1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCDwarf.h" 58 #include "llvm/MC/MCInstrDesc.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MemoryBuffer.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/SourceMgr.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 namespace { 102 103 /// A wrapper struct around the 'MachineOperand' struct that includes a source 104 /// range and other attributes. 105 struct ParsedMachineOperand { 106 MachineOperand Operand; 107 StringRef::iterator Begin; 108 StringRef::iterator End; 109 Optional<unsigned> TiedDefIdx; 110 111 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 112 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 113 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 114 if (TiedDefIdx) 115 assert(Operand.isReg() && Operand.isUse() && 116 "Only used register operands can be tied"); 117 } 118 }; 119 120 class MIParser { 121 MachineFunction &MF; 122 SMDiagnostic &Error; 123 StringRef Source, CurrentSource; 124 MIToken Token; 125 PerFunctionMIParsingState &PFS; 126 /// Maps from instruction names to op codes. 127 StringMap<unsigned> Names2InstrOpCodes; 128 /// Maps from register names to registers. 129 StringMap<unsigned> Names2Regs; 130 /// Maps from register mask names to register masks. 131 StringMap<const uint32_t *> Names2RegMasks; 132 /// Maps from subregister names to subregister indices. 133 StringMap<unsigned> Names2SubRegIndices; 134 /// Maps from slot numbers to function's unnamed basic blocks. 135 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 136 /// Maps from slot numbers to function's unnamed values. 137 DenseMap<unsigned, const Value *> Slots2Values; 138 /// Maps from target index names to target indices. 139 StringMap<int> Names2TargetIndices; 140 /// Maps from direct target flag names to the direct target flag values. 141 StringMap<unsigned> Names2DirectTargetFlags; 142 /// Maps from direct target flag names to the bitmask target flag values. 143 StringMap<unsigned> Names2BitmaskTargetFlags; 144 /// Maps from MMO target flag names to MMO target flag values. 145 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 146 147 public: 148 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 149 StringRef Source); 150 151 /// \p SkipChar gives the number of characters to skip before looking 152 /// for the next token. 153 void lex(unsigned SkipChar = 0); 154 155 /// Report an error at the current location with the given message. 156 /// 157 /// This function always return true. 158 bool error(const Twine &Msg); 159 160 /// Report an error at the given location with the given message. 161 /// 162 /// This function always return true. 163 bool error(StringRef::iterator Loc, const Twine &Msg); 164 165 bool 166 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 167 bool parseBasicBlocks(); 168 bool parse(MachineInstr *&MI); 169 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 170 bool parseStandaloneNamedRegister(unsigned &Reg); 171 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 172 bool parseStandaloneRegister(unsigned &Reg); 173 bool parseStandaloneStackObject(int &FI); 174 bool parseStandaloneMDNode(MDNode *&Node); 175 176 bool 177 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 178 bool parseBasicBlock(MachineBasicBlock &MBB, 179 MachineBasicBlock *&AddFalthroughFrom); 180 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 181 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 182 183 bool parseNamedRegister(unsigned &Reg); 184 bool parseVirtualRegister(VRegInfo *&Info); 185 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 186 bool parseRegisterFlag(unsigned &Flags); 187 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 188 bool parseSubRegisterIndex(unsigned &SubReg); 189 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 190 bool parseRegisterOperand(MachineOperand &Dest, 191 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 192 bool parseImmediateOperand(MachineOperand &Dest); 193 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 194 const Constant *&C); 195 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 196 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 197 bool parseTypedImmediateOperand(MachineOperand &Dest); 198 bool parseFPImmediateOperand(MachineOperand &Dest); 199 bool parseMBBReference(MachineBasicBlock *&MBB); 200 bool parseMBBOperand(MachineOperand &Dest); 201 bool parseStackFrameIndex(int &FI); 202 bool parseStackObjectOperand(MachineOperand &Dest); 203 bool parseFixedStackFrameIndex(int &FI); 204 bool parseFixedStackObjectOperand(MachineOperand &Dest); 205 bool parseGlobalValue(GlobalValue *&GV); 206 bool parseGlobalAddressOperand(MachineOperand &Dest); 207 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 208 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 209 bool parseJumpTableIndexOperand(MachineOperand &Dest); 210 bool parseExternalSymbolOperand(MachineOperand &Dest); 211 bool parseMDNode(MDNode *&Node); 212 bool parseDIExpression(MDNode *&Node); 213 bool parseMetadataOperand(MachineOperand &Dest); 214 bool parseCFIOffset(int &Offset); 215 bool parseCFIRegister(unsigned &Reg); 216 bool parseCFIEscapeValues(std::string& Values); 217 bool parseCFIOperand(MachineOperand &Dest); 218 bool parseIRBlock(BasicBlock *&BB, const Function &F); 219 bool parseBlockAddressOperand(MachineOperand &Dest); 220 bool parseIntrinsicOperand(MachineOperand &Dest); 221 bool parsePredicateOperand(MachineOperand &Dest); 222 bool parseTargetIndexOperand(MachineOperand &Dest); 223 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 224 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 225 bool parseMachineOperand(MachineOperand &Dest, 226 Optional<unsigned> &TiedDefIdx); 227 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 228 Optional<unsigned> &TiedDefIdx); 229 bool parseOffset(int64_t &Offset); 230 bool parseAlignment(unsigned &Alignment); 231 bool parseAddrspace(unsigned &Addrspace); 232 bool parseOperandsOffset(MachineOperand &Op); 233 bool parseIRValue(const Value *&V); 234 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 235 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 236 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 237 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 238 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 239 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 240 241 private: 242 /// Convert the integer literal in the current token into an unsigned integer. 243 /// 244 /// Return true if an error occurred. 245 bool getUnsigned(unsigned &Result); 246 247 /// Convert the integer literal in the current token into an uint64. 248 /// 249 /// Return true if an error occurred. 250 bool getUint64(uint64_t &Result); 251 252 /// Convert the hexadecimal literal in the current token into an unsigned 253 /// APInt with a minimum bitwidth required to represent the value. 254 /// 255 /// Return true if the literal does not represent an integer value. 256 bool getHexUint(APInt &Result); 257 258 /// If the current token is of the given kind, consume it and return false. 259 /// Otherwise report an error and return true. 260 bool expectAndConsume(MIToken::TokenKind TokenKind); 261 262 /// If the current token is of the given kind, consume it and return true. 263 /// Otherwise return false. 264 bool consumeIfPresent(MIToken::TokenKind TokenKind); 265 266 void initNames2InstrOpCodes(); 267 268 /// Try to convert an instruction name to an opcode. Return true if the 269 /// instruction name is invalid. 270 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 271 272 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 273 274 bool assignRegisterTies(MachineInstr &MI, 275 ArrayRef<ParsedMachineOperand> Operands); 276 277 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 278 const MCInstrDesc &MCID); 279 280 void initNames2Regs(); 281 282 /// Try to convert a register name to a register number. Return true if the 283 /// register name is invalid. 284 bool getRegisterByName(StringRef RegName, unsigned &Reg); 285 286 void initNames2RegMasks(); 287 288 /// Check if the given identifier is a name of a register mask. 289 /// 290 /// Return null if the identifier isn't a register mask. 291 const uint32_t *getRegMask(StringRef Identifier); 292 293 void initNames2SubRegIndices(); 294 295 /// Check if the given identifier is a name of a subregister index. 296 /// 297 /// Return 0 if the name isn't a subregister index class. 298 unsigned getSubRegIndex(StringRef Name); 299 300 const BasicBlock *getIRBlock(unsigned Slot); 301 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 302 303 const Value *getIRValue(unsigned Slot); 304 305 void initNames2TargetIndices(); 306 307 /// Try to convert a name of target index to the corresponding target index. 308 /// 309 /// Return true if the name isn't a name of a target index. 310 bool getTargetIndex(StringRef Name, int &Index); 311 312 void initNames2DirectTargetFlags(); 313 314 /// Try to convert a name of a direct target flag to the corresponding 315 /// target flag. 316 /// 317 /// Return true if the name isn't a name of a direct flag. 318 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 319 320 void initNames2BitmaskTargetFlags(); 321 322 /// Try to convert a name of a bitmask target flag to the corresponding 323 /// target flag. 324 /// 325 /// Return true if the name isn't a name of a bitmask target flag. 326 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 327 328 void initNames2MMOTargetFlags(); 329 330 /// Try to convert a name of a MachineMemOperand target flag to the 331 /// corresponding target flag. 332 /// 333 /// Return true if the name isn't a name of a target MMO flag. 334 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 335 336 /// parseStringConstant 337 /// ::= StringConstant 338 bool parseStringConstant(std::string &Result); 339 }; 340 341 } // end anonymous namespace 342 343 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 344 StringRef Source) 345 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 346 {} 347 348 void MIParser::lex(unsigned SkipChar) { 349 CurrentSource = lexMIToken( 350 CurrentSource.data() + SkipChar, Token, 351 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 352 } 353 354 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 355 356 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 357 const SourceMgr &SM = *PFS.SM; 358 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 359 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 360 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 361 // Create an ordinary diagnostic when the source manager's buffer is the 362 // source string. 363 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 364 return true; 365 } 366 // Create a diagnostic for a YAML string literal. 