1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCDwarf.h"
58 #include "llvm/MC/MCInstrDesc.h"
59 #include "llvm/MC/MCRegisterInfo.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MemoryBuffer.h"
66 #include "llvm/Support/SMLoc.h"
67 #include "llvm/Support/SourceMgr.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cctype>
74 #include <cstddef>
75 #include <cstdint>
76 #include <limits>
77 #include <string>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83     SourceMgr &SM, const SlotMapping &IRSlots,
84     const Name2RegClassMap &Names2RegClasses,
85     const Name2RegBankMap &Names2RegBanks)
86   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87     Names2RegBanks(Names2RegBanks) {
88 }
89 
90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92   if (I.second) {
93     MachineRegisterInfo &MRI = MF.getRegInfo();
94     VRegInfo *Info = new (Allocator) VRegInfo;
95     Info->VReg = MRI.createIncompleteVirtualRegister();
96     I.first->second = Info;
97   }
98   return *I.first->second;
99 }
100 
101 namespace {
102 
103 /// A wrapper struct around the 'MachineOperand' struct that includes a source
104 /// range and other attributes.
105 struct ParsedMachineOperand {
106   MachineOperand Operand;
107   StringRef::iterator Begin;
108   StringRef::iterator End;
109   Optional<unsigned> TiedDefIdx;
110 
111   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
112                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
113       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
114     if (TiedDefIdx)
115       assert(Operand.isReg() && Operand.isUse() &&
116              "Only used register operands can be tied");
117   }
118 };
119 
120 class MIParser {
121   MachineFunction &MF;
122   SMDiagnostic &Error;
123   StringRef Source, CurrentSource;
124   MIToken Token;
125   PerFunctionMIParsingState &PFS;
126   /// Maps from instruction names to op codes.
127   StringMap<unsigned> Names2InstrOpCodes;
128   /// Maps from register names to registers.
129   StringMap<unsigned> Names2Regs;
130   /// Maps from register mask names to register masks.
131   StringMap<const uint32_t *> Names2RegMasks;
132   /// Maps from subregister names to subregister indices.
133   StringMap<unsigned> Names2SubRegIndices;
134   /// Maps from slot numbers to function's unnamed basic blocks.
135   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
136   /// Maps from slot numbers to function's unnamed values.
137   DenseMap<unsigned, const Value *> Slots2Values;
138   /// Maps from target index names to target indices.
139   StringMap<int> Names2TargetIndices;
140   /// Maps from direct target flag names to the direct target flag values.
141   StringMap<unsigned> Names2DirectTargetFlags;
142   /// Maps from direct target flag names to the bitmask target flag values.
143   StringMap<unsigned> Names2BitmaskTargetFlags;
144   /// Maps from MMO target flag names to MMO target flag values.
145   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
146 
147 public:
148   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
149            StringRef Source);
150 
151   /// \p SkipChar gives the number of characters to skip before looking
152   /// for the next token.
153   void lex(unsigned SkipChar = 0);
154 
155   /// Report an error at the current location with the given message.
156   ///
157   /// This function always return true.
158   bool error(const Twine &Msg);
159 
160   /// Report an error at the given location with the given message.
161   ///
162   /// This function always return true.
163   bool error(StringRef::iterator Loc, const Twine &Msg);
164 
165   bool
166   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
167   bool parseBasicBlocks();
168   bool parse(MachineInstr *&MI);
169   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
170   bool parseStandaloneNamedRegister(unsigned &Reg);
171   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
172   bool parseStandaloneRegister(unsigned &Reg);
173   bool parseStandaloneStackObject(int &FI);
174   bool parseStandaloneMDNode(MDNode *&Node);
175 
176   bool
177   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
178   bool parseBasicBlock(MachineBasicBlock &MBB,
179                        MachineBasicBlock *&AddFalthroughFrom);
180   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
181   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
182 
183   bool parseNamedRegister(unsigned &Reg);
184   bool parseVirtualRegister(VRegInfo *&Info);
185   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
186   bool parseRegisterFlag(unsigned &Flags);
187   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
188   bool parseSubRegisterIndex(unsigned &SubReg);
189   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
190   bool parseRegisterOperand(MachineOperand &Dest,
191                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
192   bool parseImmediateOperand(MachineOperand &Dest);
193   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
194                        const Constant *&C);
195   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
196   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
197   bool parseTypedImmediateOperand(MachineOperand &Dest);
198   bool parseFPImmediateOperand(MachineOperand &Dest);
199   bool parseMBBReference(MachineBasicBlock *&MBB);
200   bool parseMBBOperand(MachineOperand &Dest);
201   bool parseStackFrameIndex(int &FI);
202   bool parseStackObjectOperand(MachineOperand &Dest);
203   bool parseFixedStackFrameIndex(int &FI);
204   bool parseFixedStackObjectOperand(MachineOperand &Dest);
205   bool parseGlobalValue(GlobalValue *&GV);
206   bool parseGlobalAddressOperand(MachineOperand &Dest);
207   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
208   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
209   bool parseJumpTableIndexOperand(MachineOperand &Dest);
210   bool parseExternalSymbolOperand(MachineOperand &Dest);
211   bool parseMDNode(MDNode *&Node);
212   bool parseDIExpression(MDNode *&Node);
213   bool parseMetadataOperand(MachineOperand &Dest);
214   bool parseCFIOffset(int &Offset);
215   bool parseCFIRegister(unsigned &Reg);
216   bool parseCFIEscapeValues(std::string& Values);
217   bool parseCFIOperand(MachineOperand &Dest);
218   bool parseIRBlock(BasicBlock *&BB, const Function &F);
219   bool parseBlockAddressOperand(MachineOperand &Dest);
220   bool parseIntrinsicOperand(MachineOperand &Dest);
221   bool parsePredicateOperand(MachineOperand &Dest);
222   bool parseTargetIndexOperand(MachineOperand &Dest);
223   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
224   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
225   bool parseMachineOperand(MachineOperand &Dest,
226                            Optional<unsigned> &TiedDefIdx);
227   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
228                                          Optional<unsigned> &TiedDefIdx);
229   bool parseOffset(int64_t &Offset);
230   bool parseAlignment(unsigned &Alignment);
231   bool parseAddrspace(unsigned &Addrspace);
232   bool parseOperandsOffset(MachineOperand &Op);
233   bool parseIRValue(const Value *&V);
234   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
235   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
236   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
237   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
238   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
239   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
240 
241 private:
242   /// Convert the integer literal in the current token into an unsigned integer.
243   ///
244   /// Return true if an error occurred.
245   bool getUnsigned(unsigned &Result);
246 
247   /// Convert the integer literal in the current token into an uint64.
248   ///
249   /// Return true if an error occurred.
250   bool getUint64(uint64_t &Result);
251 
252   /// Convert the hexadecimal literal in the current token into an unsigned
253   ///  APInt with a minimum bitwidth required to represent the value.
254   ///
255   /// Return true if the literal does not represent an integer value.
256   bool getHexUint(APInt &Result);
257 
258   /// If the current token is of the given kind, consume it and return false.
259   /// Otherwise report an error and return true.
260   bool expectAndConsume(MIToken::TokenKind TokenKind);
261 
262   /// If the current token is of the given kind, consume it and return true.
263   /// Otherwise return false.
264   bool consumeIfPresent(MIToken::TokenKind TokenKind);
265 
266   void initNames2InstrOpCodes();
267 
268   /// Try to convert an instruction name to an opcode. Return true if the
269   /// instruction name is invalid.
270   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
271 
272   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
273 
274   bool assignRegisterTies(MachineInstr &MI,
275                           ArrayRef<ParsedMachineOperand> Operands);
276 
277   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
278                               const MCInstrDesc &MCID);
279 
280   void initNames2Regs();
281 
282   /// Try to convert a register name to a register number. Return true if the
283   /// register name is invalid.
284   bool getRegisterByName(StringRef RegName, unsigned &Reg);
285 
286   void initNames2RegMasks();
287 
288   /// Check if the given identifier is a name of a register mask.
289   ///
290   /// Return null if the identifier isn't a register mask.
291   const uint32_t *getRegMask(StringRef Identifier);
292 
293   void initNames2SubRegIndices();
294 
295   /// Check if the given identifier is a name of a subregister index.
296   ///
297   /// Return 0 if the name isn't a subregister index class.
298   unsigned getSubRegIndex(StringRef Name);
299 
300   const BasicBlock *getIRBlock(unsigned Slot);
301   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
302 
303   const Value *getIRValue(unsigned Slot);
304 
305   void initNames2TargetIndices();
306 
307   /// Try to convert a name of target index to the corresponding target index.
308   ///
309   /// Return true if the name isn't a name of a target index.
310   bool getTargetIndex(StringRef Name, int &Index);
311 
312   void initNames2DirectTargetFlags();
313 
314   /// Try to convert a name of a direct target flag to the corresponding
315   /// target flag.
316   ///
317   /// Return true if the name isn't a name of a direct flag.
318   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
319 
320   void initNames2BitmaskTargetFlags();
321 
322   /// Try to convert a name of a bitmask target flag to the corresponding
323   /// target flag.
324   ///
325   /// Return true if the name isn't a name of a bitmask target flag.
326   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
327 
328   void initNames2MMOTargetFlags();
329 
330   /// Try to convert a name of a MachineMemOperand target flag to the
331   /// corresponding target flag.
332   ///
333   /// Return true if the name isn't a name of a target MMO flag.
334   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
335 
336   /// parseStringConstant
337   ///   ::= StringConstant
338   bool parseStringConstant(std::string &Result);
339 };
340 
341 } // end anonymous namespace
342 
343 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
344                    StringRef Source)
345     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
346 {}
347 
348 void MIParser::lex(unsigned SkipChar) {
349   CurrentSource = lexMIToken(
350       CurrentSource.data() + SkipChar, Token,
351       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
352 }
353 
354 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
355 
356 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
357   const SourceMgr &SM = *PFS.SM;
358   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
359   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
360   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
361     // Create an ordinary diagnostic when the source manager's buffer is the
362     // source string.
363     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
364     return true;
365   }
366   // Create a diagnostic for a YAML string literal.
