1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots, 45 const Name2RegClassMap &Names2RegClasses, 46 const Name2RegBankMap &Names2RegBanks) 47 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 48 Names2RegBanks(Names2RegBanks) { 49 } 50 51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 52 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 53 if (I.second) { 54 MachineRegisterInfo &MRI = MF.getRegInfo(); 55 VRegInfo *Info = new (Allocator) VRegInfo; 56 Info->VReg = MRI.createIncompleteVirtualRegister(); 57 I.first->second = Info; 58 } 59 return *I.first->second; 60 } 61 62 namespace { 63 64 /// A wrapper struct around the 'MachineOperand' struct that includes a source 65 /// range and other attributes. 66 struct ParsedMachineOperand { 67 MachineOperand Operand; 68 StringRef::iterator Begin; 69 StringRef::iterator End; 70 Optional<unsigned> TiedDefIdx; 71 72 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 73 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 74 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 75 if (TiedDefIdx) 76 assert(Operand.isReg() && Operand.isUse() && 77 "Only used register operands can be tied"); 78 } 79 }; 80 81 class MIParser { 82 MachineFunction &MF; 83 SMDiagnostic &Error; 84 StringRef Source, CurrentSource; 85 MIToken Token; 86 PerFunctionMIParsingState &PFS; 87 /// Maps from instruction names to op codes. 88 StringMap<unsigned> Names2InstrOpCodes; 89 /// Maps from register names to registers. 90 StringMap<unsigned> Names2Regs; 91 /// Maps from register mask names to register masks. 92 StringMap<const uint32_t *> Names2RegMasks; 93 /// Maps from subregister names to subregister indices. 94 StringMap<unsigned> Names2SubRegIndices; 95 /// Maps from slot numbers to function's unnamed basic blocks. 96 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 97 /// Maps from slot numbers to function's unnamed values. 98 DenseMap<unsigned, const Value *> Slots2Values; 99 /// Maps from target index names to target indices. 100 StringMap<int> Names2TargetIndices; 101 /// Maps from direct target flag names to the direct target flag values. 102 StringMap<unsigned> Names2DirectTargetFlags; 103 /// Maps from direct target flag names to the bitmask target flag values. 104 StringMap<unsigned> Names2BitmaskTargetFlags; 105 106 public: 107 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 108 StringRef Source); 109 110 /// \p SkipChar gives the number of characters to skip before looking 111 /// for the next token. 112 void lex(unsigned SkipChar = 0); 113 114 /// Report an error at the current location with the given message. 115 /// 116 /// This function always return true. 117 bool error(const Twine &Msg); 118 119 /// Report an error at the given location with the given message. 120 /// 121 /// This function always return true. 122 bool error(StringRef::iterator Loc, const Twine &Msg); 123 124 bool 125 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 126 bool parseBasicBlocks(); 127 bool parse(MachineInstr *&MI); 128 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 129 bool parseStandaloneNamedRegister(unsigned &Reg); 130 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 131 bool parseStandaloneRegister(unsigned &Reg); 132 bool parseStandaloneStackObject(int &FI); 133 bool parseStandaloneMDNode(MDNode *&Node); 134 135 bool 136 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 137 bool parseBasicBlock(MachineBasicBlock &MBB); 138 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 139 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 140 141 bool parseNamedRegister(unsigned &Reg); 142 bool parseVirtualRegister(VRegInfo *&Info); 143 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 144 bool parseRegisterFlag(unsigned &Flags); 145 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 146 bool parseSubRegisterIndex(unsigned &SubReg); 147 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 148 bool parseRegisterOperand(MachineOperand &Dest, 149 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 150 bool parseImmediateOperand(MachineOperand &Dest); 151 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 152 const Constant *&C); 153 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 154 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 155 bool parseTypedImmediateOperand(MachineOperand &Dest); 156 bool parseFPImmediateOperand(MachineOperand &Dest); 157 bool parseMBBReference(MachineBasicBlock *&MBB); 158 bool parseMBBOperand(MachineOperand &Dest); 159 bool parseStackFrameIndex(int &FI); 160 bool parseStackObjectOperand(MachineOperand &Dest); 161 bool parseFixedStackFrameIndex(int &FI); 162 bool parseFixedStackObjectOperand(MachineOperand &Dest); 163 bool parseGlobalValue(GlobalValue *&GV); 164 bool parseGlobalAddressOperand(MachineOperand &Dest); 165 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 166 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 167 bool parseJumpTableIndexOperand(MachineOperand &Dest); 168 bool parseExternalSymbolOperand(MachineOperand &Dest); 169 bool parseMDNode(MDNode *&Node); 170 bool parseMetadataOperand(MachineOperand &Dest); 171 bool parseCFIOffset(int &Offset); 172 bool parseCFIRegister(unsigned &Reg); 173 bool parseCFIOperand(MachineOperand &Dest); 174 bool parseIRBlock(BasicBlock *&BB, const Function &F); 175 bool parseBlockAddressOperand(MachineOperand &Dest); 176 bool parseIntrinsicOperand(MachineOperand &Dest); 177 bool parsePredicateOperand(MachineOperand &Dest); 178 bool parseTargetIndexOperand(MachineOperand &Dest); 179 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 180 bool parseMachineOperand(MachineOperand &Dest, 181 Optional<unsigned> &TiedDefIdx); 182 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 183 Optional<unsigned> &TiedDefIdx); 184 bool parseOffset(int64_t &Offset); 185 bool parseAlignment(unsigned &Alignment); 186 bool parseOperandsOffset(MachineOperand &Op); 187 bool parseIRValue(const Value *&V); 188 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 189 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 190 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 191 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 192 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 193 194 private: 195 /// Convert the integer literal in the current token into an unsigned integer. 196 /// 197 /// Return true if an error occurred. 198 bool getUnsigned(unsigned &Result); 199 200 /// Convert the integer literal in the current token into an uint64. 201 /// 202 /// Return true if an error occurred. 203 bool getUint64(uint64_t &Result); 204 205 /// Convert the hexadecimal literal in the current token into an unsigned 206 /// APInt with a minimum bitwidth required to represent the value. 207 /// 208 /// Return true if the literal does not represent an integer value. 209 bool getHexUint(APInt &Result); 210 211 /// If the current token is of the given kind, consume it and return false. 212 /// Otherwise report an error and return true. 213 bool expectAndConsume(MIToken::TokenKind TokenKind); 214 215 /// If the current token is of the given kind, consume it and return true. 216 /// Otherwise return false. 217 bool consumeIfPresent(MIToken::TokenKind TokenKind); 218 219 void initNames2InstrOpCodes(); 220 221 /// Try to convert an instruction name to an opcode. Return true if the 222 /// instruction name is invalid. 223 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 224 225 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 226 227 bool assignRegisterTies(MachineInstr &MI, 228 ArrayRef<ParsedMachineOperand> Operands); 229 230 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 231 const MCInstrDesc &MCID); 232 233 void initNames2Regs(); 234 235 /// Try to convert a register name to a register number. Return true if the 236 /// register name is invalid. 237 bool getRegisterByName(StringRef RegName, unsigned &Reg); 238 239 void initNames2RegMasks(); 240 241 /// Check if the given identifier is a name of a register mask. 242 /// 243 /// Return null if the identifier isn't a register mask. 244 const uint32_t *getRegMask(StringRef Identifier); 245 246 void initNames2SubRegIndices(); 247 248 /// Check if the given identifier is a name of a subregister index. 249 /// 250 /// Return 0 if the name isn't a subregister index class. 251 unsigned getSubRegIndex(StringRef Name); 252 253 const BasicBlock *getIRBlock(unsigned Slot); 254 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 255 256 const Value *getIRValue(unsigned Slot); 257 258 void initNames2TargetIndices(); 259 260 /// Try to convert a name of target index to the corresponding target index. 261 /// 262 /// Return true if the name isn't a name of a target index. 263 bool getTargetIndex(StringRef Name, int &Index); 264 265 void initNames2DirectTargetFlags(); 266 267 /// Try to convert a name of a direct target flag to the corresponding 268 /// target flag. 269 /// 270 /// Return true if the name isn't a name of a direct flag. 271 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 272 273 void initNames2BitmaskTargetFlags(); 274 275 /// Try to convert a name of a bitmask target flag to the corresponding 276 /// target flag. 277 /// 278 /// Return true if the name isn't a name of a bitmask target flag. 279 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 280 }; 281 282 } // end anonymous namespace 283 284 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 285 StringRef Source) 286 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 287 {} 288 289 void MIParser::lex(unsigned SkipChar) { 290 CurrentSource = lexMIToken( 291 CurrentSource.data() + SkipChar, Token, 292 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 293 } 294 295 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 296 297 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 298 const SourceMgr &SM = *PFS.SM; 299 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 300 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 301 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 302 // Create an ordinary diagnostic when the source manager's buffer is the 303 // source string. 