367 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 368 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 369 Source, None, None); 370 return true; 371 } 372 373 static const char *toString(MIToken::TokenKind TokenKind) { 374 switch (TokenKind) { 375 case MIToken::comma: 376 return "','"; 377 case MIToken::equal: 378 return "'='"; 379 case MIToken::colon: 380 return "':'"; 381 case MIToken::lparen: 382 return "'('"; 383 case MIToken::rparen: 384 return "')'"; 385 default: 386 return "<unknown token>"; 387 } 388 } 389 390 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 391 if (Token.isNot(TokenKind)) 392 return error(Twine("expected ") + toString(TokenKind)); 393 lex(); 394 return false; 395 } 396 397 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 398 if (Token.isNot(TokenKind)) 399 return false; 400 lex(); 401 return true; 402 } 403 404 bool MIParser::parseBasicBlockDefinition( 405 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 406 assert(Token.is(MIToken::MachineBasicBlockLabel)); 407 unsigned ID = 0; 408 if (getUnsigned(ID)) 409 return true; 410 auto Loc = Token.location(); 411 auto Name = Token.stringValue(); 412 lex(); 413 bool HasAddressTaken = false; 414 bool IsLandingPad = false; 415 unsigned Alignment = 0; 416 BasicBlock *BB = nullptr; 417 if (consumeIfPresent(MIToken::lparen)) { 418 do { 419 // TODO: Report an error when multiple same attributes are specified. 420 switch (Token.kind()) { 421 case MIToken::kw_address_taken: 422 HasAddressTaken = true; 423 lex(); 424 break; 425 case MIToken::kw_landing_pad: 426 IsLandingPad = true; 427 lex(); 428 break; 429 case MIToken::kw_align: 430 if (parseAlignment(Alignment)) 431 return true; 432 break; 433 case MIToken::IRBlock: 434 // TODO: Report an error when both name and ir block are specified. 435 if (parseIRBlock(BB, MF.getFunction())) 436 return true; 437 lex(); 438 break; 439 default: 440 break; 441 } 442 } while (consumeIfPresent(MIToken::comma)); 443 if (expectAndConsume(MIToken::rparen)) 444 return true; 445 } 446 if (expectAndConsume(MIToken::colon)) 447 return true; 448 449 if (!Name.empty()) { 450 BB = dyn_cast_or_null<BasicBlock>( 451 MF.getFunction().getValueSymbolTable()->lookup(Name)); 452 if (!BB) 453 return error(Loc, Twine("basic block '") + Name + 454 "' is not defined in the function '" + 455 MF.getName() + "'"); 456 } 457 auto *MBB = MF.CreateMachineBasicBlock(BB); 458 MF.insert(MF.end(), MBB); 459 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 460 if (!WasInserted) 461 return error(Loc, Twine("redefinition of machine basic block with id #") + 462 Twine(ID)); 463 if (Alignment) 464 MBB->setAlignment(Alignment); 465 if (HasAddressTaken) 466 MBB->setHasAddressTaken(); 467 MBB->setIsEHPad(IsLandingPad); 468 return false; 469 } 470 471 bool MIParser::parseBasicBlockDefinitions( 472 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 473 lex(); 474 // Skip until the first machine basic block. 475 while (Token.is(MIToken::Newline)) 476 lex(); 477 if (Token.isErrorOrEOF()) 478 return Token.isError(); 479 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 480 return error("expected a basic block definition before instructions"); 481 unsigned BraceDepth = 0; 482 do { 483 if (parseBasicBlockDefinition(MBBSlots)) 484 return true; 485 bool IsAfterNewline = false; 486 // Skip until the next machine basic block. 487 while (true) { 488 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 489 Token.isErrorOrEOF()) 490 break; 491 else if (Token.is(MIToken::MachineBasicBlockLabel)) 492 return error("basic block definition should be located at the start of " 493 "the line"); 494 else if (consumeIfPresent(MIToken::Newline)) { 495 IsAfterNewline = true; 496 continue; 497 } 498 IsAfterNewline = false; 499 if (Token.is(MIToken::lbrace)) 500 ++BraceDepth; 501 if (Token.is(MIToken::rbrace)) { 502 if (!BraceDepth) 503 return error("extraneous closing brace ('}')"); 504 --BraceDepth; 505 } 506 lex(); 507 } 508 // Verify that we closed all of the '{' at the end of a file or a block. 509 if (!Token.isError() && BraceDepth) 510 return error("expected '}'"); // FIXME: Report a note that shows '{'. 511 } while (!Token.isErrorOrEOF()); 512 return Token.isError(); 513 } 514 515 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 516 assert(Token.is(MIToken::kw_liveins)); 517 lex(); 518 if (expectAndConsume(MIToken::colon)) 519 return true; 520 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 521 return false; 522 do { 523 if (Token.isNot(MIToken::NamedRegister)) 524 return error("expected a named register"); 525 unsigned Reg = 0; 526 if (parseNamedRegister(Reg)) 527 return true; 528 lex(); 529 LaneBitmask Mask = LaneBitmask::getAll(); 530 if (consumeIfPresent(MIToken::colon)) { 531 // Parse lane mask. 532 if (Token.isNot(MIToken::IntegerLiteral) && 533 Token.isNot(MIToken::HexLiteral)) 534 return error("expected a lane mask"); 535 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 536 "Use correct get-function for lane mask"); 537 LaneBitmask::Type V; 538 if (getUnsigned(V)) 539 return error("invalid lane mask value"); 540 Mask = LaneBitmask(V); 541 lex(); 542 } 543 MBB.addLiveIn(Reg, Mask); 544 } while (consumeIfPresent(MIToken::comma)); 545 return false; 546 } 547 548 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 549 assert(Token.is(MIToken::kw_successors)); 550 lex(); 551 if (expectAndConsume(MIToken::colon)) 552 return true; 553 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 554 return false; 555 do { 556 if (Token.isNot(MIToken::MachineBasicBlock)) 557 return error("expected a machine basic block reference"); 558 MachineBasicBlock *SuccMBB = nullptr; 559 if (parseMBBReference(SuccMBB)) 560 return true; 561 lex(); 562 unsigned Weight = 0; 563 if (consumeIfPresent(MIToken::lparen)) { 564 if (Token.isNot(MIToken::IntegerLiteral) && 565 Token.isNot(MIToken::HexLiteral)) 566 return error("expected an integer literal after '('"); 567 if (getUnsigned(Weight)) 568 return true; 569 lex(); 570 if (expectAndConsume(MIToken::rparen)) 571 return true; 572 } 573 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 574 } while (consumeIfPresent(MIToken::comma)); 575 MBB.normalizeSuccProbs(); 576 return false; 577 } 578 579 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 580 MachineBasicBlock *&AddFalthroughFrom) { 581 // Skip the definition. 582 assert(Token.is(MIToken::MachineBasicBlockLabel)); 583 lex(); 584 if (consumeIfPresent(MIToken::lparen)) { 585 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 586 lex(); 587 consumeIfPresent(MIToken::rparen); 588 } 589 consumeIfPresent(MIToken::colon); 590 591 // Parse the liveins and successors. 592 // N.B: Multiple lists of successors and liveins are allowed and they're 593 // merged into one. 594 // Example: 595 // liveins: %edi 596 // liveins: %esi 597 // 598 // is equivalent to 599 // liveins: %edi, %esi 600 bool ExplicitSuccessors = false; 601 while (true) { 602 if (Token.is(MIToken::kw_successors)) { 603 if (parseBasicBlockSuccessors(MBB)) 604 return true; 605 ExplicitSuccessors = true; 606 } else if (Token.is(MIToken::kw_liveins)) { 607 if (parseBasicBlockLiveins(MBB)) 608 return true; 609 } else if (consumeIfPresent(MIToken::Newline)) { 610 continue; 611 } else 612 break; 613 if (!Token.isNewlineOrEOF()) 614 return error("expected line break at the end of a list"); 615 lex(); 616 } 617 618 // Parse the instructions. 619 bool IsInBundle = false; 620 MachineInstr *PrevMI = nullptr; 621 while (!Token.is(MIToken::MachineBasicBlockLabel) && 622 !Token.is(MIToken::Eof)) { 623 if (consumeIfPresent(MIToken::Newline)) 624 continue; 625 if (consumeIfPresent(MIToken::rbrace)) { 626 // The first parsing pass should verify that all closing '}' have an 627 // opening '{'. 628 assert(IsInBundle); 629 IsInBundle = false; 630 continue; 631 } 632 MachineInstr *MI = nullptr; 633 if (parse(MI)) 634 return true; 635 MBB.insert(MBB.end(), MI); 636 if (IsInBundle) { 637 PrevMI->setFlag(MachineInstr::BundledSucc); 638 MI->setFlag(MachineInstr::BundledPred); 639 } 640 PrevMI = MI; 641 if (Token.is(MIToken::lbrace)) { 642 if (IsInBundle) 643 return error("nested instruction bundles are not allowed"); 644 lex(); 645 // This instruction is the start of the bundle. 646 MI->setFlag(MachineInstr::BundledSucc); 647 IsInBundle = true; 648 if (!Token.is(MIToken::Newline)) 649 // The next instruction can be on the same line. 650 continue; 651 } 652 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 653 lex(); 654 } 655 656 // Construct successor list by searching for basic block machine operands. 657 if (!ExplicitSuccessors) { 658 SmallVector<MachineBasicBlock*,4> Successors; 659 bool IsFallthrough; 660 guessSuccessors(MBB, Successors, IsFallthrough); 661 for (MachineBasicBlock *Succ : Successors) 662 MBB.addSuccessor(Succ); 663 664 if (IsFallthrough) { 665 AddFalthroughFrom = &MBB; 666 } else { 667 MBB.normalizeSuccProbs(); 668 } 669 } 670 671 return false; 672 } 673 674 bool MIParser::parseBasicBlocks() { 675 lex(); 676 // Skip until the first machine basic block. 677 while (Token.is(MIToken::Newline)) 678 lex(); 679 if (Token.isErrorOrEOF()) 680 return Token.isError(); 681 // The first parsing pass should have verified that this token is a MBB label 682 // in the 'parseBasicBlockDefinitions' method. 683 assert(Token.is(MIToken::MachineBasicBlockLabel)); 684 MachineBasicBlock *AddFalthroughFrom = nullptr; 685 do { 686 MachineBasicBlock *MBB = nullptr; 687 if (parseMBBReference(MBB)) 688 return true; 689 if (AddFalthroughFrom) { 690 if (!AddFalthroughFrom->isSuccessor(MBB)) 691 AddFalthroughFrom->addSuccessor(MBB); 692 AddFalthroughFrom->normalizeSuccProbs(); 693 AddFalthroughFrom = nullptr; 694 } 695 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 696 return true; 697 // The method 'parseBasicBlock' should parse the whole block until the next 698 // block or the end of file. 699 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 700 } while (Token.isNot(MIToken::Eof)); 701 return false; 702 } 703 704 bool MIParser::parse(MachineInstr *&MI) { 705 // Parse any register operands before '=' 706 MachineOperand MO = MachineOperand::CreateImm(0); 707 SmallVector<ParsedMachineOperand, 8> Operands; 708 while (Token.isRegister() || Token.isRegisterFlag()) { 709 auto Loc = Token.location(); 710 Optional<unsigned> TiedDefIdx; 711 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 712 return true; 713 Operands.push_back( 714 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 715 if (Token.isNot(MIToken::comma)) 716 break; 717 lex(); 718 } 719 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 720 return true; 721 722 unsigned OpCode, Flags = 0; 723 if (Token.isError() || parseInstruction(OpCode, Flags)) 724 return true; 725 726 // Parse the remaining machine operands. 