1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 
16 #include "MILexer.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/ADT/StringSwitch.h"
19 #include "llvm/AsmParser/Parser.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/CodeGen/MIRPrinter.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/ModuleSlotTracker.h"
35 #include "llvm/IR/ValueSymbolTable.h"
36 #include "llvm/Support/SourceMgr.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Target/TargetInstrInfo.h"
39 #include "llvm/Target/TargetIntrinsicInfo.h"
40 #include "llvm/Target/TargetSubtargetInfo.h"
41 #include <cctype>
42 
43 using namespace llvm;
44 
45 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
46     SourceMgr &SM, const SlotMapping &IRSlots,
47     const Name2RegClassMap &Names2RegClasses,
48     const Name2RegBankMap &Names2RegBanks)
49   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
50     Names2RegBanks(Names2RegBanks) {
51 }
52 
53 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
54   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
55   if (I.second) {
56     MachineRegisterInfo &MRI = MF.getRegInfo();
57     VRegInfo *Info = new (Allocator) VRegInfo;
58     Info->VReg = MRI.createIncompleteVirtualRegister();
59     I.first->second = Info;
60   }
61   return *I.first->second;
62 }
63 
64 namespace {
65 
66 /// A wrapper struct around the 'MachineOperand' struct that includes a source
67 /// range and other attributes.
68 struct ParsedMachineOperand {
69   MachineOperand Operand;
70   StringRef::iterator Begin;
71   StringRef::iterator End;
72   Optional<unsigned> TiedDefIdx;
73 
74   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
75                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
76       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
77     if (TiedDefIdx)
78       assert(Operand.isReg() && Operand.isUse() &&
79              "Only used register operands can be tied");
80   }
81 };
82 
83 class MIParser {
84   MachineFunction &MF;
85   SMDiagnostic &Error;
86   StringRef Source, CurrentSource;
87   MIToken Token;
88   PerFunctionMIParsingState &PFS;
89   /// Maps from instruction names to op codes.
90   StringMap<unsigned> Names2InstrOpCodes;
91   /// Maps from register names to registers.
92   StringMap<unsigned> Names2Regs;
93   /// Maps from register mask names to register masks.
94   StringMap<const uint32_t *> Names2RegMasks;
95   /// Maps from subregister names to subregister indices.
96   StringMap<unsigned> Names2SubRegIndices;
97   /// Maps from slot numbers to function's unnamed basic blocks.
98   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
99   /// Maps from slot numbers to function's unnamed values.
100   DenseMap<unsigned, const Value *> Slots2Values;
101   /// Maps from target index names to target indices.
102   StringMap<int> Names2TargetIndices;
103   /// Maps from direct target flag names to the direct target flag values.
104   StringMap<unsigned> Names2DirectTargetFlags;
105   /// Maps from direct target flag names to the bitmask target flag values.
106   StringMap<unsigned> Names2BitmaskTargetFlags;
107 
108 public:
109   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
110            StringRef Source);
111 
112   /// \p SkipChar gives the number of characters to skip before looking
113   /// for the next token.
114   void lex(unsigned SkipChar = 0);
115 
116   /// Report an error at the current location with the given message.
117   ///
118   /// This function always return true.
119   bool error(const Twine &Msg);
120 
121   /// Report an error at the given location with the given message.
122   ///
123   /// This function always return true.
124   bool error(StringRef::iterator Loc, const Twine &Msg);
125 
126   bool
127   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
128   bool parseBasicBlocks();
129   bool parse(MachineInstr *&MI);
130   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
131   bool parseStandaloneNamedRegister(unsigned &Reg);
132   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
133   bool parseStandaloneRegister(unsigned &Reg);
134   bool parseStandaloneStackObject(int &FI);
135   bool parseStandaloneMDNode(MDNode *&Node);
136 
137   bool
138   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
139   bool parseBasicBlock(MachineBasicBlock &MBB,
140                        MachineBasicBlock *&AddFalthroughFrom);
141   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
142   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
143 
144   bool parseNamedRegister(unsigned &Reg);
145   bool parseVirtualRegister(VRegInfo *&Info);
146   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
147   bool parseRegisterFlag(unsigned &Flags);
148   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
149   bool parseSubRegisterIndex(unsigned &SubReg);
150   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
151   bool parseRegisterOperand(MachineOperand &Dest,
152                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
153   bool parseImmediateOperand(MachineOperand &Dest);
154   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
155                        const Constant *&C);
156   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
157   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
158   bool parseTypedImmediateOperand(MachineOperand &Dest);
159   bool parseFPImmediateOperand(MachineOperand &Dest);
160   bool parseMBBReference(MachineBasicBlock *&MBB);
161   bool parseMBBOperand(MachineOperand &Dest);
162   bool parseStackFrameIndex(int &FI);
163   bool parseStackObjectOperand(MachineOperand &Dest);
164   bool parseFixedStackFrameIndex(int &FI);
165   bool parseFixedStackObjectOperand(MachineOperand &Dest);
166   bool parseGlobalValue(GlobalValue *&GV);
167   bool parseGlobalAddressOperand(MachineOperand &Dest);
168   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
169   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
170   bool parseJumpTableIndexOperand(MachineOperand &Dest);
171   bool parseExternalSymbolOperand(MachineOperand &Dest);
172   bool parseMDNode(MDNode *&Node);
173   bool parseMetadataOperand(MachineOperand &Dest);
174   bool parseCFIOffset(int &Offset);
175   bool parseCFIRegister(unsigned &Reg);
176   bool parseCFIOperand(MachineOperand &Dest);
177   bool parseIRBlock(BasicBlock *&BB, const Function &F);
178   bool parseBlockAddressOperand(MachineOperand &Dest);
179   bool parseIntrinsicOperand(MachineOperand &Dest);
180   bool parsePredicateOperand(MachineOperand &Dest);
181   bool parseTargetIndexOperand(MachineOperand &Dest);
182   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
183   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
184   bool parseMachineOperand(MachineOperand &Dest,
185                            Optional<unsigned> &TiedDefIdx);
186   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
187                                          Optional<unsigned> &TiedDefIdx);
188   bool parseOffset(int64_t &Offset);
189   bool parseAlignment(unsigned &Alignment);
190   bool parseOperandsOffset(MachineOperand &Op);
191   bool parseIRValue(const Value *&V);
192   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
193   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
194   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
195   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
196   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
197 
198 private:
199   /// Convert the integer literal in the current token into an unsigned integer.
200   ///
201   /// Return true if an error occurred.
202   bool getUnsigned(unsigned &Result);
203 
204   /// Convert the integer literal in the current token into an uint64.
205   ///
206   /// Return true if an error occurred.
207   bool getUint64(uint64_t &Result);
208 
209   /// Convert the hexadecimal literal in the current token into an unsigned
210   ///  APInt with a minimum bitwidth required to represent the value.
211   ///
212   /// Return true if the literal does not represent an integer value.
213   bool getHexUint(APInt &Result);
214 
215   /// If the current token is of the given kind, consume it and return false.
216   /// Otherwise report an error and return true.
217   bool expectAndConsume(MIToken::TokenKind TokenKind);
218 
219   /// If the current token is of the given kind, consume it and return true.
220   /// Otherwise return false.
221   bool consumeIfPresent(MIToken::TokenKind TokenKind);
222 
223   void initNames2InstrOpCodes();
224 
225   /// Try to convert an instruction name to an opcode. Return true if the
226   /// instruction name is invalid.
227   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
228 
229   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
230 
231   bool assignRegisterTies(MachineInstr &MI,
232                           ArrayRef<ParsedMachineOperand> Operands);
233 
234   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
235                               const MCInstrDesc &MCID);
236 
237   void initNames2Regs();
238 
239   /// Try to convert a register name to a register number. Return true if the
240   /// register name is invalid.
241   bool getRegisterByName(StringRef RegName, unsigned &Reg);
242 
243   void initNames2RegMasks();
244 
245   /// Check if the given identifier is a name of a register mask.
246   ///
247   /// Return null if the identifier isn't a register mask.
248   const uint32_t *getRegMask(StringRef Identifier);
249 
250   void initNames2SubRegIndices();
251 
252   /// Check if the given identifier is a name of a subregister index.
253   ///
254   /// Return 0 if the name isn't a subregister index class.
255   unsigned getSubRegIndex(StringRef Name);
256 
257   const BasicBlock *getIRBlock(unsigned Slot);
258   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
259 
260   const Value *getIRValue(unsigned Slot);
261 
262   void initNames2TargetIndices();
263 
264   /// Try to convert a name of target index to the corresponding target index.
265   ///
266   /// Return true if the name isn't a name of a target index.
267   bool getTargetIndex(StringRef Name, int &Index);
268 
269   void initNames2DirectTargetFlags();
270 
271   /// Try to convert a name of a direct target flag to the corresponding
272   /// target flag.
273   ///
274   /// Return true if the name isn't a name of a direct flag.
275   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
276 
277   void initNames2BitmaskTargetFlags();
278 
279   /// Try to convert a name of a bitmask target flag to the corresponding
280   /// target flag.
281   ///
282   /// Return true if the name isn't a name of a bitmask target flag.
283   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
284 };
285 
286 } // end anonymous namespace
287 
288 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
289                    StringRef Source)
290     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
291 {}
292 
293 void MIParser::lex(unsigned SkipChar) {
294   CurrentSource = lexMIToken(
295       CurrentSource.data() + SkipChar, Token,
296       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
297 }
298 
299 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
300 
301 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
302   const SourceMgr &SM = *PFS.SM;
303   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
304   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
305   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
306     // Create an ordinary diagnostic when the source manager's buffer is the
307     // source string.
308     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
309     return true;
310   }
311   // Create a diagnostic for a YAML string literal.