304 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 305 return true; 306 } 307 // Create a diagnostic for a YAML string literal. 308 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 309 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 310 Source, None, None); 311 return true; 312 } 313 314 static const char *toString(MIToken::TokenKind TokenKind) { 315 switch (TokenKind) { 316 case MIToken::comma: 317 return "','"; 318 case MIToken::equal: 319 return "'='"; 320 case MIToken::colon: 321 return "':'"; 322 case MIToken::lparen: 323 return "'('"; 324 case MIToken::rparen: 325 return "')'"; 326 default: 327 return "<unknown token>"; 328 } 329 } 330 331 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 332 if (Token.isNot(TokenKind)) 333 return error(Twine("expected ") + toString(TokenKind)); 334 lex(); 335 return false; 336 } 337 338 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 339 if (Token.isNot(TokenKind)) 340 return false; 341 lex(); 342 return true; 343 } 344 345 bool MIParser::parseBasicBlockDefinition( 346 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 347 assert(Token.is(MIToken::MachineBasicBlockLabel)); 348 unsigned ID = 0; 349 if (getUnsigned(ID)) 350 return true; 351 auto Loc = Token.location(); 352 auto Name = Token.stringValue(); 353 lex(); 354 bool HasAddressTaken = false; 355 bool IsLandingPad = false; 356 unsigned Alignment = 0; 357 BasicBlock *BB = nullptr; 358 if (consumeIfPresent(MIToken::lparen)) { 359 do { 360 // TODO: Report an error when multiple same attributes are specified. 361 switch (Token.kind()) { 362 case MIToken::kw_address_taken: 363 HasAddressTaken = true; 364 lex(); 365 break; 366 case MIToken::kw_landing_pad: 367 IsLandingPad = true; 368 lex(); 369 break; 370 case MIToken::kw_align: 371 if (parseAlignment(Alignment)) 372 return true; 373 break; 374 case MIToken::IRBlock: 375 // TODO: Report an error when both name and ir block are specified. 376 if (parseIRBlock(BB, *MF.getFunction())) 377 return true; 378 lex(); 379 break; 380 default: 381 break; 382 } 383 } while (consumeIfPresent(MIToken::comma)); 384 if (expectAndConsume(MIToken::rparen)) 385 return true; 386 } 387 if (expectAndConsume(MIToken::colon)) 388 return true; 389 390 if (!Name.empty()) { 391 BB = dyn_cast_or_null<BasicBlock>( 392 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 393 if (!BB) 394 return error(Loc, Twine("basic block '") + Name + 395 "' is not defined in the function '" + 396 MF.getName() + "'"); 397 } 398 auto *MBB = MF.CreateMachineBasicBlock(BB); 399 MF.insert(MF.end(), MBB); 400 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 401 if (!WasInserted) 402 return error(Loc, Twine("redefinition of machine basic block with id #") + 403 Twine(ID)); 404 if (Alignment) 405 MBB->setAlignment(Alignment); 406 if (HasAddressTaken) 407 MBB->setHasAddressTaken(); 408 MBB->setIsEHPad(IsLandingPad); 409 return false; 410 } 411 412 bool MIParser::parseBasicBlockDefinitions( 413 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 414 lex(); 415 // Skip until the first machine basic block. 416 while (Token.is(MIToken::Newline)) 417 lex(); 418 if (Token.isErrorOrEOF()) 419 return Token.isError(); 420 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 421 return error("expected a basic block definition before instructions"); 422 unsigned BraceDepth = 0; 423 do { 424 if (parseBasicBlockDefinition(MBBSlots)) 425 return true; 426 bool IsAfterNewline = false; 427 // Skip until the next machine basic block. 428 while (true) { 429 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 430 Token.isErrorOrEOF()) 431 break; 432 else if (Token.is(MIToken::MachineBasicBlockLabel)) 433 return error("basic block definition should be located at the start of " 434 "the line"); 435 else if (consumeIfPresent(MIToken::Newline)) { 436 IsAfterNewline = true; 437 continue; 438 } 439 IsAfterNewline = false; 440 if (Token.is(MIToken::lbrace)) 441 ++BraceDepth; 442 if (Token.is(MIToken::rbrace)) { 443 if (!BraceDepth) 444 return error("extraneous closing brace ('}')"); 445 --BraceDepth; 446 } 447 lex(); 448 } 449 // Verify that we closed all of the '{' at the end of a file or a block. 450 if (!Token.isError() && BraceDepth) 451 return error("expected '}'"); // FIXME: Report a note that shows '{'. 452 } while (!Token.isErrorOrEOF()); 453 return Token.isError(); 454 } 455 456 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 457 assert(Token.is(MIToken::kw_liveins)); 458 lex(); 459 if (expectAndConsume(MIToken::colon)) 460 return true; 461 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 462 return false; 463 do { 464 if (Token.isNot(MIToken::NamedRegister)) 465 return error("expected a named register"); 466 unsigned Reg = 0; 467 if (parseNamedRegister(Reg)) 468 return true; 469 lex(); 470 LaneBitmask Mask = LaneBitmask::getAll(); 471 if (consumeIfPresent(MIToken::colon)) { 472 // Parse lane mask. 473 if (Token.isNot(MIToken::IntegerLiteral) && 474 Token.isNot(MIToken::HexLiteral)) 475 return error("expected a lane mask"); 476 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 477 "Use correct get-function for lane mask"); 478 LaneBitmask::Type V; 479 if (getUnsigned(V)) 480 return error("invalid lane mask value"); 481 Mask = LaneBitmask(V); 482 lex(); 483 } 484 MBB.addLiveIn(Reg, Mask); 485 } while (consumeIfPresent(MIToken::comma)); 486 return false; 487 } 488 489 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 490 assert(Token.is(MIToken::kw_successors)); 491 lex(); 492 if (expectAndConsume(MIToken::colon)) 493 return true; 494 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 495 return false; 496 do { 497 if (Token.isNot(MIToken::MachineBasicBlock)) 498 return error("expected a machine basic block reference"); 499 MachineBasicBlock *SuccMBB = nullptr; 500 if (parseMBBReference(SuccMBB)) 501 return true; 502 lex(); 503 unsigned Weight = 0; 504 if (consumeIfPresent(MIToken::lparen)) { 505 if (Token.isNot(MIToken::IntegerLiteral) && 506 Token.isNot(MIToken::HexLiteral)) 507 return error("expected an integer literal after '('"); 508 if (getUnsigned(Weight)) 509 return true; 510 lex(); 511 if (expectAndConsume(MIToken::rparen)) 512 return true; 513 } 514 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 515 } while (consumeIfPresent(MIToken::comma)); 516 MBB.normalizeSuccProbs(); 517 return false; 518 } 519 520 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 521 // Skip the definition. 522 assert(Token.is(MIToken::MachineBasicBlockLabel)); 523 lex(); 524 if (consumeIfPresent(MIToken::lparen)) { 525 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 526 lex(); 527 consumeIfPresent(MIToken::rparen); 528 } 529 consumeIfPresent(MIToken::colon); 530 531 // Parse the liveins and successors. 532 // N.B: Multiple lists of successors and liveins are allowed and they're 533 // merged into one. 534 // Example: 535 // liveins: %edi 536 // liveins: %esi 537 // 538 // is equivalent to 539 // liveins: %edi, %esi 540 while (true) { 541 if (Token.is(MIToken::kw_successors)) { 542 if (parseBasicBlockSuccessors(MBB)) 543 return true; 544 } else if (Token.is(MIToken::kw_liveins)) { 545 if (parseBasicBlockLiveins(MBB)) 546 return true; 547 } else if (consumeIfPresent(MIToken::Newline)) { 548 continue; 549 } else 550 break; 551 if (!Token.isNewlineOrEOF()) 552 return error("expected line break at the end of a list"); 553 lex(); 554 } 555 556 // Parse the instructions. 557 bool IsInBundle = false; 558 MachineInstr *PrevMI = nullptr; 559 while (true) { 560 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 561 return false; 562 else if (consumeIfPresent(MIToken::Newline)) 563 continue; 564 if (consumeIfPresent(MIToken::rbrace)) { 565 // The first parsing pass should verify that all closing '}' have an 566 // opening '{'. 567 assert(IsInBundle); 568 IsInBundle = false; 569 continue; 570 } 571 MachineInstr *MI = nullptr; 572 if (parse(MI)) 573 return true; 574 MBB.insert(MBB.end(), MI); 575 if (IsInBundle) { 576 PrevMI->setFlag(MachineInstr::BundledSucc); 577 MI->setFlag(MachineInstr::BundledPred); 578 } 579 PrevMI = MI; 580 if (Token.is(MIToken::lbrace)) { 581 if (IsInBundle) 582 return error("nested instruction bundles are not allowed"); 583 lex(); 584 // This instruction is the start of the bundle. 585 MI->setFlag(MachineInstr::BundledSucc); 586 IsInBundle = true; 587 if (!Token.is(MIToken::Newline)) 588 // The next instruction can be on the same line. 589 continue; 590 } 591 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 592 lex(); 593 } 594 return false; 595 } 596 597 bool MIParser::parseBasicBlocks() { 598 lex(); 599 // Skip until the first machine basic block. 600 while (Token.is(MIToken::Newline)) 601 lex(); 602 if (Token.isErrorOrEOF()) 603 return Token.isError(); 604 // The first parsing pass should have verified that this token is a MBB label 605 // in the 'parseBasicBlockDefinitions' method. 