727 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 728 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 729 auto Loc = Token.location(); 730 Optional<unsigned> TiedDefIdx; 731 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 732 return true; 733 Operands.push_back( 734 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 735 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 736 Token.is(MIToken::lbrace)) 737 break; 738 if (Token.isNot(MIToken::comma)) 739 return error("expected ',' before the next machine operand"); 740 lex(); 741 } 742 743 DebugLoc DebugLocation; 744 if (Token.is(MIToken::kw_debug_location)) { 745 lex(); 746 if (Token.isNot(MIToken::exclaim)) 747 return error("expected a metadata node after 'debug-location'"); 748 MDNode *Node = nullptr; 749 if (parseMDNode(Node)) 750 return true; 751 DebugLocation = DebugLoc(Node); 752 } 753 754 // Parse the machine memory operands. 755 SmallVector<MachineMemOperand *, 2> MemOperands; 756 if (Token.is(MIToken::coloncolon)) { 757 lex(); 758 while (!Token.isNewlineOrEOF()) { 759 MachineMemOperand *MemOp = nullptr; 760 if (parseMachineMemoryOperand(MemOp)) 761 return true; 762 MemOperands.push_back(MemOp); 763 if (Token.isNewlineOrEOF()) 764 break; 765 if (Token.isNot(MIToken::comma)) 766 return error("expected ',' before the next machine memory operand"); 767 lex(); 768 } 769 } 770 771 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 772 if (!MCID.isVariadic()) { 773 // FIXME: Move the implicit operand verification to the machine verifier. 774 if (verifyImplicitOperands(Operands, MCID)) 775 return true; 776 } 777 778 // TODO: Check for extraneous machine operands. 779 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 780 MI->setFlags(Flags); 781 for (const auto &Operand : Operands) 782 MI->addOperand(MF, Operand.Operand); 783 if (assignRegisterTies(*MI, Operands)) 784 return true; 785 if (MemOperands.empty()) 786 return false; 787 MachineInstr::mmo_iterator MemRefs = 788 MF.allocateMemRefsArray(MemOperands.size()); 789 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 790 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 791 return false; 792 } 793 794 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 795 lex(); 796 if (Token.isNot(MIToken::MachineBasicBlock)) 797 return error("expected a machine basic block reference"); 798 if (parseMBBReference(MBB)) 799 return true; 800 lex(); 801 if (Token.isNot(MIToken::Eof)) 802 return error( 803 "expected end of string after the machine basic block reference"); 804 return false; 805 } 806 807 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 808 lex(); 809 if (Token.isNot(MIToken::NamedRegister)) 810 return error("expected a named register"); 811 if (parseNamedRegister(Reg)) 812 return true; 813 lex(); 814 if (Token.isNot(MIToken::Eof)) 815 return error("expected end of string after the register reference"); 816 return false; 817 } 818 819 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 820 lex(); 821 if (Token.isNot(MIToken::VirtualRegister)) 822 return error("expected a virtual register"); 823 if (parseVirtualRegister(Info)) 824 return true; 825 lex(); 826 if (Token.isNot(MIToken::Eof)) 827 return error("expected end of string after the register reference"); 828 return false; 829 } 830 831 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 832 lex(); 833 if (Token.isNot(MIToken::NamedRegister) && 834 Token.isNot(MIToken::VirtualRegister)) 835 return error("expected either a named or virtual register"); 836 837 VRegInfo *Info; 838 if (parseRegister(Reg, Info)) 839 return true; 840 841 lex(); 842 if (Token.isNot(MIToken::Eof)) 843 return error("expected end of string after the register reference"); 844 return false; 845 } 846 847 bool MIParser::parseStandaloneStackObject(int &FI) { 848 lex(); 849 if (Token.isNot(MIToken::StackObject)) 850 return error("expected a stack object"); 851 if (parseStackFrameIndex(FI)) 852 return true; 853 if (Token.isNot(MIToken::Eof)) 854 return error("expected end of string after the stack object reference"); 855 return false; 856 } 857 858 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 859 lex(); 860 if (Token.is(MIToken::exclaim)) { 861 if (parseMDNode(Node)) 862 return true; 863 } else if (Token.is(MIToken::md_diexpr)) { 864 if (parseDIExpression(Node)) 865 return true; 866 } else 867 return error("expected a metadata node"); 868 if (Token.isNot(MIToken::Eof)) 869 return error("expected end of string after the metadata node"); 870 return false; 871 } 872 873 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 874 assert(MO.isImplicit()); 875 return MO.isDef() ? "implicit-def" : "implicit"; 876 } 877 878 static std::string getRegisterName(const TargetRegisterInfo *TRI, 879 unsigned Reg) { 880 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 881 return StringRef(TRI->getName(Reg)).lower(); 882 } 883 884 /// Return true if the parsed machine operands contain a given machine operand. 885 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 886 ArrayRef<ParsedMachineOperand> Operands) { 887 for (const auto &I : Operands) { 888 if (ImplicitOperand.isIdenticalTo(I.Operand)) 889 return true; 890 } 891 return false; 892 } 893 894 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 895 const MCInstrDesc &MCID) { 896 if (MCID.isCall()) 897 // We can't verify call instructions as they can contain arbitrary implicit 898 // register and register mask operands. 899 return false; 900 901 // Gather all the expected implicit operands. 902 SmallVector<MachineOperand, 4> ImplicitOperands; 903 if (MCID.ImplicitDefs) 904 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 905 ImplicitOperands.push_back( 906 MachineOperand::CreateReg(*ImpDefs, true, true)); 907 if (MCID.ImplicitUses) 908 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 909 ImplicitOperands.push_back( 910 MachineOperand::CreateReg(*ImpUses, false, true)); 911 912 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 913 assert(TRI && "Expected target register info"); 914 for (const auto &I : ImplicitOperands) { 915 if (isImplicitOperandIn(I, Operands)) 916 continue; 917 return error(Operands.empty() ? Token.location() : Operands.back().End, 918 Twine("missing implicit register operand '") + 919 printImplicitRegisterFlag(I) + " %" + 920 getRegisterName(TRI, I.getReg()) + "'"); 921 } 922 return false; 923 } 924 925 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 926 // Allow both: 927 // * frame-setup frame-destroy OPCODE 928 // * frame-destroy frame-setup OPCODE 929 while (Token.is(MIToken::kw_frame_setup) || 930 Token.is(MIToken::kw_frame_destroy)) { 931 Flags |= Token.is(MIToken::kw_frame_setup) ? MachineInstr::FrameSetup 932 : MachineInstr::FrameDestroy; 933 lex(); 934 } 935 if (Token.isNot(MIToken::Identifier)) 936 return error("expected a machine instruction"); 937 StringRef InstrName = Token.stringValue(); 938 if (parseInstrName(InstrName, OpCode)) 939 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 940 lex(); 941 return false; 942 } 943 944 bool MIParser::parseNamedRegister(unsigned &Reg) { 945 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 946 StringRef Name = Token.stringValue(); 947 if (getRegisterByName(Name, Reg)) 948 return error(Twine("unknown register name '") + Name + "'"); 949 return false; 950 } 951 952 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 953 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 954 unsigned ID; 955 if (getUnsigned(ID)) 956 return true; 957 Info = &PFS.getVRegInfo(ID); 958 return false; 959 } 960 961 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 962 switch (Token.kind()) { 963 case MIToken::underscore: 964 Reg = 0; 965 return false; 966 case MIToken::NamedRegister: 967 return parseNamedRegister(Reg); 968 case MIToken::VirtualRegister: 969 if (parseVirtualRegister(Info)) 970 return true; 971 Reg = Info->VReg; 972 return false; 973 // TODO: Parse other register kinds. 974 default: 975 llvm_unreachable("The current token should be a register"); 976 } 977 } 978 979 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 980 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 981 return error("expected '_', register class, or register bank name"); 982 StringRef::iterator Loc = Token.location(); 983 StringRef Name = Token.stringValue(); 984 985 // Was it a register class? 986 auto RCNameI = PFS.Names2RegClasses.find(Name); 987 if (RCNameI != PFS.Names2RegClasses.end()) { 988 lex(); 989 const TargetRegisterClass &RC = *RCNameI->getValue(); 990 991 switch (RegInfo.Kind) { 992 case VRegInfo::UNKNOWN: 993 case VRegInfo::NORMAL: 994 RegInfo.Kind = VRegInfo::NORMAL; 995 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 996 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 997 return error(Loc, Twine("conflicting register classes, previously: ") + 998 Twine(TRI.getRegClassName(RegInfo.D.RC))); 999 } 1000 RegInfo.D.RC = &RC; 1001 RegInfo.Explicit = true; 1002 return false; 1003 1004 case VRegInfo::GENERIC: 1005 case VRegInfo::REGBANK: 1006 return error(Loc, "register class specification on generic register"); 1007 } 1008 llvm_unreachable("Unexpected register kind"); 1009 } 1010 1011 // Should be a register bank or a generic register. 1012 const RegisterBank *RegBank = nullptr; 1013 if (Name != "_") { 1014 auto RBNameI = PFS.Names2RegBanks.find(Name); 1015 if (RBNameI == PFS.Names2RegBanks.end()) 1016 return error(Loc, "expected '_', register class, or register bank name"); 1017 RegBank = RBNameI->getValue(); 1018 } 1019 1020 lex(); 1021 1022 switch (RegInfo.Kind) { 1023 case VRegInfo::UNKNOWN: 1024 case VRegInfo::GENERIC: 1025 case VRegInfo::REGBANK: 1026 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1027 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1028 return error(Loc, "conflicting generic register banks"); 1029 RegInfo.D.RegBank = RegBank; 1030 RegInfo.Explicit = true; 1031 return false; 1032 1033 case VRegInfo::NORMAL: 1034 return error(Loc, "register bank specification on normal register"); 1035 } 1036 llvm_unreachable("Unexpected register kind"); 1037 } 1038 1039 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1040 const unsigned OldFlags = Flags; 1041 switch (Token.kind()) { 1042 case MIToken::kw_implicit: 1043 Flags |= RegState::Implicit; 1044 break; 1045 case MIToken::kw_implicit_define: 1046 Flags |= RegState::ImplicitDefine; 1047 break; 1048 case MIToken::kw_def: 1049 Flags |= RegState::Define; 1050 break; 1051 case MIToken::kw_dead: 1052 Flags |= RegState::Dead; 1053 break; 1054 case MIToken::kw_killed: 1055 Flags |= RegState::Kill; 1056 break; 1057 case MIToken::kw_undef: 1058 Flags |= RegState::Undef; 1059 break; 1060 case MIToken::kw_internal: 1061 Flags |= RegState::InternalRead; 1062 break; 1063 case MIToken::kw_early_clobber: 1064 Flags |= RegState::EarlyClobber; 1065 break; 1066 case MIToken::kw_debug_use: 1067 Flags |= RegState::Debug; 1068 break; 1069 case MIToken::kw_renamable: 1070 Flags |= RegState::Renamable; 1071 break; 1072 default: 1073 llvm_unreachable("The current token should be a register flag"); 1074 } 1075 if (OldFlags == Flags) 1076 // We know that the same flag is specified more than once when the flags 1077 // weren't modified. 