1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots,
45     const Name2RegClassMap &Names2RegClasses,
46     const Name2RegBankMap &Names2RegBanks)
47   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
48     Names2RegBanks(Names2RegBanks) {
49 }
50 
51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
52   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
53   if (I.second) {
54     MachineRegisterInfo &MRI = MF.getRegInfo();
55     VRegInfo *Info = new (Allocator) VRegInfo;
56     Info->VReg = MRI.createIncompleteVirtualRegister();
57     I.first->second = Info;
58   }
59   return *I.first->second;
60 }
61 
62 namespace {
63 
64 /// A wrapper struct around the 'MachineOperand' struct that includes a source
65 /// range and other attributes.
66 struct ParsedMachineOperand {
67   MachineOperand Operand;
68   StringRef::iterator Begin;
69   StringRef::iterator End;
70   Optional<unsigned> TiedDefIdx;
71 
72   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
73                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
74       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
75     if (TiedDefIdx)
76       assert(Operand.isReg() && Operand.isUse() &&
77              "Only used register operands can be tied");
78   }
79 };
80 
81 class MIParser {
82   MachineFunction &MF;
83   SMDiagnostic &Error;
84   StringRef Source, CurrentSource;
85   MIToken Token;
86   PerFunctionMIParsingState &PFS;
87   /// Maps from instruction names to op codes.
88   StringMap<unsigned> Names2InstrOpCodes;
89   /// Maps from register names to registers.
90   StringMap<unsigned> Names2Regs;
91   /// Maps from register mask names to register masks.
92   StringMap<const uint32_t *> Names2RegMasks;
93   /// Maps from subregister names to subregister indices.
94   StringMap<unsigned> Names2SubRegIndices;
95   /// Maps from slot numbers to function's unnamed basic blocks.
96   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
97   /// Maps from slot numbers to function's unnamed values.
98   DenseMap<unsigned, const Value *> Slots2Values;
99   /// Maps from target index names to target indices.
100   StringMap<int> Names2TargetIndices;
101   /// Maps from direct target flag names to the direct target flag values.
102   StringMap<unsigned> Names2DirectTargetFlags;
103   /// Maps from direct target flag names to the bitmask target flag values.
104   StringMap<unsigned> Names2BitmaskTargetFlags;
105 
106 public:
107   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
108            StringRef Source);
109 
110   /// \p SkipChar gives the number of characters to skip before looking
111   /// for the next token.
112   void lex(unsigned SkipChar = 0);
113 
114   /// Report an error at the current location with the given message.
115   ///
116   /// This function always return true.
117   bool error(const Twine &Msg);
118 
119   /// Report an error at the given location with the given message.
120   ///
121   /// This function always return true.
122   bool error(StringRef::iterator Loc, const Twine &Msg);
123 
124   bool
125   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
126   bool parseBasicBlocks();
127   bool parse(MachineInstr *&MI);
128   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
129   bool parseStandaloneNamedRegister(unsigned &Reg);
130   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
131   bool parseStandaloneRegister(unsigned &Reg);
132   bool parseStandaloneStackObject(int &FI);
133   bool parseStandaloneMDNode(MDNode *&Node);
134 
135   bool
136   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
137   bool parseBasicBlock(MachineBasicBlock &MBB);
138   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
139   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
140 
141   bool parseNamedRegister(unsigned &Reg);
142   bool parseVirtualRegister(VRegInfo *&Info);
143   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
144   bool parseRegisterFlag(unsigned &Flags);
145   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
146   bool parseSubRegisterIndex(unsigned &SubReg);
147   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
148   bool parseRegisterOperand(MachineOperand &Dest,
149                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
150   bool parseImmediateOperand(MachineOperand &Dest);
151   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
152                        const Constant *&C);
153   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
154   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
155   bool parseTypedImmediateOperand(MachineOperand &Dest);
156   bool parseFPImmediateOperand(MachineOperand &Dest);
157   bool parseMBBReference(MachineBasicBlock *&MBB);
158   bool parseMBBOperand(MachineOperand &Dest);
159   bool parseStackFrameIndex(int &FI);
160   bool parseStackObjectOperand(MachineOperand &Dest);
161   bool parseFixedStackFrameIndex(int &FI);
162   bool parseFixedStackObjectOperand(MachineOperand &Dest);
163   bool parseGlobalValue(GlobalValue *&GV);
164   bool parseGlobalAddressOperand(MachineOperand &Dest);
165   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
166   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
167   bool parseJumpTableIndexOperand(MachineOperand &Dest);
168   bool parseExternalSymbolOperand(MachineOperand &Dest);
169   bool parseMDNode(MDNode *&Node);
170   bool parseMetadataOperand(MachineOperand &Dest);
171   bool parseCFIOffset(int &Offset);
172   bool parseCFIRegister(unsigned &Reg);
173   bool parseCFIOperand(MachineOperand &Dest);
174   bool parseIRBlock(BasicBlock *&BB, const Function &F);
175   bool parseBlockAddressOperand(MachineOperand &Dest);
176   bool parseIntrinsicOperand(MachineOperand &Dest);
177   bool parsePredicateOperand(MachineOperand &Dest);
178   bool parseTargetIndexOperand(MachineOperand &Dest);
179   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
180   bool parseMachineOperand(MachineOperand &Dest,
181                            Optional<unsigned> &TiedDefIdx);
182   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
183                                          Optional<unsigned> &TiedDefIdx);
184   bool parseOffset(int64_t &Offset);
185   bool parseAlignment(unsigned &Alignment);
186   bool parseOperandsOffset(MachineOperand &Op);
187   bool parseIRValue(const Value *&V);
188   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
189   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
190   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
191   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
192   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
193 
194 private:
195   /// Convert the integer literal in the current token into an unsigned integer.