367   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
368                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
369                        Source, None, None);
370   return true;
371 }
372 
373 static const char *toString(MIToken::TokenKind TokenKind) {
374   switch (TokenKind) {
375   case MIToken::comma:
376     return "','";
377   case MIToken::equal:
378     return "'='";
379   case MIToken::colon:
380     return "':'";
381   case MIToken::lparen:
382     return "'('";
383   case MIToken::rparen:
384     return "')'";
385   default:
386     return "<unknown token>";
387   }
388 }
389 
390 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
391   if (Token.isNot(TokenKind))
392     return error(Twine("expected ") + toString(TokenKind));
393   lex();
394   return false;
395 }
396 
397 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
398   if (Token.isNot(TokenKind))
399     return false;
400   lex();
401   return true;
402 }
403 
404 bool MIParser::parseBasicBlockDefinition(
405     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
406   assert(Token.is(MIToken::MachineBasicBlockLabel));
407   unsigned ID = 0;
408   if (getUnsigned(ID))
409     return true;
410   auto Loc = Token.location();
411   auto Name = Token.stringValue();
412   lex();
413   bool HasAddressTaken = false;
414   bool IsLandingPad = false;
415   unsigned Alignment = 0;
416   BasicBlock *BB = nullptr;
417   if (consumeIfPresent(MIToken::lparen)) {
418     do {
419       // TODO: Report an error when multiple same attributes are specified.
420       switch (Token.kind()) {
421       case MIToken::kw_address_taken:
422         HasAddressTaken = true;
423         lex();
424         break;
425       case MIToken::kw_landing_pad:
426         IsLandingPad = true;
427         lex();
428         break;
429       case MIToken::kw_align:
430         if (parseAlignment(Alignment))
431           return true;
432         break;
433       case MIToken::IRBlock:
434         // TODO: Report an error when both name and ir block are specified.
435         if (parseIRBlock(BB, MF.getFunction()))
436           return true;
437         lex();
438         break;
439       default:
440         break;
441       }
442     } while (consumeIfPresent(MIToken::comma));
443     if (expectAndConsume(MIToken::rparen))
444       return true;
445   }
446   if (expectAndConsume(MIToken::colon))
447     return true;
448 
449   if (!Name.empty()) {
450     BB = dyn_cast_or_null<BasicBlock>(
451         MF.getFunction().getValueSymbolTable()->lookup(Name));
452     if (!BB)
453       return error(Loc, Twine("basic block '") + Name +
454                             "' is not defined in the function '" +
455                             MF.getName() + "'");
456   }
457   auto *MBB = MF.CreateMachineBasicBlock(BB);
458   MF.insert(MF.end(), MBB);
459   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
460   if (!WasInserted)
461     return error(Loc, Twine("redefinition of machine basic block with id #") +
462                           Twine(ID));
463   if (Alignment)
464     MBB->setAlignment(Alignment);
465   if (HasAddressTaken)
466     MBB->setHasAddressTaken();
467   MBB->setIsEHPad(IsLandingPad);
468   return false;
469 }
470 
471 bool MIParser::parseBasicBlockDefinitions(
472     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
473   lex();
474   // Skip until the first machine basic block.
475   while (Token.is(MIToken::Newline))
476     lex();
477   if (Token.isErrorOrEOF())
478     return Token.isError();
479   if (Token.isNot(MIToken::MachineBasicBlockLabel))
480     return error("expected a basic block definition before instructions");
481   unsigned BraceDepth = 0;
482   do {
483     if (parseBasicBlockDefinition(MBBSlots))
484       return true;
485     bool IsAfterNewline = false;
486     // Skip until the next machine basic block.
487     while (true) {
488       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
489           Token.isErrorOrEOF())
490         break;
491       else if (Token.is(MIToken::MachineBasicBlockLabel))
492         return error("basic block definition should be located at the start of "
493                      "the line");
494       else if (consumeIfPresent(MIToken::Newline)) {
495         IsAfterNewline = true;
496         continue;
497       }
498       IsAfterNewline = false;
499       if (Token.is(MIToken::lbrace))
500         ++BraceDepth;
501       if (Token.is(MIToken::rbrace)) {
502         if (!BraceDepth)
503           return error("extraneous closing brace ('}')");
504         --BraceDepth;
505       }
506       lex();
507     }
508     // Verify that we closed all of the '{' at the end of a file or a block.
509     if (!Token.isError() && BraceDepth)
510       return error("expected '}'"); // FIXME: Report a note that shows '{'.
511   } while (!Token.isErrorOrEOF());
512   return Token.isError();
513 }
514 
515 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
516   assert(Token.is(MIToken::kw_liveins));
517   lex();
518   if (expectAndConsume(MIToken::colon))
519     return true;
520   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
521     return false;
522   do {
523     if (Token.isNot(MIToken::NamedRegister))
524       return error("expected a named register");
525     unsigned Reg = 0;
526     if (parseNamedRegister(Reg))
527       return true;
528     lex();
529     LaneBitmask Mask = LaneBitmask::getAll();
530     if (consumeIfPresent(MIToken::colon)) {
531       // Parse lane mask.
532       if (Token.isNot(MIToken::IntegerLiteral) &&
533           Token.isNot(MIToken::HexLiteral))
534         return error("expected a lane mask");
535       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
536                     "Use correct get-function for lane mask");
537       LaneBitmask::Type V;
538       if (getUnsigned(V))
539         return error("invalid lane mask value");
540       Mask = LaneBitmask(V);
541       lex();
542     }
543     MBB.addLiveIn(Reg, Mask);
544   } while (consumeIfPresent(MIToken::comma));
545   return false;
546 }
547 
548 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
549   assert(Token.is(MIToken::kw_successors));
550   lex();
551   if (expectAndConsume(MIToken::colon))
552     return true;
553   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
554     return false;
555   do {
556     if (Token.isNot(MIToken::MachineBasicBlock))
557       return error("expected a machine basic block reference");
558     MachineBasicBlock *SuccMBB = nullptr;
559     if (parseMBBReference(SuccMBB))
560       return true;
561     lex();
562     unsigned Weight = 0;
563     if (consumeIfPresent(MIToken::lparen)) {
564       if (Token.isNot(MIToken::IntegerLiteral) &&
565           Token.isNot(MIToken::HexLiteral))
566         return error("expected an integer literal after '('");
567       if (getUnsigned(Weight))
568         return true;
569       lex();
570       if (expectAndConsume(MIToken::rparen))
571         return true;
572     }
573     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
574   } while (consumeIfPresent(MIToken::comma));
575   MBB.normalizeSuccProbs();
576   return false;
577 }
578 
579 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
580                                MachineBasicBlock *&AddFalthroughFrom) {
581   // Skip the definition.
582   assert(Token.is(MIToken::MachineBasicBlockLabel));
583   lex();
584   if (consumeIfPresent(MIToken::lparen)) {
585     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
586       lex();
587     consumeIfPresent(MIToken::rparen);
588   }
589   consumeIfPresent(MIToken::colon);
590 
591   // Parse the liveins and successors.
592   // N.B: Multiple lists of successors and liveins are allowed and they're
593   // merged into one.
594   // Example:
595   //   liveins: %edi
596   //   liveins: %esi
597   //
598   // is equivalent to
599   //   liveins: %edi, %esi
600   bool ExplicitSuccessors = false;
601   while (true) {
602     if (Token.is(MIToken::kw_successors)) {
603       if (parseBasicBlockSuccessors(MBB))
604         return true;
605       ExplicitSuccessors = true;
606     } else if (Token.is(MIToken::kw_liveins)) {
607       if (parseBasicBlockLiveins(MBB))
608         return true;
609     } else if (consumeIfPresent(MIToken::Newline)) {
610       continue;
611     } else
612       break;
613     if (!Token.isNewlineOrEOF())
614       return error("expected line break at the end of a list");
615     lex();
616   }
617 
618   // Parse the instructions.
619   bool IsInBundle = false;
620   MachineInstr *PrevMI = nullptr;
621   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
622          !Token.is(MIToken::Eof)) {
623     if (consumeIfPresent(MIToken::Newline))
624       continue;
625     if (consumeIfPresent(MIToken::rbrace)) {
626       // The first parsing pass should verify that all closing '}' have an
627       // opening '{'.
628       assert(IsInBundle);
629       IsInBundle = false;
630       continue;
631     }
632     MachineInstr *MI = nullptr;
633     if (parse(MI))
634       return true;
635     MBB.insert(MBB.end(), MI);
636     if (IsInBundle) {
637       PrevMI->setFlag(MachineInstr::BundledSucc);
638       MI->setFlag(MachineInstr::BundledPred);
639     }
640     PrevMI = MI;
641     if (Token.is(MIToken::lbrace)) {
642       if (IsInBundle)
643         return error("nested instruction bundles are not allowed");
644       lex();
645       // This instruction is the start of the bundle.
646       MI->setFlag(MachineInstr::BundledSucc);
647       IsInBundle = true;
648       if (!Token.is(MIToken::Newline))
649         // The next instruction can be on the same line.
650         continue;
651     }
652     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
653     lex();
654   }
655 
656   // Construct successor list by searching for basic block machine operands.
657   if (!ExplicitSuccessors) {
658     SmallVector<MachineBasicBlock*,4> Successors;
659     bool IsFallthrough;
660     guessSuccessors(MBB, Successors, IsFallthrough);
661     for (MachineBasicBlock *Succ : Successors)
662       MBB.addSuccessor(Succ);
663 
664     if (IsFallthrough) {
665       AddFalthroughFrom = &MBB;
666     } else {
667       MBB.normalizeSuccProbs();
668     }
669   }
670 
671   return false;
672 }
673 
674 bool MIParser::parseBasicBlocks() {
675   lex();
676   // Skip until the first machine basic block.
677   while (Token.is(MIToken::Newline))
678     lex();
679   if (Token.isErrorOrEOF())
680     return Token.isError();
681   // The first parsing pass should have verified that this token is a MBB label
682   // in the 'parseBasicBlockDefinitions' method.
683   assert(Token.is(MIToken::MachineBasicBlockLabel));
684   MachineBasicBlock *AddFalthroughFrom = nullptr;
685   do {
686     MachineBasicBlock *MBB = nullptr;
687     if (parseMBBReference(MBB))
688       return true;
689     if (AddFalthroughFrom) {
690       if (!AddFalthroughFrom->isSuccessor(MBB))
691         AddFalthroughFrom->addSuccessor(MBB);
692       AddFalthroughFrom->normalizeSuccProbs();
693       AddFalthroughFrom = nullptr;
694     }
695     if (parseBasicBlock(*MBB, AddFalthroughFrom))
696       return true;
697     // The method 'parseBasicBlock' should parse the whole block until the next
698     // block or the end of file.
699     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
700   } while (Token.isNot(MIToken::Eof));
701   return false;
702 }
703 
704 bool MIParser::parse(MachineInstr *&MI) {
705   // Parse any register operands before '='
706   MachineOperand MO = MachineOperand::CreateImm(0);
707   SmallVector<ParsedMachineOperand, 8> Operands;
708   while (Token.isRegister() || Token.isRegisterFlag()) {
709     auto Loc = Token.location();
710     Optional<unsigned> TiedDefIdx;
711     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
712       return true;
713     Operands.push_back(
714         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
715     if (Token.isNot(MIToken::comma))
716       break;
717     lex();
718   }
719   if (!Operands.empty() && expectAndConsume(MIToken::equal))
720     return true;
721 
722   unsigned OpCode, Flags = 0;
723   if (Token.isError() || parseInstruction(OpCode, Flags))
724     return true;
725 
726   // Parse the remaining machine operands.