606 assert(Token.is(MIToken::MachineBasicBlockLabel)); 607 do { 608 MachineBasicBlock *MBB = nullptr; 609 if (parseMBBReference(MBB)) 610 return true; 611 if (parseBasicBlock(*MBB)) 612 return true; 613 // The method 'parseBasicBlock' should parse the whole block until the next 614 // block or the end of file. 615 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 616 } while (Token.isNot(MIToken::Eof)); 617 return false; 618 } 619 620 bool MIParser::parse(MachineInstr *&MI) { 621 // Parse any register operands before '=' 622 MachineOperand MO = MachineOperand::CreateImm(0); 623 SmallVector<ParsedMachineOperand, 8> Operands; 624 while (Token.isRegister() || Token.isRegisterFlag()) { 625 auto Loc = Token.location(); 626 Optional<unsigned> TiedDefIdx; 627 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 628 return true; 629 Operands.push_back( 630 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 631 if (Token.isNot(MIToken::comma)) 632 break; 633 lex(); 634 } 635 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 636 return true; 637 638 unsigned OpCode, Flags = 0; 639 if (Token.isError() || parseInstruction(OpCode, Flags)) 640 return true; 641 642 // Parse the remaining machine operands. 643 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 644 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 645 auto Loc = Token.location(); 646 Optional<unsigned> TiedDefIdx; 647 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 648 return true; 649 Operands.push_back( 650 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 651 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 652 Token.is(MIToken::lbrace)) 653 break; 654 if (Token.isNot(MIToken::comma)) 655 return error("expected ',' before the next machine operand"); 656 lex(); 657 } 658 659 DebugLoc DebugLocation; 660 if (Token.is(MIToken::kw_debug_location)) { 661 lex(); 662 if (Token.isNot(MIToken::exclaim)) 663 return error("expected a metadata node after 'debug-location'"); 664 MDNode *Node = nullptr; 665 if (parseMDNode(Node)) 666 return true; 667 DebugLocation = DebugLoc(Node); 668 } 669 670 // Parse the machine memory operands. 671 SmallVector<MachineMemOperand *, 2> MemOperands; 672 if (Token.is(MIToken::coloncolon)) { 673 lex(); 674 while (!Token.isNewlineOrEOF()) { 675 MachineMemOperand *MemOp = nullptr; 676 if (parseMachineMemoryOperand(MemOp)) 677 return true; 678 MemOperands.push_back(MemOp); 679 if (Token.isNewlineOrEOF()) 680 break; 681 if (Token.isNot(MIToken::comma)) 682 return error("expected ',' before the next machine memory operand"); 683 lex(); 684 } 685 } 686 687 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 688 if (!MCID.isVariadic()) { 689 // FIXME: Move the implicit operand verification to the machine verifier. 690 if (verifyImplicitOperands(Operands, MCID)) 691 return true; 692 } 693 694 // TODO: Check for extraneous machine operands. 695 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 696 MI->setFlags(Flags); 697 for (const auto &Operand : Operands) 698 MI->addOperand(MF, Operand.Operand); 699 if (assignRegisterTies(*MI, Operands)) 700 return true; 701 if (MemOperands.empty()) 702 return false; 703 MachineInstr::mmo_iterator MemRefs = 704 MF.allocateMemRefsArray(MemOperands.size()); 705 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 706 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 707 return false; 708 } 709 710 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 711 lex(); 712 if (Token.isNot(MIToken::MachineBasicBlock)) 713 return error("expected a machine basic block reference"); 714 if (parseMBBReference(MBB)) 715 return true; 716 lex(); 717 if (Token.isNot(MIToken::Eof)) 718 return error( 719 "expected end of string after the machine basic block reference"); 720 return false; 721 } 722 723 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 724 lex(); 725 if (Token.isNot(MIToken::NamedRegister)) 726 return error("expected a named register"); 727 if (parseNamedRegister(Reg)) 728 return true; 729 lex(); 730 if (Token.isNot(MIToken::Eof)) 731 return error("expected end of string after the register reference"); 732 return false; 733 } 734 735 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 736 lex(); 737 if (Token.isNot(MIToken::VirtualRegister)) 738 return error("expected a virtual register"); 739 if (parseVirtualRegister(Info)) 740 return true; 741 lex(); 742 if (Token.isNot(MIToken::Eof)) 743 return error("expected end of string after the register reference"); 744 return false; 745 } 746 747 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 748 lex(); 749 if (Token.isNot(MIToken::NamedRegister) && 750 Token.isNot(MIToken::VirtualRegister)) 751 return error("expected either a named or virtual register"); 752 753 VRegInfo *Info; 754 if (parseRegister(Reg, Info)) 755 return true; 756 757 lex(); 758 if (Token.isNot(MIToken::Eof)) 759 return error("expected end of string after the register reference"); 760 return false; 761 } 762 763 bool MIParser::parseStandaloneStackObject(int &FI) { 764 lex(); 765 if (Token.isNot(MIToken::StackObject)) 766 return error("expected a stack object"); 767 if (parseStackFrameIndex(FI)) 768 return true; 769 if (Token.isNot(MIToken::Eof)) 770 return error("expected end of string after the stack object reference"); 771 return false; 772 } 773 774 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 775 lex(); 776 if (Token.isNot(MIToken::exclaim)) 777 return error("expected a metadata node"); 778 if (parseMDNode(Node)) 779 return true; 780 if (Token.isNot(MIToken::Eof)) 781 return error("expected end of string after the metadata node"); 782 return false; 783 } 784 785 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 786 assert(MO.isImplicit()); 787 return MO.isDef() ? "implicit-def" : "implicit"; 788 } 789 790 static std::string getRegisterName(const TargetRegisterInfo *TRI, 791 unsigned Reg) { 792 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 793 return StringRef(TRI->getName(Reg)).lower(); 794 } 795 796 /// Return true if the parsed machine operands contain a given machine operand. 797 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 798 ArrayRef<ParsedMachineOperand> Operands) { 799 for (const auto &I : Operands) { 800 if (ImplicitOperand.isIdenticalTo(I.Operand)) 801 return true; 802 } 803 return false; 804 } 805 806 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 807 const MCInstrDesc &MCID) { 808 if (MCID.isCall()) 809 // We can't verify call instructions as they can contain arbitrary implicit 810 // register and register mask operands. 811 return false; 812 813 // Gather all the expected implicit operands. 814 SmallVector<MachineOperand, 4> ImplicitOperands; 815 if (MCID.ImplicitDefs) 816 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 817 ImplicitOperands.push_back( 818 MachineOperand::CreateReg(*ImpDefs, true, true)); 819 if (MCID.ImplicitUses) 820 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 821 ImplicitOperands.push_back( 822 MachineOperand::CreateReg(*ImpUses, false, true)); 823 824 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 825 assert(TRI && "Expected target register info"); 826 for (const auto &I : ImplicitOperands) { 827 if (isImplicitOperandIn(I, Operands)) 828 continue; 829 return error(Operands.empty() ? Token.location() : Operands.back().End, 830 Twine("missing implicit register operand '") + 831 printImplicitRegisterFlag(I) + " %" + 832 getRegisterName(TRI, I.getReg()) + "'"); 833 } 834 return false; 835 } 836 837 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 838 if (Token.is(MIToken::kw_frame_setup)) { 839 Flags |= MachineInstr::FrameSetup; 840 lex(); 841 } 842 if (Token.isNot(MIToken::Identifier)) 843 return error("expected a machine instruction"); 844 StringRef InstrName = Token.stringValue(); 845 if (parseInstrName(InstrName, OpCode)) 846 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 847 lex(); 848 return false; 849 } 850 851 bool MIParser::parseNamedRegister(unsigned &Reg) { 852 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 853 StringRef Name = Token.stringValue(); 854 if (getRegisterByName(Name, Reg)) 855 return error(Twine("unknown register name '") + Name + "'"); 856 return false; 857 } 858 859 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 860 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 861 unsigned ID; 862 if (getUnsigned(ID)) 863 return true; 864 Info = &PFS.getVRegInfo(ID); 865 return false; 866 } 867 868 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 869 switch (Token.kind()) { 870 case MIToken::underscore: 871 Reg = 0; 872 return false; 873 case MIToken::NamedRegister: 874 return parseNamedRegister(Reg); 875 case MIToken::VirtualRegister: 876 if (parseVirtualRegister(Info)) 877 return true; 878 Reg = Info->VReg; 879 return false; 880 // TODO: Parse other register kinds. 881 default: 882 llvm_unreachable("The current token should be a register"); 883 } 884 } 885 886 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 887 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 888 return error("expected '_', register class, or register bank name"); 889 StringRef::iterator Loc = Token.location(); 890 StringRef Name = Token.stringValue(); 891 892 // Was it a register class? 893 auto RCNameI = PFS.Names2RegClasses.find(Name); 894 if (RCNameI != PFS.Names2RegClasses.end()) { 895 lex(); 896 const TargetRegisterClass &RC = *RCNameI->getValue(); 897 898 switch (RegInfo.Kind) { 899 case VRegInfo::UNKNOWN: 900 case VRegInfo::NORMAL: 901 RegInfo.Kind = VRegInfo::NORMAL; 902 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 903 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 904 return error(Loc, Twine("conflicting register classes, previously: ") + 905 Twine(TRI.getRegClassName(RegInfo.D.RC))); 906 } 907 RegInfo.D.RC = &RC; 908 RegInfo.Explicit = true; 909 return false; 910 911 case VRegInfo::GENERIC: 912 case VRegInfo::REGBANK: 913 return error(Loc, "register class specification on generic register"); 914 } 915 llvm_unreachable("Unexpected register kind"); 916 } 917 918 // Should be a register bank or a generic register. 