312   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
313                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
314                        Source, None, None);
315   return true;
316 }
317 
318 static const char *toString(MIToken::TokenKind TokenKind) {
319   switch (TokenKind) {
320   case MIToken::comma:
321     return "','";
322   case MIToken::equal:
323     return "'='";
324   case MIToken::colon:
325     return "':'";
326   case MIToken::lparen:
327     return "'('";
328   case MIToken::rparen:
329     return "')'";
330   default:
331     return "<unknown token>";
332   }
333 }
334 
335 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
336   if (Token.isNot(TokenKind))
337     return error(Twine("expected ") + toString(TokenKind));
338   lex();
339   return false;
340 }
341 
342 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
343   if (Token.isNot(TokenKind))
344     return false;
345   lex();
346   return true;
347 }
348 
349 bool MIParser::parseBasicBlockDefinition(
350     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
351   assert(Token.is(MIToken::MachineBasicBlockLabel));
352   unsigned ID = 0;
353   if (getUnsigned(ID))
354     return true;
355   auto Loc = Token.location();
356   auto Name = Token.stringValue();
357   lex();
358   bool HasAddressTaken = false;
359   bool IsLandingPad = false;
360   unsigned Alignment = 0;
361   BasicBlock *BB = nullptr;
362   if (consumeIfPresent(MIToken::lparen)) {
363     do {
364       // TODO: Report an error when multiple same attributes are specified.
365       switch (Token.kind()) {
366       case MIToken::kw_address_taken:
367         HasAddressTaken = true;
368         lex();
369         break;
370       case MIToken::kw_landing_pad:
371         IsLandingPad = true;
372         lex();
373         break;
374       case MIToken::kw_align:
375         if (parseAlignment(Alignment))
376           return true;
377         break;
378       case MIToken::IRBlock:
379         // TODO: Report an error when both name and ir block are specified.
380         if (parseIRBlock(BB, *MF.getFunction()))
381           return true;
382         lex();
383         break;
384       default:
385         break;
386       }
387     } while (consumeIfPresent(MIToken::comma));
388     if (expectAndConsume(MIToken::rparen))
389       return true;
390   }
391   if (expectAndConsume(MIToken::colon))
392     return true;
393 
394   if (!Name.empty()) {
395     BB = dyn_cast_or_null<BasicBlock>(
396         MF.getFunction()->getValueSymbolTable()->lookup(Name));
397     if (!BB)
398       return error(Loc, Twine("basic block '") + Name +
399                             "' is not defined in the function '" +
400                             MF.getName() + "'");
401   }
402   auto *MBB = MF.CreateMachineBasicBlock(BB);
403   MF.insert(MF.end(), MBB);
404   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
405   if (!WasInserted)
406     return error(Loc, Twine("redefinition of machine basic block with id #") +
407                           Twine(ID));
408   if (Alignment)
409     MBB->setAlignment(Alignment);
410   if (HasAddressTaken)
411     MBB->setHasAddressTaken();
412   MBB->setIsEHPad(IsLandingPad);
413   return false;
414 }
415 
416 bool MIParser::parseBasicBlockDefinitions(
417     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
418   lex();
419   // Skip until the first machine basic block.
420   while (Token.is(MIToken::Newline))
421     lex();
422   if (Token.isErrorOrEOF())
423     return Token.isError();
424   if (Token.isNot(MIToken::MachineBasicBlockLabel))
425     return error("expected a basic block definition before instructions");
426   unsigned BraceDepth = 0;
427   do {
428     if (parseBasicBlockDefinition(MBBSlots))
429       return true;
430     bool IsAfterNewline = false;
431     // Skip until the next machine basic block.
432     while (true) {
433       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
434           Token.isErrorOrEOF())
435         break;
436       else if (Token.is(MIToken::MachineBasicBlockLabel))
437         return error("basic block definition should be located at the start of "
438                      "the line");
439       else if (consumeIfPresent(MIToken::Newline)) {
440         IsAfterNewline = true;
441         continue;
442       }
443       IsAfterNewline = false;
444       if (Token.is(MIToken::lbrace))
445         ++BraceDepth;
446       if (Token.is(MIToken::rbrace)) {
447         if (!BraceDepth)
448           return error("extraneous closing brace ('}')");
449         --BraceDepth;
450       }
451       lex();
452     }
453     // Verify that we closed all of the '{' at the end of a file or a block.
454     if (!Token.isError() && BraceDepth)
455       return error("expected '}'"); // FIXME: Report a note that shows '{'.
456   } while (!Token.isErrorOrEOF());
457   return Token.isError();
458 }
459 
460 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
461   assert(Token.is(MIToken::kw_liveins));
462   lex();
463   if (expectAndConsume(MIToken::colon))
464     return true;
465   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
466     return false;
467   do {
468     if (Token.isNot(MIToken::NamedRegister))
469       return error("expected a named register");
470     unsigned Reg = 0;
471     if (parseNamedRegister(Reg))
472       return true;
473     lex();
474     LaneBitmask Mask = LaneBitmask::getAll();
475     if (consumeIfPresent(MIToken::colon)) {
476       // Parse lane mask.
477       if (Token.isNot(MIToken::IntegerLiteral) &&
478           Token.isNot(MIToken::HexLiteral))
479         return error("expected a lane mask");
480       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
481                     "Use correct get-function for lane mask");
482       LaneBitmask::Type V;
483       if (getUnsigned(V))
484         return error("invalid lane mask value");
485       Mask = LaneBitmask(V);
486       lex();
487     }
488     MBB.addLiveIn(Reg, Mask);
489   } while (consumeIfPresent(MIToken::comma));
490   return false;
491 }
492 
493 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
494   assert(Token.is(MIToken::kw_successors));
495   lex();
496   if (expectAndConsume(MIToken::colon))
497     return true;
498   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
499     return false;
500   do {
501     if (Token.isNot(MIToken::MachineBasicBlock))
502       return error("expected a machine basic block reference");
503     MachineBasicBlock *SuccMBB = nullptr;
504     if (parseMBBReference(SuccMBB))
505       return true;
506     lex();
507     unsigned Weight = 0;
508     if (consumeIfPresent(MIToken::lparen)) {
509       if (Token.isNot(MIToken::IntegerLiteral) &&
510           Token.isNot(MIToken::HexLiteral))
511         return error("expected an integer literal after '('");
512       if (getUnsigned(Weight))
513         return true;
514       lex();
515       if (expectAndConsume(MIToken::rparen))
516         return true;
517     }
518     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
519   } while (consumeIfPresent(MIToken::comma));
520   MBB.normalizeSuccProbs();
521   return false;
522 }
523 
524 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
525                                MachineBasicBlock *&AddFalthroughFrom) {
526   // Skip the definition.
527   assert(Token.is(MIToken::MachineBasicBlockLabel));
528   lex();
529   if (consumeIfPresent(MIToken::lparen)) {
530     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
531       lex();
532     consumeIfPresent(MIToken::rparen);
533   }
534   consumeIfPresent(MIToken::colon);
535 
536   // Parse the liveins and successors.
537   // N.B: Multiple lists of successors and liveins are allowed and they're
538   // merged into one.
539   // Example:
540   //   liveins: %edi
541   //   liveins: %esi
542   //
543   // is equivalent to
544   //   liveins: %edi, %esi
545   bool ExplicitSuccesors = false;
546   while (true) {
547     if (Token.is(MIToken::kw_successors)) {
548       if (parseBasicBlockSuccessors(MBB))
549         return true;
550       ExplicitSuccesors = true;
551     } else if (Token.is(MIToken::kw_liveins)) {
552       if (parseBasicBlockLiveins(MBB))
553         return true;
554     } else if (consumeIfPresent(MIToken::Newline)) {
555       continue;
556     } else
557       break;
558     if (!Token.isNewlineOrEOF())
559       return error("expected line break at the end of a list");
560     lex();
561   }
562 
563   // Parse the instructions.
564   bool IsInBundle = false;
565   MachineInstr *PrevMI = nullptr;
566   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
567          !Token.is(MIToken::Eof)) {
568     if (consumeIfPresent(MIToken::Newline))
569       continue;
570     if (consumeIfPresent(MIToken::rbrace)) {
571       // The first parsing pass should verify that all closing '}' have an
572       // opening '{'.
573       assert(IsInBundle);
574       IsInBundle = false;
575       continue;
576     }
577     MachineInstr *MI = nullptr;
578     if (parse(MI))
579       return true;
580     MBB.insert(MBB.end(), MI);
581     if (IsInBundle) {
582       PrevMI->setFlag(MachineInstr::BundledSucc);
583       MI->setFlag(MachineInstr::BundledPred);
584     }
585     PrevMI = MI;
586     if (Token.is(MIToken::lbrace)) {
587       if (IsInBundle)
588         return error("nested instruction bundles are not allowed");
589       lex();
590       // This instruction is the start of the bundle.
591       MI->setFlag(MachineInstr::BundledSucc);
592       IsInBundle = true;
593       if (!Token.is(MIToken::Newline))
594         // The next instruction can be on the same line.
595         continue;
596     }
597     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
598     lex();
599   }
600 
601   // Construct successor list by searching for basic block machine operands.
602   if (!ExplicitSuccesors) {
603     SmallVector<MachineBasicBlock*,4> Successors;
604     bool IsFallthrough;
605     guessSuccessors(MBB, Successors, IsFallthrough);
606     for (MachineBasicBlock *Succ : Successors)
607       MBB.addSuccessor(Succ);
608 
609     if (IsFallthrough) {
610       AddFalthroughFrom = &MBB;
611     } else {
612       MBB.normalizeSuccProbs();
613     }
614   }
615 
616   return false;
617 }
618 
619 bool MIParser::parseBasicBlocks() {
620   lex();
621   // Skip until the first machine basic block.
622   while (Token.is(MIToken::Newline))
623     lex();
624   if (Token.isErrorOrEOF())
625     return Token.isError();
626   // The first parsing pass should have verified that this token is a MBB label
627   // in the 'parseBasicBlockDefinitions' method.