727   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
728          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
729     auto Loc = Token.location();
730     Optional<unsigned> TiedDefIdx;
731     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
732       return true;
733     Operands.push_back(
734         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
735     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
736         Token.is(MIToken::lbrace))
737       break;
738     if (Token.isNot(MIToken::comma))
739       return error("expected ',' before the next machine operand");
740     lex();
741   }
742 
743   DebugLoc DebugLocation;
744   if (Token.is(MIToken::kw_debug_location)) {
745     lex();
746     if (Token.isNot(MIToken::exclaim))
747       return error("expected a metadata node after 'debug-location'");
748     MDNode *Node = nullptr;
749     if (parseMDNode(Node))
750       return true;
751     DebugLocation = DebugLoc(Node);
752   }
753 
754   // Parse the machine memory operands.
755   SmallVector<MachineMemOperand *, 2> MemOperands;
756   if (Token.is(MIToken::coloncolon)) {
757     lex();
758     while (!Token.isNewlineOrEOF()) {
759       MachineMemOperand *MemOp = nullptr;
760       if (parseMachineMemoryOperand(MemOp))
761         return true;
762       MemOperands.push_back(MemOp);
763       if (Token.isNewlineOrEOF())
764         break;
765       if (Token.isNot(MIToken::comma))
766         return error("expected ',' before the next machine memory operand");
767       lex();
768     }
769   }
770 
771   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
772   if (!MCID.isVariadic()) {
773     // FIXME: Move the implicit operand verification to the machine verifier.
774     if (verifyImplicitOperands(Operands, MCID))
775       return true;
776   }
777 
778   // TODO: Check for extraneous machine operands.
779   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
780   MI->setFlags(Flags);
781   for (const auto &Operand : Operands)
782     MI->addOperand(MF, Operand.Operand);
783   if (assignRegisterTies(*MI, Operands))
784     return true;
785   if (MemOperands.empty())
786     return false;
787   MachineInstr::mmo_iterator MemRefs =
788       MF.allocateMemRefsArray(MemOperands.size());
789   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
790   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
791   return false;
792 }
793 
794 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
795   lex();
796   if (Token.isNot(MIToken::MachineBasicBlock))
797     return error("expected a machine basic block reference");
798   if (parseMBBReference(MBB))
799     return true;
800   lex();
801   if (Token.isNot(MIToken::Eof))
802     return error(
803         "expected end of string after the machine basic block reference");
804   return false;
805 }
806 
807 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
808   lex();
809   if (Token.isNot(MIToken::NamedRegister))
810     return error("expected a named register");
811   if (parseNamedRegister(Reg))
812     return true;
813   lex();
814   if (Token.isNot(MIToken::Eof))
815     return error("expected end of string after the register reference");
816   return false;
817 }
818 
819 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
820   lex();
821   if (Token.isNot(MIToken::VirtualRegister))
822     return error("expected a virtual register");
823   if (parseVirtualRegister(Info))
824     return true;
825   lex();
826   if (Token.isNot(MIToken::Eof))
827     return error("expected end of string after the register reference");
828   return false;
829 }
830 
831 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
832   lex();
833   if (Token.isNot(MIToken::NamedRegister) &&
834       Token.isNot(MIToken::VirtualRegister))
835     return error("expected either a named or virtual register");
836 
837   VRegInfo *Info;
838   if (parseRegister(Reg, Info))
839     return true;
840 
841   lex();
842   if (Token.isNot(MIToken::Eof))
843     return error("expected end of string after the register reference");
844   return false;
845 }
846 
847 bool MIParser::parseStandaloneStackObject(int &FI) {
848   lex();
849   if (Token.isNot(MIToken::StackObject))
850     return error("expected a stack object");
851   if (parseStackFrameIndex(FI))
852     return true;
853   if (Token.isNot(MIToken::Eof))
854     return error("expected end of string after the stack object reference");
855   return false;
856 }
857 
858 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
859   lex();
860   if (Token.is(MIToken::exclaim)) {
861     if (parseMDNode(Node))
862       return true;
863   } else if (Token.is(MIToken::md_diexpr)) {
864     if (parseDIExpression(Node))
865       return true;
866   } else
867     return error("expected a metadata node");
868   if (Token.isNot(MIToken::Eof))
869     return error("expected end of string after the metadata node");
870   return false;
871 }
872 
873 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
874   assert(MO.isImplicit());
875   return MO.isDef() ? "implicit-def" : "implicit";
876 }
877 
878 static std::string getRegisterName(const TargetRegisterInfo *TRI,
879                                    unsigned Reg) {
880   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
881   return StringRef(TRI->getName(Reg)).lower();
882 }
883 
884 /// Return true if the parsed machine operands contain a given machine operand.
885 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
886                                 ArrayRef<ParsedMachineOperand> Operands) {
887   for (const auto &I : Operands) {
888     if (ImplicitOperand.isIdenticalTo(I.Operand))
889       return true;
890   }
891   return false;
892 }
893 
894 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
895                                       const MCInstrDesc &MCID) {
896   if (MCID.isCall())
897     // We can't verify call instructions as they can contain arbitrary implicit
898     // register and register mask operands.
899     return false;
900 
901   // Gather all the expected implicit operands.
902   SmallVector<MachineOperand, 4> ImplicitOperands;
903   if (MCID.ImplicitDefs)
904     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
905       ImplicitOperands.push_back(
906           MachineOperand::CreateReg(*ImpDefs, true, true));
907   if (MCID.ImplicitUses)
908     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
909       ImplicitOperands.push_back(
910           MachineOperand::CreateReg(*ImpUses, false, true));
911 
912   const auto *TRI = MF.getSubtarget().getRegisterInfo();
913   assert(TRI && "Expected target register info");
914   for (const auto &I : ImplicitOperands) {
915     if (isImplicitOperandIn(I, Operands))
916       continue;
917     return error(Operands.empty() ? Token.location() : Operands.back().End,
918                  Twine("missing implicit register operand '") +
919                      printImplicitRegisterFlag(I) + " %" +
920                      getRegisterName(TRI, I.getReg()) + "'");
921   }
922   return false;
923 }
924 
925 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
926   // Allow both:
927   // * frame-setup frame-destroy OPCODE
928   // * frame-destroy frame-setup OPCODE
929   while (Token.is(MIToken::kw_frame_setup) ||
930          Token.is(MIToken::kw_frame_destroy)) {
931     Flags |= Token.is(MIToken::kw_frame_setup) ? MachineInstr::FrameSetup
932                                                : MachineInstr::FrameDestroy;
933     lex();
934   }
935   if (Token.isNot(MIToken::Identifier))
936     return error("expected a machine instruction");
937   StringRef InstrName = Token.stringValue();
938   if (parseInstrName(InstrName, OpCode))
939     return error(Twine("unknown machine instruction name '") + InstrName + "'");
940   lex();
941   return false;
942 }
943 
944 bool MIParser::parseNamedRegister(unsigned &Reg) {
945   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
946   StringRef Name = Token.stringValue();
947   if (getRegisterByName(Name, Reg))
948     return error(Twine("unknown register name '") + Name + "'");
949   return false;
950 }
951 
952 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
953   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
954   unsigned ID;
955   if (getUnsigned(ID))
956     return true;
957   Info = &PFS.getVRegInfo(ID);
958   return false;
959 }
960 
961 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
962   switch (Token.kind()) {
963   case MIToken::underscore:
964     Reg = 0;
965     return false;
966   case MIToken::NamedRegister:
967     return parseNamedRegister(Reg);
968   case MIToken::VirtualRegister:
969     if (parseVirtualRegister(Info))
970       return true;
971     Reg = Info->VReg;
972     return false;
973   // TODO: Parse other register kinds.
974   default:
975     llvm_unreachable("The current token should be a register");
976   }
977 }
978 
979 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
980   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
981     return error("expected '_', register class, or register bank name");
982   StringRef::iterator Loc = Token.location();
983   StringRef Name = Token.stringValue();
984 
985   // Was it a register class?
986   auto RCNameI = PFS.Names2RegClasses.find(Name);
987   if (RCNameI != PFS.Names2RegClasses.end()) {
988     lex();
989     const TargetRegisterClass &RC = *RCNameI->getValue();
990 
991     switch (RegInfo.Kind) {
992     case VRegInfo::UNKNOWN:
993     case VRegInfo::NORMAL:
994       RegInfo.Kind = VRegInfo::NORMAL;
995       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
996         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
997         return error(Loc, Twine("conflicting register classes, previously: ") +
998                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
999       }
1000       RegInfo.D.RC = &RC;
1001       RegInfo.Explicit = true;
1002       return false;
1003 
1004     case VRegInfo::GENERIC:
1005     case VRegInfo::REGBANK:
1006       return error(Loc, "register class specification on generic register");
1007     }
1008     llvm_unreachable("Unexpected register kind");
1009   }
1010 
1011   // Should be a register bank or a generic register.
1012   const RegisterBank *RegBank = nullptr;
1013   if (Name != "_") {
1014     auto RBNameI = PFS.Names2RegBanks.find(Name);
1015     if (RBNameI == PFS.Names2RegBanks.end())
1016       return error(Loc, "expected '_', register class, or register bank name");
1017     RegBank = RBNameI->getValue();
1018   }
1019 
1020   lex();
1021 
1022   switch (RegInfo.Kind) {
1023   case VRegInfo::UNKNOWN:
1024   case VRegInfo::GENERIC:
1025   case VRegInfo::REGBANK:
1026     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1027     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1028       return error(Loc, "conflicting generic register banks");
1029     RegInfo.D.RegBank = RegBank;
1030     RegInfo.Explicit = true;
1031     return false;
1032 
1033   case VRegInfo::NORMAL:
1034     return error(Loc, "register bank specification on normal register");
1035   }
1036   llvm_unreachable("Unexpected register kind");
1037 }
1038 
1039 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1040   const unsigned OldFlags = Flags;
1041   switch (Token.kind()) {
1042   case MIToken::kw_implicit:
1043     Flags |= RegState::Implicit;
1044     break;
1045   case MIToken::kw_implicit_define:
1046     Flags |= RegState::ImplicitDefine;
1047     break;
1048   case MIToken::kw_def:
1049     Flags |= RegState::Define;
1050     break;
1051   case MIToken::kw_dead:
1052     Flags |= RegState::Dead;
1053     break;
1054   case MIToken::kw_killed:
1055     Flags |= RegState::Kill;
1056     break;
1057   case MIToken::kw_undef:
1058     Flags |= RegState::Undef;
1059     break;
1060   case MIToken::kw_internal:
1061     Flags |= RegState::InternalRead;
1062     break;
1063   case MIToken::kw_early_clobber:
1064     Flags |= RegState::EarlyClobber;
1065     break;
1066   case MIToken::kw_debug_use:
1067     Flags |= RegState::Debug;
1068     break;
1069   case MIToken::kw_renamable:
1070     Flags |= RegState::Renamable;
1071     break;
1072   default:
1073     llvm_unreachable("The current token should be a register flag");
1074   }
1075   if (OldFlags == Flags)
1076     // We know that the same flag is specified more than once when the flags
1077     // weren't modified.
