.isNot(MIToken::HexLiteral)) 479 return error("expected a lane mask"); 480 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 481 "Use correct get-function for lane mask"); 482 LaneBitmask::Type V; 483 if (getUnsigned(V)) 484 return error("invalid lane mask value"); 485 Mask = LaneBitmask(V); 486 lex(); 487 } 488 MBB.addLiveIn(Reg, Mask); 489 } while (consumeIfPresent(MIToken::comma)); 490 return false; 491 } 492 493 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 494 assert(Token.is(MIToken::kw_successors)); 495 lex(); 496 if (expectAndConsume(MIToken::colon)) 497 return true; 498 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 499 return false; 500 do { 501 if (Token.isNot(MIToken::MachineBasicBlock)) 502 return error("expected a machine basic block reference"); 503 MachineBasicBlock *SuccMBB = nullptr; 504 if (parseMBBReference(SuccMBB)) 505 return true; 506 lex(); 507 unsigned Weight = 0; 508 if (consumeIfPresent(MIToken::lparen)) { 509 if (Token.isNot(MIToken::IntegerLiteral) && 510 Token.isNot(MIToken::HexLiteral)) 511 return error("expected an integer literal after '('"); 512 if (getUnsigned(Weight)) 513 return true; 514 lex(); 515 if (expectAndConsume(MIToken::rparen)) 516 return true; 517 } 518 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 519 } while (consumeIfPresent(MIToken::comma)); 520 MBB.normalizeSuccProbs(); 521 return false; 522 } 523 524 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 525 MachineBasicBlock *&AddFalthroughFrom) { 526 // Skip the definition. 527 assert(Token.is(MIToken::MachineBasicBlockLabel)); 528 lex(); 529 if (consumeIfPresent(MIToken::lparen)) { 530 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 531 lex(); 532 consumeIfPresent(MIToken::rparen); 533 } 534 consumeIfPresent(MIToken::colon); 535 536 // Parse the liveins and successors. 537 // N.B: Multiple lists of successors and liveins are allowed and they're 538 // merged into one. 539 // Example: 540 // liveins: %edi 541 // liveins: %esi 542 // 543 // is equivalent to 544 // liveins: %edi, %esi 545 bool ExplicitSuccesors = false; 546 while (true) { 547 if (Token.is(MIToken::kw_successors)) { 548 if (parseBasicBlockSuccessors(MBB)) 549 return true; 550 ExplicitSuccesors = true; 551 } else if (Token.is(MIToken::kw_liveins)) { 552 if (parseBasicBlockLiveins(MBB)) 553 return true; 554 } else if (consumeIfPresent(MIToken::Newline)) { 555 continue; 556 } else 557 break; 558 if (!Token.isNewlineOrEOF()) 559 return error("expected line break at the end of a list"); 560 lex(); 561 } 562 563 // Parse the instructions. 564 bool IsInBundle = false; 565 MachineInstr *PrevMI = nullptr; 566 while (!Token.is(MIToken::MachineBasicBlockLabel) && 567 !Token.is(MIToken::Eof)) { 568 if (consumeIfPresent(MIToken::Newline)) 569 continue; 570 if (consumeIfPresent(MIToken::rbrace)) { 571 // The first parsing pass should verify that all closing '}' have an 572 // opening '{'. 573 assert(IsInBundle); 574 IsInBundle = false; 575 continue; 576 } 577 MachineInstr *MI = nullptr; 578 if (parse(MI)) 579 return true; 580 MBB.insert(MBB.end(), MI); 581 if (IsInBundle) { 582 PrevMI->setFlag(MachineInstr::BundledSucc); 583 MI->setFlag(MachineInstr::BundledPred); 584 } 585 PrevMI = MI; 586 if (Token.is(MIToken::lbrace)) { 587 if (IsInBundle) 588 return error("nested instruction bundles are not allowed"); 589 lex(); 590 // This instruction is the start of the bundle. 591 MI->setFlag(MachineInstr::BundledSucc); 592 IsInBundle = true; 593 if (!Token.is(MIToken::Newline)) 594 // The next instruction can be on the same line. 595 continue; 596 } 597 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 598 lex(); 599 } 600 601 // Construct successor list by searching for basic block machine operands. 602 if (!ExplicitSuccesors) { 603 SmallVector<MachineBasicBlock*,4> Successors; 604 bool IsFallthrough; 605 guessSuccessors(MBB, Successors, IsFallthrough); 606 for (MachineBasicBlock *Succ : Successors) 607 MBB.addSuccessor(Succ); 608 609 if (IsFallthrough) { 610 AddFalthroughFrom = &MBB; 611 } else { 612 MBB.normalizeSuccProbs(); 613 } 614 } 615 616 return false; 617 } 618 619 bool MIParser::parseBasicBlocks() { 620 lex(); 621 // Skip until the first machine basic block. 622 while (Token.is(MIToken::Newline)) 623 lex(); 624 if (Token.isErrorOrEOF()) 625 return Token.isError(); 626 // The first parsing pass should have verified that this token is a MBB label 627 // in the 'parseBasicBlockDefinitions' method. 628 assert(Token.is(MIToken::MachineBasicBlockLabel)); 629 MachineBasicBlock *AddFalthroughFrom = nullptr; 630 do { 631 MachineBasicBlock *MBB = nullptr; 632 if (parseMBBReference(MBB)) 633 return true; 634 if (AddFalthroughFrom) { 635 if (!AddFalthroughFrom->isSuccessor(MBB)) 636 AddFalthroughFrom->addSuccessor(MBB); 637 AddFalthroughFrom->normalizeSuccProbs(); 638 AddFalthroughFrom = nullptr; 639 } 640 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 641 return true; 642 // The method 'parseBasicBlock' should parse the whole block until the next 643 // block or the end of file. 644 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 645 } while (Token.isNot(MIToken::Eof)); 646 return false; 647 } 648 649 bool MIParser::parse(MachineInstr *&MI) { 650 // Parse any register operands before '=' 651 MachineOperand MO = MachineOperand::CreateImm(0); 652 SmallVector<ParsedMachineOperand, 8> Operands; 653 while (Token.isRegister() || Token.isRegisterFlag()) { 654 auto Loc = Token.location(); 655 Optional<unsigned> TiedDefIdx; 656 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 657 return true; 658 Operands.push_back( 659 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 660 if (Token.isNot(MIToken::comma)) 661 break; 662 lex(); 663 } 664 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 665 return true; 666 667 unsigned OpCode, Flags = 0; 668 if (Token.isError() || parseInstruction(OpCode, Flags)) 669 return true; 670 671 // Parse the remaining machine operands. 672 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 673 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 674 auto Loc = Token.location(); 675 Optional<unsigned> TiedDefIdx; 676 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 677 return true; 678 Operands.push_back( 679 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 680 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 681 Token.is(MIToken::lbrace)) 682 break; 683 if (Token.isNot(MIToken::comma)) 684 return error("expected ',' before the next machine operand"); 685 lex(); 686 } 687 688 DebugLoc DebugLocation; 689 if (Token.is(MIToken::kw_debug_location)) { 690 lex(); 691 if (Token.isNot(MIToken::exclaim)) 692 return error("expected a metadata node after 'debug-location'"); 693 MDNode *Node = nullptr; 694 if (parseMDNode(Node)) 695 return true; 696 DebugLocation = DebugLoc(Node); 697 } 698 699 // Parse the machine memory operands. 700 SmallVector<MachineMemOperand *, 2> MemOperands; 701 if (Token.is(MIToken::coloncolon)) { 702 lex(); 703 while (!Token.isNewlineOrEOF()) { 704 MachineMemOperand *MemOp = nullptr; 705 if (parseMachineMemoryOperand(MemOp)) 706 return true; 707 MemOperands.push_back(MemOp); 708 if (Token.isNewlineOrEOF()) 709 break; 710 if (Token.isNot(MIToken::comma)) 711 return error("expected ',' before the next machine memory operand"); 712 lex(); 713 } 714 } 715 716 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 717 if (!MCID.isVariadic()) { 718 // FIXME: Move the implicit operand verification to the machine verifier. 719 if (verifyImplicitOperands(Operands, MCID)) 720 return true; 721 } 722 723 // TODO: Check for extraneous machine operands. 