628   assert(Token.is(MIToken::MachineBasicBlockLabel));
629   MachineBasicBlock *AddFalthroughFrom = nullptr;
630   do {
631     MachineBasicBlock *MBB = nullptr;
632     if (parseMBBReference(MBB))
633       return true;
634     if (AddFalthroughFrom) {
635       if (!AddFalthroughFrom->isSuccessor(MBB))
636         AddFalthroughFrom->addSuccessor(MBB);
637       AddFalthroughFrom->normalizeSuccProbs();
638       AddFalthroughFrom = nullptr;
639     }
640     if (parseBasicBlock(*MBB, AddFalthroughFrom))
641       return true;
642     // The method 'parseBasicBlock' should parse the whole block until the next
643     // block or the end of file.
644     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
645   } while (Token.isNot(MIToken::Eof));
646   return false;
647 }
648 
649 bool MIParser::parse(MachineInstr *&MI) {
650   // Parse any register operands before '='
651   MachineOperand MO = MachineOperand::CreateImm(0);
652   SmallVector<ParsedMachineOperand, 8> Operands;
653   while (Token.isRegister() || Token.isRegisterFlag()) {
654     auto Loc = Token.location();
655     Optional<unsigned> TiedDefIdx;
656     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
657       return true;
658     Operands.push_back(
659         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
660     if (Token.isNot(MIToken::comma))
661       break;
662     lex();
663   }
664   if (!Operands.empty() && expectAndConsume(MIToken::equal))
665     return true;
666 
667   unsigned OpCode, Flags = 0;
668   if (Token.isError() || parseInstruction(OpCode, Flags))
669     return true;
670 
671   // Parse the remaining machine operands.
672   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
673          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
674     auto Loc = Token.location();
675     Optional<unsigned> TiedDefIdx;
676     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
677       return true;
678     Operands.push_back(
679         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
680     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
681         Token.is(MIToken::lbrace))
682       break;
683     if (Token.isNot(MIToken::comma))
684       return error("expected ',' before the next machine operand");
685     lex();
686   }
687 
688   DebugLoc DebugLocation;
689   if (Token.is(MIToken::kw_debug_location)) {
690     lex();
691     if (Token.isNot(MIToken::exclaim))
692       return error("expected a metadata node after 'debug-location'");
693     MDNode *Node = nullptr;
694     if (parseMDNode(Node))
695       return true;
696     DebugLocation = DebugLoc(Node);
697   }
698 
699   // Parse the machine memory operands.
700   SmallVector<MachineMemOperand *, 2> MemOperands;
701   if (Token.is(MIToken::coloncolon)) {
702     lex();
703     while (!Token.isNewlineOrEOF()) {
704       MachineMemOperand *MemOp = nullptr;
705       if (parseMachineMemoryOperand(MemOp))
706         return true;
707       MemOperands.push_back(MemOp);
708       if (Token.isNewlineOrEOF())
709         break;
710       if (Token.isNot(MIToken::comma))
711         return error("expected ',' before the next machine memory operand");
712       lex();
713     }
714   }
715 
716   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
717   if (!MCID.isVariadic()) {
718     // FIXME: Move the implicit operand verification to the machine verifier.
719     if (verifyImplicitOperands(Operands, MCID))
720       return true;
721   }
722 
723   // TODO: Check for extraneous machine operands.
724   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
725   MI->setFlags(Flags);
726   for (const auto &Operand : Operands)
727     MI->addOperand(MF, Operand.Operand);
728   if (assignRegisterTies(*MI, Operands))
729     return true;
730   if (MemOperands.empty())
731     return false;
732   MachineInstr::mmo_iterator MemRefs =
733       MF.allocateMemRefsArray(MemOperands.size());
734   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
735   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
736   return false;
737 }
738 
739 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
740   lex();
741   if (Token.isNot(MIToken::MachineBasicBlock))
742     return error("expected a machine basic block reference");
743   if (parseMBBReference(MBB))
744     return true;
745   lex();
746   if (Token.isNot(MIToken::Eof))
747     return error(
748         "expected end of string after the machine basic block reference");
749   return false;
750 }
751 
752 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
753   lex();
754   if (Token.isNot(MIToken::NamedRegister))
755     return error("expected a named register");
756   if (parseNamedRegister(Reg))
757     return true;
758   lex();
759   if (Token.isNot(MIToken::Eof))
760     return error("expected end of string after the register reference");
761   return false;
762 }
763 
764 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
765   lex();
766   if (Token.isNot(MIToken::VirtualRegister))
767     return error("expected a virtual register");
768   if (parseVirtualRegister(Info))
769     return true;
770   lex();
771   if (Token.isNot(MIToken::Eof))
772     return error("expected end of string after the register reference");
773   return false;
774 }
775 
776 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
777   lex();
778   if (Token.isNot(MIToken::NamedRegister) &&
779       Token.isNot(MIToken::VirtualRegister))
780     return error("expected either a named or virtual register");
781 
782   VRegInfo *Info;
783   if (parseRegister(Reg, Info))
784     return true;
785 
786   lex();
787   if (Token.isNot(MIToken::Eof))
788     return error("expected end of string after the register reference");
789   return false;
790 }
791 
792 bool MIParser::parseStandaloneStackObject(int &FI) {
793   lex();
794   if (Token.isNot(MIToken::StackObject))
795     return error("expected a stack object");
796   if (parseStackFrameIndex(FI))
797     return true;
798   if (Token.isNot(MIToken::Eof))
799     return error("expected end of string after the stack object reference");
800   return false;
801 }
802 
803 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
804   lex();
805   if (Token.isNot(MIToken::exclaim))
806     return error("expected a metadata node");
807   if (parseMDNode(Node))
808     return true;
809   if (Token.isNot(MIToken::Eof))
810     return error("expected end of string after the metadata node");
811   return false;
812 }
813 
814 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
815   assert(MO.isImplicit());
816   return MO.isDef() ? "implicit-def" : "implicit";
817 }
818 
819 static std::string getRegisterName(const TargetRegisterInfo *TRI,
820                                    unsigned Reg) {
821   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
822   return StringRef(TRI->getName(Reg)).lower();
823 }
824 
825 /// Return true if the parsed machine operands contain a given machine operand.
826 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
827                                 ArrayRef<ParsedMachineOperand> Operands) {
828   for (const auto &I : Operands) {
829     if (ImplicitOperand.isIdenticalTo(I.Operand))
830       return true;
831   }
832   return false;
833 }
834 
835 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
836                                       const MCInstrDesc &MCID) {
837   if (MCID.isCall())
838     // We can't verify call instructions as they can contain arbitrary implicit
839     // register and register mask operands.
840     return false;
841 
842   // Gather all the expected implicit operands.
843   SmallVector<MachineOperand, 4> ImplicitOperands;
844   if (MCID.ImplicitDefs)
845     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
846       ImplicitOperands.push_back(
847           MachineOperand::CreateReg(*ImpDefs, true, true));
848   if (MCID.ImplicitUses)
849     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
850       ImplicitOperands.push_back(
851           MachineOperand::CreateReg(*ImpUses, false, true));
852 
853   const auto *TRI = MF.getSubtarget().getRegisterInfo();
854   assert(TRI && "Expected target register info");
855   for (const auto &I : ImplicitOperands) {
856     if (isImplicitOperandIn(I, Operands))
857       continue;
858     return error(Operands.empty() ? Token.location() : Operands.back().End,
859                  Twine("missing implicit register operand '") +
860                      printImplicitRegisterFlag(I) + " %" +
861                      getRegisterName(TRI, I.getReg()) + "'");
862   }
863   return false;
864 }
865 
866 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
867   if (Token.is(MIToken::kw_frame_setup)) {
868     Flags |= MachineInstr::FrameSetup;
869     lex();
870   }
871   if (Token.isNot(MIToken::Identifier))
872     return error("expected a machine instruction");
873   StringRef InstrName = Token.stringValue();
874   if (parseInstrName(InstrName, OpCode))
875     return error(Twine("unknown machine instruction name '") + InstrName + "'");
876   lex();
877   return false;
878 }
879 
880 bool MIParser::parseNamedRegister(unsigned &Reg) {
881   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
882   StringRef Name = Token.stringValue();
883   if (getRegisterByName(Name, Reg))
884     return error(Twine("unknown register name '") + Name + "'");
885   return false;
886 }
887 
888 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
889   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
890   unsigned ID;
891   if (getUnsigned(ID))
892     return true;
893   Info = &PFS.getVRegInfo(ID);
894   return false;
895 }
896 
897 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
898   switch (Token.kind()) {
899   case MIToken::underscore:
900     Reg = 0;
901     return false;
902   case MIToken::NamedRegister:
903     return parseNamedRegister(Reg);
904   case MIToken::VirtualRegister:
905     if (parseVirtualRegister(Info))
906       return true;
907     Reg = Info->VReg;
908     return false;
909   // TODO: Parse other register kinds.
910   default:
911     llvm_unreachable("The current token should be a register");
912   }
913 }
914 
915 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
916   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
917     return error("expected '_', register class, or register bank name");
918   StringRef::iterator Loc = Token.location();
919   StringRef Name = Token.stringValue();
920 
921   // Was it a register class?
922   auto RCNameI = PFS.Names2RegClasses.find(Name);
923   if (RCNameI != PFS.Names2RegClasses.end()) {
924     lex();
925     const TargetRegisterClass &RC = *RCNameI->getValue();
926 
927     switch (RegInfo.Kind) {
928     case VRegInfo::UNKNOWN:
929     case VRegInfo::NORMAL:
930       RegInfo.Kind = VRegInfo::NORMAL;
931       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
932         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
933         return error(Loc, Twine("conflicting register classes, previously: ") +
934                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
935       }
936       RegInfo.D.RC = &RC;
937       RegInfo.Explicit = true;
938       return false;
939 
940     case VRegInfo::GENERIC:
941     case VRegInfo::REGBANK:
942       return error(Loc, "register class specification on generic register");
943     }
944     llvm_unreachable("Unexpected register kind");
945   }
946 
947   // Should be a register bank or a generic register.