919 const RegisterBank *RegBank = nullptr; 920 if (Name != "_") { 921 auto RBNameI = PFS.Names2RegBanks.find(Name); 922 if (RBNameI == PFS.Names2RegBanks.end()) 923 return error(Loc, "expected '_', register class, or register bank name"); 924 RegBank = RBNameI->getValue(); 925 } 926 927 lex(); 928 929 switch (RegInfo.Kind) { 930 case VRegInfo::UNKNOWN: 931 case VRegInfo::GENERIC: 932 case VRegInfo::REGBANK: 933 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 934 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 935 return error(Loc, "conflicting generic register banks"); 936 RegInfo.D.RegBank = RegBank; 937 RegInfo.Explicit = true; 938 return false; 939 940 case VRegInfo::NORMAL: 941 return error(Loc, "register bank specification on normal register"); 942 } 943 llvm_unreachable("Unexpected register kind"); 944 } 945 946 bool MIParser::parseRegisterFlag(unsigned &Flags) { 947 const unsigned OldFlags = Flags; 948 switch (Token.kind()) { 949 case MIToken::kw_implicit: 950 Flags |= RegState::Implicit; 951 break; 952 case MIToken::kw_implicit_define: 953 Flags |= RegState::ImplicitDefine; 954 break; 955 case MIToken::kw_def: 956 Flags |= RegState::Define; 957 break; 958 case MIToken::kw_dead: 959 Flags |= RegState::Dead; 960 break; 961 case MIToken::kw_killed: 962 Flags |= RegState::Kill; 963 break; 964 case MIToken::kw_undef: 965 Flags |= RegState::Undef; 966 break; 967 case MIToken::kw_internal: 968 Flags |= RegState::InternalRead; 969 break; 970 case MIToken::kw_early_clobber: 971 Flags |= RegState::EarlyClobber; 972 break; 973 case MIToken::kw_debug_use: 974 Flags |= RegState::Debug; 975 break; 976 default: 977 llvm_unreachable("The current token should be a register flag"); 978 } 979 if (OldFlags == Flags) 980 // We know that the same flag is specified more than once when the flags 981 // weren't modified. 982 return error("duplicate '" + Token.stringValue() + "' register flag"); 983 lex(); 984 return false; 985 } 986 987 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 988 assert(Token.is(MIToken::dot)); 989 lex(); 990 if (Token.isNot(MIToken::Identifier)) 991 return error("expected a subregister index after '.'"); 992 auto Name = Token.stringValue(); 993 SubReg = getSubRegIndex(Name); 994 if (!SubReg) 995 return error(Twine("use of unknown subregister index '") + Name + "'"); 996 lex(); 997 return false; 998 } 999 1000 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1001 if (!consumeIfPresent(MIToken::kw_tied_def)) 1002 return true; 1003 if (Token.isNot(MIToken::IntegerLiteral)) 1004 return error("expected an integer literal after 'tied-def'"); 1005 if (getUnsigned(TiedDefIdx)) 1006 return true; 1007 lex(); 1008 if (expectAndConsume(MIToken::rparen)) 1009 return true; 1010 return false; 1011 } 1012 1013 bool MIParser::assignRegisterTies(MachineInstr &MI, 1014 ArrayRef<ParsedMachineOperand> Operands) { 1015 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1016 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1017 if (!Operands[I].TiedDefIdx) 1018 continue; 1019 // The parser ensures that this operand is a register use, so we just have 1020 // to check the tied-def operand. 1021 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1022 if (DefIdx >= E) 1023 return error(Operands[I].Begin, 1024 Twine("use of invalid tied-def operand index '" + 1025 Twine(DefIdx) + "'; instruction has only ") + 1026 Twine(E) + " operands"); 1027 const auto &DefOperand = Operands[DefIdx].Operand; 1028 if (!DefOperand.isReg() || !DefOperand.isDef()) 1029 // FIXME: add note with the def operand. 1030 return error(Operands[I].Begin, 1031 Twine("use of invalid tied-def operand index '") + 1032 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1033 " isn't a defined register"); 1034 // Check that the tied-def operand wasn't tied elsewhere. 1035 for (const auto &TiedPair : TiedRegisterPairs) { 1036 if (TiedPair.first == DefIdx) 1037 return error(Operands[I].Begin, 1038 Twine("the tied-def operand #") + Twine(DefIdx) + 1039 " is already tied with another register operand"); 1040 } 1041 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1042 } 1043 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1044 // indices must be less than tied max. 1045 for (const auto &TiedPair : TiedRegisterPairs) 1046 MI.tieOperands(TiedPair.first, TiedPair.second); 1047 return false; 1048 } 1049 1050 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1051 Optional<unsigned> &TiedDefIdx, 1052 bool IsDef) { 1053 unsigned Flags = IsDef ? RegState::Define : 0; 1054 while (Token.isRegisterFlag()) { 1055 if (parseRegisterFlag(Flags)) 1056 return true; 1057 } 1058 if (!Token.isRegister()) 1059 return error("expected a register after register flags"); 1060 unsigned Reg; 1061 VRegInfo *RegInfo; 1062 if (parseRegister(Reg, RegInfo)) 1063 return true; 1064 lex(); 1065 unsigned SubReg = 0; 1066 if (Token.is(MIToken::dot)) { 1067 if (parseSubRegisterIndex(SubReg)) 1068 return true; 1069 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1070 return error("subregister index expects a virtual register"); 1071 } 1072 if (Token.is(MIToken::colon)) { 1073 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1074 return error("register class specification expects a virtual register"); 1075 lex(); 1076 if (parseRegisterClassOrBank(*RegInfo)) 1077 return true; 1078 } 1079 MachineRegisterInfo &MRI = MF.getRegInfo(); 1080 if ((Flags & RegState::Define) == 0) { 1081 if (consumeIfPresent(MIToken::lparen)) { 1082 unsigned Idx; 1083 if (!parseRegisterTiedDefIndex(Idx)) 1084 TiedDefIdx = Idx; 1085 else { 1086 // Try a redundant low-level type. 1087 LLT Ty; 1088 if (parseLowLevelType(Token.location(), Ty)) 1089 return error("expected tied-def or low-level type after '('"); 1090 1091 if (expectAndConsume(MIToken::rparen)) 1092 return true; 1093 1094 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1095 return error("inconsistent type for generic virtual register"); 1096 1097 MRI.setType(Reg, Ty); 1098 } 1099 } 1100 } else if (consumeIfPresent(MIToken::lparen)) { 1101 // Virtual registers may have a tpe with GlobalISel. 1102 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1103 return error("unexpected type on physical register"); 1104 1105 LLT Ty; 1106 if (parseLowLevelType(Token.location(), Ty)) 1107 return true; 1108 1109 if (expectAndConsume(MIToken::rparen)) 1110 return true; 1111 1112 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1113 return error("inconsistent type for generic virtual register"); 1114 1115 MRI.setType(Reg, Ty); 1116 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1117 // Generic virtual registers must have a type. 1118 // If we end up here this means the type hasn't been specified and 1119 // this is bad! 1120 if (RegInfo->Kind == VRegInfo::GENERIC || 1121 RegInfo->Kind == VRegInfo::REGBANK) 1122 return error("generic virtual registers must have a type"); 1123 } 1124 Dest = MachineOperand::CreateReg( 1125 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1126 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1127 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1128 Flags & RegState::InternalRead); 1129 return false; 1130 } 1131 1132 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1133 assert(Token.is(MIToken::IntegerLiteral)); 1134 const APSInt &Int = Token.integerValue(); 1135 if (Int.getMinSignedBits() > 64) 1136 return error("integer literal is too large to be an immediate operand"); 1137 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1138 lex(); 1139 return false; 1140 } 1141 1142 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1143 const Constant *&C) { 1144 auto Source = StringValue.str(); // The source has to be null terminated. 1145 SMDiagnostic Err; 1146 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1147 &PFS.IRSlots); 1148 if (!C) 1149 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1150 return false; 1151 } 1152 1153 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1154 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1155 return true; 1156 lex(); 1157 return false; 1158 } 1159 1160 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1161 if (Token.is(MIToken::ScalarType)) { 1162 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1163 lex(); 1164 return false; 1165 } else if (Token.is(MIToken::PointerType)) { 1166 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1167 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1168 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1169 lex(); 1170 return false; 1171 } 1172 1173 // Now we're looking for a vector. 