724 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 725 MI->setFlags(Flags); 726 for (const auto &Operand : Operands) 727 MI->addOperand(MF, Operand.Operand); 728 if (assignRegisterTies(*MI, Operands)) 729 return true; 730 if (MemOperands.empty()) 731 return false; 732 MachineInstr::mmo_iterator MemRefs = 733 MF.allocateMemRefsArray(MemOperands.size()); 734 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 735 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 736 return false; 737 } 738 739 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 740 lex(); 741 if (Token.isNot(MIToken::MachineBasicBlock)) 742 return error("expected a machine basic block reference"); 743 if (parseMBBReference(MBB)) 744 return true; 745 lex(); 746 if (Token.isNot(MIToken::Eof)) 747 return error( 748 "expected end of string after the machine basic block reference"); 749 return false; 750 } 751 752 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 753 lex(); 754 if (Token.isNot(MIToken::NamedRegister)) 755 return error("expected a named register"); 756 if (parseNamedRegister(Reg)) 757 return true; 758 lex(); 759 if (Token.isNot(MIToken::Eof)) 760 return error("expected end of string after the register reference"); 761 return false; 762 } 763 764 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 765 lex(); 766 if (Token.isNot(MIToken::VirtualRegister)) 767 return error("expected a virtual register"); 768 if (parseVirtualRegister(Info)) 769 return true; 770 lex(); 771 if (Token.isNot(MIToken::Eof)) 772 return error("expected end of string after the register reference"); 773 return false; 774 } 775 776 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 777 lex(); 778 if (Token.isNot(MIToken::NamedRegister) && 779 Token.isNot(MIToken::VirtualRegister)) 780 return error("expected either a named or virtual register"); 781 782 VRegInfo *Info; 783 if (parseRegister(Reg, Info)) 784 return true; 785 786 lex(); 787 if (Token.isNot(MIToken::Eof)) 788 return error("expected end of string after the register reference"); 789 return false; 790 } 791 792 bool MIParser::parseStandaloneStackObject(int &FI) { 793 lex(); 794 if (Token.isNot(MIToken::StackObject)) 795 return error("expected a stack object"); 796 if (parseStackFrameIndex(FI)) 797 return true; 798 if (Token.isNot(MIToken::Eof)) 799 return error("expected end of string after the stack object reference"); 800 return false; 801 } 802 803 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 804 lex(); 805 if (Token.isNot(MIToken::exclaim)) 806 return error("expected a metadata node"); 807 if (parseMDNode(Node)) 808 return true; 809 if (Token.isNot(MIToken::Eof)) 810 return error("expected end of string after the metadata node"); 811 return false; 812 } 813 814 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 815 assert(MO.isImplicit()); 816 return MO.isDef() ? "implicit-def" : "implicit"; 817 } 818 819 static std::string getRegisterName(const TargetRegisterInfo *TRI, 820 unsigned Reg) { 821 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 822 return StringRef(TRI->getName(Reg)).lower(); 823 } 824 825 /// Return true if the parsed machine operands contain a given machine operand. 826 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 827 ArrayRef<ParsedMachineOperand> Operands) { 828 for (const auto &I : Operands) { 829 if (ImplicitOperand.isIdenticalTo(I.Operand)) 830 return true; 831 } 832 return false; 833 } 834 835 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 836 const MCInstrDesc &MCID) { 837 if (MCID.isCall()) 838 // We can't verify call instructions as they can contain arbitrary implicit 839 // register and register mask operands. 840 return false; 841 842 // Gather all the expected implicit operands. 843 SmallVector<MachineOperand, 4> ImplicitOperands; 844 if (MCID.ImplicitDefs) 845 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 846 ImplicitOperands.push_back( 847 MachineOperand::CreateReg(*ImpDefs, true, true)); 848 if (MCID.ImplicitUses) 849 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 850 ImplicitOperands.push_back( 851 MachineOperand::CreateReg(*ImpUses, false, true)); 852 853 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 854 assert(TRI && "Expected target register info"); 855 for (const auto &I : ImplicitOperands) { 856 if (isImplicitOperandIn(I, Operands)) 857 continue; 858 return error(Operands.empty() ? Token.location() : Operands.back().End, 859 Twine("missing implicit register operand '") + 860 printImplicitRegisterFlag(I) + " %" + 861 getRegisterName(TRI, I.getReg()) + "'"); 862 } 863 return false; 864 } 865 866 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 867 if (Token.is(MIToken::kw_frame_setup)) { 868 Flags |= MachineInstr::FrameSetup; 869 lex(); 870 } 871 if (Token.isNot(MIToken::Identifier)) 872 return error("expected a machine instruction"); 873 StringRef InstrName = Token.stringValue(); 874 if (parseInstrName(InstrName, OpCode)) 875 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 876 lex(); 877 return false; 878 } 879 880 bool MIParser::parseNamedRegister(unsigned &Reg) { 881 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 882 StringRef Name = Token.stringValue(); 883 if (getRegisterByName(Name, Reg)) 884 return error(Twine("unknown register name '") + Name + "'"); 885 return false; 886 } 887 888 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 889 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 890 unsigned ID; 891 if (getUnsigned(ID)) 892 return true; 893 Info = &PFS.getVRegInfo(ID); 894 return false; 895 } 896 897 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 898 switch (Token.kind()) { 899 case MIToken::underscore: 900 Reg = 0; 901 return false; 902 case MIToken::NamedRegister: 903 return parseNamedRegister(Reg); 904 case MIToken::VirtualRegister: 905 if (parseVirtualRegister(Info)) 906 return true; 907 Reg = Info->VReg; 908 return false; 909 // TODO: Parse other register kinds. 910 default: 911 llvm_unreachable("The current token should be a register"); 912 } 913 } 914 915 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 916 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 917 return error("expected '_', register class, or register bank name"); 918 StringRef::iterator Loc = Token.location(); 919 StringRef Name = Token.stringValue(); 920 921 // Was it a register class? 922 auto RCNameI = PFS.Names2RegClasses.find(Name); 923 if (RCNameI != PFS.Names2RegClasses.end()) { 924 lex(); 925 const TargetRegisterClass &RC = *RCNameI->getValue(); 926 927 switch (RegInfo.Kind) { 928 case VRegInfo::UNKNOWN: 929 case VRegInfo::NORMAL: 930 RegInfo.Kind = VRegInfo::NORMAL; 931 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 932 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 933 return error(Loc, Twine("conflicting register classes, previously: ") + 934 Twine(TRI.getRegClassName(RegInfo.D.RC))); 935 } 936 RegInfo.D.RC = &RC; 937 RegInfo.Explicit = true; 938 return false; 939 940 case VRegInfo::GENERIC: 941 case VRegInfo::REGBANK: 942 return error(Loc, "register class specification on generic register"); 943 } 944 llvm_unreachable("Unexpected register kind"); 945 } 946 947 // Should be a register bank or a generic register. 948 const RegisterBank *RegBank = nullptr; 949 if (Name != "_") { 950 auto RBNameI = PFS.Names2RegBanks.find(Name); 951 if (RBNameI == PFS.Names2RegBanks.end()) 952 return error(Loc, "expected '_', register class, or register bank name"); 953 RegBank = RBNameI->getValue(); 954 } 955 956 lex(); 957 958 switch (RegInfo.Kind) { 959 case VRegInfo::UNKNOWN: 960 case VRegInfo::GENERIC: 961 case VRegInfo::REGBANK: 962 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 963 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 964 return error(Loc, "conflicting generic register banks"); 965 RegInfo.D.RegBank = RegBank; 966 RegInfo.Explicit = true; 967 return false; 968 969 case VRegInfo::NORMAL: 970 return error(Loc, "register bank specification on normal register"); 971 } 972 llvm_unreachable("Unexpected register kind"); 973 } 974 975 bool MIParser::parseRegisterFlag(unsigned &Flags) { 976 const unsigned OldFlags = Flags; 977 switch (Token.kind()) { 978 case MIToken::kw_implicit: 979 Flags |= RegState::Implicit; 980 break; 981 case MIToken::kw_implicit_define: 982 Flags |= RegState::ImplicitDefine; 983 break; 984 case MIToken::kw_def: 985 Flags |= RegState::Define; 986 break; 987 case MIToken::kw_dead: 988 Flags |= RegState::Dead; 989 break; 990 case MIToken::kw_killed: 991 Flags |= RegState::Kill; 992 break; 993 case MIToken::kw_undef: 994 Flags |= RegState::Undef; 995 break; 996 case MIToken::kw_internal: 997 Flags |= RegState::InternalRead; 998 break; 999 case MIToken::kw_early_clobber: 1000 Flags |= RegState::EarlyClobber; 1001 break; 1002 case MIToken::kw_debug_use: 1003 Flags |= RegState::Debug; 1004 break; 1005 default: 1006 llvm_unreachable("The current token should be a register flag"); 1007 } 1008 if (OldFlags == Flags) 1009 // We know that the same flag is specified more than once when the flags 1010 // weren't modified. 