948   const RegisterBank *RegBank = nullptr;
949   if (Name != "_") {
950     auto RBNameI = PFS.Names2RegBanks.find(Name);
951     if (RBNameI == PFS.Names2RegBanks.end())
952       return error(Loc, "expected '_', register class, or register bank name");
953     RegBank = RBNameI->getValue();
954   }
955 
956   lex();
957 
958   switch (RegInfo.Kind) {
959   case VRegInfo::UNKNOWN:
960   case VRegInfo::GENERIC:
961   case VRegInfo::REGBANK:
962     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
963     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
964       return error(Loc, "conflicting generic register banks");
965     RegInfo.D.RegBank = RegBank;
966     RegInfo.Explicit = true;
967     return false;
968 
969   case VRegInfo::NORMAL:
970     return error(Loc, "register bank specification on normal register");
971   }
972   llvm_unreachable("Unexpected register kind");
973 }
974 
975 bool MIParser::parseRegisterFlag(unsigned &Flags) {
976   const unsigned OldFlags = Flags;
977   switch (Token.kind()) {
978   case MIToken::kw_implicit:
979     Flags |= RegState::Implicit;
980     break;
981   case MIToken::kw_implicit_define:
982     Flags |= RegState::ImplicitDefine;
983     break;
984   case MIToken::kw_def:
985     Flags |= RegState::Define;
986     break;
987   case MIToken::kw_dead:
988     Flags |= RegState::Dead;
989     break;
990   case MIToken::kw_killed:
991     Flags |= RegState::Kill;
992     break;
993   case MIToken::kw_undef:
994     Flags |= RegState::Undef;
995     break;
996   case MIToken::kw_internal:
997     Flags |= RegState::InternalRead;
998     break;
999   case MIToken::kw_early_clobber:
1000     Flags |= RegState::EarlyClobber;
1001     break;
1002   case MIToken::kw_debug_use:
1003     Flags |= RegState::Debug;
1004     break;
1005   default:
1006     llvm_unreachable("The current token should be a register flag");
1007   }
1008   if (OldFlags == Flags)
1009     // We know that the same flag is specified more than once when the flags
1010     // weren't modified.
1011     return error("duplicate '" + Token.stringValue() + "' register flag");
1012   lex();
1013   return false;
1014 }
1015 
1016 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1017   assert(Token.is(MIToken::dot));
1018   lex();
1019   if (Token.isNot(MIToken::Identifier))
1020     return error("expected a subregister index after '.'");
1021   auto Name = Token.stringValue();
1022   SubReg = getSubRegIndex(Name);
1023   if (!SubReg)
1024     return error(Twine("use of unknown subregister index '") + Name + "'");
1025   lex();
1026   return false;
1027 }
1028 
1029 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1030   if (!consumeIfPresent(MIToken::kw_tied_def))
1031     return true;
1032   if (Token.isNot(MIToken::IntegerLiteral))
1033     return error("expected an integer literal after 'tied-def'");
1034   if (getUnsigned(TiedDefIdx))
1035     return true;
1036   lex();
1037   if (expectAndConsume(MIToken::rparen))
1038     return true;
1039   return false;
1040 }
1041 
1042 bool MIParser::assignRegisterTies(MachineInstr &MI,
1043                                   ArrayRef<ParsedMachineOperand> Operands) {
1044   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1045   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1046     if (!Operands[I].TiedDefIdx)
1047       continue;
1048     // The parser ensures that this operand is a register use, so we just have
1049     // to check the tied-def operand.
1050     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1051     if (DefIdx >= E)
1052       return error(Operands[I].Begin,
1053                    Twine("use of invalid tied-def operand index '" +
1054                          Twine(DefIdx) + "'; instruction has only ") +
1055                        Twine(E) + " operands");
1056     const auto &DefOperand = Operands[DefIdx].Operand;
1057     if (!DefOperand.isReg() || !DefOperand.isDef())
1058       // FIXME: add note with the def operand.
1059       return error(Operands[I].Begin,
1060                    Twine("use of invalid tied-def operand index '") +
1061                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1062                        " isn't a defined register");
1063     // Check that the tied-def operand wasn't tied elsewhere.
1064     for (const auto &TiedPair : TiedRegisterPairs) {
1065       if (TiedPair.first == DefIdx)
1066         return error(Operands[I].Begin,
1067                      Twine("the tied-def operand #") + Twine(DefIdx) +
1068                          " is already tied with another register operand");
1069     }
1070     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1071   }
1072   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1073   // indices must be less than tied max.
1074   for (const auto &TiedPair : TiedRegisterPairs)
1075     MI.tieOperands(TiedPair.first, TiedPair.second);
1076   return false;
1077 }
1078 
1079 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1080                                     Optional<unsigned> &TiedDefIdx,
1081                                     bool IsDef) {
1082   unsigned Flags = IsDef ? RegState::Define : 0;
1083   while (Token.isRegisterFlag()) {
1084     if (parseRegisterFlag(Flags))
1085       return true;
1086   }
1087   if (!Token.isRegister())
1088     return error("expected a register after register flags");
1089   unsigned Reg;
1090   VRegInfo *RegInfo;
1091   if (parseRegister(Reg, RegInfo))
1092     return true;
1093   lex();
1094   unsigned SubReg = 0;
1095   if (Token.is(MIToken::dot)) {
1096     if (parseSubRegisterIndex(SubReg))
1097       return true;
1098     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1099       return error("subregister index expects a virtual register");
1100   }
1101   if (Token.is(MIToken::colon)) {
1102     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1103       return error("register class specification expects a virtual register");
1104     lex();
1105     if (parseRegisterClassOrBank(*RegInfo))
1106         return true;
1107   }
1108   MachineRegisterInfo &MRI = MF.getRegInfo();
1109   if ((Flags & RegState::Define) == 0) {
1110     if (consumeIfPresent(MIToken::lparen)) {
1111       unsigned Idx;
1112       if (!parseRegisterTiedDefIndex(Idx))
1113         TiedDefIdx = Idx;
1114       else {
1115         // Try a redundant low-level type.
1116         LLT Ty;
1117         if (parseLowLevelType(Token.location(), Ty))
1118           return error("expected tied-def or low-level type after '('");
1119 
1120         if (expectAndConsume(MIToken::rparen))
1121           return true;
1122 
1123         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1124           return error("inconsistent type for generic virtual register");
1125 
1126         MRI.setType(Reg, Ty);
1127       }
1128     }
1129   } else if (consumeIfPresent(MIToken::lparen)) {
1130     // Virtual registers may have a tpe with GlobalISel.
1131     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1132       return error("unexpected type on physical register");
1133 
1134     LLT Ty;
1135     if (parseLowLevelType(Token.location(), Ty))
1136       return true;
1137 
1138     if (expectAndConsume(MIToken::rparen))
1139       return true;
1140 
1141     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1142       return error("inconsistent type for generic virtual register");
1143 
1144     MRI.setType(Reg, Ty);
1145   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1146     // Generic virtual registers must have a type.
1147     // If we end up here this means the type hasn't been specified and
1148     // this is bad!
1149     if (RegInfo->Kind == VRegInfo::GENERIC ||
1150         RegInfo->Kind == VRegInfo::REGBANK)
1151       return error("generic virtual registers must have a type");
1152   }
1153   Dest = MachineOperand::CreateReg(
1154       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1155       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1156       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1157       Flags & RegState::InternalRead);
1158   return false;
1159 }
1160 
1161 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1162   assert(Token.is(MIToken::IntegerLiteral));
1163   const APSInt &Int = Token.integerValue();
1164   if (Int.getMinSignedBits() > 64)
1165     return error("integer literal is too large to be an immediate operand");
1166   Dest = MachineOperand::CreateImm(Int.getExtValue());
1167   lex();
1168   return false;
1169 }
1170 
1171 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1172                                const Constant *&C) {
1173   auto Source = StringValue.str(); // The source has to be null terminated.
1174   SMDiagnostic Err;
1175   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1176                          &PFS.IRSlots);
1177   if (!C)
1178     return error(Loc + Err.getColumnNo(), Err.getMessage());
1179   return false;
1180 }
1181 
1182 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1183   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1184     return true;
1185   lex();
1186   return false;
1187 }
1188 
1189 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1190   if (Token.is(MIToken::ScalarType)) {
1191     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1192     lex();
1193     return false;
1194   } else if (Token.is(MIToken::PointerType)) {
1195     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1196     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1197     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1198     lex();
1199     return false;
1200   }
1201 
1202   // Now we're looking for a vector.