1174 if (Token.isNot(MIToken::less)) 1175 return error(Loc, 1176 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1177 1178 lex(); 1179 1180 if (Token.isNot(MIToken::IntegerLiteral)) 1181 return error(Loc, "expected <N x sM> for vctor type"); 1182 uint64_t NumElements = Token.integerValue().getZExtValue(); 1183 lex(); 1184 1185 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1186 return error(Loc, "expected '<N x sM>' for vector type"); 1187 lex(); 1188 1189 if (Token.isNot(MIToken::ScalarType)) 1190 return error(Loc, "expected '<N x sM>' for vector type"); 1191 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1192 lex(); 1193 1194 if (Token.isNot(MIToken::greater)) 1195 return error(Loc, "expected '<N x sM>' for vector type"); 1196 lex(); 1197 1198 Ty = LLT::vector(NumElements, ScalarSize); 1199 return false; 1200 } 1201 1202 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1203 assert(Token.is(MIToken::IntegerType)); 1204 auto Loc = Token.location(); 1205 lex(); 1206 if (Token.isNot(MIToken::IntegerLiteral)) 1207 return error("expected an integer literal"); 1208 const Constant *C = nullptr; 1209 if (parseIRConstant(Loc, C)) 1210 return true; 1211 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1212 return false; 1213 } 1214 1215 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1216 auto Loc = Token.location(); 1217 lex(); 1218 if (Token.isNot(MIToken::FloatingPointLiteral) && 1219 Token.isNot(MIToken::HexLiteral)) 1220 return error("expected a floating point literal"); 1221 const Constant *C = nullptr; 1222 if (parseIRConstant(Loc, C)) 1223 return true; 1224 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1225 return false; 1226 } 1227 1228 bool MIParser::getUnsigned(unsigned &Result) { 1229 if (Token.hasIntegerValue()) { 1230 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1231 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1232 if (Val64 == Limit) 1233 return error("expected 32-bit integer (too large)"); 1234 Result = Val64; 1235 return false; 1236 } 1237 if (Token.is(MIToken::HexLiteral)) { 1238 APInt A; 1239 if (getHexUint(A)) 1240 return true; 1241 if (A.getBitWidth() > 32) 1242 return error("expected 32-bit integer (too large)"); 1243 Result = A.getZExtValue(); 1244 return false; 1245 } 1246 return true; 1247 } 1248 1249 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1250 assert(Token.is(MIToken::MachineBasicBlock) || 1251 Token.is(MIToken::MachineBasicBlockLabel)); 1252 unsigned Number; 1253 if (getUnsigned(Number)) 1254 return true; 1255 auto MBBInfo = PFS.MBBSlots.find(Number); 1256 if (MBBInfo == PFS.MBBSlots.end()) 1257 return error(Twine("use of undefined machine basic block #") + 1258 Twine(Number)); 1259 MBB = MBBInfo->second; 1260 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1261 return error(Twine("the name of machine basic block #") + Twine(Number) + 1262 " isn't '" + Token.stringValue() + "'"); 1263 return false; 1264 } 1265 1266 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1267 MachineBasicBlock *MBB; 1268 if (parseMBBReference(MBB)) 1269 return true; 1270 Dest = MachineOperand::CreateMBB(MBB); 1271 lex(); 1272 return false; 1273 } 1274 1275 bool MIParser::parseStackFrameIndex(int &FI) { 1276 assert(Token.is(MIToken::StackObject)); 1277 unsigned ID; 1278 if (getUnsigned(ID)) 1279 return true; 1280 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1281 if (ObjectInfo == PFS.StackObjectSlots.end()) 1282 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1283 "'"); 1284 StringRef Name; 1285 if (const auto *Alloca = 1286 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1287 Name = Alloca->getName(); 1288 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1289 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1290 "' isn't '" + Token.stringValue() + "'"); 1291 lex(); 1292 FI = ObjectInfo->second; 1293 return false; 1294 } 1295 1296 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1297 int FI; 1298 if (parseStackFrameIndex(FI)) 1299 return true; 1300 Dest = MachineOperand::CreateFI(FI); 1301 return false; 1302 } 1303 1304 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1305 assert(Token.is(MIToken::FixedStackObject)); 1306 unsigned ID; 1307 if (getUnsigned(ID)) 1308 return true; 1309 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1310 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1311 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1312 Twine(ID) + "'"); 1313 lex(); 1314 FI = ObjectInfo->second; 1315 return false; 1316 } 1317 1318 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1319 int FI; 1320 if (parseFixedStackFrameIndex(FI)) 1321 return true; 1322 Dest = MachineOperand::CreateFI(FI); 1323 return false; 1324 } 1325 1326 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1327 switch (Token.kind()) { 1328 case MIToken::NamedGlobalValue: { 1329 const Module *M = MF.getFunction()->getParent(); 1330 GV = M->getNamedValue(Token.stringValue()); 1331 if (!GV) 1332 return error(Twine("use of undefined global value '") + Token.range() + 1333 "'"); 1334 break; 1335 } 1336 case MIToken::GlobalValue: { 1337 unsigned GVIdx; 1338 if (getUnsigned(GVIdx)) 1339 return true; 1340 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1341 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1342 "'"); 1343 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1344 break; 1345 } 1346 default: 1347 llvm_unreachable("The current token should be a global value"); 1348 } 1349 return false; 1350 } 1351 1352 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1353 GlobalValue *GV = nullptr; 1354 if (parseGlobalValue(GV)) 1355 return true; 1356 lex(); 1357 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1358 if (parseOperandsOffset(Dest)) 1359 return true; 1360 return false; 1361 } 1362 1363 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1364 assert(Token.is(MIToken::ConstantPoolItem)); 1365 unsigned ID; 1366 if (getUnsigned(ID)) 1367 return true; 1368 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1369 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1370 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1371 lex(); 1372 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1373 if (parseOperandsOffset(Dest)) 1374 return true; 1375 return false; 1376 } 1377 1378 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1379 assert(Token.is(MIToken::JumpTableIndex)); 1380 unsigned ID; 1381 if (getUnsigned(ID)) 1382 return true; 1383 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1384 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1385 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1386 lex(); 1387 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1388 return false; 1389 } 1390 1391 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1392 assert(Token.is(MIToken::ExternalSymbol)); 1393 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1394 lex(); 1395 Dest = MachineOperand::CreateES(Symbol); 1396 if (parseOperandsOffset(Dest)) 1397 return true; 1398 return false; 1399 } 1400 1401 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1402 assert(Token.is(MIToken::SubRegisterIndex)); 1403 StringRef Name = Token.stringValue(); 1404 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1405 if (SubRegIndex == 0) 1406 return error(Twine("unknown subregister index '") + Name + "'"); 1407 lex(); 1408 Dest = MachineOperand::CreateImm(SubRegIndex); 1409 return false; 1410 } 1411 1412 bool MIParser::parseMDNode(MDNode *&Node) { 1413 assert(Token.is(MIToken::exclaim)); 1414 auto Loc = Token.location(); 1415 lex(); 1416 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1417 return error("expected metadata id after '!'"); 1418 unsigned ID; 1419 if (getUnsigned(ID)) 1420 return true; 1421 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1422 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1423 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1424 lex(); 1425 Node = NodeInfo->second.get(); 1426 return false; 1427 } 1428 1429 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1430 MDNode *Node = nullptr; 1431 if (parseMDNode(Node)) 1432 return true; 1433 Dest = MachineOperand::CreateMetadata(Node); 1434 return false; 1435 } 1436 1437 bool MIParser::parseCFIOffset(int &Offset) { 1438 if (Token.isNot(MIToken::IntegerLiteral)) 1439 return error("expected a cfi offset"); 1440 if (Token.integerValue().getMinSignedBits() > 32) 1441 return error("expected a 32 bit integer (the cfi offset is too large)"); 1442 Offset = (int)Token.integerValue().getExtValue(); 1443 lex(); 1444 return false; 1445 } 1446 1447 bool MIParser::parseCFIRegister(unsigned &Reg) { 1448 if (Token.isNot(MIToken::NamedRegister)) 1449 return error("expected a cfi register"); 1450 unsigned LLVMReg; 1451 if (parseNamedRegister(LLVMReg)) 1452 return true; 1453 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1454 assert(TRI && "Expected target register info"); 1455 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1456 if (DwarfReg < 0) 1457 return error("invalid DWARF register"); 1458 Reg = (unsigned)DwarfReg; 1459 lex(); 1460 return false; 1461 } 1462 1463 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1464 auto Kind = Token.kind(); 1465 lex(); 1466 int Offset; 1467 unsigned Reg; 1468 unsigned CFIIndex; 1469 switch (Kind) { 1470 case MIToken::kw_cfi_same_value: 1471 if (parseCFIRegister(Reg)) 1472 return true; 1473 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1474 break; 1475 case MIToken::kw_cfi_offset: 1476 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1477 parseCFIOffset(Offset)) 1478 return true; 1479 CFIIndex = 1480 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1481 break; 1482 case MIToken::kw_cfi_def_cfa_register: 1483 if (parseCFIRegister(Reg)) 1484 return true; 1485 CFIIndex = 1486 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1487 break; 1488 case MIToken::kw_cfi_def_cfa_offset: 1489 if (parseCFIOffset(Offset)) 1490 return true; 1491 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1492 CFIIndex = MF.addFrameInst( 1493 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1494 break; 1495 case MIToken::kw_cfi_def_cfa: 1496 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1497 parseCFIOffset(Offset)) 1498 return true; 1499 // NB: MCCFIInstruction::createDefCfa negates the offset. 1500 CFIIndex = 1501 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1502 break; 1503 default: 1504 // TODO: Parse the other CFI operands. 