1011 return error("duplicate '" + Token.stringValue() + "' register flag"); 1012 lex(); 1013 return false; 1014 } 1015 1016 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1017 assert(Token.is(MIToken::dot)); 1018 lex(); 1019 if (Token.isNot(MIToken::Identifier)) 1020 return error("expected a subregister index after '.'"); 1021 auto Name = Token.stringValue(); 1022 SubReg = getSubRegIndex(Name); 1023 if (!SubReg) 1024 return error(Twine("use of unknown subregister index '") + Name + "'"); 1025 lex(); 1026 return false; 1027 } 1028 1029 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1030 if (!consumeIfPresent(MIToken::kw_tied_def)) 1031 return true; 1032 if (Token.isNot(MIToken::IntegerLiteral)) 1033 return error("expected an integer literal after 'tied-def'"); 1034 if (getUnsigned(TiedDefIdx)) 1035 return true; 1036 lex(); 1037 if (expectAndConsume(MIToken::rparen)) 1038 return true; 1039 return false; 1040 } 1041 1042 bool MIParser::assignRegisterTies(MachineInstr &MI, 1043 ArrayRef<ParsedMachineOperand> Operands) { 1044 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1045 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1046 if (!Operands[I].TiedDefIdx) 1047 continue; 1048 // The parser ensures that this operand is a register use, so we just have 1049 // to check the tied-def operand. 1050 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1051 if (DefIdx >= E) 1052 return error(Operands[I].Begin, 1053 Twine("use of invalid tied-def operand index '" + 1054 Twine(DefIdx) + "'; instruction has only ") + 1055 Twine(E) + " operands"); 1056 const auto &DefOperand = Operands[DefIdx].Operand; 1057 if (!DefOperand.isReg() || !DefOperand.isDef()) 1058 // FIXME: add note with the def operand. 1059 return error(Operands[I].Begin, 1060 Twine("use of invalid tied-def operand index '") + 1061 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1062 " isn't a defined register"); 1063 // Check that the tied-def operand wasn't tied elsewhere. 1064 for (const auto &TiedPair : TiedRegisterPairs) { 1065 if (TiedPair.first == DefIdx) 1066 return error(Operands[I].Begin, 1067 Twine("the tied-def operand #") + Twine(DefIdx) + 1068 " is already tied with another register operand"); 1069 } 1070 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1071 } 1072 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1073 // indices must be less than tied max. 1074 for (const auto &TiedPair : TiedRegisterPairs) 1075 MI.tieOperands(TiedPair.first, TiedPair.second); 1076 return false; 1077 } 1078 1079 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1080 Optional<unsigned> &TiedDefIdx, 1081 bool IsDef) { 1082 unsigned Flags = IsDef ? RegState::Define : 0; 1083 while (Token.isRegisterFlag()) { 1084 if (parseRegisterFlag(Flags)) 1085 return true; 1086 } 1087 if (!Token.isRegister()) 1088 return error("expected a register after register flags"); 1089 unsigned Reg; 1090 VRegInfo *RegInfo; 1091 if (parseRegister(Reg, RegInfo)) 1092 return true; 1093 lex(); 1094 unsigned SubReg = 0; 1095 if (Token.is(MIToken::dot)) { 1096 if (parseSubRegisterIndex(SubReg)) 1097 return true; 1098 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1099 return error("subregister index expects a virtual register"); 1100 } 1101 if (Token.is(MIToken::colon)) { 1102 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1103 return error("register class specification expects a virtual register"); 1104 lex(); 1105 if (parseRegisterClassOrBank(*RegInfo)) 1106 return true; 1107 } 1108 MachineRegisterInfo &MRI = MF.getRegInfo(); 1109 if ((Flags & RegState::Define) == 0) { 1110 if (consumeIfPresent(MIToken::lparen)) { 1111 unsigned Idx; 1112 if (!parseRegisterTiedDefIndex(Idx)) 1113 TiedDefIdx = Idx; 1114 else { 1115 // Try a redundant low-level type. 1116 LLT Ty; 1117 if (parseLowLevelType(Token.location(), Ty)) 1118 return error("expected tied-def or low-level type after '('"); 1119 1120 if (expectAndConsume(MIToken::rparen)) 1121 return true; 1122 1123 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1124 return error("inconsistent type for generic virtual register"); 1125 1126 MRI.setType(Reg, Ty); 1127 } 1128 } 1129 } else if (consumeIfPresent(MIToken::lparen)) { 1130 // Virtual registers may have a tpe with GlobalISel. 1131 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1132 return error("unexpected type on physical register"); 1133 1134 LLT Ty; 1135 if (parseLowLevelType(Token.location(), Ty)) 1136 return true; 1137 1138 if (expectAndConsume(MIToken::rparen)) 1139 return true; 1140 1141 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1142 return error("inconsistent type for generic virtual register"); 1143 1144 MRI.setType(Reg, Ty); 1145 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1146 // Generic virtual registers must have a type. 1147 // If we end up here this means the type hasn't been specified and 1148 // this is bad! 1149 if (RegInfo->Kind == VRegInfo::GENERIC || 1150 RegInfo->Kind == VRegInfo::REGBANK) 1151 return error("generic virtual registers must have a type"); 1152 } 1153 Dest = MachineOperand::CreateReg( 1154 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1155 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1156 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1157 Flags & RegState::InternalRead); 1158 return false; 1159 } 1160 1161 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1162 assert(Token.is(MIToken::IntegerLiteral)); 1163 const APSInt &Int = Token.integerValue(); 1164 if (Int.getMinSignedBits() > 64) 1165 return error("integer literal is too large to be an immediate operand"); 1166 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1167 lex(); 1168 return false; 1169 } 1170 1171 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1172 const Constant *&C) { 1173 auto Source = StringValue.str(); // The source has to be null terminated. 1174 SMDiagnostic Err; 1175 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1176 &PFS.IRSlots); 1177 if (!C) 1178 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1179 return false; 1180 } 1181 1182 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1183 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1184 return true; 1185 lex(); 1186 return false; 1187 } 1188 1189 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1190 if (Token.is(MIToken::ScalarType)) { 1191 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1192 lex(); 1193 return false; 1194 } else if (Token.is(MIToken::PointerType)) { 1195 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1196 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1197 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1198 lex(); 1199 return false; 1200 } 1201 1202 // Now we're looking for a vector. 