1203   if (Token.isNot(MIToken::less))
1204     return error(Loc,
1205                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1206 
1207   lex();
1208 
1209   if (Token.isNot(MIToken::IntegerLiteral))
1210     return error(Loc, "expected <N x sM> for vctor type");
1211   uint64_t NumElements = Token.integerValue().getZExtValue();
1212   lex();
1213 
1214   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1215     return error(Loc, "expected '<N x sM>' for vector type");
1216   lex();
1217 
1218   if (Token.isNot(MIToken::ScalarType))
1219     return error(Loc, "expected '<N x sM>' for vector type");
1220   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1221   lex();
1222 
1223   if (Token.isNot(MIToken::greater))
1224     return error(Loc, "expected '<N x sM>' for vector type");
1225   lex();
1226 
1227   Ty = LLT::vector(NumElements, ScalarSize);
1228   return false;
1229 }
1230 
1231 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1232   assert(Token.is(MIToken::IntegerType));
1233   auto Loc = Token.location();
1234   lex();
1235   if (Token.isNot(MIToken::IntegerLiteral))
1236     return error("expected an integer literal");
1237   const Constant *C = nullptr;
1238   if (parseIRConstant(Loc, C))
1239     return true;
1240   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1241   return false;
1242 }
1243 
1244 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1245   auto Loc = Token.location();
1246   lex();
1247   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1248       Token.isNot(MIToken::HexLiteral))
1249     return error("expected a floating point literal");
1250   const Constant *C = nullptr;
1251   if (parseIRConstant(Loc, C))
1252     return true;
1253   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1254   return false;
1255 }
1256 
1257 bool MIParser::getUnsigned(unsigned &Result) {
1258   if (Token.hasIntegerValue()) {
1259     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1260     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1261     if (Val64 == Limit)
1262       return error("expected 32-bit integer (too large)");
1263     Result = Val64;
1264     return false;
1265   }
1266   if (Token.is(MIToken::HexLiteral)) {
1267     APInt A;
1268     if (getHexUint(A))
1269       return true;
1270     if (A.getBitWidth() > 32)
1271       return error("expected 32-bit integer (too large)");
1272     Result = A.getZExtValue();
1273     return false;
1274   }
1275   return true;
1276 }
1277 
1278 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1279   assert(Token.is(MIToken::MachineBasicBlock) ||
1280          Token.is(MIToken::MachineBasicBlockLabel));
1281   unsigned Number;
1282   if (getUnsigned(Number))
1283     return true;
1284   auto MBBInfo = PFS.MBBSlots.find(Number);
1285   if (MBBInfo == PFS.MBBSlots.end())
1286     return error(Twine("use of undefined machine basic block #") +
1287                  Twine(Number));
1288   MBB = MBBInfo->second;
1289   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1290     return error(Twine("the name of machine basic block #") + Twine(Number) +
1291                  " isn't '" + Token.stringValue() + "'");
1292   return false;
1293 }
1294 
1295 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1296   MachineBasicBlock *MBB;
1297   if (parseMBBReference(MBB))
1298     return true;
1299   Dest = MachineOperand::CreateMBB(MBB);
1300   lex();
1301   return false;
1302 }
1303 
1304 bool MIParser::parseStackFrameIndex(int &FI) {
1305   assert(Token.is(MIToken::StackObject));
1306   unsigned ID;
1307   if (getUnsigned(ID))
1308     return true;
1309   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1310   if (ObjectInfo == PFS.StackObjectSlots.end())
1311     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1312                  "'");
1313   StringRef Name;
1314   if (const auto *Alloca =
1315           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1316     Name = Alloca->getName();
1317   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1318     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1319                  "' isn't '" + Token.stringValue() + "'");
1320   lex();
1321   FI = ObjectInfo->second;
1322   return false;
1323 }
1324 
1325 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1326   int FI;
1327   if (parseStackFrameIndex(FI))
1328     return true;
1329   Dest = MachineOperand::CreateFI(FI);
1330   return false;
1331 }
1332 
1333 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1334   assert(Token.is(MIToken::FixedStackObject));
1335   unsigned ID;
1336   if (getUnsigned(ID))
1337     return true;
1338   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1339   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1340     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1341                  Twine(ID) + "'");
1342   lex();
1343   FI = ObjectInfo->second;
1344   return false;
1345 }
1346 
1347 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1348   int FI;
1349   if (parseFixedStackFrameIndex(FI))
1350     return true;
1351   Dest = MachineOperand::CreateFI(FI);
1352   return false;
1353 }
1354 
1355 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1356   switch (Token.kind()) {
1357   case MIToken::NamedGlobalValue: {
1358     const Module *M = MF.getFunction()->getParent();
1359     GV = M->getNamedValue(Token.stringValue());
1360     if (!GV)
1361       return error(Twine("use of undefined global value '") + Token.range() +
1362                    "'");
1363     break;
1364   }
1365   case MIToken::GlobalValue: {
1366     unsigned GVIdx;
1367     if (getUnsigned(GVIdx))
1368       return true;
1369     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1370       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1371                    "'");
1372     GV = PFS.IRSlots.GlobalValues[GVIdx];
1373     break;
1374   }
1375   default:
1376     llvm_unreachable("The current token should be a global value");
1377   }
1378   return false;
1379 }
1380 
1381 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1382   GlobalValue *GV = nullptr;
1383   if (parseGlobalValue(GV))
1384     return true;
1385   lex();
1386   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1387   if (parseOperandsOffset(Dest))
1388     return true;
1389   return false;
1390 }
1391 
1392 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1393   assert(Token.is(MIToken::ConstantPoolItem));
1394   unsigned ID;
1395   if (getUnsigned(ID))
1396     return true;
1397   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1398   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1399     return error("use of undefined constant '%const." + Twine(ID) + "'");
1400   lex();
1401   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1402   if (parseOperandsOffset(Dest))
1403     return true;
1404   return false;
1405 }
1406 
1407 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1408   assert(Token.is(MIToken::JumpTableIndex));
1409   unsigned ID;
1410   if (getUnsigned(ID))
1411     return true;
1412   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1413   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1414     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1415   lex();
1416   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1417   return false;
1418 }
1419 
1420 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1421   assert(Token.is(MIToken::ExternalSymbol));
1422   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1423   lex();
1424   Dest = MachineOperand::CreateES(Symbol);
1425   if (parseOperandsOffset(Dest))
1426     return true;
1427   return false;
1428 }
1429 
1430 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1431   assert(Token.is(MIToken::SubRegisterIndex));
1432   StringRef Name = Token.stringValue();
1433   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1434   if (SubRegIndex == 0)
1435     return error(Twine("unknown subregister index '") + Name + "'");
1436   lex();
1437   Dest = MachineOperand::CreateImm(SubRegIndex);
1438   return false;
1439 }
1440 
1441 bool MIParser::parseMDNode(MDNode *&Node) {
1442   assert(Token.is(MIToken::exclaim));
1443   auto Loc = Token.location();
1444   lex();
1445   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1446     return error("expected metadata id after '!'");
1447   unsigned ID;
1448   if (getUnsigned(ID))
1449     return true;
1450   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1451   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1452     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1453   lex();
1454   Node = NodeInfo->second.get();
1455   return false;
1456 }
1457 
1458 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1459   MDNode *Node = nullptr;
1460   if (parseMDNode(Node))
1461     return true;
1462   Dest = MachineOperand::CreateMetadata(Node);
1463   return false;
1464 }
1465 
1466 bool MIParser::parseCFIOffset(int &Offset) {
1467   if (Token.isNot(MIToken::IntegerLiteral))
1468     return error("expected a cfi offset");
1469   if (Token.integerValue().getMinSignedBits() > 32)
1470     return error("expected a 32 bit integer (the cfi offset is too large)");
1471   Offset = (int)Token.integerValue().getExtValue();
1472   lex();
1473   return false;
1474 }
1475 
1476 bool MIParser::parseCFIRegister(unsigned &Reg) {
1477   if (Token.isNot(MIToken::NamedRegister))
1478     return error("expected a cfi register");
1479   unsigned LLVMReg;
1480   if (parseNamedRegister(LLVMReg))
1481     return true;
1482   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1483   assert(TRI && "Expected target register info");
1484   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1485   if (DwarfReg < 0)
1486     return error("invalid DWARF register");
1487   Reg = (unsigned)DwarfReg;
1488   lex();
1489   return false;
1490 }
1491 
1492 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1493   auto Kind = Token.kind();
1494   lex();
1495   int Offset;
1496   unsigned Reg;
1497   unsigned CFIIndex;
1498   switch (Kind) {
1499   case MIToken::kw_cfi_same_value:
1500     if (parseCFIRegister(Reg))
1501       return true;
1502     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1503     break;
1504   case MIToken::kw_cfi_offset:
1505     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1506         parseCFIOffset(Offset))
1507       return true;
1508     CFIIndex =
1509         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1510     break;
1511   case MIToken::kw_cfi_def_cfa_register:
1512     if (parseCFIRegister(Reg))
1513       return true;
1514     CFIIndex =
1515         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1516     break;
1517   case MIToken::kw_cfi_def_cfa_offset:
1518     if (parseCFIOffset(Offset))
1519       return true;
1520     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1521     CFIIndex = MF.addFrameInst(
1522         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1523     break;
1524   case MIToken::kw_cfi_def_cfa:
1525     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1526         parseCFIOffset(Offset))
1527       return true;
1528     // NB: MCCFIInstruction::createDefCfa negates the offset.
1529     CFIIndex =
1530         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1531     break;
1532   default:
1533     // TODO: Parse the other CFI operands.
1534     llvm_unreachable("The current token should be a cfi operand");
1535   }
1536   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1537   return false;
1538 }
1539 
1540 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1541   switch (Token.kind()) {
1542   case MIToken::NamedIRBlock: {
1543     BB = dyn_cast_or_null<BasicBlock>(
1544         F.getValueSymbolTable()->lookup(Token.stringValue()));
1545     if (!BB)
1546       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1547     break;
1548   }
1549   case MIToken::IRBlock: {
1550     unsigned SlotNumber = 0;
1551     if (getUnsigned(SlotNumber))
1552       return true;
1553     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1554     if (!BB)
1555       return error(Twine("use of undefined IR block '%ir-block.") +
1556                    Twine(SlotNumber) + "'");
1557     break;
1558   }
1559   default:
1560     llvm_unreachable("The current token should be an IR block reference");
1561   }
1562   return false;
1563 }
1564 
1565 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1566   assert(Token.is(MIToken::kw_blockaddress));
1567   lex();
1568   if (expectAndConsume(MIToken::lparen))
1569     return true;
1570   if (Token.isNot(MIToken::GlobalValue) &&
1571       Token.isNot(MIToken::NamedGlobalValue))
1572     return error("expected a global value");
1573   GlobalValue *GV = nullptr;
1574   if (parseGlobalValue(GV))
1575     return true;
1576   auto *F = dyn_cast<Function>(GV);
1577   if (!F)
1578     return error("expected an IR function reference");
1579   lex();
1580   if (expectAndConsume(MIToken::comma))
1581     return true;
1582   BasicBlock *BB = nullptr;
1583   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1584     return error("expected an IR block reference");
1585   if (parseIRBlock(BB, *F))
1586     return true;
1587   lex();
1588   if (expectAndConsume(MIToken::rparen))
1589     return true;
1590   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1591   if (parseOperandsOffset(Dest))
1592     return true;
1593   return false;
1594 }
1595 
1596 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1597   assert(Token.is(MIToken::kw_intrinsic));
1598   lex();
1599   if (expectAndConsume(MIToken::lparen))
1600     return error("expected syntax intrinsic(@llvm.whatever)");
1601 
1602   if (Token.isNot(MIToken::NamedGlobalValue))
1603     return error("expected syntax intrinsic(@llvm.whatever)");
1604 
1605   std::string Name = Token.stringValue();
1606   lex();
1607 
1608   if (expectAndConsume(MIToken::rparen))
1609     return error("expected ')' to terminate intrinsic name");
1610 
1611   // Find out what intrinsic we're dealing with, first try the global namespace
1612   // and then the target's private intrinsics if that fails.