1078 return error("duplicate '" + Token.stringValue() + "' register flag"); 1079 lex(); 1080 return false; 1081 } 1082 1083 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1084 assert(Token.is(MIToken::dot)); 1085 lex(); 1086 if (Token.isNot(MIToken::Identifier)) 1087 return error("expected a subregister index after '.'"); 1088 auto Name = Token.stringValue(); 1089 SubReg = getSubRegIndex(Name); 1090 if (!SubReg) 1091 return error(Twine("use of unknown subregister index '") + Name + "'"); 1092 lex(); 1093 return false; 1094 } 1095 1096 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1097 if (!consumeIfPresent(MIToken::kw_tied_def)) 1098 return true; 1099 if (Token.isNot(MIToken::IntegerLiteral)) 1100 return error("expected an integer literal after 'tied-def'"); 1101 if (getUnsigned(TiedDefIdx)) 1102 return true; 1103 lex(); 1104 if (expectAndConsume(MIToken::rparen)) 1105 return true; 1106 return false; 1107 } 1108 1109 bool MIParser::assignRegisterTies(MachineInstr &MI, 1110 ArrayRef<ParsedMachineOperand> Operands) { 1111 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1112 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1113 if (!Operands[I].TiedDefIdx) 1114 continue; 1115 // The parser ensures that this operand is a register use, so we just have 1116 // to check the tied-def operand. 1117 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1118 if (DefIdx >= E) 1119 return error(Operands[I].Begin, 1120 Twine("use of invalid tied-def operand index '" + 1121 Twine(DefIdx) + "'; instruction has only ") + 1122 Twine(E) + " operands"); 1123 const auto &DefOperand = Operands[DefIdx].Operand; 1124 if (!DefOperand.isReg() || !DefOperand.isDef()) 1125 // FIXME: add note with the def operand. 1126 return error(Operands[I].Begin, 1127 Twine("use of invalid tied-def operand index '") + 1128 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1129 " isn't a defined register"); 1130 // Check that the tied-def operand wasn't tied elsewhere. 1131 for (const auto &TiedPair : TiedRegisterPairs) { 1132 if (TiedPair.first == DefIdx) 1133 return error(Operands[I].Begin, 1134 Twine("the tied-def operand #") + Twine(DefIdx) + 1135 " is already tied with another register operand"); 1136 } 1137 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1138 } 1139 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1140 // indices must be less than tied max. 1141 for (const auto &TiedPair : TiedRegisterPairs) 1142 MI.tieOperands(TiedPair.first, TiedPair.second); 1143 return false; 1144 } 1145 1146 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1147 Optional<unsigned> &TiedDefIdx, 1148 bool IsDef) { 1149 unsigned Flags = IsDef ? RegState::Define : 0; 1150 while (Token.isRegisterFlag()) { 1151 if (parseRegisterFlag(Flags)) 1152 return true; 1153 } 1154 if (!Token.isRegister()) 1155 return error("expected a register after register flags"); 1156 unsigned Reg; 1157 VRegInfo *RegInfo; 1158 if (parseRegister(Reg, RegInfo)) 1159 return true; 1160 lex(); 1161 unsigned SubReg = 0; 1162 if (Token.is(MIToken::dot)) { 1163 if (parseSubRegisterIndex(SubReg)) 1164 return true; 1165 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1166 return error("subregister index expects a virtual register"); 1167 } 1168 if (Token.is(MIToken::colon)) { 1169 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1170 return error("register class specification expects a virtual register"); 1171 lex(); 1172 if (parseRegisterClassOrBank(*RegInfo)) 1173 return true; 1174 } 1175 MachineRegisterInfo &MRI = MF.getRegInfo(); 1176 if ((Flags & RegState::Define) == 0) { 1177 if (consumeIfPresent(MIToken::lparen)) { 1178 unsigned Idx; 1179 if (!parseRegisterTiedDefIndex(Idx)) 1180 TiedDefIdx = Idx; 1181 else { 1182 // Try a redundant low-level type. 1183 LLT Ty; 1184 if (parseLowLevelType(Token.location(), Ty)) 1185 return error("expected tied-def or low-level type after '('"); 1186 1187 if (expectAndConsume(MIToken::rparen)) 1188 return true; 1189 1190 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1191 return error("inconsistent type for generic virtual register"); 1192 1193 MRI.setType(Reg, Ty); 1194 } 1195 } 1196 } else if (consumeIfPresent(MIToken::lparen)) { 1197 // Virtual registers may have a tpe with GlobalISel. 1198 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1199 return error("unexpected type on physical register"); 1200 1201 LLT Ty; 1202 if (parseLowLevelType(Token.location(), Ty)) 1203 return true; 1204 1205 if (expectAndConsume(MIToken::rparen)) 1206 return true; 1207 1208 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1209 return error("inconsistent type for generic virtual register"); 1210 1211 MRI.setType(Reg, Ty); 1212 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1213 // Generic virtual registers must have a type. 1214 // If we end up here this means the type hasn't been specified and 1215 // this is bad! 1216 if (RegInfo->Kind == VRegInfo::GENERIC || 1217 RegInfo->Kind == VRegInfo::REGBANK) 1218 return error("generic virtual registers must have a type"); 1219 } 1220 Dest = MachineOperand::CreateReg( 1221 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1222 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1223 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1224 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1225 1226 return false; 1227 } 1228 1229 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1230 assert(Token.is(MIToken::IntegerLiteral)); 1231 const APSInt &Int = Token.integerValue(); 1232 if (Int.getMinSignedBits() > 64) 1233 return error("integer literal is too large to be an immediate operand"); 1234 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1235 lex(); 1236 return false; 1237 } 1238 1239 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1240 const Constant *&C) { 1241 auto Source = StringValue.str(); // The source has to be null terminated. 1242 SMDiagnostic Err; 1243 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1244 &PFS.IRSlots); 1245 if (!C) 1246 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1247 return false; 1248 } 1249 1250 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1251 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1252 return true; 1253 lex(); 1254 return false; 1255 } 1256 1257 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1258 if (Token.is(MIToken::ScalarType)) { 1259 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1260 lex(); 1261 return false; 1262 } else if (Token.is(MIToken::PointerType)) { 1263 const DataLayout &DL = MF.getDataLayout(); 1264 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1265 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1266 lex(); 1267 return false; 1268 } 1269 1270 // Now we're looking for a vector. 1271 if (Token.isNot(MIToken::less)) 1272 return error(Loc, 1273 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1274 1275 lex(); 1276 1277 if (Token.isNot(MIToken::IntegerLiteral)) 1278 return error(Loc, "expected <N x sM> for vctor type"); 1279 uint64_t NumElements = Token.integerValue().getZExtValue(); 1280 lex(); 1281 1282 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1283 return error(Loc, "expected '<N x sM>' for vector type"); 1284 lex(); 1285 1286 if (Token.isNot(MIToken::ScalarType)) 1287 return error(Loc, "expected '<N x sM>' for vector type"); 1288 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1289 lex(); 1290 1291 if (Token.isNot(MIToken::greater)) 1292 return error(Loc, "expected '<N x sM>' for vector type"); 1293 lex(); 1294 1295 Ty = LLT::vector(NumElements, ScalarSize); 1296 return false; 1297 } 1298 1299 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1300 assert(Token.is(MIToken::IntegerType)); 1301 auto Loc = Token.location(); 1302 lex(); 1303 if (Token.isNot(MIToken::IntegerLiteral)) 1304 return error("expected an integer literal"); 1305 const Constant *C = nullptr; 1306 if (parseIRConstant(Loc, C)) 1307 return true; 1308 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1309 return false; 1310 } 1311 1312 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1313 auto Loc = Token.location(); 1314 lex(); 1315 if (Token.isNot(MIToken::FloatingPointLiteral) && 1316 Token.isNot(MIToken::HexLiteral)) 1317 return error("expected a floating point literal"); 1318 const Constant *C = nullptr; 1319 if (parseIRConstant(Loc, C)) 1320 return true; 1321 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1322 return false; 1323 } 1324 1325 bool MIParser::getUnsigned(unsigned &Result) { 1326 if (Token.hasIntegerValue()) { 1327 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1328 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1329 if (Val64 == Limit) 1330 return error("expected 32-bit integer (too large)"); 1331 Result = Val64; 1332 return false; 1333 } 1334 if (Token.is(MIToken::HexLiteral)) { 1335 APInt A; 1336 if (getHexUint(A)) 1337 return true; 1338 if (A.getBitWidth() > 32) 1339 return error("expected 32-bit integer (too large)"); 1340 Result = A.getZExtValue(); 1341 return false; 1342 } 1343 return true; 1344 } 1345 1346 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1347 assert(Token.is(MIToken::MachineBasicBlock) || 1348 Token.is(MIToken::MachineBasicBlockLabel)); 1349 unsigned Number; 1350 if (getUnsigned(Number)) 1351 return true; 1352 auto MBBInfo = PFS.MBBSlots.find(Number); 1353 if (MBBInfo == PFS.MBBSlots.end()) 1354 return error(Twine("use of undefined machine basic block #") + 1355 Twine(Number)); 1356 MBB = MBBInfo->second; 1357 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1358 // we drop the <irname> from the bb.<id>.<irname> format. 