1203 if (Token.isNot(MIToken::less)) 1204 return error(Loc, 1205 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1206 1207 lex(); 1208 1209 if (Token.isNot(MIToken::IntegerLiteral)) 1210 return error(Loc, "expected <N x sM> for vctor type"); 1211 uint64_t NumElements = Token.integerValue().getZExtValue(); 1212 lex(); 1213 1214 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1215 return error(Loc, "expected '<N x sM>' for vector type"); 1216 lex(); 1217 1218 if (Token.isNot(MIToken::ScalarType)) 1219 return error(Loc, "expected '<N x sM>' for vector type"); 1220 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1221 lex(); 1222 1223 if (Token.isNot(MIToken::greater)) 1224 return error(Loc, "expected '<N x sM>' for vector type"); 1225 lex(); 1226 1227 Ty = LLT::vector(NumElements, ScalarSize); 1228 return false; 1229 } 1230 1231 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1232 assert(Token.is(MIToken::IntegerType)); 1233 auto Loc = Token.location(); 1234 lex(); 1235 if (Token.isNot(MIToken::IntegerLiteral)) 1236 return error("expected an integer literal"); 1237 const Constant *C = nullptr; 1238 if (parseIRConstant(Loc, C)) 1239 return true; 1240 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1241 return false; 1242 } 1243 1244 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1245 auto Loc = Token.location(); 1246 lex(); 1247 if (Token.isNot(MIToken::FloatingPointLiteral) && 1248 Token.isNot(MIToken::HexLiteral)) 1249 return error("expected a floating point literal"); 1250 const Constant *C = nullptr; 1251 if (parseIRConstant(Loc, C)) 1252 return true; 1253 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1254 return false; 1255 } 1256 1257 bool MIParser::getUnsigned(unsigned &Result) { 1258 if (Token.hasIntegerValue()) { 1259 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1260 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1261 if (Val64 == Limit) 1262 return error("expected 32-bit integer (too large)"); 1263 Result = Val64; 1264 return false; 1265 } 1266 if (Token.is(MIToken::HexLiteral)) { 1267 APInt A; 1268 if (getHexUint(A)) 1269 return true; 1270 if (A.getBitWidth() > 32) 1271 return error("expected 32-bit integer (too large)"); 1272 Result = A.getZExtValue(); 1273 return false; 1274 } 1275 return true; 1276 } 1277 1278 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1279 assert(Token.is(MIToken::MachineBasicBlock) || 1280 Token.is(MIToken::MachineBasicBlockLabel)); 1281 unsigned Number; 1282 if (getUnsigned(Number)) 1283 return true; 1284 auto MBBInfo = PFS.MBBSlots.find(Number); 1285 if (MBBInfo == PFS.MBBSlots.end()) 1286 return error(Twine("use of undefined machine basic block #") + 1287 Twine(Number)); 1288 MBB = MBBInfo->second; 1289 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1290 return error(Twine("the name of machine basic block #") + Twine(Number) + 1291 " isn't '" + Token.stringValue() + "'"); 1292 return false; 1293 } 1294 1295 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1296 MachineBasicBlock *MBB; 1297 if (parseMBBReference(MBB)) 1298 return true; 1299 Dest = MachineOperand::CreateMBB(MBB); 1300 lex(); 1301 return false; 1302 } 1303 1304 bool MIParser::parseStackFrameIndex(int &FI) { 1305 assert(Token.is(MIToken::StackObject)); 1306 unsigned ID; 1307 if (getUnsigned(ID)) 1308 return true; 1309 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1310 if (ObjectInfo == PFS.StackObjectSlots.end()) 1311 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1312 "'"); 1313 StringRef Name; 1314 if (const auto *Alloca = 1315 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1316 Name = Alloca->getName(); 1317 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1318 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1319 "' isn't '" + Token.stringValue() + "'"); 1320 lex(); 1321 FI = ObjectInfo->second; 1322 return false; 1323 } 1324 1325 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1326 int FI; 1327 if (parseStackFrameIndex(FI)) 1328 return true; 1329 Dest = MachineOperand::CreateFI(FI); 1330 return false; 1331 } 1332 1333 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1334 assert(Token.is(MIToken::FixedStackObject)); 1335 unsigned ID; 1336 if (getUnsigned(ID)) 1337 return true; 1338 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1339 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1340 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1341 Twine(ID) + "'"); 1342 lex(); 1343 FI = ObjectInfo->second; 1344 return false; 1345 } 1346 1347 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1348 int FI; 1349 if (parseFixedStackFrameIndex(FI)) 1350 return true; 1351 Dest = MachineOperand::CreateFI(FI); 1352 return false; 1353 } 1354 1355 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1356 switch (Token.kind()) { 1357 case MIToken::NamedGlobalValue: { 1358 const Module *M = MF.getFunction()->getParent(); 1359 GV = M->getNamedValue(Token.stringValue()); 1360 if (!GV) 1361 return error(Twine("use of undefined global value '") + Token.range() + 1362 "'"); 1363 break; 1364 } 1365 case MIToken::GlobalValue: { 1366 unsigned GVIdx; 1367 if (getUnsigned(GVIdx)) 1368 return true; 1369 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1370 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1371 "'"); 1372 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1373 break; 1374 } 1375 default: 1376 llvm_unreachable("The current token should be a global value"); 1377 } 1378 return false; 1379 } 1380 1381 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1382 GlobalValue *GV = nullptr; 1383 if (parseGlobalValue(GV)) 1384 return true; 1385 lex(); 1386 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1387 if (parseOperandsOffset(Dest)) 1388 return true; 1389 return false; 1390 } 1391 1392 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1393 assert(Token.is(MIToken::ConstantPoolItem)); 1394 unsigned ID; 1395 if (getUnsigned(ID)) 1396 return true; 1397 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1398 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1399 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1400 lex(); 1401 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1402 if (parseOperandsOffset(Dest)) 1403 return true; 1404 return false; 1405 } 1406 1407 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1408 assert(Token.is(MIToken::JumpTableIndex)); 1409 unsigned ID; 1410 if (getUnsigned(ID)) 1411 return true; 1412 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1413 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1414 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1415 lex(); 1416 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1417 return false; 1418 } 1419 1420 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1421 assert(Token.is(MIToken::ExternalSymbol)); 1422 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1423 lex(); 1424 Dest = MachineOperand::CreateES(Symbol); 1425 if (parseOperandsOffset(Dest)) 1426 return true; 1427 return false; 1428 } 1429 1430 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1431 assert(Token.is(MIToken::SubRegisterIndex)); 1432 StringRef Name = Token.stringValue(); 1433 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1434 if (SubRegIndex == 0) 1435 return error(Twine("unknown subregister index '") + Name + "'"); 1436 lex(); 1437 Dest = MachineOperand::CreateImm(SubRegIndex); 1438 return false; 1439 } 1440 1441 bool MIParser::parseMDNode(MDNode *&Node) { 1442 assert(Token.is(MIToken::exclaim)); 1443 auto Loc = Token.location(); 1444 lex(); 1445 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1446 return error("expected metadata id after '!'"); 1447 unsigned ID; 1448 if (getUnsigned(ID)) 1449 return true; 1450 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1451 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1452 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1453 lex(); 1454 Node = NodeInfo->second.get(); 1455 return false; 1456 } 1457 1458 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1459 MDNode *Node = nullptr; 1460 if (parseMDNode(Node)) 1461 return true; 1462 Dest = MachineOperand::CreateMetadata(Node); 1463 return false; 1464 } 1465 1466 bool MIParser::parseCFIOffset(int &Offset) { 1467 if (Token.isNot(MIToken::IntegerLiteral)) 1468 return error("expected a cfi offset"); 1469 if (Token.integerValue().getMinSignedBits() > 32) 1470 return error("expected a 32 bit integer (the cfi offset is too large)"); 1471 Offset = (int)Token.integerValue().getExtValue(); 1472 lex(); 1473 return false; 1474 } 1475 1476 bool MIParser::parseCFIRegister(unsigned &Reg) { 1477 if (Token.isNot(MIToken::NamedRegister)) 1478 return error("expected a