1078     return error("duplicate '" + Token.stringValue() + "' register flag");
1079   lex();
1080   return false;
1081 }
1082 
1083 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1084   assert(Token.is(MIToken::dot));
1085   lex();
1086   if (Token.isNot(MIToken::Identifier))
1087     return error("expected a subregister index after '.'");
1088   auto Name = Token.stringValue();
1089   SubReg = getSubRegIndex(Name);
1090   if (!SubReg)
1091     return error(Twine("use of unknown subregister index '") + Name + "'");
1092   lex();
1093   return false;
1094 }
1095 
1096 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1097   if (!consumeIfPresent(MIToken::kw_tied_def))
1098     return true;
1099   if (Token.isNot(MIToken::IntegerLiteral))
1100     return error("expected an integer literal after 'tied-def'");
1101   if (getUnsigned(TiedDefIdx))
1102     return true;
1103   lex();
1104   if (expectAndConsume(MIToken::rparen))
1105     return true;
1106   return false;
1107 }
1108 
1109 bool MIParser::assignRegisterTies(MachineInstr &MI,
1110                                   ArrayRef<ParsedMachineOperand> Operands) {
1111   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1112   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1113     if (!Operands[I].TiedDefIdx)
1114       continue;
1115     // The parser ensures that this operand is a register use, so we just have
1116     // to check the tied-def operand.
1117     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1118     if (DefIdx >= E)
1119       return error(Operands[I].Begin,
1120                    Twine("use of invalid tied-def operand index '" +
1121                          Twine(DefIdx) + "'; instruction has only ") +
1122                        Twine(E) + " operands");
1123     const auto &DefOperand = Operands[DefIdx].Operand;
1124     if (!DefOperand.isReg() || !DefOperand.isDef())
1125       // FIXME: add note with the def operand.
1126       return error(Operands[I].Begin,
1127                    Twine("use of invalid tied-def operand index '") +
1128                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1129                        " isn't a defined register");
1130     // Check that the tied-def operand wasn't tied elsewhere.
1131     for (const auto &TiedPair : TiedRegisterPairs) {
1132       if (TiedPair.first == DefIdx)
1133         return error(Operands[I].Begin,
1134                      Twine("the tied-def operand #") + Twine(DefIdx) +
1135                          " is already tied with another register operand");
1136     }
1137     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1138   }
1139   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1140   // indices must be less than tied max.
1141   for (const auto &TiedPair : TiedRegisterPairs)
1142     MI.tieOperands(TiedPair.first, TiedPair.second);
1143   return false;
1144 }
1145 
1146 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1147                                     Optional<unsigned> &TiedDefIdx,
1148                                     bool IsDef) {
1149   unsigned Flags = IsDef ? RegState::Define : 0;
1150   while (Token.isRegisterFlag()) {
1151     if (parseRegisterFlag(Flags))
1152       return true;
1153   }
1154   if (!Token.isRegister())
1155     return error("expected a register after register flags");
1156   unsigned Reg;
1157   VRegInfo *RegInfo;
1158   if (parseRegister(Reg, RegInfo))
1159     return true;
1160   lex();
1161   unsigned SubReg = 0;
1162   if (Token.is(MIToken::dot)) {
1163     if (parseSubRegisterIndex(SubReg))
1164       return true;
1165     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1166       return error("subregister index expects a virtual register");
1167   }
1168   if (Token.is(MIToken::colon)) {
1169     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1170       return error("register class specification expects a virtual register");
1171     lex();
1172     if (parseRegisterClassOrBank(*RegInfo))
1173         return true;
1174   }
1175   MachineRegisterInfo &MRI = MF.getRegInfo();
1176   if ((Flags & RegState::Define) == 0) {
1177     if (consumeIfPresent(MIToken::lparen)) {
1178       unsigned Idx;
1179       if (!parseRegisterTiedDefIndex(Idx))
1180         TiedDefIdx = Idx;
1181       else {
1182         // Try a redundant low-level type.
1183         LLT Ty;
1184         if (parseLowLevelType(Token.location(), Ty))
1185           return error("expected tied-def or low-level type after '('");
1186 
1187         if (expectAndConsume(MIToken::rparen))
1188           return true;
1189 
1190         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1191           return error("inconsistent type for generic virtual register");
1192 
1193         MRI.setType(Reg, Ty);
1194       }
1195     }
1196   } else if (consumeIfPresent(MIToken::lparen)) {
1197     // Virtual registers may have a tpe with GlobalISel.
1198     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1199       return error("unexpected type on physical register");
1200 
1201     LLT Ty;
1202     if (parseLowLevelType(Token.location(), Ty))
1203       return true;
1204 
1205     if (expectAndConsume(MIToken::rparen))
1206       return true;
1207 
1208     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1209       return error("inconsistent type for generic virtual register");
1210 
1211     MRI.setType(Reg, Ty);
1212   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1213     // Generic virtual registers must have a type.
1214     // If we end up here this means the type hasn't been specified and
1215     // this is bad!
1216     if (RegInfo->Kind == VRegInfo::GENERIC ||
1217         RegInfo->Kind == VRegInfo::REGBANK)
1218       return error("generic virtual registers must have a type");
1219   }
1220   Dest = MachineOperand::CreateReg(
1221       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1222       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1223       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1224       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1225 
1226   return false;
1227 }
1228 
1229 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1230   assert(Token.is(MIToken::IntegerLiteral));
1231   const APSInt &Int = Token.integerValue();
1232   if (Int.getMinSignedBits() > 64)
1233     return error("integer literal is too large to be an immediate operand");
1234   Dest = MachineOperand::CreateImm(Int.getExtValue());
1235   lex();
1236   return false;
1237 }
1238 
1239 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1240                                const Constant *&C) {
1241   auto Source = StringValue.str(); // The source has to be null terminated.
1242   SMDiagnostic Err;
1243   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1244                          &PFS.IRSlots);
1245   if (!C)
1246     return error(Loc + Err.getColumnNo(), Err.getMessage());
1247   return false;
1248 }
1249 
1250 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1251   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1252     return true;
1253   lex();
1254   return false;
1255 }
1256 
1257 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1258   if (Token.is(MIToken::ScalarType)) {
1259     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1260     lex();
1261     return false;
1262   } else if (Token.is(MIToken::PointerType)) {
1263     const DataLayout &DL = MF.getDataLayout();
1264     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1265     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1266     lex();
1267     return false;
1268   }
1269 
1270   // Now we're looking for a vector.
1271   if (Token.isNot(MIToken::less))
1272     return error(Loc,
1273                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1274 
1275   lex();
1276 
1277   if (Token.isNot(MIToken::IntegerLiteral))
1278     return error(Loc, "expected <N x sM> for vctor type");
1279   uint64_t NumElements = Token.integerValue().getZExtValue();
1280   lex();
1281 
1282   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1283     return error(Loc, "expected '<N x sM>' for vector type");
1284   lex();
1285 
1286   if (Token.isNot(MIToken::ScalarType))
1287     return error(Loc, "expected '<N x sM>' for vector type");
1288   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1289   lex();
1290 
1291   if (Token.isNot(MIToken::greater))
1292     return error(Loc, "expected '<N x sM>' for vector type");
1293   lex();
1294 
1295   Ty = LLT::vector(NumElements, ScalarSize);
1296   return false;
1297 }
1298 
1299 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1300   assert(Token.is(MIToken::IntegerType));
1301   auto Loc = Token.location();
1302   lex();
1303   if (Token.isNot(MIToken::IntegerLiteral))
1304     return error("expected an integer literal");
1305   const Constant *C = nullptr;
1306   if (parseIRConstant(Loc, C))
1307     return true;
1308   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1309   return false;
1310 }
1311 
1312 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1313   auto Loc = Token.location();
1314   lex();
1315   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1316       Token.isNot(MIToken::HexLiteral))
1317     return error("expected a floating point literal");
1318   const Constant *C = nullptr;
1319   if (parseIRConstant(Loc, C))
1320     return true;
1321   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1322   return false;
1323 }
1324 
1325 bool MIParser::getUnsigned(unsigned &Result) {
1326   if (Token.hasIntegerValue()) {
1327     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1328     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1329     if (Val64 == Limit)
1330       return error("expected 32-bit integer (too large)");
1331     Result = Val64;
1332     return false;
1333   }
1334   if (Token.is(MIToken::HexLiteral)) {
1335     APInt A;
1336     if (getHexUint(A))
1337       return true;
1338     if (A.getBitWidth() > 32)
1339       return error("expected 32-bit integer (too large)");
1340     Result = A.getZExtValue();
1341     return false;
1342   }
1343   return true;
1344 }
1345 
1346 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1347   assert(Token.is(MIToken::MachineBasicBlock) ||
1348          Token.is(MIToken::MachineBasicBlockLabel));
1349   unsigned Number;
1350   if (getUnsigned(Number))
1351     return true;
1352   auto MBBInfo = PFS.MBBSlots.find(Number);
1353   if (MBBInfo == PFS.MBBSlots.end())
1354     return error(Twine("use of undefined machine basic block #") +
1355                  Twine(Number));
1356   MBB = MBBInfo->second;
1357   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1358   // we drop the <irname> from the bb.<id>.<irname> format.