1505 llvm_unreachable("The current token should be a cfi operand"); 1506 } 1507 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1508 return false; 1509 } 1510 1511 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1512 switch (Token.kind()) { 1513 case MIToken::NamedIRBlock: { 1514 BB = dyn_cast_or_null<BasicBlock>( 1515 F.getValueSymbolTable()->lookup(Token.stringValue())); 1516 if (!BB) 1517 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1518 break; 1519 } 1520 case MIToken::IRBlock: { 1521 unsigned SlotNumber = 0; 1522 if (getUnsigned(SlotNumber)) 1523 return true; 1524 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1525 if (!BB) 1526 return error(Twine("use of undefined IR block '%ir-block.") + 1527 Twine(SlotNumber) + "'"); 1528 break; 1529 } 1530 default: 1531 llvm_unreachable("The current token should be an IR block reference"); 1532 } 1533 return false; 1534 } 1535 1536 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1537 assert(Token.is(MIToken::kw_blockaddress)); 1538 lex(); 1539 if (expectAndConsume(MIToken::lparen)) 1540 return true; 1541 if (Token.isNot(MIToken::GlobalValue) && 1542 Token.isNot(MIToken::NamedGlobalValue)) 1543 return error("expected a global value"); 1544 GlobalValue *GV = nullptr; 1545 if (parseGlobalValue(GV)) 1546 return true; 1547 auto *F = dyn_cast<Function>(GV); 1548 if (!F) 1549 return error("expected an IR function reference"); 1550 lex(); 1551 if (expectAndConsume(MIToken::comma)) 1552 return true; 1553 BasicBlock *BB = nullptr; 1554 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1555 return error("expected an IR block reference"); 1556 if (parseIRBlock(BB, *F)) 1557 return true; 1558 lex(); 1559 if (expectAndConsume(MIToken::rparen)) 1560 return true; 1561 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1562 if (parseOperandsOffset(Dest)) 1563 return true; 1564 return false; 1565 } 1566 1567 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1568 assert(Token.is(MIToken::kw_intrinsic)); 1569 lex(); 1570 if (expectAndConsume(MIToken::lparen)) 1571 return error("expected syntax intrinsic(@llvm.whatever)"); 1572 1573 if (Token.isNot(MIToken::NamedGlobalValue)) 1574 return error("expected syntax intrinsic(@llvm.whatever)"); 1575 1576 std::string Name = Token.stringValue(); 1577 lex(); 1578 1579 if (expectAndConsume(MIToken::rparen)) 1580 return error("expected ')' to terminate intrinsic name"); 1581 1582 // Find out what intrinsic we're dealing with, first try the global namespace 1583 // and then the target's private intrinsics if that fails. 1584 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1585 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1586 if (ID == Intrinsic::not_intrinsic && TII) 1587 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1588 1589 if (ID == Intrinsic::not_intrinsic) 1590 return error("unknown intrinsic name"); 1591 Dest = MachineOperand::CreateIntrinsicID(ID); 1592 1593 return false; 1594 } 1595 1596 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1597 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1598 bool IsFloat = Token.is(MIToken::kw_floatpred); 1599 lex(); 1600 1601 if (expectAndConsume(MIToken::lparen)) 1602 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1603 1604 if (Token.isNot(MIToken::Identifier)) 1605 return error("whatever"); 1606 1607 CmpInst::Predicate Pred; 1608 if (IsFloat) { 1609 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1610 .Case("false", CmpInst::FCMP_FALSE) 1611 .Case("oeq", CmpInst::FCMP_OEQ) 1612 .Case("ogt", CmpInst::FCMP_OGT) 1613 .Case("oge", CmpInst::FCMP_OGE) 1614 .Case("olt", CmpInst::FCMP_OLT) 1615 .Case("ole", CmpInst::FCMP_OLE) 1616 .Case("one", CmpInst::FCMP_ONE) 1617 .Case("ord", CmpInst::FCMP_ORD) 1618 .Case("uno", CmpInst::FCMP_UNO) 1619 .Case("ueq", CmpInst::FCMP_UEQ) 1620 .Case("ugt", CmpInst::FCMP_UGT) 1621 .Case("uge", CmpInst::FCMP_UGE) 1622 .Case("ult", CmpInst::FCMP_ULT) 1623 .Case("ule", CmpInst::FCMP_ULE) 1624 .Case("une", CmpInst::FCMP_UNE) 1625 .Case("true", CmpInst::FCMP_TRUE) 1626 .Default(CmpInst::BAD_FCMP_PREDICATE); 1627 if (!CmpInst::isFPPredicate(Pred)) 1628 return error("invalid floating-point predicate"); 1629 } else { 1630 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1631 .Case("eq", CmpInst::ICMP_EQ) 1632 .Case("ne", CmpInst::ICMP_NE) 1633 .Case("sgt", CmpInst::ICMP_SGT) 1634 .Case("sge", CmpInst::ICMP_SGE) 1635 .Case("slt", CmpInst::ICMP_SLT) 1636 .Case("sle", CmpInst::ICMP_SLE) 1637 .Case("ugt", CmpInst::ICMP_UGT) 1638 .Case("uge", CmpInst::ICMP_UGE) 1639 .Case("ult", CmpInst::ICMP_ULT) 1640 .Case("ule", CmpInst::ICMP_ULE) 1641 .Default(CmpInst::BAD_ICMP_PREDICATE); 1642 if (!CmpInst::isIntPredicate(Pred)) 1643 return error("invalid integer predicate"); 1644 } 1645 1646 lex(); 1647 Dest = MachineOperand::CreatePredicate(Pred); 1648 if (expectAndConsume(MIToken::rparen)) 1649 return error("predicate should be terminated by ')'."); 1650 1651 return false; 1652 } 1653 1654 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1655 assert(Token.is(MIToken::kw_target_index)); 1656 lex(); 1657 if (expectAndConsume(MIToken::lparen)) 1658 return true; 1659 if (Token.isNot(MIToken::Identifier)) 1660 return error("expected the name of the target index"); 1661 int Index = 0; 1662 if (getTargetIndex(Token.stringValue(), Index)) 1663 return error("use of undefined target index '" + Token.stringValue() + "'"); 1664 lex(); 1665 if (expectAndConsume(MIToken::rparen)) 1666 return true; 1667 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1668 if (parseOperandsOffset(Dest)) 1669 return true; 1670 return false; 1671 } 1672 1673 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1674 assert(Token.is(MIToken::kw_liveout)); 1675 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1676 assert(TRI && "Expected target register info"); 1677 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1678 lex(); 1679 if (expectAndConsume(MIToken::lparen)) 1680 return true; 1681 while (true) { 1682 if (Token.isNot(MIToken::NamedRegister)) 1683 return error("expected a named register"); 1684 unsigned Reg; 1685 if (parseNamedRegister(Reg)) 1686 return true; 1687 lex(); 1688 Mask[Reg / 32] |= 1U << (Reg % 32); 1689 // TODO: Report an error if the same register is used more than once. 1690 if (Token.isNot(MIToken::comma)) 1691 break; 1692 lex(); 1693 } 1694 if (expectAndConsume(MIToken::rparen)) 1695 return true; 1696 Dest = MachineOperand::CreateRegLiveOut(Mask); 1697 return false; 1698 } 1699 1700 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1701 Optional<unsigned> &TiedDefIdx) { 1702 switch (Token.kind()) { 1703 case MIToken::kw_implicit: 1704 case MIToken::kw_implicit_define: 1705 case MIToken::kw_def: 1706 case MIToken::kw_dead: 1707 case MIToken::kw_killed: 1708 case MIToken::kw_undef: 1709 case MIToken::kw_internal: 1710 case MIToken::kw_early_clobber: 1711 case MIToken::kw_debug_use: 1712 case MIToken::underscore: 1713 case MIToken::NamedRegister: 1714 case MIToken::VirtualRegister: 1715 return parseRegisterOperand(Dest, TiedDefIdx); 1716 case MIToken::IntegerLiteral: 1717 return parseImmediateOperand(Dest); 1718 case MIToken::IntegerType: 1719 return parseTypedImmediateOperand(Dest); 1720 case MIToken::kw_half: 1721 case MIToken::kw_float: 1722 case MIToken::kw_double: 1723 case MIToken::kw_x86_fp80: 1724 case MIToken::kw_fp128: 1725 case MIToken::kw_ppc_fp128: 1726 return parseFPImmediateOperand(Dest); 1727 case MIToken::MachineBasicBlock: 1728 return parseMBBOperand(Dest); 1729 case MIToken::StackObject: 1730 return parseStackObjectOperand(Dest); 1731 case MIToken::FixedStackObject: 1732 return parseFixedStackObjectOperand(Dest); 1733 case MIToken::GlobalValue: 1734 case MIToken::NamedGlobalValue: 1735 return parseGlobalAddressOperand(Dest); 1736 case MIToken::ConstantPoolItem: 1737 return parseConstantPoolIndexOperand(Dest); 1738 case MIToken::JumpTableIndex: 1739 return parseJumpTableIndexOperand(Dest); 1740 case MIToken::ExternalSymbol: 1741 return parseExternalSymbolOperand(Dest); 1742 case MIToken::SubRegisterIndex: 1743 return parseSubRegisterIndexOperand(Dest); 1744 case MIToken::exclaim: 1745 return parseMetadataOperand(Dest); 1746 case MIToken::kw_cfi_same_value: 1747 case MIToken::kw_cfi_offset: 1748 case MIToken::kw_cfi_def_cfa_register: 1749 case MIToken::kw_cfi_def_cfa_offset: 1750 case MIToken::kw_cfi_def_cfa: 1751 return parseCFIOperand(Dest); 1752 case MIToken::kw_blockaddress: 1753 return parseBlockAddressOperand(Dest); 1754 case MIToken::kw_intrinsic: 1755 return parseIntrinsicOperand(Dest); 1756 case MIToken::kw_target_index: 1757 return parseTargetIndexOperand(Dest); 1758 case MIToken::kw_liveout: 1759 return parseLiveoutRegisterMaskOperand(Dest); 1760 case MIToken::kw_floatpred: 1761 case MIToken::kw_intpred: 1762 return parsePredicateOperand(Dest); 1763 case MIToken::Error: 1764 return true; 1765 case MIToken::Identifier: 1766 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1767 Dest = MachineOperand::CreateRegMask(RegMask); 1768 lex(); 1769 break; 1770 } 1771 LLVM_FALLTHROUGH; 1772 default: 1773 // FIXME: Parse the MCSymbol machine operand. 