cfi register"); 1479 unsigned LLVMReg; 1480 if (parseNamedRegister(LLVMReg)) 1481 return true; 1482 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1483 assert(TRI && "Expected target register info"); 1484 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1485 if (DwarfReg < 0) 1486 return error("invalid DWARF register"); 1487 Reg = (unsigned)DwarfReg; 1488 lex(); 1489 return false; 1490 } 1491 1492 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1493 auto Kind = Token.kind(); 1494 lex(); 1495 int Offset; 1496 unsigned Reg; 1497 unsigned CFIIndex; 1498 switch (Kind) { 1499 case MIToken::kw_cfi_same_value: 1500 if (parseCFIRegister(Reg)) 1501 return true; 1502 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1503 break; 1504 case MIToken::kw_cfi_offset: 1505 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1506 parseCFIOffset(Offset)) 1507 return true; 1508 CFIIndex = 1509 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1510 break; 1511 case MIToken::kw_cfi_def_cfa_register: 1512 if (parseCFIRegister(Reg)) 1513 return true; 1514 CFIIndex = 1515 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1516 break; 1517 case MIToken::kw_cfi_def_cfa_offset: 1518 if (parseCFIOffset(Offset)) 1519 return true; 1520 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1521 CFIIndex = MF.addFrameInst( 1522 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1523 break; 1524 case MIToken::kw_cfi_def_cfa: 1525 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1526 parseCFIOffset(Offset)) 1527 return true; 1528 // NB: MCCFIInstruction::createDefCfa negates the offset. 1529 CFIIndex = 1530 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1531 break; 1532 default: 1533 // TODO: Parse the other CFI operands. 1534 llvm_unreachable("The current token should be a cfi operand"); 1535 } 1536 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1537 return false; 1538 } 1539 1540 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1541 switch (Token.kind()) { 1542 case MIToken::NamedIRBlock: { 1543 BB = dyn_cast_or_null<BasicBlock>( 1544 F.getValueSymbolTable()->lookup(Token.stringValue())); 1545 if (!BB) 1546 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1547 break; 1548 } 1549 case MIToken::IRBlock: { 1550 unsigned SlotNumber = 0; 1551 if (getUnsigned(SlotNumber)) 1552 return true; 1553 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1554 if (!BB) 1555 return error(Twine("use of undefined IR block '%ir-block.") + 1556 Twine(SlotNumber) + "'"); 1557 break; 1558 } 1559 default: 1560 llvm_unreachable("The current token should be an IR block reference"); 1561 } 1562 return false; 1563 } 1564 1565 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1566 assert(Token.is(MIToken::kw_blockaddress)); 1567 lex(); 1568 if (expectAndConsume(MIToken::lparen)) 1569 return true; 1570 if (Token.isNot(MIToken::GlobalValue) && 1571 Token.isNot(MIToken::NamedGlobalValue)) 1572 return error("expected a global value"); 1573 GlobalValue *GV = nullptr; 1574 if (parseGlobalValue(GV)) 1575 return true; 1576 auto *F = dyn_cast<Function>(GV); 1577 if (!F) 1578 return error("expected an IR function reference"); 1579 lex(); 1580 if (expectAndConsume(MIToken::comma)) 1581 return true; 1582 BasicBlock *BB = nullptr; 1583 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1584 return error("expected an IR block reference"); 1585 if (parseIRBlock(BB, *F)) 1586 return true; 1587 lex(); 1588 if (expectAndConsume(MIToken::rparen)) 1589 return true; 1590 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1591 if (parseOperandsOffset(Dest)) 1592 return true; 1593 return false; 1594 } 1595 1596 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1597 assert(Token.is(MIToken::kw_intrinsic)); 1598 lex(); 1599 if (expectAndConsume(MIToken::lparen)) 1600 return error("expected syntax intrinsic(@llvm.whatever)"); 1601 1602 if (Token.isNot(MIToken::NamedGlobalValue)) 1603 return error("expected syntax intrinsic(@llvm.whatever)"); 1604 1605 std::string Name = Token.stringValue(); 1606 lex(); 1607 1608 if (expectAndConsume(MIToken::rparen)) 1609 return error("expected ')' to terminate intrinsic name"); 1610 1611 // Find out what intrinsic we're dealing with, first try the global namespace 1612 // and then the target's private intrinsics if that fails. 1613 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1614 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1615 if (ID == Intrinsic::not_intrinsic && TII) 1616 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1617 1618 if (ID == Intrinsic::not_intrinsic) 1619 return error("unknown intrinsic name"); 1620 Dest = MachineOperand::CreateIntrinsicID(ID); 1621 1622 return false; 1623 } 1624 1625 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1626 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1627 bool IsFloat = Token.is(MIToken::kw_floatpred); 1628 lex(); 1629 1630 if (expectAndConsume(MIToken::lparen)) 1631 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1632 1633 if (Token.isNot(MIToken::Identifier)) 1634 return error("whatever"); 1635 1636 CmpInst::Predicate Pred; 1637 if (IsFloat) { 1638 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1639 .Case("false", CmpInst::FCMP_FALSE) 1640 .Case("oeq", CmpInst::FCMP_OEQ) 1641 .Case("ogt", CmpInst::FCMP_OGT) 1642 .Case("oge", CmpInst::FCMP_OGE) 1643 .Case("olt", CmpInst::FCMP_OLT) 1644 .Case("ole", CmpInst::FCMP_OLE) 1645 .Case("one", CmpInst::FCMP_ONE) 1646 .Case("ord", CmpInst::FCMP_ORD) 1647 .Case("uno", CmpInst::FCMP_UNO) 1648 .Case("ueq", CmpInst::FCMP_UEQ) 1649 .Case("ugt", CmpInst::FCMP_UGT) 1650 .Case("uge", CmpInst::FCMP_UGE) 1651 .Case("ult", CmpInst::FCMP_ULT) 1652 .Case("ule", CmpInst::FCMP_ULE) 1653 .Case("une", CmpInst::FCMP_UNE) 1654 .Case("true", CmpInst::FCMP_TRUE) 1655 .Default(CmpInst::BAD_FCMP_PREDICATE); 1656 if (!CmpInst::isFPPredicate(Pred)) 1657 return error("invalid floating-point predicate"); 1658 } else { 1659 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1660 .Case("eq", CmpInst::ICMP_EQ) 1661 .Case("ne", CmpInst::ICMP_NE) 1662 .Case("sgt", CmpInst::ICMP_SGT) 1663 .Case("sge", CmpInst::ICMP_SGE) 1664 .Case("slt", CmpInst::ICMP_SLT) 1665 .Case("sle", CmpInst::ICMP_SLE) 1666 .Case("ugt", CmpInst::ICMP_UGT) 1667 .Case("uge", CmpInst::ICMP_UGE) 1668 .Case("ult", CmpInst::ICMP_ULT) 1669 .Case("ule", CmpInst::ICMP_ULE) 1670 .Default(CmpInst::BAD_ICMP_PREDICATE); 1671 if (!CmpInst::isIntPredicate(Pred)) 1672 return error("invalid integer predicate"); 1673 } 1674 1675 lex(); 1676 Dest = MachineOperand::CreatePredicate(Pred); 1677 if (expectAndConsume(MIToken::rparen)) 1678 return error("predicate should be terminated by ')'."); 1679 1680 return false; 1681 } 1682 1683 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1684 assert(Token.is(MIToken::kw_target_index)); 1685 lex(); 1686 if (expectAndConsume(MIToken::lparen)) 1687 return true; 1688 if (Token.isNot(MIToken::Identifier)) 1689 return error("expected the name of the target index"); 1690 int Index = 0; 1691 if (getTargetIndex(Token.stringValue(), Index)) 1692 return error("use of undefined target index '" + Token.stringValue() + "'"); 1693 lex(); 1694 if (expectAndConsume(MIToken::rparen)) 1695 return true; 1696 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1697 if (parseOperandsOffset(Dest)) 1698 return true; 1699 return false; 1700 } 1701 1702 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1703 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1704 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1705 assert(TRI && "Expected target register info"); 1706 lex(); 1707 if (expectAndConsume(MIToken::lparen)) 1708 return true; 1709 1710 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1711 while (true) { 1712 if (Token.isNot(MIToken::NamedRegister)) 1713 return error("expected a named register"); 1714 unsigned Reg; 1715 if (parseNamedRegister(Reg)) 1716 return true; 1717 lex(); 1718 Mask[Reg / 32] |= 1U << (Reg % 32); 1719 // TODO: Report an error if the same register is used more than once. 