1359 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1360 return error(Twine("the name of machine basic block #") + Twine(Number) + 1361 " isn't '" + Token.stringValue() + "'"); 1362 return false; 1363 } 1364 1365 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1366 MachineBasicBlock *MBB; 1367 if (parseMBBReference(MBB)) 1368 return true; 1369 Dest = MachineOperand::CreateMBB(MBB); 1370 lex(); 1371 return false; 1372 } 1373 1374 bool MIParser::parseStackFrameIndex(int &FI) { 1375 assert(Token.is(MIToken::StackObject)); 1376 unsigned ID; 1377 if (getUnsigned(ID)) 1378 return true; 1379 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1380 if (ObjectInfo == PFS.StackObjectSlots.end()) 1381 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1382 "'"); 1383 StringRef Name; 1384 if (const auto *Alloca = 1385 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1386 Name = Alloca->getName(); 1387 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1388 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1389 "' isn't '" + Token.stringValue() + "'"); 1390 lex(); 1391 FI = ObjectInfo->second; 1392 return false; 1393 } 1394 1395 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1396 int FI; 1397 if (parseStackFrameIndex(FI)) 1398 return true; 1399 Dest = MachineOperand::CreateFI(FI); 1400 return false; 1401 } 1402 1403 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1404 assert(Token.is(MIToken::FixedStackObject)); 1405 unsigned ID; 1406 if (getUnsigned(ID)) 1407 return true; 1408 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1409 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1410 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1411 Twine(ID) + "'"); 1412 lex(); 1413 FI = ObjectInfo->second; 1414 return false; 1415 } 1416 1417 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1418 int FI; 1419 if (parseFixedStackFrameIndex(FI)) 1420 return true; 1421 Dest = MachineOperand::CreateFI(FI); 1422 return false; 1423 } 1424 1425 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1426 switch (Token.kind()) { 1427 case MIToken::NamedGlobalValue: { 1428 const Module *M = MF.getFunction().getParent(); 1429 GV = M->getNamedValue(Token.stringValue()); 1430 if (!GV) 1431 return error(Twine("use of undefined global value '") + Token.range() + 1432 "'"); 1433 break; 1434 } 1435 case MIToken::GlobalValue: { 1436 unsigned GVIdx; 1437 if (getUnsigned(GVIdx)) 1438 return true; 1439 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1440 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1441 "'"); 1442 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1443 break; 1444 } 1445 default: 1446 llvm_unreachable("The current token should be a global value"); 1447 } 1448 return false; 1449 } 1450 1451 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1452 GlobalValue *GV = nullptr; 1453 if (parseGlobalValue(GV)) 1454 return true; 1455 lex(); 1456 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1457 if (parseOperandsOffset(Dest)) 1458 return true; 1459 return false; 1460 } 1461 1462 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1463 assert(Token.is(MIToken::ConstantPoolItem)); 1464 unsigned ID; 1465 if (getUnsigned(ID)) 1466 return true; 1467 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1468 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1469 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1470 lex(); 1471 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1472 if (parseOperandsOffset(Dest)) 1473 return true; 1474 return false; 1475 } 1476 1477 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1478 assert(Token.is(MIToken::JumpTableIndex)); 1479 unsigned ID; 1480 if (getUnsigned(ID)) 1481 return true; 1482 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1483 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1484 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1485 lex(); 1486 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1487 return false; 1488 } 1489 1490 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1491 assert(Token.is(MIToken::ExternalSymbol)); 1492 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1493 lex(); 1494 Dest = MachineOperand::CreateES(Symbol); 1495 if (parseOperandsOffset(Dest)) 1496 return true; 1497 return false; 1498 } 1499 1500 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1501 assert(Token.is(MIToken::SubRegisterIndex)); 1502 StringRef Name = Token.stringValue(); 1503 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1504 if (SubRegIndex == 0) 1505 return error(Twine("unknown subregister index '") + Name + "'"); 1506 lex(); 1507 Dest = MachineOperand::CreateImm(SubRegIndex); 1508 return false; 1509 } 1510 1511 bool MIParser::parseMDNode(MDNode *&Node) { 1512 assert(Token.is(MIToken::exclaim)); 1513 1514 auto Loc = Token.location(); 1515 lex(); 1516 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1517 return error("expected metadata id after '!'"); 1518 unsigned ID; 1519 if (getUnsigned(ID)) 1520 return true; 1521 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1522 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1523 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1524 lex(); 1525 Node = NodeInfo->second.get(); 1526 return false; 1527 } 1528 1529 bool MIParser::parseDIExpression(MDNode *&Expr) { 1530 assert(Token.is(MIToken::md_diexpr)); 1531 lex(); 1532 1533 // FIXME: Share this parsing with the IL parser. 1534 SmallVector<uint64_t, 8> Elements; 1535 1536 if (expectAndConsume(MIToken::lparen)) 1537 return true; 1538 1539 if (Token.isNot(MIToken::rparen)) { 1540 do { 1541 if (Token.is(MIToken::Identifier)) { 1542 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1543 lex(); 1544 Elements.push_back(Op); 1545 continue; 1546 } 1547 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1548 } 1549 1550 if (Token.isNot(MIToken::IntegerLiteral) || 1551 Token.integerValue().isSigned()) 1552 return error("expected unsigned integer"); 1553 1554 auto &U = Token.integerValue(); 1555 if (U.ugt(UINT64_MAX)) 1556 return error("element too large, limit is " + Twine(UINT64_MAX)); 1557 Elements.push_back(U.getZExtValue()); 1558 lex(); 1559 1560 } while (consumeIfPresent(MIToken::comma)); 1561 } 1562 1563 if (expectAndConsume(MIToken::rparen)) 1564 return true; 1565 1566 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1567 return false; 1568 } 1569 1570 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1571 MDNode *Node = nullptr; 1572 if (Token.is(MIToken::exclaim)) { 1573 if (parseMDNode(Node)) 1574 return true; 1575 } else if (Token.is(MIToken::md_diexpr)) { 1576 if (parseDIExpression(Node)) 1577 return true; 1578 } 1579 Dest = MachineOperand::CreateMetadata(Node); 1580 return false; 1581 } 1582 1583 bool MIParser::parseCFIOffset(int &Offset) { 1584 if (Token.isNot(MIToken::IntegerLiteral)) 1585 return error("expected a cfi offset"); 1586 if (Token.integerValue().getMinSignedBits() > 32) 1587 return error("expected a 32 bit integer (the cfi offset is too large)"); 1588 Offset = (int)Token.integerValue().getExtValue(); 1589 lex(); 1590 return false; 1591 } 1592 1593 bool MIParser::parseCFIRegister(unsigned &Reg) { 1594 if (Token.isNot(MIToken::NamedRegister)) 1595 return error("expected a cfi register"); 1596 unsigned LLVMReg; 1597 if (parseNamedRegister(LLVMReg)) 1598 return true; 1599 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1600 assert(TRI && "Expected target register info"); 1601 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1602 if (DwarfReg < 0) 1603 return error("invalid DWARF register"); 1604 Reg = (unsigned)DwarfReg; 1605 lex(); 1606 return false; 1607 } 1608 1609 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1610 do { 1611 if (Token.isNot(MIToken::HexLiteral)) 1612 return error("expected a hexadecimal literal"); 1613 unsigned Value; 1614 if (getUnsigned(Value)) 1615 return true; 1616 if (Value > UINT8_MAX) 1617 return error("expected a 8-bit integer (too large)"); 1618 Values.push_back(static_cast<uint8_t>(Value)); 1619 lex(); 1620 } while (consumeIfPresent(MIToken::comma)); 1621 return false; 1622 } 1623 1624 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1625 auto Kind = Token.kind(); 1626 lex(); 1627 int Offset; 1628 unsigned Reg; 1629 unsigned CFIIndex; 1630 switch (Kind) { 1631 case MIToken::kw_cfi_same_value: 1632 if (parseCFIRegister(Reg)) 1633 return true; 1634 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1635 break; 1636 case MIToken::kw_cfi_offset: 1637 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1638 parseCFIOffset(Offset)) 1639 return true; 1640 CFIIndex = 1641 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1642 break; 1643 case MIToken::kw_cfi_rel_offset: 1644 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1645 parseCFIOffset(Offset)) 1646 return true; 1647 CFIIndex = MF.addFrameInst( 1648 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1649 break; 1650 case MIToken::kw_cfi_def_cfa_register: 1651 if (parseCFIRegister(Reg)) 1652 return true; 1653 CFIIndex = 1654 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1655 break; 1656 case MIToken::kw_cfi_def_cfa_offset: 1657 if (parseCFIOffset(Offset)) 1658 return true; 1659 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1660 CFIIndex = MF.addFrameInst( 1661 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1662 break; 1663 case MIToken::kw_cfi_adjust_cfa_offset: 1664 if (parseCFIOffset(Offset)) 1665 return true; 1666 CFIIndex = MF.addFrameInst( 1667 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1668 break; 1669 case MIToken::kw_cfi_def_cfa: 1670 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1671 parseCFIOffset(Offset)) 1672 return true; 1673 // NB: MCCFIInstruction::createDefCfa negates the offset. 1674 CFIIndex = 1675 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1676 break; 1677 case MIToken::kw_cfi_remember_state: 1678 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1679 break; 1680 case MIToken::kw_cfi_restore: 1681 if (parseCFIRegister(Reg)) 1682 return true; 1683 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1684 break; 1685 case MIToken::kw_cfi_restore_state: 1686 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1687 break; 1688 case MIToken::kw_cfi_undefined: 1689 if (parseCFIRegister(Reg)) 1690 return true; 1691 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1692 break; 1693 case MIToken::kw_cfi_register: { 1694 unsigned Reg2; 1695 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1696 parseCFIRegister(Reg2)) 1697 return true; 1698 1699 CFIIndex = 1700 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1701 break; 1702 } 1703 case MIToken::kw_cfi_window_save: 1704 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1705 break; 1706 case MIToken::kw_cfi_escape: { 1707 std::string Values; 1708 if (parseCFIEscapeValues(Values)) 1709 return true; 1710 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1711 break; 1712 } 1713 default: 1714 // TODO: Parse the other CFI operands. 