1774 return error("expected a machine operand"); 1775 } 1776 return false; 1777 } 1778 1779 bool MIParser::parseMachineOperandAndTargetFlags( 1780 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1781 unsigned TF = 0; 1782 bool HasTargetFlags = false; 1783 if (Token.is(MIToken::kw_target_flags)) { 1784 HasTargetFlags = true; 1785 lex(); 1786 if (expectAndConsume(MIToken::lparen)) 1787 return true; 1788 if (Token.isNot(MIToken::Identifier)) 1789 return error("expected the name of the target flag"); 1790 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1791 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1792 return error("use of undefined target flag '" + Token.stringValue() + 1793 "'"); 1794 } 1795 lex(); 1796 while (Token.is(MIToken::comma)) { 1797 lex(); 1798 if (Token.isNot(MIToken::Identifier)) 1799 return error("expected the name of the target flag"); 1800 unsigned BitFlag = 0; 1801 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1802 return error("use of undefined target flag '" + Token.stringValue() + 1803 "'"); 1804 // TODO: Report an error when using a duplicate bit target flag. 1805 TF |= BitFlag; 1806 lex(); 1807 } 1808 if (expectAndConsume(MIToken::rparen)) 1809 return true; 1810 } 1811 auto Loc = Token.location(); 1812 if (parseMachineOperand(Dest, TiedDefIdx)) 1813 return true; 1814 if (!HasTargetFlags) 1815 return false; 1816 if (Dest.isReg()) 1817 return error(Loc, "register operands can't have target flags"); 1818 Dest.setTargetFlags(TF); 1819 return false; 1820 } 1821 1822 bool MIParser::parseOffset(int64_t &Offset) { 1823 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1824 return false; 1825 StringRef Sign = Token.range(); 1826 bool IsNegative = Token.is(MIToken::minus); 1827 lex(); 1828 if (Token.isNot(MIToken::IntegerLiteral)) 1829 return error("expected an integer literal after '" + Sign + "'"); 1830 if (Token.integerValue().getMinSignedBits() > 64) 1831 return error("expected 64-bit integer (too large)"); 1832 Offset = Token.integerValue().getExtValue(); 1833 if (IsNegative) 1834 Offset = -Offset; 1835 lex(); 1836 return false; 1837 } 1838 1839 bool MIParser::parseAlignment(unsigned &Alignment) { 1840 assert(Token.is(MIToken::kw_align)); 1841 lex(); 1842 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1843 return error("expected an integer literal after 'align'"); 1844 if (getUnsigned(Alignment)) 1845 return true; 1846 lex(); 1847 return false; 1848 } 1849 1850 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1851 int64_t Offset = 0; 1852 if (parseOffset(Offset)) 1853 return true; 1854 Op.setOffset(Offset); 1855 return false; 1856 } 1857 1858 bool MIParser::parseIRValue(const Value *&V) { 1859 switch (Token.kind()) { 1860 case MIToken::NamedIRValue: { 1861 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1862 break; 1863 } 1864 case MIToken::IRValue: { 1865 unsigned SlotNumber = 0; 1866 if (getUnsigned(SlotNumber)) 1867 return true; 1868 V = getIRValue(SlotNumber); 1869 break; 1870 } 1871 case MIToken::NamedGlobalValue: 1872 case MIToken::GlobalValue: { 1873 GlobalValue *GV = nullptr; 1874 if (parseGlobalValue(GV)) 1875 return true; 1876 V = GV; 1877 break; 1878 } 1879 case MIToken::QuotedIRValue: { 1880 const Constant *C = nullptr; 1881 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1882 return true; 1883 V = C; 1884 break; 1885 } 1886 default: 1887 llvm_unreachable("The current token should be an IR block reference"); 1888 } 1889 if (!V) 1890 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1891 return false; 1892 } 1893 1894 bool MIParser::getUint64(uint64_t &Result) { 1895 if (Token.hasIntegerValue()) { 1896 if (Token.integerValue().getActiveBits() > 64) 1897 return error("expected 64-bit integer (too large)"); 1898 Result = Token.integerValue().getZExtValue(); 1899 return false; 1900 } 1901 if (Token.is(MIToken::HexLiteral)) { 1902 APInt A; 1903 if (getHexUint(A)) 1904 return true; 1905 if (A.getBitWidth() > 64) 1906 return error("expected 64-bit integer (too large)"); 1907 Result = A.getZExtValue(); 1908 return false; 1909 } 1910 return true; 1911 } 1912 1913 bool MIParser::getHexUint(APInt &Result) { 1914 assert(Token.is(MIToken::HexLiteral)); 1915 StringRef S = Token.range(); 1916 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1917 // This could be a floating point literal with a special prefix. 1918 if (!isxdigit(S[2])) 1919 return true; 1920 StringRef V = S.substr(2); 1921 APInt A(V.size()*4, V, 16); 1922 Result = APInt(A.getActiveBits(), 1923 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1924 return false; 1925 } 1926 1927 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1928 const auto OldFlags = Flags; 1929 switch (Token.kind()) { 1930 case MIToken::kw_volatile: 1931 Flags |= MachineMemOperand::MOVolatile; 1932 break; 1933 case MIToken::kw_non_temporal: 1934 Flags |= MachineMemOperand::MONonTemporal; 1935 break; 1936 case MIToken::kw_dereferenceable: 1937 Flags |= MachineMemOperand::MODereferenceable; 1938 break; 1939 case MIToken::kw_invariant: 1940 Flags |= MachineMemOperand::MOInvariant; 1941 break; 1942 // TODO: parse the target specific memory operand flags. 1943 default: 1944 llvm_unreachable("The current token should be a memory operand flag"); 1945 } 1946 if (OldFlags == Flags) 1947 // We know that the same flag is specified more than once when the flags 1948 // weren't modified. 1949 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1950 lex(); 1951 return false; 1952 } 1953 1954 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1955 switch (Token.kind()) { 1956 case MIToken::kw_stack: 1957 PSV = MF.getPSVManager().getStack(); 1958 break; 1959 case MIToken::kw_got: 1960 PSV = MF.getPSVManager().getGOT(); 1961 break; 1962 case MIToken::kw_jump_table: 1963 PSV = MF.getPSVManager().getJumpTable(); 1964 break; 1965 case MIToken::kw_constant_pool: 1966 PSV = MF.getPSVManager().getConstantPool(); 1967 break; 1968 case MIToken::FixedStackObject: { 1969 int FI; 1970 if (parseFixedStackFrameIndex(FI)) 1971 return true; 1972 PSV = MF.getPSVManager().getFixedStack(FI); 1973 // The token was already consumed, so use return here instead of break. 1974 return false; 1975 } 1976 case MIToken::StackObject: { 1977 int FI; 1978 if (parseStackFrameIndex(FI)) 1979 return true; 1980 PSV = MF.getPSVManager().getFixedStack(FI); 1981 // The token was already consumed, so use return here instead of break. 1982 return false; 1983 } 1984 case MIToken::kw_call_entry: { 1985 lex(); 1986 switch (Token.kind()) { 1987 case MIToken::GlobalValue: 1988 case MIToken::NamedGlobalValue: { 1989 GlobalValue *GV = nullptr; 1990 if (parseGlobalValue(GV)) 1991 return true; 1992 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1993 break; 1994 } 1995 case MIToken::ExternalSymbol: 1996 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1997 MF.createExternalSymbolName(Token.stringValue())); 1998 break; 1999 default: 2000 return error( 2001 "expected a global value or an external symbol after 'call-entry'"); 2002 } 2003 break; 2004 } 2005 default: 2006 llvm_unreachable("The current token should be pseudo source value"); 2007 } 2008 lex(); 2009 return false; 2010 } 2011 2012 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2013 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2014 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2015 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2016 Token.is(MIToken::kw_call_entry)) { 2017 const PseudoSourceValue *PSV = nullptr; 2018 if (parseMemoryPseudoSourceValue(PSV)) 2019 return true; 2020 int64_t Offset = 0; 2021 if (parseOffset(Offset)) 2022 return true; 2023 Dest = MachinePointerInfo(PSV, Offset); 2024 return false; 2025 } 2026 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2027 Token.isNot(MIToken::GlobalValue) && 2028 Token.isNot(MIToken::NamedGlobalValue) && 2029 Token.isNot(MIToken::QuotedIRValue)) 2030 return error("expected an IR value reference"); 2031 const Value *V = nullptr; 2032 if (parseIRValue(V)) 2033 return true; 2034 if (!V->getType()->isPointerTy()) 2035 return error("expected a pointer IR value"); 2036 lex(); 2037 int64_t Offset = 0; 2038 if (parseOffset(Offset)) 2039 return true; 2040 Dest = MachinePointerInfo(V, Offset); 2041 return false; 2042 } 2043 2044 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2045 Order = AtomicOrdering::NotAtomic; 2046 if (Token.isNot(MIToken::Identifier)) 2047 return false; 2048 2049 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2050 .Case("unordered", AtomicOrdering::Unordered) 2051 .Case("monotonic", AtomicOrdering::Monotonic) 2052 .Case("acquire", AtomicOrdering::Acquire) 2053 .Case("release", AtomicOrdering::Release) 2054 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2055 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2056 .Default(AtomicOrdering::NotAtomic); 2057 2058 if (Order != AtomicOrdering::NotAtomic) { 2059 lex(); 2060 return false; 2061 } 2062 2063 return error("expected an atomic scope, ordering or a size integer literal"); 2064 } 2065 2066 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2067 if (expectAndConsume(MIToken::lparen)) 2068 return true; 2069 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2070 while (Token.isMemoryOperandFlag()) { 2071 if (parseMemoryOperandFlag(Flags)) 2072 return true; 2073 } 2074 if (Token.isNot(MIToken::Identifier) || 2075 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2076 return error("expected 'load' or 'store' memory operation"); 2077 if (Token.stringValue() == "load") 2078 Flags |= MachineMemOperand::MOLoad; 2079 else 2080 Flags |= MachineMemOperand::MOStore; 2081 lex(); 2082 2083 // Optional "singlethread" scope. 2084 SynchronizationScope Scope = SynchronizationScope::CrossThread; 2085 if (Token.is(MIToken::Identifier) && Token.stringValue() == "singlethread") { 2086 Scope = SynchronizationScope::SingleThread; 2087 lex(); 2088 } 2089 2090 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2091 AtomicOrdering Order, FailureOrder; 2092 if (parseOptionalAtomicOrdering(Order)) 2093 return true; 2094 2095 if (parseOptionalAtomicOrdering(FailureOrder)) 2096 return true; 2097 2098 if (Token.isNot(MIToken::IntegerLiteral)) 2099 return error("expected the size integer literal after memory operation"); 2100 uint64_t Size; 2101 if (getUint64(Size)) 2102 return true; 2103 lex(); 2104 2105 MachinePointerInfo Ptr = MachinePointerInfo(); 2106 if (Token.is(MIToken::Identifier)) { 2107 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2108 if (Token.stringValue() != Word) 2109 return error(Twine("expected '") + Word + "'"); 2110 lex(); 2111 2112 if (parseMachinePointerInfo(Ptr)) 2113 return true; 2114 } 2115 unsigned BaseAlignment = Size; 2116 AAMDNodes AAInfo; 2117 MDNode *Range = nullptr; 2118 while (consumeIfPresent(MIToken::comma)) { 2119 switch (Token.kind()) { 2120 case MIToken::kw_align: 2121 if (parseAlignment(BaseAlignment)) 2122 return true; 2123 break; 2124 case MIToken::md_tbaa: 2125 lex(); 2126 if (parseMDNode(AAInfo.TBAA)) 2127 return true; 2128 break; 2129 case MIToken::md_alias_scope: 2130 lex(); 2131 if (parseMDNode(AAInfo.Scope)) 2132 return true; 2133 break; 2134 case MIToken::md_noalias: 2135 lex(); 2136 if (parseMDNode(AAInfo.NoAlias)) 2137 return true; 2138 break; 2139 case MIToken::md_range: 2140 lex(); 2141 if (parseMDNode(Range)) 2142 return true; 2143 break; 2144 // TODO: Report an error on duplicate metadata nodes. 