1613   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1614   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1615   if (ID == Intrinsic::not_intrinsic && TII)
1616     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1617 
1618   if (ID == Intrinsic::not_intrinsic)
1619     return error("unknown intrinsic name");
1620   Dest = MachineOperand::CreateIntrinsicID(ID);
1621 
1622   return false;
1623 }
1624 
1625 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1626   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1627   bool IsFloat = Token.is(MIToken::kw_floatpred);
1628   lex();
1629 
1630   if (expectAndConsume(MIToken::lparen))
1631     return error("expected syntax intpred(whatever) or floatpred(whatever");
1632 
1633   if (Token.isNot(MIToken::Identifier))
1634     return error("whatever");
1635 
1636   CmpInst::Predicate Pred;
1637   if (IsFloat) {
1638     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1639                .Case("false", CmpInst::FCMP_FALSE)
1640                .Case("oeq", CmpInst::FCMP_OEQ)
1641                .Case("ogt", CmpInst::FCMP_OGT)
1642                .Case("oge", CmpInst::FCMP_OGE)
1643                .Case("olt", CmpInst::FCMP_OLT)
1644                .Case("ole", CmpInst::FCMP_OLE)
1645                .Case("one", CmpInst::FCMP_ONE)
1646                .Case("ord", CmpInst::FCMP_ORD)
1647                .Case("uno", CmpInst::FCMP_UNO)
1648                .Case("ueq", CmpInst::FCMP_UEQ)
1649                .Case("ugt", CmpInst::FCMP_UGT)
1650                .Case("uge", CmpInst::FCMP_UGE)
1651                .Case("ult", CmpInst::FCMP_ULT)
1652                .Case("ule", CmpInst::FCMP_ULE)
1653                .Case("une", CmpInst::FCMP_UNE)
1654                .Case("true", CmpInst::FCMP_TRUE)
1655                .Default(CmpInst::BAD_FCMP_PREDICATE);
1656     if (!CmpInst::isFPPredicate(Pred))
1657       return error("invalid floating-point predicate");
1658   } else {
1659     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1660                .Case("eq", CmpInst::ICMP_EQ)
1661                .Case("ne", CmpInst::ICMP_NE)
1662                .Case("sgt", CmpInst::ICMP_SGT)
1663                .Case("sge", CmpInst::ICMP_SGE)
1664                .Case("slt", CmpInst::ICMP_SLT)
1665                .Case("sle", CmpInst::ICMP_SLE)
1666                .Case("ugt", CmpInst::ICMP_UGT)
1667                .Case("uge", CmpInst::ICMP_UGE)
1668                .Case("ult", CmpInst::ICMP_ULT)
1669                .Case("ule", CmpInst::ICMP_ULE)
1670                .Default(CmpInst::BAD_ICMP_PREDICATE);
1671     if (!CmpInst::isIntPredicate(Pred))
1672       return error("invalid integer predicate");
1673   }
1674 
1675   lex();
1676   Dest = MachineOperand::CreatePredicate(Pred);
1677   if (expectAndConsume(MIToken::rparen))
1678     return error("predicate should be terminated by ')'.");
1679 
1680   return false;
1681 }
1682 
1683 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1684   assert(Token.is(MIToken::kw_target_index));
1685   lex();
1686   if (expectAndConsume(MIToken::lparen))
1687     return true;
1688   if (Token.isNot(MIToken::Identifier))
1689     return error("expected the name of the target index");
1690   int Index = 0;
1691   if (getTargetIndex(Token.stringValue(), Index))
1692     return error("use of undefined target index '" + Token.stringValue() + "'");
1693   lex();
1694   if (expectAndConsume(MIToken::rparen))
1695     return true;
1696   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1697   if (parseOperandsOffset(Dest))
1698     return true;
1699   return false;
1700 }
1701 
1702 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1703   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1704   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1705   assert(TRI && "Expected target register info");
1706   lex();
1707   if (expectAndConsume(MIToken::lparen))
1708     return true;
1709 
1710   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1711   while (true) {
1712     if (Token.isNot(MIToken::NamedRegister))
1713       return error("expected a named register");
1714     unsigned Reg;
1715     if (parseNamedRegister(Reg))
1716       return true;
1717     lex();
1718     Mask[Reg / 32] |= 1U << (Reg % 32);
1719     // TODO: Report an error if the same register is used more than once.
1720     if (Token.isNot(MIToken::comma))
1721       break;
1722     lex();
1723   }
1724 
1725   if (expectAndConsume(MIToken::rparen))
1726     return true;
1727   Dest = MachineOperand::CreateRegMask(Mask);
1728   return false;
1729 }
1730 
1731 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1732   assert(Token.is(MIToken::kw_liveout));
1733   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1734   assert(TRI && "Expected target register info");
1735   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1736   lex();
1737   if (expectAndConsume(MIToken::lparen))
1738     return true;
1739   while (true) {
1740     if (Token.isNot(MIToken::NamedRegister))
1741       return error("expected a named register");
1742     unsigned Reg;
1743     if (parseNamedRegister(Reg))
1744       return true;
1745     lex();
1746     Mask[Reg / 32] |= 1U << (Reg % 32);
1747     // TODO: Report an error if the same register is used more than once.
1748     if (Token.isNot(MIToken::comma))
1749       break;
1750     lex();
1751   }
1752   if (expectAndConsume(MIToken::rparen))
1753     return true;
1754   Dest = MachineOperand::CreateRegLiveOut(Mask);
1755   return false;
1756 }
1757 
1758 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1759                                    Optional<unsigned> &TiedDefIdx) {
1760   switch (Token.kind()) {
1761   case MIToken::kw_implicit:
1762   case MIToken::kw_implicit_define:
1763   case MIToken::kw_def:
1764   case MIToken::kw_dead:
1765   case MIToken::kw_killed:
1766   case MIToken::kw_undef:
1767   case MIToken::kw_internal:
1768   case MIToken::kw_early_clobber:
1769   case MIToken::kw_debug_use:
1770   case MIToken::underscore:
1771   case MIToken::NamedRegister:
1772   case MIToken::VirtualRegister:
1773     return parseRegisterOperand(Dest, TiedDefIdx);
1774   case MIToken::IntegerLiteral:
1775     return parseImmediateOperand(Dest);
1776   case MIToken::IntegerType:
1777     return parseTypedImmediateOperand(Dest);
1778   case MIToken::kw_half:
1779   case MIToken::kw_float:
1780   case MIToken::kw_double:
1781   case MIToken::kw_x86_fp80:
1782   case MIToken::kw_fp128:
1783   case MIToken::kw_ppc_fp128:
1784     return parseFPImmediateOperand(Dest);
1785   case MIToken::MachineBasicBlock:
1786     return parseMBBOperand(Dest);
1787   case MIToken::StackObject:
1788     return parseStackObjectOperand(Dest);
1789   case MIToken::FixedStackObject:
1790     return parseFixedStackObjectOperand(Dest);
1791   case MIToken::GlobalValue:
1792   case MIToken::NamedGlobalValue:
1793     return parseGlobalAddressOperand(Dest);
1794   case MIToken::ConstantPoolItem:
1795     return parseConstantPoolIndexOperand(Dest);
1796   case MIToken::JumpTableIndex:
1797     return parseJumpTableIndexOperand(Dest);
1798   case MIToken::ExternalSymbol:
1799     return parseExternalSymbolOperand(Dest);
1800   case MIToken::SubRegisterIndex:
1801     return parseSubRegisterIndexOperand(Dest);
1802   case MIToken::exclaim:
1803     return parseMetadataOperand(Dest);
1804   case MIToken::kw_cfi_same_value:
1805   case MIToken::kw_cfi_offset:
1806   case MIToken::kw_cfi_def_cfa_register:
1807   case MIToken::kw_cfi_def_cfa_offset:
1808   case MIToken::kw_cfi_def_cfa:
1809     return parseCFIOperand(Dest);
1810   case MIToken::kw_blockaddress:
1811     return parseBlockAddressOperand(Dest);
1812   case MIToken::kw_intrinsic:
1813     return parseIntrinsicOperand(Dest);
1814   case MIToken::kw_target_index:
1815     return parseTargetIndexOperand(Dest);
1816   case MIToken::kw_liveout:
1817     return parseLiveoutRegisterMaskOperand(Dest);
1818   case MIToken::kw_floatpred:
1819   case MIToken::kw_intpred:
1820     return parsePredicateOperand(Dest);
1821   case MIToken::Error:
1822     return true;
1823   case MIToken::Identifier:
1824     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1825       Dest = MachineOperand::CreateRegMask(RegMask);
1826       lex();
1827       break;
1828     } else
1829       return parseCustomRegisterMaskOperand(Dest);
1830   default:
1831     // FIXME: Parse the MCSymbol machine operand.