1720 if (Token.isNot(MIToken::comma)) 1721 break; 1722 lex(); 1723 } 1724 1725 if (expectAndConsume(MIToken::rparen)) 1726 return true; 1727 Dest = MachineOperand::CreateRegMask(Mask); 1728 return false; 1729 } 1730 1731 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1732 assert(Token.is(MIToken::kw_liveout)); 1733 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1734 assert(TRI && "Expected target register info"); 1735 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1736 lex(); 1737 if (expectAndConsume(MIToken::lparen)) 1738 return true; 1739 while (true) { 1740 if (Token.isNot(MIToken::NamedRegister)) 1741 return error("expected a named register"); 1742 unsigned Reg; 1743 if (parseNamedRegister(Reg)) 1744 return true; 1745 lex(); 1746 Mask[Reg / 32] |= 1U << (Reg % 32); 1747 // TODO: Report an error if the same register is used more than once. 1748 if (Token.isNot(MIToken::comma)) 1749 break; 1750 lex(); 1751 } 1752 if (expectAndConsume(MIToken::rparen)) 1753 return true; 1754 Dest = MachineOperand::CreateRegLiveOut(Mask); 1755 return false; 1756 } 1757 1758 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1759 Optional<unsigned> &TiedDefIdx) { 1760 switch (Token.kind()) { 1761 case MIToken::kw_implicit: 1762 case MIToken::kw_implicit_define: 1763 case MIToken::kw_def: 1764 case MIToken::kw_dead: 1765 case MIToken::kw_killed: 1766 case MIToken::kw_undef: 1767 case MIToken::kw_internal: 1768 case MIToken::kw_early_clobber: 1769 case MIToken::kw_debug_use: 1770 case MIToken::underscore: 1771 case MIToken::NamedRegister: 1772 case MIToken::VirtualRegister: 1773 return parseRegisterOperand(Dest, TiedDefIdx); 1774 case MIToken::IntegerLiteral: 1775 return parseImmediateOperand(Dest); 1776 case MIToken::IntegerType: 1777 return parseTypedImmediateOperand(Dest); 1778 case MIToken::kw_half: 1779 case MIToken::kw_float: 1780 case MIToken::kw_double: 1781 case MIToken::kw_x86_fp80: 1782 case MIToken::kw_fp128: 1783 case MIToken::kw_ppc_fp128: 1784 return parseFPImmediateOperand(Dest); 1785 case MIToken::MachineBasicBlock: 1786 return parseMBBOperand(Dest); 1787 case MIToken::StackObject: 1788 return parseStackObjectOperand(Dest); 1789 case MIToken::FixedStackObject: 1790 return parseFixedStackObjectOperand(Dest); 1791 case MIToken::GlobalValue: 1792 case MIToken::NamedGlobalValue: 1793 return parseGlobalAddressOperand(Dest); 1794 case MIToken::ConstantPoolItem: 1795 return parseConstantPoolIndexOperand(Dest); 1796 case MIToken::JumpTableIndex: 1797 return parseJumpTableIndexOperand(Dest); 1798 case MIToken::ExternalSymbol: 1799 return parseExternalSymbolOperand(Dest); 1800 case MIToken::SubRegisterIndex: 1801 return parseSubRegisterIndexOperand(Dest); 1802 case MIToken::exclaim: 1803 return parseMetadataOperand(Dest); 1804 case MIToken::kw_cfi_same_value: 1805 case MIToken::kw_cfi_offset: 1806 case MIToken::kw_cfi_def_cfa_register: 1807 case MIToken::kw_cfi_def_cfa_offset: 1808 case MIToken::kw_cfi_def_cfa: 1809 return parseCFIOperand(Dest); 1810 case MIToken::kw_blockaddress: 1811 return parseBlockAddressOperand(Dest); 1812 case MIToken::kw_intrinsic: 1813 return parseIntrinsicOperand(Dest); 1814 case MIToken::kw_target_index: 1815 return parseTargetIndexOperand(Dest); 1816 case MIToken::kw_liveout: 1817 return parseLiveoutRegisterMaskOperand(Dest); 1818 case MIToken::kw_floatpred: 1819 case MIToken::kw_intpred: 1820 return parsePredicateOperand(Dest); 1821 case MIToken::Error: 1822 return true; 1823 case MIToken::Identifier: 1824 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1825 Dest = MachineOperand::CreateRegMask(RegMask); 1826 lex(); 1827 break; 1828 } else 1829 return parseCustomRegisterMaskOperand(Dest); 1830 default: 1831 // FIXME: Parse the MCSymbol machine operand. 1832 return error("expected a machine operand"); 1833 } 1834 return false; 1835 } 1836 1837 bool MIParser::parseMachineOperandAndTargetFlags( 1838 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1839 unsigned TF = 0; 1840 bool HasTargetFlags = false; 1841 if (Token.is(MIToken::kw_target_flags)) { 1842 HasTargetFlags = true; 1843 lex(); 1844 if (expectAndConsume(MIToken::lparen)) 1845 return true; 1846 if (Token.isNot(MIToken::Identifier)) 1847 return error("expected the name of the target flag"); 1848 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1849 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1850 return error("use of undefined target flag '" + Token.stringValue() + 1851 "'"); 1852 } 1853 lex(); 1854 while (Token.is(MIToken::comma)) { 1855 lex(); 1856 if (Token.isNot(MIToken::Identifier)) 1857 return error("expected the name of the target flag"); 1858 unsigned BitFlag = 0; 1859 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1860 return error("use of undefined target flag '" + Token.stringValue() + 1861 "'"); 1862 // TODO: Report an error when using a duplicate bit target flag. 1863 TF |= BitFlag; 1864 lex(); 1865 } 1866 if (expectAndConsume(MIToken::rparen)) 1867 return true; 1868 } 1869 auto Loc = Token.location(); 1870 if (parseMachineOperand(Dest, TiedDefIdx)) 1871 return true; 1872 if (!HasTargetFlags) 1873 return false; 1874 if (Dest.isReg()) 1875 return error(Loc, "register operands can't have target flags"); 1876 Dest.setTargetFlags(TF); 1877 return false; 1878 } 1879 1880 bool MIParser::parseOffset(int64_t &Offset) { 1881 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1882 return false; 1883 StringRef Sign = Token.range(); 1884 bool IsNegative = Token.is(MIToken::minus); 1885 lex(); 1886 if (Token.isNot(MIToken::IntegerLiteral)) 1887 return error("expected an integer literal after '" + Sign + "'"); 1888 if (Token.integerValue().getMinSignedBits() > 64) 1889 return error("expected 64-bit integer (too large)"); 1890 Offset = Token.integerValue().getExtValue(); 1891 if (IsNegative) 1892 Offset = -Offset; 1893 lex(); 1894 return false; 1895 } 1896 1897 bool MIParser::parseAlignment(unsigned &Alignment) { 1898 assert(Token.is(MIToken::kw_align)); 1899 lex(); 1900 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1901 return error("expected an integer literal after 'align'"); 1902 if (getUnsigned(Alignment)) 1903 return true; 1904 lex(); 1905 return false; 1906 } 1907 1908 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1909 int64_t Offset = 0; 1910 if (parseOffset(Offset)) 1911 return true; 1912 Op.setOffset(Offset); 1913 return false; 1914 } 1915 1916 bool MIParser::parseIRValue(const Value *&V) { 1917 switch (Token.kind()) { 1918 case MIToken::NamedIRValue: { 1919 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1920 break; 1921 } 1922 case MIToken::IRValue: { 1923 unsigned SlotNumber = 0; 1924 if (getUnsigned(SlotNumber)) 1925 return true; 1926 V = getIRValue(SlotNumber); 1927 break; 1928 } 1929 case MIToken::NamedGlobalValue: 1930 case MIToken::GlobalValue: { 1931 GlobalValue *GV = nullptr; 1932 if (parseGlobalValue(GV)) 1933 return true; 1934 V = GV; 1935 break; 1936 } 1937 case MIToken::QuotedIRValue: { 1938 const Constant *C = nullptr; 1939 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1940 return true; 1941 V = C; 1942 break; 1943 } 1944 default: 1945 llvm_unreachable("The current token should be an IR block reference"); 1946 } 1947 if (!V) 1948 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1949 return false; 1950 } 1951 1952 bool MIParser::getUint64(uint64_t &Result) { 1953 if (Token.hasIntegerValue()) { 1954 if (Token.integerValue().getActiveBits() > 64) 1955 return error("expected 64-bit integer (too large)"); 1956 Result = Token.integerValue().getZExtValue(); 1957 return false; 1958 } 1959 if (Token.is(MIToken::HexLiteral)) { 1960 APInt A; 1961 if (getHexUint(A)) 1962 return true; 1963 if (A.getBitWidth() > 64) 1964 return error("expected 64-bit integer (too large)"); 1965 Result = A.getZExtValue(); 1966 return false; 1967 } 1968 return true; 1969 } 1970 1971 bool MIParser::getHexUint(APInt &Result) { 1972 assert(Token.is(MIToken::HexLiteral)); 1973 StringRef S = Token.range(); 1974 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1975 // This could be a floating point literal with a special prefix. 