1359   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1360     return error(Twine("the name of machine basic block #") + Twine(Number) +
1361                  " isn't '" + Token.stringValue() + "'");
1362   return false;
1363 }
1364 
1365 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1366   MachineBasicBlock *MBB;
1367   if (parseMBBReference(MBB))
1368     return true;
1369   Dest = MachineOperand::CreateMBB(MBB);
1370   lex();
1371   return false;
1372 }
1373 
1374 bool MIParser::parseStackFrameIndex(int &FI) {
1375   assert(Token.is(MIToken::StackObject));
1376   unsigned ID;
1377   if (getUnsigned(ID))
1378     return true;
1379   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1380   if (ObjectInfo == PFS.StackObjectSlots.end())
1381     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1382                  "'");
1383   StringRef Name;
1384   if (const auto *Alloca =
1385           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1386     Name = Alloca->getName();
1387   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1388     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1389                  "' isn't '" + Token.stringValue() + "'");
1390   lex();
1391   FI = ObjectInfo->second;
1392   return false;
1393 }
1394 
1395 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1396   int FI;
1397   if (parseStackFrameIndex(FI))
1398     return true;
1399   Dest = MachineOperand::CreateFI(FI);
1400   return false;
1401 }
1402 
1403 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1404   assert(Token.is(MIToken::FixedStackObject));
1405   unsigned ID;
1406   if (getUnsigned(ID))
1407     return true;
1408   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1409   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1410     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1411                  Twine(ID) + "'");
1412   lex();
1413   FI = ObjectInfo->second;
1414   return false;
1415 }
1416 
1417 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1418   int FI;
1419   if (parseFixedStackFrameIndex(FI))
1420     return true;
1421   Dest = MachineOperand::CreateFI(FI);
1422   return false;
1423 }
1424 
1425 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1426   switch (Token.kind()) {
1427   case MIToken::NamedGlobalValue: {
1428     const Module *M = MF.getFunction().getParent();
1429     GV = M->getNamedValue(Token.stringValue());
1430     if (!GV)
1431       return error(Twine("use of undefined global value '") + Token.range() +
1432                    "'");
1433     break;
1434   }
1435   case MIToken::GlobalValue: {
1436     unsigned GVIdx;
1437     if (getUnsigned(GVIdx))
1438       return true;
1439     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1440       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1441                    "'");
1442     GV = PFS.IRSlots.GlobalValues[GVIdx];
1443     break;
1444   }
1445   default:
1446     llvm_unreachable("The current token should be a global value");
1447   }
1448   return false;
1449 }
1450 
1451 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1452   GlobalValue *GV = nullptr;
1453   if (parseGlobalValue(GV))
1454     return true;
1455   lex();
1456   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1457   if (parseOperandsOffset(Dest))
1458     return true;
1459   return false;
1460 }
1461 
1462 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1463   assert(Token.is(MIToken::ConstantPoolItem));
1464   unsigned ID;
1465   if (getUnsigned(ID))
1466     return true;
1467   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1468   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1469     return error("use of undefined constant '%const." + Twine(ID) + "'");
1470   lex();
1471   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1472   if (parseOperandsOffset(Dest))
1473     return true;
1474   return false;
1475 }
1476 
1477 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1478   assert(Token.is(MIToken::JumpTableIndex));
1479   unsigned ID;
1480   if (getUnsigned(ID))
1481     return true;
1482   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1483   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1484     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1485   lex();
1486   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1487   return false;
1488 }
1489 
1490 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1491   assert(Token.is(MIToken::ExternalSymbol));
1492   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1493   lex();
1494   Dest = MachineOperand::CreateES(Symbol);
1495   if (parseOperandsOffset(Dest))
1496     return true;
1497   return false;
1498 }
1499 
1500 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1501   assert(Token.is(MIToken::SubRegisterIndex));
1502   StringRef Name = Token.stringValue();
1503   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1504   if (SubRegIndex == 0)
1505     return error(Twine("unknown subregister index '") + Name + "'");
1506   lex();
1507   Dest = MachineOperand::CreateImm(SubRegIndex);
1508   return false;
1509 }
1510 
1511 bool MIParser::parseMDNode(MDNode *&Node) {
1512   assert(Token.is(MIToken::exclaim));
1513 
1514   auto Loc = Token.location();
1515   lex();
1516   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1517     return error("expected metadata id after '!'");
1518   unsigned ID;
1519   if (getUnsigned(ID))
1520     return true;
1521   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1522   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1523     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1524   lex();
1525   Node = NodeInfo->second.get();
1526   return false;
1527 }
1528 
1529 bool MIParser::parseDIExpression(MDNode *&Expr) {
1530   assert(Token.is(MIToken::md_diexpr));
1531   lex();
1532 
1533   // FIXME: Share this parsing with the IL parser.
1534   SmallVector<uint64_t, 8> Elements;
1535 
1536   if (expectAndConsume(MIToken::lparen))
1537     return true;
1538 
1539   if (Token.isNot(MIToken::rparen)) {
1540     do {
1541       if (Token.is(MIToken::Identifier)) {
1542         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1543           lex();
1544           Elements.push_back(Op);
1545           continue;
1546         }
1547         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1548       }
1549 
1550       if (Token.isNot(MIToken::IntegerLiteral) ||
1551           Token.integerValue().isSigned())
1552         return error("expected unsigned integer");
1553 
1554       auto &U = Token.integerValue();
1555       if (U.ugt(UINT64_MAX))
1556         return error("element too large, limit is " + Twine(UINT64_MAX));
1557       Elements.push_back(U.getZExtValue());
1558       lex();
1559 
1560     } while (consumeIfPresent(MIToken::comma));
1561   }
1562 
1563   if (expectAndConsume(MIToken::rparen))
1564     return true;
1565 
1566   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1567   return false;
1568 }
1569 
1570 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1571   MDNode *Node = nullptr;
1572   if (Token.is(MIToken::exclaim)) {
1573     if (parseMDNode(Node))
1574       return true;
1575   } else if (Token.is(MIToken::md_diexpr)) {
1576     if (parseDIExpression(Node))
1577       return true;
1578   }
1579   Dest = MachineOperand::CreateMetadata(Node);
1580   return false;
1581 }
1582 
1583 bool MIParser::parseCFIOffset(int &Offset) {
1584   if (Token.isNot(MIToken::IntegerLiteral))
1585     return error("expected a cfi offset");
1586   if (Token.integerValue().getMinSignedBits() > 32)
1587     return error("expected a 32 bit integer (the cfi offset is too large)");
1588   Offset = (int)Token.integerValue().getExtValue();
1589   lex();
1590   return false;
1591 }
1592 
1593 bool MIParser::parseCFIRegister(unsigned &Reg) {
1594   if (Token.isNot(MIToken::NamedRegister))
1595     return error("expected a cfi register");
1596   unsigned LLVMReg;
1597   if (parseNamedRegister(LLVMReg))
1598     return true;
1599   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1600   assert(TRI && "Expected target register info");
1601   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1602   if (DwarfReg < 0)
1603     return error("invalid DWARF register");
1604   Reg = (unsigned)DwarfReg;
1605   lex();
1606   return false;
1607 }
1608 
1609 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1610   do {
1611     if (Token.isNot(MIToken::HexLiteral))
1612       return error("expected a hexadecimal literal");
1613     unsigned Value;
1614     if (getUnsigned(Value))
1615       return true;
1616     if (Value > UINT8_MAX)
1617       return error("expected a 8-bit integer (too large)");
1618     Values.push_back(static_cast<uint8_t>(Value));
1619     lex();
1620   } while (consumeIfPresent(MIToken::comma));
1621   return false;
1622 }
1623 
1624 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1625   auto Kind = Token.kind();
1626   lex();
1627   int Offset;
1628   unsigned Reg;
1629   unsigned CFIIndex;
1630   switch (Kind) {
1631   case MIToken::kw_cfi_same_value:
1632     if (parseCFIRegister(Reg))
1633       return true;
1634     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1635     break;
1636   case MIToken::kw_cfi_offset:
1637     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1638         parseCFIOffset(Offset))
1639       return true;
1640     CFIIndex =
1641         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1642     break;
1643   case MIToken::kw_cfi_rel_offset:
1644     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1645         parseCFIOffset(Offset))
1646       return true;
1647     CFIIndex = MF.addFrameInst(
1648         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1649     break;
1650   case MIToken::kw_cfi_def_cfa_register:
1651     if (parseCFIRegister(Reg))
1652       return true;
1653     CFIIndex =
1654         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1655     break;
1656   case MIToken::kw_cfi_def_cfa_offset:
1657     if (parseCFIOffset(Offset))
1658       return true;
1659     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1660     CFIIndex = MF.addFrameInst(
1661         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1662     break;
1663   case MIToken::kw_cfi_adjust_cfa_offset:
1664     if (parseCFIOffset(Offset))
1665       return true;
1666     CFIIndex = MF.addFrameInst(
1667         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1668     break;
1669   case MIToken::kw_cfi_def_cfa:
1670     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1671         parseCFIOffset(Offset))
1672       return true;
1673     // NB: MCCFIInstruction::createDefCfa negates the offset.
1674     CFIIndex =
1675         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1676     break;
1677   case MIToken::kw_cfi_remember_state:
1678     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1679     break;
1680   case MIToken::kw_cfi_restore:
1681     if (parseCFIRegister(Reg))
1682       return true;
1683     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1684     break;
1685   case MIToken::kw_cfi_restore_state:
1686     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1687     break;
1688   case MIToken::kw_cfi_undefined:
1689     if (parseCFIRegister(Reg))
1690       return true;
1691     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1692     break;
1693   case MIToken::kw_cfi_register: {
1694     unsigned Reg2;
1695     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1696         parseCFIRegister(Reg2))
1697       return true;
1698 
1699     CFIIndex =
1700         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1701     break;
1702   }
1703   case MIToken::kw_cfi_window_save:
1704     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1705     break;
1706   case MIToken::kw_cfi_escape: {
1707     std::string Values;
1708     if (parseCFIEscapeValues(Values))
1709       return true;
1710     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1711     break;
1712   }
1713   default:
1714     // TODO: Parse the other CFI operands.
1715     llvm_unreachable("The current token should be a cfi operand");
1716   }
1717   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1718   return false;
1719 }
1720 
1721 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1722   switch (Token.kind()) {
1723   case MIToken::NamedIRBlock: {
1724     BB = dyn_cast_or_null<BasicBlock>(
1725         F.getValueSymbolTable()->lookup(Token.stringValue()));
1726     if (!BB)
1727       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1728     break;
1729   }
1730   case MIToken::IRBlock: {
1731     unsigned SlotNumber = 0;
1732     if (getUnsigned(SlotNumber))
1733       return true;
1734     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1735     if (!BB)
1736       return error(Twine("use of undefined IR block '%ir-block.") +
1737                    Twine(SlotNumber) + "'");
1738     break;
1739   }
1740   default:
1741     llvm_unreachable("The current token should be an IR block reference");
1742   }
1743   return false;
1744 }
1745 
1746 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1747   assert(Token.is(MIToken::kw_blockaddress));
1748   lex();
1749   if (expectAndConsume(MIToken::lparen))
1750     return true;
1751   if (Token.isNot(MIToken::GlobalValue) &&
1752       Token.isNot(MIToken::NamedGlobalValue))
1753     return error("expected a global value");
1754   GlobalValue *GV = nullptr;
1755   if (parseGlobalValue(GV))
1756     return true;
1757   auto *F = dyn_cast<Function>(GV);
1758   if (!F)
1759     return error("expected an IR function reference");
1760   lex();
1761   if (expectAndConsume(MIToken::comma))
1762     return true;
1763   BasicBlock *BB = nullptr;
1764   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1765     return error("expected an IR block reference");
1766   if (parseIRBlock(BB, *F))
1767     return true;
1768   lex();
1769   if (expectAndConsume(MIToken::rparen))
1770     return true;
1771   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1772   if (parseOperandsOffset(Dest))
1773     return true;
1774   return false;
1775 }
1776 
1777 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1778   assert(Token.is(MIToken::kw_intrinsic));
1779   lex();
1780   if (expectAndConsume(MIToken::lparen))
1781     return error("expected syntax intrinsic(@llvm.whatever)");
1782 
1783   if (Token.isNot(MIToken::NamedGlobalValue))
1784     return error("expected syntax intrinsic(@llvm.whatever)");
1785 
1786   std::string Name = Token.stringValue();
1787   lex();
1788 
1789   if (expectAndConsume(MIToken::rparen))
1790     return error("expected ')' to terminate intrinsic name");
1791 
1792   // Find out what intrinsic we're dealing with, first try the global namespace
1793   // and then the target's private intrinsics if that fails.