1832     return error("expected a machine operand");
1833   }
1834   return false;
1835 }
1836 
1837 bool MIParser::parseMachineOperandAndTargetFlags(
1838     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1839   unsigned TF = 0;
1840   bool HasTargetFlags = false;
1841   if (Token.is(MIToken::kw_target_flags)) {
1842     HasTargetFlags = true;
1843     lex();
1844     if (expectAndConsume(MIToken::lparen))
1845       return true;
1846     if (Token.isNot(MIToken::Identifier))
1847       return error("expected the name of the target flag");
1848     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1849       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1850         return error("use of undefined target flag '" + Token.stringValue() +
1851                      "'");
1852     }
1853     lex();
1854     while (Token.is(MIToken::comma)) {
1855       lex();
1856       if (Token.isNot(MIToken::Identifier))
1857         return error("expected the name of the target flag");
1858       unsigned BitFlag = 0;
1859       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1860         return error("use of undefined target flag '" + Token.stringValue() +
1861                      "'");
1862       // TODO: Report an error when using a duplicate bit target flag.
1863       TF |= BitFlag;
1864       lex();
1865     }
1866     if (expectAndConsume(MIToken::rparen))
1867       return true;
1868   }
1869   auto Loc = Token.location();
1870   if (parseMachineOperand(Dest, TiedDefIdx))
1871     return true;
1872   if (!HasTargetFlags)
1873     return false;
1874   if (Dest.isReg())
1875     return error(Loc, "register operands can't have target flags");
1876   Dest.setTargetFlags(TF);
1877   return false;
1878 }
1879 
1880 bool MIParser::parseOffset(int64_t &Offset) {
1881   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1882     return false;
1883   StringRef Sign = Token.range();
1884   bool IsNegative = Token.is(MIToken::minus);
1885   lex();
1886   if (Token.isNot(MIToken::IntegerLiteral))
1887     return error("expected an integer literal after '" + Sign + "'");
1888   if (Token.integerValue().getMinSignedBits() > 64)
1889     return error("expected 64-bit integer (too large)");
1890   Offset = Token.integerValue().getExtValue();
1891   if (IsNegative)
1892     Offset = -Offset;
1893   lex();
1894   return false;
1895 }
1896 
1897 bool MIParser::parseAlignment(unsigned &Alignment) {
1898   assert(Token.is(MIToken::kw_align));
1899   lex();
1900   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1901     return error("expected an integer literal after 'align'");
1902   if (getUnsigned(Alignment))
1903     return true;
1904   lex();
1905   return false;
1906 }
1907 
1908 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1909   int64_t Offset = 0;
1910   if (parseOffset(Offset))
1911     return true;
1912   Op.setOffset(Offset);
1913   return false;
1914 }
1915 
1916 bool MIParser::parseIRValue(const Value *&V) {
1917   switch (Token.kind()) {
1918   case MIToken::NamedIRValue: {
1919     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1920     break;
1921   }
1922   case MIToken::IRValue: {
1923     unsigned SlotNumber = 0;
1924     if (getUnsigned(SlotNumber))
1925       return true;
1926     V = getIRValue(SlotNumber);
1927     break;
1928   }
1929   case MIToken::NamedGlobalValue:
1930   case MIToken::GlobalValue: {
1931     GlobalValue *GV = nullptr;
1932     if (parseGlobalValue(GV))
1933       return true;
1934     V = GV;
1935     break;
1936   }
1937   case MIToken::QuotedIRValue: {
1938     const Constant *C = nullptr;
1939     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1940       return true;
1941     V = C;
1942     break;
1943   }
1944   default:
1945     llvm_unreachable("The current token should be an IR block reference");
1946   }
1947   if (!V)
1948     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1949   return false;
1950 }
1951 
1952 bool MIParser::getUint64(uint64_t &Result) {
1953   if (Token.hasIntegerValue()) {
1954     if (Token.integerValue().getActiveBits() > 64)
1955       return error("expected 64-bit integer (too large)");
1956     Result = Token.integerValue().getZExtValue();
1957     return false;
1958   }
1959   if (Token.is(MIToken::HexLiteral)) {
1960     APInt A;
1961     if (getHexUint(A))
1962       return true;
1963     if (A.getBitWidth() > 64)
1964       return error("expected 64-bit integer (too large)");
1965     Result = A.getZExtValue();
1966     return false;
1967   }
1968   return true;
1969 }
1970 
1971 bool MIParser::getHexUint(APInt &Result) {
1972   assert(Token.is(MIToken::HexLiteral));
1973   StringRef S = Token.range();
1974   assert(S[0] == '0' && tolower(S[1]) == 'x');
1975   // This could be a floating point literal with a special prefix.
1976   if (!isxdigit(S[2]))
1977     return true;
1978   StringRef V = S.substr(2);
1979   APInt A(V.size()*4, V, 16);
1980   Result = APInt(A.getActiveBits(),
1981                  ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1982   return false;
1983 }
1984 
1985 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1986   const auto OldFlags = Flags;
1987   switch (Token.kind()) {
1988   case MIToken::kw_volatile:
1989     Flags |= MachineMemOperand::MOVolatile;
1990     break;
1991   case MIToken::kw_non_temporal:
1992     Flags |= MachineMemOperand::MONonTemporal;
1993     break;
1994   case MIToken::kw_dereferenceable:
1995     Flags |= MachineMemOperand::MODereferenceable;
1996     break;
1997   case MIToken::kw_invariant:
1998     Flags |= MachineMemOperand::MOInvariant;
1999     break;
2000   // TODO: parse the target specific memory operand flags.
2001   default:
2002     llvm_unreachable("The current token should be a memory operand flag");
2003   }
2004   if (OldFlags == Flags)
2005     // We know that the same flag is specified more than once when the flags
2006     // weren't modified.
2007     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2008   lex();
2009   return false;
2010 }
2011 
2012 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2013   switch (Token.kind()) {
2014   case MIToken::kw_stack:
2015     PSV = MF.getPSVManager().getStack();
2016     break;
2017   case MIToken::kw_got:
2018     PSV = MF.getPSVManager().getGOT();
2019     break;
2020   case MIToken::kw_jump_table:
2021     PSV = MF.getPSVManager().getJumpTable();
2022     break;
2023   case MIToken::kw_constant_pool:
2024     PSV = MF.getPSVManager().getConstantPool();
2025     break;
2026   case MIToken::FixedStackObject: {
2027     int FI;
2028     if (parseFixedStackFrameIndex(FI))
2029       return true;
2030     PSV = MF.getPSVManager().getFixedStack(FI);
2031     // The token was already consumed, so use return here instead of break.
2032     return false;
2033   }
2034   case MIToken::StackObject: {
2035     int FI;
2036     if (parseStackFrameIndex(FI))
2037       return true;
2038     PSV = MF.getPSVManager().getFixedStack(FI);
2039     // The token was already consumed, so use return here instead of break.
2040     return false;
2041   }
2042   case MIToken::kw_call_entry: {
2043     lex();
2044     switch (Token.kind()) {
2045     case MIToken::GlobalValue:
2046     case MIToken::NamedGlobalValue: {
2047       GlobalValue *GV = nullptr;
2048       if (parseGlobalValue(GV))
2049         return true;
2050       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2051       break;
2052     }
2053     case MIToken::ExternalSymbol:
2054       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2055           MF.createExternalSymbolName(Token.stringValue()));
2056       break;
2057     default:
2058       return error(
2059           "expected a global value or an external symbol after 'call-entry'");
2060     }
2061     break;
2062   }
2063   default:
2064     llvm_unreachable("The current token should be pseudo source value");
2065   }
2066   lex();
2067   return false;
2068 }
2069 
2070 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2071   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2072       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2073       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2074       Token.is(MIToken::kw_call_entry)) {
2075     const PseudoSourceValue *PSV = nullptr;
2076     if (parseMemoryPseudoSourceValue(PSV))
2077       return true;
2078     int64_t Offset = 0;
2079     if (parseOffset(Offset))
2080       return true;
2081     Dest = MachinePointerInfo(PSV, Offset);
2082     return false;
2083   }
2084   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2085       Token.isNot(MIToken::GlobalValue) &&
2086       Token.isNot(MIToken::NamedGlobalValue) &&
2087       Token.isNot(MIToken::QuotedIRValue))
2088     return error("expected an IR value reference");
2089   const Value *V = nullptr;
2090   if (parseIRValue(V))
2091     return true;
2092   if (!V->getType()->isPointerTy())
2093     return error("expected a pointer IR value");
2094   lex();
2095   int64_t Offset = 0;
2096   if (parseOffset(Offset))
2097     return true;
2098   Dest = MachinePointerInfo(V, Offset);
2099   return false;
2100 }
2101 
2102 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2103   Order = AtomicOrdering::NotAtomic;
2104   if (Token.isNot(MIToken::Identifier))
2105     return false;
2106 
2107   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2108               .Case("unordered", AtomicOrdering::Unordered)
2109               .Case("monotonic", AtomicOrdering::Monotonic)
2110               .Case("acquire", AtomicOrdering::Acquire)
2111               .Case("release", AtomicOrdering::Release)
2112               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2113               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2114               .Default(AtomicOrdering::NotAtomic);
2115 
2116   if (Order != AtomicOrdering::NotAtomic) {
2117     lex();
2118     return false;
2119   }
2120 
2121   return error("expected an atomic scope, ordering or a size integer literal");
2122 }
2123 
2124 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2125   if (expectAndConsume(MIToken::lparen))
2126     return true;
2127   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2128   while (Token.isMemoryOperandFlag()) {
2129     if (parseMemoryOperandFlag(Flags))
2130       return true;
2131   }
2132   if (Token.isNot(MIToken::Identifier) ||
2133       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2134     return error("expected 'load' or 'store' memory operation");
2135   if (Token.stringValue() == "load")
2136     Flags |= MachineMemOperand::MOLoad;
2137   else
2138     Flags |= MachineMemOperand::MOStore;
2139   lex();
2140 
2141   // Optional "singlethread" scope.