1976 if (!isxdigit(S[2])) 1977 return true; 1978 StringRef V = S.substr(2); 1979 APInt A(V.size()*4, V, 16); 1980 Result = APInt(A.getActiveBits(), 1981 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1982 return false; 1983 } 1984 1985 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1986 const auto OldFlags = Flags; 1987 switch (Token.kind()) { 1988 case MIToken::kw_volatile: 1989 Flags |= MachineMemOperand::MOVolatile; 1990 break; 1991 case MIToken::kw_non_temporal: 1992 Flags |= MachineMemOperand::MONonTemporal; 1993 break; 1994 case MIToken::kw_dereferenceable: 1995 Flags |= MachineMemOperand::MODereferenceable; 1996 break; 1997 case MIToken::kw_invariant: 1998 Flags |= MachineMemOperand::MOInvariant; 1999 break; 2000 // TODO: parse the target specific memory operand flags. 2001 default: 2002 llvm_unreachable("The current token should be a memory operand flag"); 2003 } 2004 if (OldFlags == Flags) 2005 // We know that the same flag is specified more than once when the flags 2006 // weren't modified. 2007 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2008 lex(); 2009 return false; 2010 } 2011 2012 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2013 switch (Token.kind()) { 2014 case MIToken::kw_stack: 2015 PSV = MF.getPSVManager().getStack(); 2016 break; 2017 case MIToken::kw_got: 2018 PSV = MF.getPSVManager().getGOT(); 2019 break; 2020 case MIToken::kw_jump_table: 2021 PSV = MF.getPSVManager().getJumpTable(); 2022 break; 2023 case MIToken::kw_constant_pool: 2024 PSV = MF.getPSVManager().getConstantPool(); 2025 break; 2026 case MIToken::FixedStackObject: { 2027 int FI; 2028 if (parseFixedStackFrameIndex(FI)) 2029 return true; 2030 PSV = MF.getPSVManager().getFixedStack(FI); 2031 // The token was already consumed, so use return here instead of break. 2032 return false; 2033 } 2034 case MIToken::StackObject: { 2035 int FI; 2036 if (parseStackFrameIndex(FI)) 2037 return true; 2038 PSV = MF.getPSVManager().getFixedStack(FI); 2039 // The token was already consumed, so use return here instead of break. 2040 return false; 2041 } 2042 case MIToken::kw_call_entry: { 2043 lex(); 2044 switch (Token.kind()) { 2045 case MIToken::GlobalValue: 2046 case MIToken::NamedGlobalValue: { 2047 GlobalValue *GV = nullptr; 2048 if (parseGlobalValue(GV)) 2049 return true; 2050 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2051 break; 2052 } 2053 case MIToken::ExternalSymbol: 2054 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2055 MF.createExternalSymbolName(Token.stringValue())); 2056 break; 2057 default: 2058 return error( 2059 "expected a global value or an external symbol after 'call-entry'"); 2060 } 2061 break; 2062 } 2063 default: 2064 llvm_unreachable("The current token should be pseudo source value"); 2065 } 2066 lex(); 2067 return false; 2068 } 2069 2070 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2071 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2072 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2073 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2074 Token.is(MIToken::kw_call_entry)) { 2075 const PseudoSourceValue *PSV = nullptr; 2076 if (parseMemoryPseudoSourceValue(PSV)) 2077 return true; 2078 int64_t Offset = 0; 2079 if (parseOffset(Offset)) 2080 return true; 2081 Dest = MachinePointerInfo(PSV, Offset); 2082 return false; 2083 } 2084 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2085 Token.isNot(MIToken::GlobalValue) && 2086 Token.isNot(MIToken::NamedGlobalValue) && 2087 Token.isNot(MIToken::QuotedIRValue)) 2088 return error("expected an IR value reference"); 2089 const Value *V = nullptr; 2090 if (parseIRValue(V)) 2091 return true; 2092 if (!V->getType()->isPointerTy()) 2093 return error("expected a pointer IR value"); 2094 lex(); 2095 int64_t Offset = 0; 2096 if (parseOffset(Offset)) 2097 return true; 2098 Dest = MachinePointerInfo(V, Offset); 2099 return false; 2100 } 2101 2102 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2103 Order = AtomicOrdering::NotAtomic; 2104 if (Token.isNot(MIToken::Identifier)) 2105 return false; 2106 2107 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2108 .Case("unordered", AtomicOrdering::Unordered) 2109 .Case("monotonic", AtomicOrdering::Monotonic) 2110 .Case("acquire", AtomicOrdering::Acquire) 2111 .Case("release", AtomicOrdering::Release) 2112 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2113 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2114 .Default(AtomicOrdering::NotAtomic); 2115 2116 if (Order != AtomicOrdering::NotAtomic) { 2117 lex(); 2118 return false; 2119 } 2120 2121 return error("expected an atomic scope, ordering or a size integer literal"); 2122 } 2123 2124 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2125 if (expectAndConsume(MIToken::lparen)) 2126 return true; 2127 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2128 while (Token.isMemoryOperandFlag()) { 2129 if (parseMemoryOperandFlag(Flags)) 2130 return true; 2131 } 2132 if (Token.isNot(MIToken::Identifier) || 2133 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2134 return error("expected 'load' or 'store' memory operation"); 2135 if (Token.stringValue() == "load") 2136 Flags |= MachineMemOperand::MOLoad; 2137 else 2138 Flags |= MachineMemOperand::MOStore; 2139 lex(); 2140 2141 // Optional "singlethread" scope. 2142 SynchronizationScope Scope = SynchronizationScope::CrossThread; 2143 if (Token.is(MIToken::Identifier) && Token.stringValue() == "singlethread") { 2144 Scope = SynchronizationScope::SingleThread; 2145 lex(); 2146 } 2147 2148 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2149 AtomicOrdering Order, FailureOrder; 2150 if (parseOptionalAtomicOrdering(Order)) 2151 return true; 2152 2153 if (parseOptionalAtomicOrdering(FailureOrder)) 2154 return true; 2155 2156 if (Token.isNot(MIToken::IntegerLiteral)) 2157 return error("expected the size integer literal after memory operation"); 2158 uint64_t Size; 2159 if (getUint64(Size)) 2160 return true; 2161 lex(); 2162 2163 MachinePointerInfo Ptr = MachinePointerInfo(); 2164 if (Token.is(MIToken::Identifier)) { 2165 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2166 if (Token.stringValue() != Word) 2167 return error(Twine("expected '") + Word + "'"); 2168 lex(); 2169 2170 if (parseMachinePointerInfo(Ptr)) 2171 return true; 2172 } 2173 unsigned BaseAlignment = Size; 2174 AAMDNodes AAInfo; 2175 MDNode *Range = nullptr; 2176 while (consumeIfPresent(MIToken::comma)) { 2177 switch (Token.kind()) { 2178 case MIToken::kw_align: 2179 if (parseAlignment(BaseAlignment)) 2180 return true; 2181 break; 2182 case MIToken::md_tbaa: 2183 lex(); 2184 if (parseMDNode(AAInfo.TBAA)) 2185 return true; 2186 break; 2187 case MIToken::md_alias_scope: 2188 lex(); 2189 if (parseMDNode(AAInfo.Scope)) 2190 return true; 2191 break; 2192 case MIToken::md_noalias: 2193 lex(); 2194 if (parseMDNode(AAInfo.NoAlias)) 2195 return true; 2196 break; 2197 case MIToken::md_range: 2198 lex(); 2199 if (parseMDNode(Range)) 2200 return true; 2201 break; 2202 // TODO: Report an error on duplicate metadata nodes. 2203 default: 2204 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2205 "'!noalias' or '!range'"); 2206 } 2207 } 2208 if (expectAndConsume(MIToken::rparen)) 2209 return true; 2210 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2211 Scope, Order, FailureOrder); 2212 return false; 2213 } 2214 2215 void MIParser::initNames2InstrOpCodes() { 2216 if (!Names2InstrOpCodes.empty()) 2217 return; 2218 const auto *TII = MF.getSubtarget().getInstrInfo(); 2219 assert(TII && "Expected target instruction info"); 2220 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2221 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2222 } 2223 2224 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2225 initNames2InstrOpCodes(); 2226 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2227 if (InstrInfo == Names2InstrOpCodes.end()) 2228 return true; 2229 OpCode = InstrInfo->getValue(); 2230 return false; 2231 } 2232 2233 void MIParser::initNames2Regs() { 2234 if (!Names2Regs.empty()) 2235 return; 2236 // The '%noreg' register is the register 0. 