1794   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1795   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1796   if (ID == Intrinsic::not_intrinsic && TII)
1797     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1798 
1799   if (ID == Intrinsic::not_intrinsic)
1800     return error("unknown intrinsic name");
1801   Dest = MachineOperand::CreateIntrinsicID(ID);
1802 
1803   return false;
1804 }
1805 
1806 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1807   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1808   bool IsFloat = Token.is(MIToken::kw_floatpred);
1809   lex();
1810 
1811   if (expectAndConsume(MIToken::lparen))
1812     return error("expected syntax intpred(whatever) or floatpred(whatever");
1813 
1814   if (Token.isNot(MIToken::Identifier))
1815     return error("whatever");
1816 
1817   CmpInst::Predicate Pred;
1818   if (IsFloat) {
1819     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1820                .Case("false", CmpInst::FCMP_FALSE)
1821                .Case("oeq", CmpInst::FCMP_OEQ)
1822                .Case("ogt", CmpInst::FCMP_OGT)
1823                .Case("oge", CmpInst::FCMP_OGE)
1824                .Case("olt", CmpInst::FCMP_OLT)
1825                .Case("ole", CmpInst::FCMP_OLE)
1826                .Case("one", CmpInst::FCMP_ONE)
1827                .Case("ord", CmpInst::FCMP_ORD)
1828                .Case("uno", CmpInst::FCMP_UNO)
1829                .Case("ueq", CmpInst::FCMP_UEQ)
1830                .Case("ugt", CmpInst::FCMP_UGT)
1831                .Case("uge", CmpInst::FCMP_UGE)
1832                .Case("ult", CmpInst::FCMP_ULT)
1833                .Case("ule", CmpInst::FCMP_ULE)
1834                .Case("une", CmpInst::FCMP_UNE)
1835                .Case("true", CmpInst::FCMP_TRUE)
1836                .Default(CmpInst::BAD_FCMP_PREDICATE);
1837     if (!CmpInst::isFPPredicate(Pred))
1838       return error("invalid floating-point predicate");
1839   } else {
1840     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1841                .Case("eq", CmpInst::ICMP_EQ)
1842                .Case("ne", CmpInst::ICMP_NE)
1843                .Case("sgt", CmpInst::ICMP_SGT)
1844                .Case("sge", CmpInst::ICMP_SGE)
1845                .Case("slt", CmpInst::ICMP_SLT)
1846                .Case("sle", CmpInst::ICMP_SLE)
1847                .Case("ugt", CmpInst::ICMP_UGT)
1848                .Case("uge", CmpInst::ICMP_UGE)
1849                .Case("ult", CmpInst::ICMP_ULT)
1850                .Case("ule", CmpInst::ICMP_ULE)
1851                .Default(CmpInst::BAD_ICMP_PREDICATE);
1852     if (!CmpInst::isIntPredicate(Pred))
1853       return error("invalid integer predicate");
1854   }
1855 
1856   lex();
1857   Dest = MachineOperand::CreatePredicate(Pred);
1858   if (expectAndConsume(MIToken::rparen))
1859     return error("predicate should be terminated by ')'.");
1860 
1861   return false;
1862 }
1863 
1864 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1865   assert(Token.is(MIToken::kw_target_index));
1866   lex();
1867   if (expectAndConsume(MIToken::lparen))
1868     return true;
1869   if (Token.isNot(MIToken::Identifier))
1870     return error("expected the name of the target index");
1871   int Index = 0;
1872   if (getTargetIndex(Token.stringValue(), Index))
1873     return error("use of undefined target index '" + Token.stringValue() + "'");
1874   lex();
1875   if (expectAndConsume(MIToken::rparen))
1876     return true;
1877   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1878   if (parseOperandsOffset(Dest))
1879     return true;
1880   return false;
1881 }
1882 
1883 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1884   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1885   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1886   assert(TRI && "Expected target register info");
1887   lex();
1888   if (expectAndConsume(MIToken::lparen))
1889     return true;
1890 
1891   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1892   while (true) {
1893     if (Token.isNot(MIToken::NamedRegister))
1894       return error("expected a named register");
1895     unsigned Reg;
1896     if (parseNamedRegister(Reg))
1897       return true;
1898     lex();
1899     Mask[Reg / 32] |= 1U << (Reg % 32);
1900     // TODO: Report an error if the same register is used more than once.
1901     if (Token.isNot(MIToken::comma))
1902       break;
1903     lex();
1904   }
1905 
1906   if (expectAndConsume(MIToken::rparen))
1907     return true;
1908   Dest = MachineOperand::CreateRegMask(Mask);
1909   return false;
1910 }
1911 
1912 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1913   assert(Token.is(MIToken::kw_liveout));
1914   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1915   assert(TRI && "Expected target register info");
1916   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1917   lex();
1918   if (expectAndConsume(MIToken::lparen))
1919     return true;
1920   while (true) {
1921     if (Token.isNot(MIToken::NamedRegister))
1922       return error("expected a named register");
1923     unsigned Reg;
1924     if (parseNamedRegister(Reg))
1925       return true;
1926     lex();
1927     Mask[Reg / 32] |= 1U << (Reg % 32);
1928     // TODO: Report an error if the same register is used more than once.
1929     if (Token.isNot(MIToken::comma))
1930       break;
1931     lex();
1932   }
1933   if (expectAndConsume(MIToken::rparen))
1934     return true;
1935   Dest = MachineOperand::CreateRegLiveOut(Mask);
1936   return false;
1937 }
1938 
1939 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1940                                    Optional<unsigned> &TiedDefIdx) {
1941   switch (Token.kind()) {
1942   case MIToken::kw_implicit:
1943   case MIToken::kw_implicit_define:
1944   case MIToken::kw_def:
1945   case MIToken::kw_dead:
1946   case MIToken::kw_killed:
1947   case MIToken::kw_undef:
1948   case MIToken::kw_internal:
1949   case MIToken::kw_early_clobber:
1950   case MIToken::kw_debug_use:
1951   case MIToken::kw_renamable:
1952   case MIToken::underscore:
1953   case MIToken::NamedRegister:
1954   case MIToken::VirtualRegister:
1955     return parseRegisterOperand(Dest, TiedDefIdx);
1956   case MIToken::IntegerLiteral:
1957     return parseImmediateOperand(Dest);
1958   case MIToken::IntegerType:
1959     return parseTypedImmediateOperand(Dest);
1960   case MIToken::kw_half:
1961   case MIToken::kw_float:
1962   case MIToken::kw_double:
1963   case MIToken::kw_x86_fp80:
1964   case MIToken::kw_fp128:
1965   case MIToken::kw_ppc_fp128:
1966     return parseFPImmediateOperand(Dest);
1967   case MIToken::MachineBasicBlock:
1968     return parseMBBOperand(Dest);
1969   case MIToken::StackObject:
1970     return parseStackObjectOperand(Dest);
1971   case MIToken::FixedStackObject:
1972     return parseFixedStackObjectOperand(Dest);
1973   case MIToken::GlobalValue:
1974   case MIToken::NamedGlobalValue:
1975     return parseGlobalAddressOperand(Dest);
1976   case MIToken::ConstantPoolItem:
1977     return parseConstantPoolIndexOperand(Dest);
1978   case MIToken::JumpTableIndex:
1979     return parseJumpTableIndexOperand(Dest);
1980   case MIToken::ExternalSymbol:
1981     return parseExternalSymbolOperand(Dest);
1982   case MIToken::SubRegisterIndex:
1983     return parseSubRegisterIndexOperand(Dest);
1984   case MIToken::md_diexpr:
1985   case MIToken::exclaim:
1986     return parseMetadataOperand(Dest);
1987   case MIToken::kw_cfi_same_value:
1988   case MIToken::kw_cfi_offset:
1989   case MIToken::kw_cfi_rel_offset:
1990   case MIToken::kw_cfi_def_cfa_register:
1991   case MIToken::kw_cfi_def_cfa_offset:
1992   case MIToken::kw_cfi_adjust_cfa_offset:
1993   case MIToken::kw_cfi_escape:
1994   case MIToken::kw_cfi_def_cfa:
1995   case MIToken::kw_cfi_register:
1996   case MIToken::kw_cfi_remember_state:
1997   case MIToken::kw_cfi_restore:
1998   case MIToken::kw_cfi_restore_state:
1999   case MIToken::kw_cfi_undefined:
2000   case MIToken::kw_cfi_window_save:
2001     return parseCFIOperand(Dest);
2002   case MIToken::kw_blockaddress:
2003     return parseBlockAddressOperand(Dest);
2004   case MIToken::kw_intrinsic:
2005     return parseIntrinsicOperand(Dest);
2006   case MIToken::kw_target_index:
2007     return parseTargetIndexOperand(Dest);
2008   case MIToken::kw_liveout:
2009     return parseLiveoutRegisterMaskOperand(Dest);
2010   case MIToken::kw_floatpred:
2011   case MIToken::kw_intpred:
2012     return parsePredicateOperand(Dest);
2013   case MIToken::Error:
2014     return true;
2015   case MIToken::Identifier:
2016     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2017       Dest = MachineOperand::CreateRegMask(RegMask);
2018       lex();
2019       break;
2020     } else
2021       return parseCustomRegisterMaskOperand(Dest);
2022   default:
2023     // FIXME: Parse the MCSymbol machine operand.
2024     return error("expected a machine operand");
2025   }
2026   return false;
2027 }
2028 
2029 bool MIParser::parseMachineOperandAndTargetFlags(
2030     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2031   unsigned TF = 0;
2032   bool HasTargetFlags = false;
2033   if (Token.is(MIToken::kw_target_flags)) {
2034     HasTargetFlags = true;
2035     lex();
2036     if (expectAndConsume(MIToken::lparen))
2037       return true;
2038     if (Token.isNot(MIToken::Identifier))
2039       return error("expected the name of the target flag");
2040     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2041       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2042         return error("use of undefined target flag '" + Token.stringValue() +
2043                      "'");
2044     }
2045     lex();
2046     while (Token.is(MIToken::comma)) {
2047       lex();
2048       if (Token.isNot(MIToken::Identifier))
2049         return error("expected the name of the target flag");
2050       unsigned BitFlag = 0;
2051       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2052         return error("use of undefined target flag '" + Token.stringValue() +
2053                      "'");
2054       // TODO: Report an error when using a duplicate bit target flag.