1715 llvm_unreachable("The current token should be a cfi operand"); 1716 } 1717 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1718 return false; 1719 } 1720 1721 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1722 switch (Token.kind()) { 1723 case MIToken::NamedIRBlock: { 1724 BB = dyn_cast_or_null<BasicBlock>( 1725 F.getValueSymbolTable()->lookup(Token.stringValue())); 1726 if (!BB) 1727 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1728 break; 1729 } 1730 case MIToken::IRBlock: { 1731 unsigned SlotNumber = 0; 1732 if (getUnsigned(SlotNumber)) 1733 return true; 1734 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1735 if (!BB) 1736 return error(Twine("use of undefined IR block '%ir-block.") + 1737 Twine(SlotNumber) + "'"); 1738 break; 1739 } 1740 default: 1741 llvm_unreachable("The current token should be an IR block reference"); 1742 } 1743 return false; 1744 } 1745 1746 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1747 assert(Token.is(MIToken::kw_blockaddress)); 1748 lex(); 1749 if (expectAndConsume(MIToken::lparen)) 1750 return true; 1751 if (Token.isNot(MIToken::GlobalValue) && 1752 Token.isNot(MIToken::NamedGlobalValue)) 1753 return error("expected a global value"); 1754 GlobalValue *GV = nullptr; 1755 if (parseGlobalValue(GV)) 1756 return true; 1757 auto *F = dyn_cast<Function>(GV); 1758 if (!F) 1759 return error("expected an IR function reference"); 1760 lex(); 1761 if (expectAndConsume(MIToken::comma)) 1762 return true; 1763 BasicBlock *BB = nullptr; 1764 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1765 return error("expected an IR block reference"); 1766 if (parseIRBlock(BB, *F)) 1767 return true; 1768 lex(); 1769 if (expectAndConsume(MIToken::rparen)) 1770 return true; 1771 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1772 if (parseOperandsOffset(Dest)) 1773 return true; 1774 return false; 1775 } 1776 1777 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1778 assert(Token.is(MIToken::kw_intrinsic)); 1779 lex(); 1780 if (expectAndConsume(MIToken::lparen)) 1781 return error("expected syntax intrinsic(@llvm.whatever)"); 1782 1783 if (Token.isNot(MIToken::NamedGlobalValue)) 1784 return error("expected syntax intrinsic(@llvm.whatever)"); 1785 1786 std::string Name = Token.stringValue(); 1787 lex(); 1788 1789 if (expectAndConsume(MIToken::rparen)) 1790 return error("expected ')' to terminate intrinsic name"); 1791 1792 // Find out what intrinsic we're dealing with, first try the global namespace 1793 // and then the target's private intrinsics if that fails. 1794 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1795 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1796 if (ID == Intrinsic::not_intrinsic && TII) 1797 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1798 1799 if (ID == Intrinsic::not_intrinsic) 1800 return error("unknown intrinsic name"); 1801 Dest = MachineOperand::CreateIntrinsicID(ID); 1802 1803 return false; 1804 } 1805 1806 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1807 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1808 bool IsFloat = Token.is(MIToken::kw_floatpred); 1809 lex(); 1810 1811 if (expectAndConsume(MIToken::lparen)) 1812 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1813 1814 if (Token.isNot(MIToken::Identifier)) 1815 return error("whatever"); 1816 1817 CmpInst::Predicate Pred; 1818 if (IsFloat) { 1819 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1820 .Case("false", CmpInst::FCMP_FALSE) 1821 .Case("oeq", CmpInst::FCMP_OEQ) 1822 .Case("ogt", CmpInst::FCMP_OGT) 1823 .Case("oge", CmpInst::FCMP_OGE) 1824 .Case("olt", CmpInst::FCMP_OLT) 1825 .Case("ole", CmpInst::FCMP_OLE) 1826 .Case("one", CmpInst::FCMP_ONE) 1827 .Case("ord", CmpInst::FCMP_ORD) 1828 .Case("uno", CmpInst::FCMP_UNO) 1829 .Case("ueq", CmpInst::FCMP_UEQ) 1830 .Case("ugt", CmpInst::FCMP_UGT) 1831 .Case("uge", CmpInst::FCMP_UGE) 1832 .Case("ult", CmpInst::FCMP_ULT) 1833 .Case("ule", CmpInst::FCMP_ULE) 1834 .Case("une", CmpInst::FCMP_UNE) 1835 .Case("true", CmpInst::FCMP_TRUE) 1836 .Default(CmpInst::BAD_FCMP_PREDICATE); 1837 if (!CmpInst::isFPPredicate(Pred)) 1838 return error("invalid floating-point predicate"); 1839 } else { 1840 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1841 .Case("eq", CmpInst::ICMP_EQ) 1842 .Case("ne", CmpInst::ICMP_NE) 1843 .Case("sgt", CmpInst::ICMP_SGT) 1844 .Case("sge", CmpInst::ICMP_SGE) 1845 .Case("slt", CmpInst::ICMP_SLT) 1846 .Case("sle", CmpInst::ICMP_SLE) 1847 .Case("ugt", CmpInst::ICMP_UGT) 1848 .Case("uge", CmpInst::ICMP_UGE) 1849 .Case("ult", CmpInst::ICMP_ULT) 1850 .Case("ule", CmpInst::ICMP_ULE) 1851 .Default(CmpInst::BAD_ICMP_PREDICATE); 1852 if (!CmpInst::isIntPredicate(Pred)) 1853 return error("invalid integer predicate"); 1854 } 1855 1856 lex(); 1857 Dest = MachineOperand::CreatePredicate(Pred); 1858 if (expectAndConsume(MIToken::rparen)) 1859 return error("predicate should be terminated by ')'."); 1860 1861 return false; 1862 } 1863 1864 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1865 assert(Token.is(MIToken::kw_target_index)); 1866 lex(); 1867 if (expectAndConsume(MIToken::lparen)) 1868 return true; 1869 if (Token.isNot(MIToken::Identifier)) 1870 return error("expected the name of the target index"); 1871 int Index = 0; 1872 if (getTargetIndex(Token.stringValue(), Index)) 1873 return error("use of undefined target index '" + Token.stringValue() + "'"); 1874 lex(); 1875 if (expectAndConsume(MIToken::rparen)) 1876 return true; 1877 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1878 if (parseOperandsOffset(Dest)) 1879 return true; 1880 return false; 1881 } 1882 1883 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1884 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1885 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1886 assert(TRI && "Expected target register info"); 1887 lex(); 1888 if (expectAndConsume(MIToken::lparen)) 1889 return true; 1890 1891 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1892 while (true) { 1893 if (Token.isNot(MIToken::NamedRegister)) 1894 return error("expected a named register"); 1895 unsigned Reg; 1896 if (parseNamedRegister(Reg)) 1897 return true; 1898 lex(); 1899 Mask[Reg / 32] |= 1U << (Reg % 32); 1900 // TODO: Report an error if the same register is used more than once. 1901 if (Token.isNot(MIToken::comma)) 1902 break; 1903 lex(); 1904 } 1905 1906 if (expectAndConsume(MIToken::rparen)) 1907 return true; 1908 Dest = MachineOperand::CreateRegMask(Mask); 1909 return false; 1910 } 1911 1912 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1913 assert(Token.is(MIToken::kw_liveout)); 1914 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1915 assert(TRI && "Expected target register info"); 1916 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1917 lex(); 1918 if (expectAndConsume(MIToken::lparen)) 1919 return true; 1920 while (true) { 1921 if (Token.isNot(MIToken::NamedRegister)) 1922 return error("expected a named register"); 1923 unsigned Reg; 1924 if (parseNamedRegister(Reg)) 1925 return true; 1926 lex(); 1927 Mask[Reg / 32] |= 1U << (Reg % 32); 1928 // TODO: Report an error if the same register is used more than once. 1929 if (Token.isNot(MIToken::comma)) 1930 break; 1931 lex(); 1932 } 1933 if (expectAndConsume(MIToken::rparen)) 1934 return true; 1935 Dest = MachineOperand::CreateRegLiveOut(Mask); 1936 return false; 1937 } 1938 1939 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1940 Optional<unsigned> &TiedDefIdx) { 1941 switch (Token.kind()) { 1942 case MIToken::kw_implicit: 1943 case MIToken::kw_implicit_define: 1944 case MIToken::kw_def: 1945 case MIToken::kw_dead: 1946 case MIToken::kw_killed: 1947 case MIToken::kw_undef: 1948 case MIToken::kw_internal: 1949 case MIToken::kw_early_clobber: 1950 case MIToken::kw_debug_use: 1951 case MIToken::kw_renamable: 1952 case MIToken::underscore: 1953 case MIToken::NamedRegister: 1954 case MIToken::VirtualRegister: 1955 return parseRegisterOperand(Dest, TiedDefIdx); 1956 case MIToken::IntegerLiteral: 1957 return parseImmediateOperand(Dest); 1958 case MIToken::IntegerType: 1959 return parseTypedImmediateOperand(Dest); 1960 case MIToken::kw_half: 1961 case MIToken::kw_float: 1962 case MIToken::kw_double: 1963 case MIToken::kw_x86_fp80: 1964 case MIToken::kw_fp128: 1965 case MIToken::kw_ppc_fp128: 1966 return parseFPImmediateOperand(Dest); 1967 case MIToken::MachineBasicBlock: 1968 return parseMBBOperand(Dest); 1969 case MIToken::StackObject: 1970 return parseStackObjectOperand(Dest); 1971 case MIToken::FixedStackObject: 1972 return parseFixedStackObjectOperand(Dest); 1973 case MIToken::GlobalValue: 1974 case MIToken::NamedGlobalValue: 1975 return parseGlobalAddressOperand(Dest); 1976 case MIToken::ConstantPoolItem: 1977 return parseConstantPoolIndexOperand(Dest); 1978 case MIToken::JumpTableIndex: 1979 return parseJumpTableIndexOperand(Dest); 1980 case MIToken::ExternalSymbol: 1981 return parseExternalSymbolOperand(Dest); 1982 case MIToken::SubRegisterIndex: 1983 return parseSubRegisterIndexOperand(Dest); 1984 case MIToken::md_diexpr: 1985 case MIToken::exclaim: 1986 return parseMetadataOperand(Dest); 1987 case MIToken::kw_cfi_same_value: 1988 case MIToken::kw_cfi_offset: 1989 case MIToken::kw_cfi_rel_offset: 1990 case MIToken::kw_cfi_def_cfa_register: 1991 case MIToken::kw_cfi_def_cfa_offset: 1992 case MIToken::kw_cfi_adjust_cfa_offset: 1993 case MIToken::kw_cfi_escape: 1994 case MIToken::kw_cfi_def_cfa: 1995 case MIToken::kw_cfi_register: 1996 case MIToken::kw_cfi_remember_state: 1997 case MIToken::kw_cfi_restore: 1998 case MIToken::kw_cfi_restore_state: 1999 case MIToken::kw_cfi_undefined: 2000 case MIToken::kw_cfi_window_save: 2001 return parseCFIOperand(Dest); 2002 case MIToken::kw_blockaddress: 2003 return parseBlockAddressOperand(Dest); 2004 case MIToken::kw_intrinsic: 2005 return parseIntrinsicOperand(Dest); 2006 case MIToken::kw_target_index: 2007 return parseTargetIndexOperand(Dest); 2008 case MIToken::kw_liveout: 2009 return parseLiveoutRegisterMaskOperand(Dest); 2010 case MIToken::kw_floatpred: 2011 case MIToken::kw_intpred: 2012 return parsePredicateOperand(Dest); 2013 case MIToken::Error: 2014 return true; 2015 case MIToken::Identifier: 2016 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2017 Dest = MachineOperand::CreateRegMask(RegMask); 2018 lex(); 2019 break; 2020 } else 2021 return parseCustomRegisterMaskOperand(Dest); 2022 default: 2023 // FIXME: Parse the MCSymbol machine operand. 