2142   SynchronizationScope Scope = SynchronizationScope::CrossThread;
2143   if (Token.is(MIToken::Identifier) && Token.stringValue() == "singlethread") {
2144     Scope = SynchronizationScope::SingleThread;
2145     lex();
2146   }
2147 
2148   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2149   AtomicOrdering Order, FailureOrder;
2150   if (parseOptionalAtomicOrdering(Order))
2151     return true;
2152 
2153   if (parseOptionalAtomicOrdering(FailureOrder))
2154     return true;
2155 
2156   if (Token.isNot(MIToken::IntegerLiteral))
2157     return error("expected the size integer literal after memory operation");
2158   uint64_t Size;
2159   if (getUint64(Size))
2160     return true;
2161   lex();
2162 
2163   MachinePointerInfo Ptr = MachinePointerInfo();
2164   if (Token.is(MIToken::Identifier)) {
2165     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
2166     if (Token.stringValue() != Word)
2167       return error(Twine("expected '") + Word + "'");
2168     lex();
2169 
2170     if (parseMachinePointerInfo(Ptr))
2171       return true;
2172   }
2173   unsigned BaseAlignment = Size;
2174   AAMDNodes AAInfo;
2175   MDNode *Range = nullptr;
2176   while (consumeIfPresent(MIToken::comma)) {
2177     switch (Token.kind()) {
2178     case MIToken::kw_align:
2179       if (parseAlignment(BaseAlignment))
2180         return true;
2181       break;
2182     case MIToken::md_tbaa:
2183       lex();
2184       if (parseMDNode(AAInfo.TBAA))
2185         return true;
2186       break;
2187     case MIToken::md_alias_scope:
2188       lex();
2189       if (parseMDNode(AAInfo.Scope))
2190         return true;
2191       break;
2192     case MIToken::md_noalias:
2193       lex();
2194       if (parseMDNode(AAInfo.NoAlias))
2195         return true;
2196       break;
2197     case MIToken::md_range:
2198       lex();
2199       if (parseMDNode(Range))
2200         return true;
2201       break;
2202     // TODO: Report an error on duplicate metadata nodes.
2203     default:
2204       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2205                    "'!noalias' or '!range'");
2206     }
2207   }
2208   if (expectAndConsume(MIToken::rparen))
2209     return true;
2210   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2211                                  Scope, Order, FailureOrder);
2212   return false;
2213 }
2214 
2215 void MIParser::initNames2InstrOpCodes() {
2216   if (!Names2InstrOpCodes.empty())
2217     return;
2218   const auto *TII = MF.getSubtarget().getInstrInfo();
2219   assert(TII && "Expected target instruction info");
2220   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2221     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2222 }
2223 
2224 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2225   initNames2InstrOpCodes();
2226   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2227   if (InstrInfo == Names2InstrOpCodes.end())
2228     return true;
2229   OpCode = InstrInfo->getValue();
2230   return false;
2231 }
2232 
2233 void MIParser::initNames2Regs() {
2234   if (!Names2Regs.empty())
2235     return;
2236   // The '%noreg' register is the register 0.
2237   Names2Regs.insert(std::make_pair("noreg", 0));
2238   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2239   assert(TRI && "Expected target register info");
2240   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2241     bool WasInserted =
2242         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2243             .second;
2244     (void)WasInserted;
2245     assert(WasInserted && "Expected registers to be unique case-insensitively");
2246   }
2247 }
2248 
2249 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2250   initNames2Regs();
2251   auto RegInfo = Names2Regs.find(RegName);
2252   if (RegInfo == Names2Regs.end())
2253     return true;
2254   Reg = RegInfo->getValue();
2255   return false;
2256 }
2257 
2258 void MIParser::initNames2RegMasks() {
2259   if (!Names2RegMasks.empty())
2260     return;
2261   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2262   assert(TRI && "Expected target register info");
2263   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2264   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2265   assert(RegMasks.size() == RegMaskNames.size());
2266   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2267     Names2RegMasks.insert(
2268         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2269 }
2270 
2271 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2272   initNames2RegMasks();
2273   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2274   if (RegMaskInfo == Names2RegMasks.end())
2275     return nullptr;
2276   return RegMaskInfo->getValue();
2277 }
2278 
2279 void MIParser::initNames2SubRegIndices() {
2280   if (!Names2SubRegIndices.empty())
2281     return;
2282   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2283   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2284     Names2SubRegIndices.insert(
2285         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2286 }
2287 
2288 unsigned MIParser::getSubRegIndex(StringRef Name) {
2289   initNames2SubRegIndices();
2290   auto SubRegInfo = Names2SubRegIndices.find(Name);
2291   if (SubRegInfo == Names2SubRegIndices.end())
2292     return 0;
2293   return SubRegInfo->getValue();
2294 }
2295 
2296 static void initSlots2BasicBlocks(
2297     const Function &F,
2298     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2299   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2300   MST.incorporateFunction(F);
2301   for (auto &BB : F) {
2302     if (BB.hasName())
2303       continue;
2304     int Slot = MST.getLocalSlot(&BB);
2305     if (Slot == -1)
2306       continue;
2307     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2308   }
2309 }
2310 
2311 static const BasicBlock *getIRBlockFromSlot(
2312     unsigned Slot,
2313     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2314   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2315   if (BlockInfo == Slots2BasicBlocks.end())
2316     return nullptr;
2317   return BlockInfo->second;
2318 }
2319 
2320 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2321   if (Slots2BasicBlocks.empty())
2322     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2323   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2324 }
2325 
2326 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2327   if (&F == MF.getFunction())
2328     return getIRBlock(Slot);
2329   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2330   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2331   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2332 }
2333 
2334 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2335                            DenseMap<unsigned, const Value *> &Slots2Values) {
2336   int Slot = MST.getLocalSlot(V);
2337   if (Slot == -1)
2338     return;
2339   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2340 }
2341 
2342 /// Creates the mapping from slot numbers to function's unnamed IR values.
2343 static void initSlots2Values(const Function &F,
2344                              DenseMap<unsigned, const Value *> &Slots2Values) {
2345   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2346   MST.incorporateFunction(F);
2347   for (const auto &Arg : F.args())
2348     mapValueToSlot(&Arg, MST, Slots2Values);
2349   for (const auto &BB : F) {
2350     mapValueToSlot(&BB, MST, Slots2Values);
2351     for (const auto &I : BB)
2352       mapValueToSlot(&I, MST, Slots2Values);
2353   }
2354 }
2355 
2356 const Value *MIParser::getIRValue(unsigned Slot) {
2357   if (Slots2Values.empty())
2358     initSlots2Values(*MF.getFunction(), Slots2Values);
2359   auto ValueInfo = Slots2Values.find(Slot);
2360   if (ValueInfo == Slots2Values.end())
2361     return nullptr;
2362   return ValueInfo->second;
2363 }
2364 
2365 void MIParser::initNames2TargetIndices() {
2366   if (!Names2TargetIndices.empty())
2367     return;
2368   const auto *TII = MF.getSubtarget().getInstrInfo();
2369   assert(TII && "Expected target instruction info");
2370   auto Indices = TII->getSerializableTargetIndices();
2371   for (const auto &I : Indices)
2372     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2373 }
2374 
2375 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2376   initNames2TargetIndices();
2377   auto IndexInfo = Names2TargetIndices.find(Name);
2378   if (IndexInfo == Names2TargetIndices.end())
2379     return true;
2380   Index = IndexInfo->second;
2381   return false;
2382 }
2383 
2384 void MIParser::initNames2DirectTargetFlags() {
2385   if (!Names2DirectTargetFlags.empty())
2386     return;
2387   const auto *TII = MF.getSubtarget().getInstrInfo();
2388   assert(TII && "Expected target instruction info");
2389   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2390   for (const auto &I : Flags)
2391     Names2DirectTargetFlags.insert(
2392         std::make_pair(StringRef(I.second), I.first));
2393 }
2394 
2395 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2396   initNames2DirectTargetFlags();
2397   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2398   if (FlagInfo == Names2DirectTargetFlags.end())
2399     return true;
2400   Flag = FlagInfo->second;
2401   return false;
2402 }
2403 
2404 void MIParser::initNames2BitmaskTargetFlags() {
2405   if (!Names2BitmaskTargetFlags.empty())
2406     return;
2407   const auto *TII = MF.getSubtarget().getInstrInfo();
2408   assert(TII && "Expected target instruction info");
2409   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2410   for (const auto &I : Flags)
2411     Names2BitmaskTargetFlags.insert(
2412         std::make_pair(StringRef(I.second), I.first));
2413 }
2414 
2415 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2416   initNames2BitmaskTargetFlags();
2417   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2418   if (FlagInfo == Names2BitmaskTargetFlags.end())
2419     return true;
2420   Flag = FlagInfo->second;
2421   return false;
2422 }
2423 
2424 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2425                                              StringRef Src,
2426                                              SMDiagnostic &Error) {
2427   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2428 }
2429 
2430 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2431                                     StringRef Src, SMDiagnostic &Error) {
2432   return MIParser(PFS, Error, Src).parseBasicBlocks();
2433 }
2434 
2435 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2436                              MachineBasicBlock *&MBB, StringRef Src,
2437                              SMDiagnostic &Error) {
2438   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2439 }
2440 
2441 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2442                                   unsigned &Reg, StringRef Src,
2443                                   SMDiagnostic &Error) {
2444   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2445 }
2446 
2447 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2448                                        unsigned &Reg, StringRef Src,
2449                                        SMDiagnostic &Error) {
2450   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2451 }
2452 
2453 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2454                                          VRegInfo *&Info, StringRef Src,
2455                                          SMDiagnostic &Error) {
2456   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2457 }
2458 
2459 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2460                                      int &FI, StringRef Src,
2461                                      SMDiagnostic &Error) {
2462   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2463 }
2464 
2465 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2466                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2467   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2468 }
2469