2055       TF |= BitFlag;
2056       lex();
2057     }
2058     if (expectAndConsume(MIToken::rparen))
2059       return true;
2060   }
2061   auto Loc = Token.location();
2062   if (parseMachineOperand(Dest, TiedDefIdx))
2063     return true;
2064   if (!HasTargetFlags)
2065     return false;
2066   if (Dest.isReg())
2067     return error(Loc, "register operands can't have target flags");
2068   Dest.setTargetFlags(TF);
2069   return false;
2070 }
2071 
2072 bool MIParser::parseOffset(int64_t &Offset) {
2073   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2074     return false;
2075   StringRef Sign = Token.range();
2076   bool IsNegative = Token.is(MIToken::minus);
2077   lex();
2078   if (Token.isNot(MIToken::IntegerLiteral))
2079     return error("expected an integer literal after '" + Sign + "'");
2080   if (Token.integerValue().getMinSignedBits() > 64)
2081     return error("expected 64-bit integer (too large)");
2082   Offset = Token.integerValue().getExtValue();
2083   if (IsNegative)
2084     Offset = -Offset;
2085   lex();
2086   return false;
2087 }
2088 
2089 bool MIParser::parseAlignment(unsigned &Alignment) {
2090   assert(Token.is(MIToken::kw_align));
2091   lex();
2092   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2093     return error("expected an integer literal after 'align'");
2094   if (getUnsigned(Alignment))
2095     return true;
2096   lex();
2097   return false;
2098 }
2099 
2100 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2101   assert(Token.is(MIToken::kw_addrspace));
2102   lex();
2103   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2104     return error("expected an integer literal after 'addrspace'");
2105   if (getUnsigned(Addrspace))
2106     return true;
2107   lex();
2108   return false;
2109 }
2110 
2111 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2112   int64_t Offset = 0;
2113   if (parseOffset(Offset))
2114     return true;
2115   Op.setOffset(Offset);
2116   return false;
2117 }
2118 
2119 bool MIParser::parseIRValue(const Value *&V) {
2120   switch (Token.kind()) {
2121   case MIToken::NamedIRValue: {
2122     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2123     break;
2124   }
2125   case MIToken::IRValue: {
2126     unsigned SlotNumber = 0;
2127     if (getUnsigned(SlotNumber))
2128       return true;
2129     V = getIRValue(SlotNumber);
2130     break;
2131   }
2132   case MIToken::NamedGlobalValue:
2133   case MIToken::GlobalValue: {
2134     GlobalValue *GV = nullptr;
2135     if (parseGlobalValue(GV))
2136       return true;
2137     V = GV;
2138     break;
2139   }
2140   case MIToken::QuotedIRValue: {
2141     const Constant *C = nullptr;
2142     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2143       return true;
2144     V = C;
2145     break;
2146   }
2147   default:
2148     llvm_unreachable("The current token should be an IR block reference");
2149   }
2150   if (!V)
2151     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2152   return false;
2153 }
2154 
2155 bool MIParser::getUint64(uint64_t &Result) {
2156   if (Token.hasIntegerValue()) {
2157     if (Token.integerValue().getActiveBits() > 64)
2158       return error("expected 64-bit integer (too large)");
2159     Result = Token.integerValue().getZExtValue();
2160     return false;
2161   }
2162   if (Token.is(MIToken::HexLiteral)) {
2163     APInt A;
2164     if (getHexUint(A))
2165       return true;
2166     if (A.getBitWidth() > 64)
2167       return error("expected 64-bit integer (too large)");
2168     Result = A.getZExtValue();
2169     return false;
2170   }
2171   return true;
2172 }
2173 
2174 bool MIParser::getHexUint(APInt &Result) {
2175   assert(Token.is(MIToken::HexLiteral));
2176   StringRef S = Token.range();
2177   assert(S[0] == '0' && tolower(S[1]) == 'x');
2178   // This could be a floating point literal with a special prefix.
2179   if (!isxdigit(S[2]))
2180     return true;
2181   StringRef V = S.substr(2);
2182   APInt A(V.size()*4, V, 16);
2183 
2184   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2185   // sure it isn't the case before constructing result.
2186   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2187   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2188   return false;
2189 }
2190 
2191 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2192   const auto OldFlags = Flags;
2193   switch (Token.kind()) {
2194   case MIToken::kw_volatile:
2195     Flags |= MachineMemOperand::MOVolatile;
2196     break;
2197   case MIToken::kw_non_temporal:
2198     Flags |= MachineMemOperand::MONonTemporal;
2199     break;
2200   case MIToken::kw_dereferenceable:
2201     Flags |= MachineMemOperand::MODereferenceable;
2202     break;
2203   case MIToken::kw_invariant:
2204     Flags |= MachineMemOperand::MOInvariant;
2205     break;
2206   case MIToken::StringConstant: {
2207     MachineMemOperand::Flags TF;
2208     if (getMMOTargetFlag(Token.stringValue(), TF))
2209       return error("use of undefined target MMO flag '" + Token.stringValue() +
2210                    "'");
2211     Flags |= TF;
2212     break;
2213   }
2214   default:
2215     llvm_unreachable("The current token should be a memory operand flag");
2216   }
2217   if (OldFlags == Flags)
2218     // We know that the same flag is specified more than once when the flags
2219     // weren't modified.
2220     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2221   lex();
2222   return false;
2223 }
2224 
2225 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2226   switch (Token.kind()) {
2227   case MIToken::kw_stack:
2228     PSV = MF.getPSVManager().getStack();
2229     break;
2230   case MIToken::kw_got:
2231     PSV = MF.getPSVManager().getGOT();
2232     break;
2233   case MIToken::kw_jump_table:
2234     PSV = MF.getPSVManager().getJumpTable();
2235     break;
2236   case MIToken::kw_constant_pool:
2237     PSV = MF.getPSVManager().getConstantPool();
2238     break;
2239   case MIToken::FixedStackObject: {
2240     int FI;
2241     if (parseFixedStackFrameIndex(FI))
2242       return true;
2243     PSV = MF.getPSVManager().getFixedStack(FI);
2244     // The token was already consumed, so use return here instead of break.
2245     return false;
2246   }
2247   case MIToken::StackObject: {
2248     int FI;
2249     if (parseStackFrameIndex(FI))
2250       return true;
2251     PSV = MF.getPSVManager().getFixedStack(FI);
2252     // The token was already consumed, so use return here instead of break.
2253     return false;
2254   }
2255   case MIToken::kw_call_entry:
2256     lex();
2257     switch (Token.kind()) {
2258     case MIToken::GlobalValue:
2259     case MIToken::NamedGlobalValue: {
2260       GlobalValue *GV = nullptr;
2261       if (parseGlobalValue(GV))
2262         return true;
2263       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2264       break;
2265     }
2266     case MIToken::ExternalSymbol:
2267       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2268           MF.createExternalSymbolName(Token.stringValue()));
2269       break;
2270     default:
2271       return error(
2272           "expected a global value or an external symbol after 'call-entry'");
2273     }
2274     break;
2275   default:
2276     llvm_unreachable("The current token should be pseudo source value");
2277   }
2278   lex();
2279   return false;
2280 }
2281 
2282 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2283   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2284       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2285       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2286       Token.is(MIToken::kw_call_entry)) {
2287     const PseudoSourceValue *PSV = nullptr;
2288     if (parseMemoryPseudoSourceValue(PSV))
2289       return true;
2290     int64_t Offset = 0;
2291     if (parseOffset(Offset))
2292       return true;
2293     Dest = MachinePointerInfo(PSV, Offset);
2294     return false;
2295   }
2296   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2297       Token.isNot(MIToken::GlobalValue) &&
2298       Token.isNot(MIToken::NamedGlobalValue) &&
2299       Token.isNot(MIToken::QuotedIRValue))
2300     return error("expected an IR value reference");
2301   const Value *V = nullptr;
2302   if (parseIRValue(V))
2303     return true;
2304   if (!V->getType()->isPointerTy())
2305     return error("expected a pointer IR value");
2306   lex();
2307   int64_t Offset = 0;
2308   if (parseOffset(Offset))
2309     return true;
2310   Dest = MachinePointerInfo(V, Offset);
2311   return false;
2312 }
2313 
2314 bool MIParser::parseOptionalScope(LLVMContext &Context,
2315                                   SyncScope::ID &SSID) {
2316   SSID = SyncScope::System;
2317   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2318     lex();
2319     if (expectAndConsume(MIToken::lparen))
2320       return error("expected '(' in syncscope");
2321 
2322     std::string SSN;
2323     if (parseStringConstant(SSN))
2324       return true;
2325 
2326     SSID = Context.getOrInsertSyncScopeID(SSN);
2327     if (expectAndConsume(MIToken::rparen))
2328       return error("expected ')' in syncscope");
2329   }
2330 
2331   return false;
2332 }
2333 
2334 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2335   Order = AtomicOrdering::NotAtomic;
2336   if (Token.isNot(MIToken::Identifier))
2337     return false;
2338 
2339   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2340               .Case("unordered", AtomicOrdering::Unordered)
2341               .Case("monotonic", AtomicOrdering::Monotonic)
2342               .Case("acquire", AtomicOrdering::Acquire)
2343               .Case("release", AtomicOrdering::Release)
2344               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2345               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2346               .Default(AtomicOrdering::NotAtomic);
2347 
2348   if (Order != AtomicOrdering::NotAtomic) {
2349     lex();
2350     return false;
2351   }
2352 
2353   return error("expected an atomic scope, ordering or a size integer literal");
2354 }
2355 
2356 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2357   if (expectAndConsume(MIToken::lparen))
2358     return true;
2359   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2360   while (Token.isMemoryOperandFlag()) {
2361     if (parseMemoryOperandFlag(Flags))
2362       return true;
2363   }
2364   if (Token.isNot(MIToken::Identifier) ||
2365       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2366     return error("expected 'load' or 'store' memory operation");
2367   if (Token.stringValue() == "load")
2368     Flags |= MachineMemOperand::MOLoad;
2369   else
2370     Flags |= MachineMemOperand::MOStore;
2371   lex();
2372 
2373   // Optional 'store' for operands that both load and store.
2374   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2375     Flags |= MachineMemOperand::MOStore;
2376     lex();
2377   }
2378 
2379   // Optional synchronization scope.