2024 return error("expected a machine operand"); 2025 } 2026 return false; 2027 } 2028 2029 bool MIParser::parseMachineOperandAndTargetFlags( 2030 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2031 unsigned TF = 0; 2032 bool HasTargetFlags = false; 2033 if (Token.is(MIToken::kw_target_flags)) { 2034 HasTargetFlags = true; 2035 lex(); 2036 if (expectAndConsume(MIToken::lparen)) 2037 return true; 2038 if (Token.isNot(MIToken::Identifier)) 2039 return error("expected the name of the target flag"); 2040 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2041 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2042 return error("use of undefined target flag '" + Token.stringValue() + 2043 "'"); 2044 } 2045 lex(); 2046 while (Token.is(MIToken::comma)) { 2047 lex(); 2048 if (Token.isNot(MIToken::Identifier)) 2049 return error("expected the name of the target flag"); 2050 unsigned BitFlag = 0; 2051 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2052 return error("use of undefined target flag '" + Token.stringValue() + 2053 "'"); 2054 // TODO: Report an error when using a duplicate bit target flag. 2055 TF |= BitFlag; 2056 lex(); 2057 } 2058 if (expectAndConsume(MIToken::rparen)) 2059 return true; 2060 } 2061 auto Loc = Token.location(); 2062 if (parseMachineOperand(Dest, TiedDefIdx)) 2063 return true; 2064 if (!HasTargetFlags) 2065 return false; 2066 if (Dest.isReg()) 2067 return error(Loc, "register operands can't have target flags"); 2068 Dest.setTargetFlags(TF); 2069 return false; 2070 } 2071 2072 bool MIParser::parseOffset(int64_t &Offset) { 2073 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2074 return false; 2075 StringRef Sign = Token.range(); 2076 bool IsNegative = Token.is(MIToken::minus); 2077 lex(); 2078 if (Token.isNot(MIToken::IntegerLiteral)) 2079 return error("expected an integer literal after '" + Sign + "'"); 2080 if (Token.integerValue().getMinSignedBits() > 64) 2081 return error("expected 64-bit integer (too large)"); 2082 Offset = Token.integerValue().getExtValue(); 2083 if (IsNegative) 2084 Offset = -Offset; 2085 lex(); 2086 return false; 2087 } 2088 2089 bool MIParser::parseAlignment(unsigned &Alignment) { 2090 assert(Token.is(MIToken::kw_align)); 2091 lex(); 2092 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2093 return error("expected an integer literal after 'align'"); 2094 if (getUnsigned(Alignment)) 2095 return true; 2096 lex(); 2097 return false; 2098 } 2099 2100 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2101 assert(Token.is(MIToken::kw_addrspace)); 2102 lex(); 2103 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2104 return error("expected an integer literal after 'addrspace'"); 2105 if (getUnsigned(Addrspace)) 2106 return true; 2107 lex(); 2108 return false; 2109 } 2110 2111 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2112 int64_t Offset = 0; 2113 if (parseOffset(Offset)) 2114 return true; 2115 Op.setOffset(Offset); 2116 return false; 2117 } 2118 2119 bool MIParser::parseIRValue(const Value *&V) { 2120 switch (Token.kind()) { 2121 case MIToken::NamedIRValue: { 2122 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2123 break; 2124 } 2125 case MIToken::IRValue: { 2126 unsigned SlotNumber = 0; 2127 if (getUnsigned(SlotNumber)) 2128 return true; 2129 V = getIRValue(SlotNumber); 2130 break; 2131 } 2132 case MIToken::NamedGlobalValue: 2133 case MIToken::GlobalValue: { 2134 GlobalValue *GV = nullptr; 2135 if (parseGlobalValue(GV)) 2136 return true; 2137 V = GV; 2138 break; 2139 } 2140 case MIToken::QuotedIRValue: { 2141 const Constant *C = nullptr; 2142 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2143 return true; 2144 V = C; 2145 break; 2146 } 2147 default: 2148 llvm_unreachable("The current token should be an IR block reference"); 2149 } 2150 if (!V) 2151 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2152 return false; 2153 } 2154 2155 bool MIParser::getUint64(uint64_t &Result) { 2156 if (Token.hasIntegerValue()) { 2157 if (Token.integerValue().getActiveBits() > 64) 2158 return error("expected 64-bit integer (too large)"); 2159 Result = Token.integerValue().getZExtValue(); 2160 return false; 2161 } 2162 if (Token.is(MIToken::HexLiteral)) { 2163 APInt A; 2164 if (getHexUint(A)) 2165 return true; 2166 if (A.getBitWidth() > 64) 2167 return error("expected 64-bit integer (too large)"); 2168 Result = A.getZExtValue(); 2169 return false; 2170 } 2171 return true; 2172 } 2173 2174 bool MIParser::getHexUint(APInt &Result) { 2175 assert(Token.is(MIToken::HexLiteral)); 2176 StringRef S = Token.range(); 2177 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2178 // This could be a floating point literal with a special prefix. 2179 if (!isxdigit(S[2])) 2180 return true; 2181 StringRef V = S.substr(2); 2182 APInt A(V.size()*4, V, 16); 2183 2184 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2185 // sure it isn't the case before constructing result. 2186 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2187 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2188 return false; 2189 } 2190 2191 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2192 const auto OldFlags = Flags; 2193 switch (Token.kind()) { 2194 case MIToken::kw_volatile: 2195 Flags |= MachineMemOperand::MOVolatile; 2196 break; 2197 case MIToken::kw_non_temporal: 2198 Flags |= MachineMemOperand::MONonTemporal; 2199 break; 2200 case MIToken::kw_dereferenceable: 2201 Flags |= MachineMemOperand::MODereferenceable; 2202 break; 2203 case MIToken::kw_invariant: 2204 Flags |= MachineMemOperand::MOInvariant; 2205 break; 2206 case MIToken::StringConstant: { 2207 MachineMemOperand::Flags TF; 2208 if (getMMOTargetFlag(Token.stringValue(), TF)) 2209 return error("use of undefined target MMO flag '" + Token.stringValue() + 2210 "'"); 2211 Flags |= TF; 2212 break; 2213 } 2214 default: 2215 llvm_unreachable("The current token should be a memory operand flag"); 2216 } 2217 if (OldFlags == Flags) 2218 // We know that the same flag is specified more than once when the flags 2219 // weren't modified. 2220 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2221 lex(); 2222 return false; 2223 } 2224 2225 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2226 switch (Token.kind()) { 2227 case MIToken::kw_stack: 2228 PSV = MF.getPSVManager().getStack(); 2229 break; 2230 case MIToken::kw_got: 2231 PSV = MF.getPSVManager().getGOT(); 2232 break; 2233 case MIToken::kw_jump_table: 2234 PSV = MF.getPSVManager().getJumpTable(); 2235 break; 2236 case MIToken::kw_constant_pool: 2237 PSV = MF.getPSVManager().getConstantPool(); 2238 break; 2239 case MIToken::FixedStackObject: { 2240 int FI; 2241 if (parseFixedStackFrameIndex(FI)) 2242 return true; 2243 PSV = MF.getPSVManager().getFixedStack(FI); 2244 // The token was already consumed, so use return here instead of break. 2245 return false; 2246 } 2247 case MIToken::StackObject: { 2248 int FI; 2249 if (parseStackFrameIndex(FI)) 2250 return true; 2251 PSV = MF.getPSVManager().getFixedStack(FI); 2252 // The token was already consumed, so use return here instead of break. 2253 return false; 2254 } 2255 case MIToken::kw_call_entry: 2256 lex(); 2257 switch (Token.kind()) { 2258 case MIToken::GlobalValue: 2259 case MIToken::NamedGlobalValue: { 2260 GlobalValue *GV = nullptr; 2261 if (parseGlobalValue(GV)) 2262 return true; 2263 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2264 break; 2265 } 2266 case MIToken::ExternalSymbol: 2267 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2268 MF.createExternalSymbolName(Token.stringValue())); 2269 break; 2270 default: 2271 return error( 2272 "expected a global value or an external symbol after 'call-entry'"); 2273 } 2274 break; 2275 default: 2276 llvm_unreachable("The current token should be pseudo source value"); 2277 } 2278 lex(); 2279 return false; 2280 } 2281 2282 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2283 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2284 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2285 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2286 Token.is(MIToken::kw_call_entry)) { 2287 const PseudoSourceValue *PSV = nullptr; 2288 if (parseMemoryPseudoSourceValue(PSV)) 2289 return true; 2290 int64_t Offset = 0; 2291 if (parseOffset(Offset)) 2292 return true; 2293 Dest = MachinePointerInfo(PSV, Offset); 2294 return false; 2295 } 2296 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2297 Token.isNot(MIToken::GlobalValue) && 2298 Token.isNot(MIToken::NamedGlobalValue) && 2299 Token.isNot(MIToken::QuotedIRValue)) 2300 return error("expected an IR value reference"); 2301 const Value *V = nullptr; 2302 if (parseIRValue(V)) 2303 return true; 2304 if (!V->getType()->isPointerTy()) 2305 return error("expected a pointer IR value"); 2306 lex(); 2307 int64_t Offset = 0; 2308 if (parseOffset(Offset)) 2309 return true; 2310 Dest = MachinePointerInfo(V, Offset); 2311 return false; 2312 } 2313 2314 bool MIParser::parseOptionalScope(LLVMContext &Context, 2315 SyncScope::ID &SSID) { 2316 SSID = SyncScope::System; 2317 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2318 lex(); 2319 if (expectAndConsume(MIToken::lparen)) 2320 return error("expected '(' in syncscope"); 2321 2322 std::string SSN; 2323 if (parseStringConstant(SSN)) 2324 return true; 2325 2326 SSID = Context.getOrInsertSyncScopeID(SSN); 2327 if (expectAndConsume(MIToken::rparen)) 2328 return error("expected ')' in syncscope"); 2329 } 2330 2331 return false; 2332 } 2333 2334 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2335 Order = AtomicOrdering::NotAtomic; 2336 if (Token.isNot(MIToken::Identifier)) 2337 return false; 2338 2339 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2340 .Case("unordered", AtomicOrdering::Unordered) 2341 .Case("monotonic", AtomicOrdering::Monotonic) 2342 .Case("acquire", AtomicOrdering::Acquire) 2343 .Case("release", AtomicOrdering::Release) 2344 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2345 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2346 .Default(AtomicOrdering::NotAtomic); 2347 2348 if (Order != AtomicOrdering::NotAtomic) { 2349 lex(); 2350 return false; 2351 } 2352 2353 return error("expected an atomic scope, ordering or a size integer literal"); 2354 } 2355 2356 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2357 if (expectAndConsume(MIToken::lparen)) 2358 return true; 2359 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2360 while (Token.isMemoryOperandFlag()) { 2361 if (parseMemoryOperandFlag(Flags)) 2362 return true; 2363 } 2364 if (Token.isNot(MIToken::Identifier) || 2365 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2366 return error("expected 'load' or 'store' memory operation"); 2367 if (Token.stringValue() == "load") 2368 Flags |= MachineMemOperand::MOLoad; 2369 else 2370 Flags |= MachineMemOperand::MOStore; 2371 lex(); 2372 2373 // Optional 'store' for operands that both load and store. 2374 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2375 Flags |= MachineMemOperand::MOStore; 2376 lex(); 2377 } 2378 2379 // Optional synchronization scope. 