2237 Names2Regs.insert(std::make_pair("noreg", 0)); 2238 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2239 assert(TRI && "Expected target register info"); 2240 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2241 bool WasInserted = 2242 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2243 .second; 2244 (void)WasInserted; 2245 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2246 } 2247 } 2248 2249 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2250 initNames2Regs(); 2251 auto RegInfo = Names2Regs.find(RegName); 2252 if (RegInfo == Names2Regs.end()) 2253 return true; 2254 Reg = RegInfo->getValue(); 2255 return false; 2256 } 2257 2258 void MIParser::initNames2RegMasks() { 2259 if (!Names2RegMasks.empty()) 2260 return; 2261 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2262 assert(TRI && "Expected target register info"); 2263 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2264 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2265 assert(RegMasks.size() == RegMaskNames.size()); 2266 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2267 Names2RegMasks.insert( 2268 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2269 } 2270 2271 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2272 initNames2RegMasks(); 2273 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2274 if (RegMaskInfo == Names2RegMasks.end()) 2275 return nullptr; 2276 return RegMaskInfo->getValue(); 2277 } 2278 2279 void MIParser::initNames2SubRegIndices() { 2280 if (!Names2SubRegIndices.empty()) 2281 return; 2282 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2283 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2284 Names2SubRegIndices.insert( 2285 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2286 } 2287 2288 unsigned MIParser::getSubRegIndex(StringRef Name) { 2289 initNames2SubRegIndices(); 2290 auto SubRegInfo = Names2SubRegIndices.find(Name); 2291 if (SubRegInfo == Names2SubRegIndices.end()) 2292 return 0; 2293 return SubRegInfo->getValue(); 2294 } 2295 2296 static void initSlots2BasicBlocks( 2297 const Function &F, 2298 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2299 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2300 MST.incorporateFunction(F); 2301 for (auto &BB : F) { 2302 if (BB.hasName()) 2303 continue; 2304 int Slot = MST.getLocalSlot(&BB); 2305 if (Slot == -1) 2306 continue; 2307 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2308 } 2309 } 2310 2311 static const BasicBlock *getIRBlockFromSlot( 2312 unsigned Slot, 2313 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2314 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2315 if (BlockInfo == Slots2BasicBlocks.end()) 2316 return nullptr; 2317 return BlockInfo->second; 2318 } 2319 2320 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2321 if (Slots2BasicBlocks.empty()) 2322 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2323 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2324 } 2325 2326 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2327 if (&F == MF.getFunction()) 2328 return getIRBlock(Slot); 2329 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2330 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2331 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2332 } 2333 2334 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2335 DenseMap<unsigned, const Value *> &Slots2Values) { 2336 int Slot = MST.getLocalSlot(V); 2337 if (Slot == -1) 2338 return; 2339 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2340 } 2341 2342 /// Creates the mapping from slot numbers to function's unnamed IR values. 2343 static void initSlots2Values(const Function &F, 2344 DenseMap<unsigned, const Value *> &Slots2Values) { 2345 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2346 MST.incorporateFunction(F); 2347 for (const auto &Arg : F.args()) 2348 mapValueToSlot(&Arg, MST, Slots2Values); 2349 for (const auto &BB : F) { 2350 mapValueToSlot(&BB, MST, Slots2Values); 2351 for (const auto &I : BB) 2352 mapValueToSlot(&I, MST, Slots2Values); 2353 } 2354 } 2355 2356 const Value *MIParser::getIRValue(unsigned Slot) { 2357 if (Slots2Values.empty()) 2358 initSlots2Values(*MF.getFunction(), Slots2Values); 2359 auto ValueInfo = Slots2Values.find(Slot); 2360 if (ValueInfo == Slots2Values.end()) 2361 return nullptr; 2362 return ValueInfo->second; 2363 } 2364 2365 void MIParser::initNames2TargetIndices() { 2366 if (!Names2TargetIndices.empty()) 2367 return; 2368 const auto *TII = MF.getSubtarget().getInstrInfo(); 2369 assert(TII && "Expected target instruction info"); 2370 auto Indices = TII->getSerializableTargetIndices(); 2371 for (const auto &I : Indices) 2372 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2373 } 2374 2375 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2376 initNames2TargetIndices(); 2377 auto IndexInfo = Names2TargetIndices.find(Name); 2378 if (IndexInfo == Names2TargetIndices.end()) 2379 return true; 2380 Index = IndexInfo->second; 2381 return false; 2382 } 2383 2384 void MIParser::initNames2DirectTargetFlags() { 2385 if (!Names2DirectTargetFlags.empty()) 2386 return; 2387 const auto *TII = MF.getSubtarget().getInstrInfo(); 2388 assert(TII && "Expected target instruction info"); 2389 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2390 for (const auto &I : Flags) 2391 Names2DirectTargetFlags.insert( 2392 std::make_pair(StringRef(I.second), I.first)); 2393 } 2394 2395 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2396 initNames2DirectTargetFlags(); 2397 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2398 if (FlagInfo == Names2DirectTargetFlags.end()) 2399 return true; 2400 Flag = FlagInfo->second; 2401 return false; 2402 } 2403 2404 void MIParser::initNames2BitmaskTargetFlags() { 2405 if (!Names2BitmaskTargetFlags.empty()) 2406 return; 2407 const auto *TII = MF.getSubtarget().getInstrInfo(); 2408 assert(TII && "Expected target instruction info"); 2409 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2410 for (const auto &I : Flags) 2411 Names2BitmaskTargetFlags.insert( 2412 std::make_pair(StringRef(I.second), I.first)); 2413 } 2414 2415 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2416 initNames2BitmaskTargetFlags(); 2417 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2418 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2419 return true; 2420 Flag = FlagInfo->second; 2421 return false; 2422 } 2423 2424 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2425 StringRef Src, 2426 SMDiagnostic &Error) { 2427 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2428 } 2429 2430 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2431 StringRef Src, SMDiagnostic &Error) { 2432 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2433 } 2434 2435 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2436 MachineBasicBlock *&MBB, StringRef Src, 2437 SMDiagnostic &Error) { 2438 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2439 } 2440 2441 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2442 unsigned &Reg, StringRef Src, 2443 SMDiagnostic &Error) { 2444 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2445 } 2446 2447 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2448 unsigned &Reg, StringRef Src, 2449 SMDiagnostic &Error) { 2450 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2451 } 2452 2453 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2454 VRegInfo *&Info, StringRef Src, 2455 SMDiagnostic &Error) { 2456 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2457 } 2458 2459 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2460 int &FI, StringRef Src, 2461 SMDiagnostic &Error) { 2462 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2463 } 2464 2465 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2466 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2467 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2468 } 2469