2145 default: 2146 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2147 "'!noalias' or '!range'"); 2148 } 2149 } 2150 if (expectAndConsume(MIToken::rparen)) 2151 return true; 2152 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2153 Scope, Order, FailureOrder); 2154 return false; 2155 } 2156 2157 void MIParser::initNames2InstrOpCodes() { 2158 if (!Names2InstrOpCodes.empty()) 2159 return; 2160 const auto *TII = MF.getSubtarget().getInstrInfo(); 2161 assert(TII && "Expected target instruction info"); 2162 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2163 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2164 } 2165 2166 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2167 initNames2InstrOpCodes(); 2168 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2169 if (InstrInfo == Names2InstrOpCodes.end()) 2170 return true; 2171 OpCode = InstrInfo->getValue(); 2172 return false; 2173 } 2174 2175 void MIParser::initNames2Regs() { 2176 if (!Names2Regs.empty()) 2177 return; 2178 // The '%noreg' register is the register 0. 2179 Names2Regs.insert(std::make_pair("noreg", 0)); 2180 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2181 assert(TRI && "Expected target register info"); 2182 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2183 bool WasInserted = 2184 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2185 .second; 2186 (void)WasInserted; 2187 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2188 } 2189 } 2190 2191 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2192 initNames2Regs(); 2193 auto RegInfo = Names2Regs.find(RegName); 2194 if (RegInfo == Names2Regs.end()) 2195 return true; 2196 Reg = RegInfo->getValue(); 2197 return false; 2198 } 2199 2200 void MIParser::initNames2RegMasks() { 2201 if (!Names2RegMasks.empty()) 2202 return; 2203 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2204 assert(TRI && "Expected target register info"); 2205 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2206 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2207 assert(RegMasks.size() == RegMaskNames.size()); 2208 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2209 Names2RegMasks.insert( 2210 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2211 } 2212 2213 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2214 initNames2RegMasks(); 2215 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2216 if (RegMaskInfo == Names2RegMasks.end()) 2217 return nullptr; 2218 return RegMaskInfo->getValue(); 2219 } 2220 2221 void MIParser::initNames2SubRegIndices() { 2222 if (!Names2SubRegIndices.empty()) 2223 return; 2224 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2225 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2226 Names2SubRegIndices.insert( 2227 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2228 } 2229 2230 unsigned MIParser::getSubRegIndex(StringRef Name) { 2231 initNames2SubRegIndices(); 2232 auto SubRegInfo = Names2SubRegIndices.find(Name); 2233 if (SubRegInfo == Names2SubRegIndices.end()) 2234 return 0; 2235 return SubRegInfo->getValue(); 2236 } 2237 2238 static void initSlots2BasicBlocks( 2239 const Function &F, 2240 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2241 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2242 MST.incorporateFunction(F); 2243 for (auto &BB : F) { 2244 if (BB.hasName()) 2245 continue; 2246 int Slot = MST.getLocalSlot(&BB); 2247 if (Slot == -1) 2248 continue; 2249 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2250 } 2251 } 2252 2253 static const BasicBlock *getIRBlockFromSlot( 2254 unsigned Slot, 2255 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2256 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2257 if (BlockInfo == Slots2BasicBlocks.end()) 2258 return nullptr; 2259 return BlockInfo->second; 2260 } 2261 2262 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2263 if (Slots2BasicBlocks.empty()) 2264 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2265 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2266 } 2267 2268 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2269 if (&F == MF.getFunction()) 2270 return getIRBlock(Slot); 2271 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2272 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2273 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2274 } 2275 2276 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2277 DenseMap<unsigned, const Value *> &Slots2Values) { 2278 int Slot = MST.getLocalSlot(V); 2279 if (Slot == -1) 2280 return; 2281 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2282 } 2283 2284 /// Creates the mapping from slot numbers to function's unnamed IR values. 2285 static void initSlots2Values(const Function &F, 2286 DenseMap<unsigned, const Value *> &Slots2Values) { 2287 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2288 MST.incorporateFunction(F); 2289 for (const auto &Arg : F.args()) 2290 mapValueToSlot(&Arg, MST, Slots2Values); 2291 for (const auto &BB : F) { 2292 mapValueToSlot(&BB, MST, Slots2Values); 2293 for (const auto &I : BB) 2294 mapValueToSlot(&I, MST, Slots2Values); 2295 } 2296 } 2297 2298 const Value *MIParser::getIRValue(unsigned Slot) { 2299 if (Slots2Values.empty()) 2300 initSlots2Values(*MF.getFunction(), Slots2Values); 2301 auto ValueInfo = Slots2Values.find(Slot); 2302 if (ValueInfo == Slots2Values.end()) 2303 return nullptr; 2304 return ValueInfo->second; 2305 } 2306 2307 void MIParser::initNames2TargetIndices() { 2308 if (!Names2TargetIndices.empty()) 2309 return; 2310 const auto *TII = MF.getSubtarget().getInstrInfo(); 2311 assert(TII && "Expected target instruction info"); 2312 auto Indices = TII->getSerializableTargetIndices(); 2313 for (const auto &I : Indices) 2314 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2315 } 2316 2317 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2318 initNames2TargetIndices(); 2319 auto IndexInfo = Names2TargetIndices.find(Name); 2320 if (IndexInfo == Names2TargetIndices.end()) 2321 return true; 2322 Index = IndexInfo->second; 2323 return false; 2324 } 2325 2326 void MIParser::initNames2DirectTargetFlags() { 2327 if (!Names2DirectTargetFlags.empty()) 2328 return; 2329 const auto *TII = MF.getSubtarget().getInstrInfo(); 2330 assert(TII && "Expected target instruction info"); 2331 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2332 for (const auto &I : Flags) 2333 Names2DirectTargetFlags.insert( 2334 std::make_pair(StringRef(I.second), I.first)); 2335 } 2336 2337 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2338 initNames2DirectTargetFlags(); 2339 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2340 if (FlagInfo == Names2DirectTargetFlags.end()) 2341 return true; 2342 Flag = FlagInfo->second; 2343 return false; 2344 } 2345 2346 void MIParser::initNames2BitmaskTargetFlags() { 2347 if (!Names2BitmaskTargetFlags.empty()) 2348 return; 2349 const auto *TII = MF.getSubtarget().getInstrInfo(); 2350 assert(TII && "Expected target instruction info"); 2351 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2352 for (const auto &I : Flags) 2353 Names2BitmaskTargetFlags.insert( 2354 std::make_pair(StringRef(I.second), I.first)); 2355 } 2356 2357 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2358 initNames2BitmaskTargetFlags(); 2359 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2360 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2361 return true; 2362 Flag = FlagInfo->second; 2363 return false; 2364 } 2365 2366 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2367 StringRef Src, 2368 SMDiagnostic &Error) { 2369 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2370 } 2371 2372 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2373 StringRef Src, SMDiagnostic &Error) { 2374 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2375 } 2376 2377 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2378 MachineBasicBlock *&MBB, StringRef Src, 2379 SMDiagnostic &Error) { 2380 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2381 } 2382 2383 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2384 unsigned &Reg, StringRef Src, 2385 SMDiagnostic &Error) { 2386 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2387 } 2388 2389 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2390 unsigned &Reg, StringRef Src, 2391 SMDiagnostic &Error) { 2392 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2393 } 2394 2395 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2396 VRegInfo *&Info, StringRef Src, 2397 SMDiagnostic &Error) { 2398 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2399 } 2400 2401 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2402 int &FI, StringRef Src, 2403 SMDiagnostic &Error) { 2404 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2405 } 2406 2407 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2408 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2409 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2410 } 2411