2380 SyncScope::ID SSID; 2381 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2382 return true; 2383 2384 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2385 AtomicOrdering Order, FailureOrder; 2386 if (parseOptionalAtomicOrdering(Order)) 2387 return true; 2388 2389 if (parseOptionalAtomicOrdering(FailureOrder)) 2390 return true; 2391 2392 if (Token.isNot(MIToken::IntegerLiteral)) 2393 return error("expected the size integer literal after memory operation"); 2394 uint64_t Size; 2395 if (getUint64(Size)) 2396 return true; 2397 lex(); 2398 2399 MachinePointerInfo Ptr = MachinePointerInfo(); 2400 if (Token.is(MIToken::Identifier)) { 2401 const char *Word = 2402 ((Flags & MachineMemOperand::MOLoad) && 2403 (Flags & MachineMemOperand::MOStore)) 2404 ? "on" 2405 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2406 if (Token.stringValue() != Word) 2407 return error(Twine("expected '") + Word + "'"); 2408 lex(); 2409 2410 if (parseMachinePointerInfo(Ptr)) 2411 return true; 2412 } 2413 unsigned BaseAlignment = Size; 2414 AAMDNodes AAInfo; 2415 MDNode *Range = nullptr; 2416 while (consumeIfPresent(MIToken::comma)) { 2417 switch (Token.kind()) { 2418 case MIToken::kw_align: 2419 if (parseAlignment(BaseAlignment)) 2420 return true; 2421 break; 2422 case MIToken::kw_addrspace: 2423 if (parseAddrspace(Ptr.AddrSpace)) 2424 return true; 2425 break; 2426 case MIToken::md_tbaa: 2427 lex(); 2428 if (parseMDNode(AAInfo.TBAA)) 2429 return true; 2430 break; 2431 case MIToken::md_alias_scope: 2432 lex(); 2433 if (parseMDNode(AAInfo.Scope)) 2434 return true; 2435 break; 2436 case MIToken::md_noalias: 2437 lex(); 2438 if (parseMDNode(AAInfo.NoAlias)) 2439 return true; 2440 break; 2441 case MIToken::md_range: 2442 lex(); 2443 if (parseMDNode(Range)) 2444 return true; 2445 break; 2446 // TODO: Report an error on duplicate metadata nodes. 2447 default: 2448 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2449 "'!noalias' or '!range'"); 2450 } 2451 } 2452 if (expectAndConsume(MIToken::rparen)) 2453 return true; 2454 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2455 SSID, Order, FailureOrder); 2456 return false; 2457 } 2458 2459 void MIParser::initNames2InstrOpCodes() { 2460 if (!Names2InstrOpCodes.empty()) 2461 return; 2462 const auto *TII = MF.getSubtarget().getInstrInfo(); 2463 assert(TII && "Expected target instruction info"); 2464 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2465 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2466 } 2467 2468 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2469 initNames2InstrOpCodes(); 2470 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2471 if (InstrInfo == Names2InstrOpCodes.end()) 2472 return true; 2473 OpCode = InstrInfo->getValue(); 2474 return false; 2475 } 2476 2477 void MIParser::initNames2Regs() { 2478 if (!Names2Regs.empty()) 2479 return; 2480 // The '%noreg' register is the register 0. 2481 Names2Regs.insert(std::make_pair("noreg", 0)); 2482 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2483 assert(TRI && "Expected target register info"); 2484 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2485 bool WasInserted = 2486 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2487 .second; 2488 (void)WasInserted; 2489 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2490 } 2491 } 2492 2493 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2494 initNames2Regs(); 2495 auto RegInfo = Names2Regs.find(RegName); 2496 if (RegInfo == Names2Regs.end()) 2497 return true; 2498 Reg = RegInfo->getValue(); 2499 return false; 2500 } 2501 2502 void MIParser::initNames2RegMasks() { 2503 if (!Names2RegMasks.empty()) 2504 return; 2505 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2506 assert(TRI && "Expected target register info"); 2507 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2508 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2509 assert(RegMasks.size() == RegMaskNames.size()); 2510 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2511 Names2RegMasks.insert( 2512 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2513 } 2514 2515 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2516 initNames2RegMasks(); 2517 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2518 if (RegMaskInfo == Names2RegMasks.end()) 2519 return nullptr; 2520 return RegMaskInfo->getValue(); 2521 } 2522 2523 void MIParser::initNames2SubRegIndices() { 2524 if (!Names2SubRegIndices.empty()) 2525 return; 2526 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2527 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2528 Names2SubRegIndices.insert( 2529 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2530 } 2531 2532 unsigned MIParser::getSubRegIndex(StringRef Name) { 2533 initNames2SubRegIndices(); 2534 auto SubRegInfo = Names2SubRegIndices.find(Name); 2535 if (SubRegInfo == Names2SubRegIndices.end()) 2536 return 0; 2537 return SubRegInfo->getValue(); 2538 } 2539 2540 static void initSlots2BasicBlocks( 2541 const Function &F, 2542 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2543 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2544 MST.incorporateFunction(F); 2545 for (auto &BB : F) { 2546 if (BB.hasName()) 2547 continue; 2548 int Slot = MST.getLocalSlot(&BB); 2549 if (Slot == -1) 2550 continue; 2551 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2552 } 2553 } 2554 2555 static const BasicBlock *getIRBlockFromSlot( 2556 unsigned Slot, 2557 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2558 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2559 if (BlockInfo == Slots2BasicBlocks.end()) 2560 return nullptr; 2561 return BlockInfo->second; 2562 } 2563 2564 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2565 if (Slots2BasicBlocks.empty()) 2566 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2567 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2568 } 2569 2570 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2571 if (&F == &MF.getFunction()) 2572 return getIRBlock(Slot); 2573 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2574 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2575 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2576 } 2577 2578 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2579 DenseMap<unsigned, const Value *> &Slots2Values) { 2580 int Slot = MST.getLocalSlot(V); 2581 if (Slot == -1) 2582 return; 2583 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2584 } 2585 2586 /// Creates the mapping from slot numbers to function's unnamed IR values. 2587 static void initSlots2Values(const Function &F, 2588 DenseMap<unsigned, const Value *> &Slots2Values) { 2589 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2590 MST.incorporateFunction(F); 2591 for (const auto &Arg : F.args()) 2592 mapValueToSlot(&Arg, MST, Slots2Values); 2593 for (const auto &BB : F) { 2594 mapValueToSlot(&BB, MST, Slots2Values); 2595 for (const auto &I : BB) 2596 mapValueToSlot(&I, MST, Slots2Values); 2597 } 2598 } 2599 2600 const Value *MIParser::getIRValue(unsigned Slot) { 2601 if (Slots2Values.empty()) 2602 initSlots2Values(MF.getFunction(), Slots2Values); 2603 auto ValueInfo = Slots2Values.find(Slot); 2604 if (ValueInfo == Slots2Values.end()) 2605 return nullptr; 2606 return ValueInfo->second; 2607 } 2608 2609 void MIParser::initNames2TargetIndices() { 2610 if (!Names2TargetIndices.empty()) 2611 return; 2612 const auto *TII = MF.getSubtarget().getInstrInfo(); 2613 assert(TII && "Expected target instruction info"); 2614 auto Indices = TII->getSerializableTargetIndices(); 2615 for (const auto &I : Indices) 2616 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2617 } 2618 2619 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2620 initNames2TargetIndices(); 2621 auto IndexInfo = Names2TargetIndices.find(Name); 2622 if (IndexInfo == Names2TargetIndices.end()) 2623 return true; 2624 Index = IndexInfo->second; 2625 return false; 2626 } 2627 2628 void MIParser::initNames2DirectTargetFlags() { 2629 if (!Names2DirectTargetFlags.empty()) 2630 return; 2631 const auto *TII = MF.getSubtarget().getInstrInfo(); 2632 assert(TII && "Expected target instruction info"); 2633 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2634 for (const auto &I : Flags) 2635 Names2DirectTargetFlags.insert( 2636 std::make_pair(StringRef(I.second), I.first)); 2637 } 2638 2639 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2640 initNames2DirectTargetFlags(); 2641 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2642 if (FlagInfo == Names2DirectTargetFlags.end()) 2643 return true; 2644 Flag = FlagInfo->second; 2645 return false; 2646 } 2647 2648 void MIParser::initNames2BitmaskTargetFlags() { 2649 if (!Names2BitmaskTargetFlags.empty()) 2650 return; 2651 const auto *TII = MF.getSubtarget().getInstrInfo(); 2652 assert(TII && "Expected target instruction info"); 2653 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2654 for (const auto &I : Flags) 2655 Names2BitmaskTargetFlags.insert( 2656 std::make_pair(StringRef(I.second), I.first)); 2657 } 2658 2659 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2660 initNames2BitmaskTargetFlags(); 2661 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2662 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2663 return true; 2664 Flag = FlagInfo->second; 2665 return false; 2666 } 2667 2668 void MIParser::initNames2MMOTargetFlags() { 2669 if (!Names2MMOTargetFlags.empty()) 2670 return; 2671 const auto *TII = MF.getSubtarget().getInstrInfo(); 2672 assert(TII && "Expected target instruction info"); 2673 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2674 for (const auto &I : Flags) 2675 Names2MMOTargetFlags.insert( 2676 std::make_pair(StringRef(I.second), I.first)); 2677 } 2678 2679 bool MIParser::getMMOTargetFlag(StringRef Name, 2680 MachineMemOperand::Flags &Flag) { 2681 initNames2MMOTargetFlags(); 2682 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2683 if (FlagInfo == Names2MMOTargetFlags.end()) 2684 return true; 2685 Flag = FlagInfo->second; 2686 return false; 2687 } 2688 2689 bool MIParser::parseStringConstant(std::string &Result) { 2690 if (Token.isNot(MIToken::StringConstant)) 2691 return error("expected string constant"); 2692 Result = Token.stringValue(); 2693 lex(); 2694 return false; 2695 } 2696 2697 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2698 StringRef Src, 2699 SMDiagnostic &Error) { 2700 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2701 } 2702 2703 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2704 StringRef Src, SMDiagnostic &Error) { 2705 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2706 } 2707 2708 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2709 MachineBasicBlock *&MBB, StringRef Src, 2710 SMDiagnostic &Error) { 2711 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2712 } 2713 2714 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2715 unsigned &Reg, StringRef Src, 2716 SMDiagnostic &Error) { 2717 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2718 } 2719 2720 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2721 unsigned &Reg, StringRef Src, 2722 SMDiagnostic &Error) { 2723 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2724 } 2725 2726 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2727 VRegInfo *&Info, StringRef Src, 2728 SMDiagnostic &Error) { 2729 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2730 } 2731 2732 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2733 int &FI, StringRef Src, 2734 SMDiagnostic &Error) { 2735 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2736 } 2737 2738 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2739 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2740 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2741 } 2742