2380   SyncScope::ID SSID;
2381   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2382     return true;
2383 
2384   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2385   AtomicOrdering Order, FailureOrder;
2386   if (parseOptionalAtomicOrdering(Order))
2387     return true;
2388 
2389   if (parseOptionalAtomicOrdering(FailureOrder))
2390     return true;
2391 
2392   if (Token.isNot(MIToken::IntegerLiteral))
2393     return error("expected the size integer literal after memory operation");
2394   uint64_t Size;
2395   if (getUint64(Size))
2396     return true;
2397   lex();
2398 
2399   MachinePointerInfo Ptr = MachinePointerInfo();
2400   if (Token.is(MIToken::Identifier)) {
2401     const char *Word =
2402         ((Flags & MachineMemOperand::MOLoad) &&
2403          (Flags & MachineMemOperand::MOStore))
2404             ? "on"
2405             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2406     if (Token.stringValue() != Word)
2407       return error(Twine("expected '") + Word + "'");
2408     lex();
2409 
2410     if (parseMachinePointerInfo(Ptr))
2411       return true;
2412   }
2413   unsigned BaseAlignment = Size;
2414   AAMDNodes AAInfo;
2415   MDNode *Range = nullptr;
2416   while (consumeIfPresent(MIToken::comma)) {
2417     switch (Token.kind()) {
2418     case MIToken::kw_align:
2419       if (parseAlignment(BaseAlignment))
2420         return true;
2421       break;
2422     case MIToken::kw_addrspace:
2423       if (parseAddrspace(Ptr.AddrSpace))
2424         return true;
2425       break;
2426     case MIToken::md_tbaa:
2427       lex();
2428       if (parseMDNode(AAInfo.TBAA))
2429         return true;
2430       break;
2431     case MIToken::md_alias_scope:
2432       lex();
2433       if (parseMDNode(AAInfo.Scope))
2434         return true;
2435       break;
2436     case MIToken::md_noalias:
2437       lex();
2438       if (parseMDNode(AAInfo.NoAlias))
2439         return true;
2440       break;
2441     case MIToken::md_range:
2442       lex();
2443       if (parseMDNode(Range))
2444         return true;
2445       break;
2446     // TODO: Report an error on duplicate metadata nodes.
2447     default:
2448       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2449                    "'!noalias' or '!range'");
2450     }
2451   }
2452   if (expectAndConsume(MIToken::rparen))
2453     return true;
2454   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2455                                  SSID, Order, FailureOrder);
2456   return false;
2457 }
2458 
2459 void MIParser::initNames2InstrOpCodes() {
2460   if (!Names2InstrOpCodes.empty())
2461     return;
2462   const auto *TII = MF.getSubtarget().getInstrInfo();
2463   assert(TII && "Expected target instruction info");
2464   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2465     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2466 }
2467 
2468 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2469   initNames2InstrOpCodes();
2470   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2471   if (InstrInfo == Names2InstrOpCodes.end())
2472     return true;
2473   OpCode = InstrInfo->getValue();
2474   return false;
2475 }
2476 
2477 void MIParser::initNames2Regs() {
2478   if (!Names2Regs.empty())
2479     return;
2480   // The '%noreg' register is the register 0.
2481   Names2Regs.insert(std::make_pair("noreg", 0));
2482   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2483   assert(TRI && "Expected target register info");
2484   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2485     bool WasInserted =
2486         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2487             .second;
2488     (void)WasInserted;
2489     assert(WasInserted && "Expected registers to be unique case-insensitively");
2490   }
2491 }
2492 
2493 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2494   initNames2Regs();
2495   auto RegInfo = Names2Regs.find(RegName);
2496   if (RegInfo == Names2Regs.end())
2497     return true;
2498   Reg = RegInfo->getValue();
2499   return false;
2500 }
2501 
2502 void MIParser::initNames2RegMasks() {
2503   if (!Names2RegMasks.empty())
2504     return;
2505   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2506   assert(TRI && "Expected target register info");
2507   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2508   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2509   assert(RegMasks.size() == RegMaskNames.size());
2510   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2511     Names2RegMasks.insert(
2512         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2513 }
2514 
2515 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2516   initNames2RegMasks();
2517   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2518   if (RegMaskInfo == Names2RegMasks.end())
2519     return nullptr;
2520   return RegMaskInfo->getValue();
2521 }
2522 
2523 void MIParser::initNames2SubRegIndices() {
2524   if (!Names2SubRegIndices.empty())
2525     return;
2526   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2527   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2528     Names2SubRegIndices.insert(
2529         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2530 }
2531 
2532 unsigned MIParser::getSubRegIndex(StringRef Name) {
2533   initNames2SubRegIndices();
2534   auto SubRegInfo = Names2SubRegIndices.find(Name);
2535   if (SubRegInfo == Names2SubRegIndices.end())
2536     return 0;
2537   return SubRegInfo->getValue();
2538 }
2539 
2540 static void initSlots2BasicBlocks(
2541     const Function &F,
2542     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2543   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2544   MST.incorporateFunction(F);
2545   for (auto &BB : F) {
2546     if (BB.hasName())
2547       continue;
2548     int Slot = MST.getLocalSlot(&BB);
2549     if (Slot == -1)
2550       continue;
2551     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2552   }
2553 }
2554 
2555 static const BasicBlock *getIRBlockFromSlot(
2556     unsigned Slot,
2557     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2558   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2559   if (BlockInfo == Slots2BasicBlocks.end())
2560     return nullptr;
2561   return BlockInfo->second;
2562 }
2563 
2564 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2565   if (Slots2BasicBlocks.empty())
2566     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2567   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2568 }
2569 
2570 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2571   if (&F == &MF.getFunction())
2572     return getIRBlock(Slot);
2573   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2574   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2575   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2576 }
2577 
2578 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2579                            DenseMap<unsigned, const Value *> &Slots2Values) {
2580   int Slot = MST.getLocalSlot(V);
2581   if (Slot == -1)
2582     return;
2583   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2584 }
2585 
2586 /// Creates the mapping from slot numbers to function's unnamed IR values.
2587 static void initSlots2Values(const Function &F,
2588                              DenseMap<unsigned, const Value *> &Slots2Values) {
2589   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2590   MST.incorporateFunction(F);
2591   for (const auto &Arg : F.args())
2592     mapValueToSlot(&Arg, MST, Slots2Values);
2593   for (const auto &BB : F) {
2594     mapValueToSlot(&BB, MST, Slots2Values);
2595     for (const auto &I : BB)
2596       mapValueToSlot(&I, MST, Slots2Values);
2597   }
2598 }
2599 
2600 const Value *MIParser::getIRValue(unsigned Slot) {
2601   if (Slots2Values.empty())
2602     initSlots2Values(MF.getFunction(), Slots2Values);
2603   auto ValueInfo = Slots2Values.find(Slot);
2604   if (ValueInfo == Slots2Values.end())
2605     return nullptr;
2606   return ValueInfo->second;
2607 }
2608 
2609 void MIParser::initNames2TargetIndices() {
2610   if (!Names2TargetIndices.empty())
2611     return;
2612   const auto *TII = MF.getSubtarget().getInstrInfo();
2613   assert(TII && "Expected target instruction info");
2614   auto Indices = TII->getSerializableTargetIndices();
2615   for (const auto &I : Indices)
2616     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2617 }
2618 
2619 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2620   initNames2TargetIndices();
2621   auto IndexInfo = Names2TargetIndices.find(Name);
2622   if (IndexInfo == Names2TargetIndices.end())
2623     return true;
2624   Index = IndexInfo->second;
2625   return false;
2626 }
2627 
2628 void MIParser::initNames2DirectTargetFlags() {
2629   if (!Names2DirectTargetFlags.empty())
2630     return;
2631   const auto *TII = MF.getSubtarget().getInstrInfo();
2632   assert(TII && "Expected target instruction info");
2633   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2634   for (const auto &I : Flags)
2635     Names2DirectTargetFlags.insert(
2636         std::make_pair(StringRef(I.second), I.first));
2637 }
2638 
2639 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2640   initNames2DirectTargetFlags();
2641   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2642   if (FlagInfo == Names2DirectTargetFlags.end())
2643     return true;
2644   Flag = FlagInfo->second;
2645   return false;
2646 }
2647 
2648 void MIParser::initNames2BitmaskTargetFlags() {
2649   if (!Names2BitmaskTargetFlags.empty())
2650     return;
2651   const auto *TII = MF.getSubtarget().getInstrInfo();
2652   assert(TII && "Expected target instruction info");
2653   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2654   for (const auto &I : Flags)
2655     Names2BitmaskTargetFlags.insert(
2656         std::make_pair(StringRef(I.second), I.first));
2657 }
2658 
2659 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2660   initNames2BitmaskTargetFlags();
2661   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2662   if (FlagInfo == Names2BitmaskTargetFlags.end())
2663     return true;
2664   Flag = FlagInfo->second;
2665   return false;
2666 }
2667 
2668 void MIParser::initNames2MMOTargetFlags() {
2669   if (!Names2MMOTargetFlags.empty())
2670     return;
2671   const auto *TII = MF.getSubtarget().getInstrInfo();
2672   assert(TII && "Expected target instruction info");
2673   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2674   for (const auto &I : Flags)
2675     Names2MMOTargetFlags.insert(
2676         std::make_pair(StringRef(I.second), I.first));
2677 }
2678 
2679 bool MIParser::getMMOTargetFlag(StringRef Name,
2680                                 MachineMemOperand::Flags &Flag) {
2681   initNames2MMOTargetFlags();
2682   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2683   if (FlagInfo == Names2MMOTargetFlags.end())
2684     return true;
2685   Flag = FlagInfo->second;
2686   return false;
2687 }
2688 
2689 bool MIParser::parseStringConstant(std::string &Result) {
2690   if (Token.isNot(MIToken::StringConstant))
2691     return error("expected string constant");
2692   Result = Token.stringValue();
2693   lex();
2694   return false;
2695 }
2696 
2697 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2698                                              StringRef Src,
2699                                              SMDiagnostic &Error) {
2700   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2701 }
2702 
2703 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2704                                     StringRef Src, SMDiagnostic &Error) {
2705   return MIParser(PFS, Error, Src).parseBasicBlocks();
2706 }
2707 
2708 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2709                              MachineBasicBlock *&MBB, StringRef Src,
2710                              SMDiagnostic &Error) {
2711   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2712 }
2713 
2714 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2715                                   unsigned &Reg, StringRef Src,
2716                                   SMDiagnostic &Error) {
2717   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2718 }
2719 
2720 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2721                                        unsigned &Reg, StringRef Src,
2722                                        SMDiagnostic &Error) {
2723   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2724 }
2725 
2726 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2727                                          VRegInfo *&Info, StringRef Src,
2728                                          SMDiagnostic &Error) {
2729   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2730 }
2731 
2732 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2733                                      int &FI, StringRef Src,
2734                                      SMDiagnostic &Error) {
2735   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2736 }
2737 
2738 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2739                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2740   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2741 }
2742