196   ///
197   /// Return true if an error occurred.
198   bool getUnsigned(unsigned &Result);
199 
200   /// Convert the integer literal in the current token into an uint64.
201   ///
202   /// Return true if an error occurred.
203   bool getUint64(uint64_t &Result);
204 
205   /// Convert the hexadecimal literal in the current token into an unsigned
206   ///  APInt with a minimum bitwidth required to represent the value.
207   ///
208   /// Return true if the literal does not represent an integer value.
209   bool getHexUint(APInt &Result);
210 
211   /// If the current token is of the given kind, consume it and return false.
212   /// Otherwise report an error and return true.
213   bool expectAndConsume(MIToken::TokenKind TokenKind);
214 
215   /// If the current token is of the given kind, consume it and return true.
216   /// Otherwise return false.
217   bool consumeIfPresent(MIToken::TokenKind TokenKind);
218 
219   void initNames2InstrOpCodes();
220 
221   /// Try to convert an instruction name to an opcode. Return true if the
222   /// instruction name is invalid.
223   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
224 
225   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
226 
227   bool assignRegisterTies(MachineInstr &MI,
228                           ArrayRef<ParsedMachineOperand> Operands);
229 
230   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
231                               const MCInstrDesc &MCID);
232 
233   void initNames2Regs();
234 
235   /// Try to convert a register name to a register number. Return true if the
236   /// register name is invalid.
237   bool getRegisterByName(StringRef RegName, unsigned &Reg);
238 
239   void initNames2RegMasks();
240 
241   /// Check if the given identifier is a name of a register mask.
242   ///
243   /// Return null if the identifier isn't a register mask.
244   const uint32_t *getRegMask(StringRef Identifier);
245 
246   void initNames2SubRegIndices();
247 
248   /// Check if the given identifier is a name of a subregister index.
249   ///
250   /// Return 0 if the name isn't a subregister index class.
251   unsigned getSubRegIndex(StringRef Name);
252 
253   const BasicBlock *getIRBlock(unsigned Slot);
254   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
255 
256   const Value *getIRValue(unsigned Slot);
257 
258   void initNames2TargetIndices();
259 
260   /// Try to convert a name of target index to the corresponding target index.
261   ///
262   /// Return true if the name isn't a name of a target index.
263   bool getTargetIndex(StringRef Name, int &Index);
264 
265   void initNames2DirectTargetFlags();
266 
267   /// Try to convert a name of a direct target flag to the corresponding
268   /// target flag.
269   ///
270   /// Return true if the name isn't a name of a direct flag.
271   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
272 
273   void initNames2BitmaskTargetFlags();
274 
275   /// Try to convert a name of a bitmask target flag to the corresponding
276   /// target flag.
277   ///
278   /// Return true if the name isn't a name of a bitmask target flag.
279   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
280 };
281 
282 } // end anonymous namespace
283 
284 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
285                    StringRef Source)
286     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
287 {}
288 
289 void MIParser::lex(unsigned SkipChar) {
290   CurrentSource = lexMIToken(
291       CurrentSource.data() + SkipChar, Token,
292       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
293 }
294 
295 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
296 
297 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
298   const SourceMgr &SM = *PFS.SM;
299   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
300   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
301   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
302     // Create an ordinary diagnostic when the source manager's buffer is the
303     // source string.
304     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
305     return true;
306   }
307   // Create a diagnostic for a YAML string literal.
308   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
309                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
310                        Source, None, None);
311   return true;
312 }
313 
314 static const char *toString(MIToken::TokenKind TokenKind) {
315   switch (TokenKind) {
316   case MIToken::comma:
317     return "','";
318   case MIToken::equal:
319     return "'='";
320   case MIToken::colon:
321     return "':'";
322   case MIToken::lparen:
323     return "'('";
324   case MIToken::rparen:
325     return "')'";
326   default:
327     return "<unknown token>";
328   }
329 }
330 
331 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
332   if (Token.isNot(TokenKind))
333     return error(Twine("expected ") + toString(TokenKind));
334   lex();
335   return false;
336 }
337 
338 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
339   if (Token.isNot(TokenKind))
340     return false;
341   lex();
342   return true;
343 }
344 
345 bool MIParser::parseBasicBlockDefinition(
346     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
347   assert(Token.is(MIToken::MachineBasicBlockLabel));
348   unsigned ID = 0;
349   if (getUnsigned(ID))
350     return true;
351   auto Loc = Token.location();
352   auto Name = Token.stringValue();
353   lex();
354   bool HasAddressTaken = false;
355   bool IsLandingPad = false;
356   unsigned Alignment = 0;
357   BasicBlock *BB = nullptr;
358   if (consumeIfPresent(MIToken::lparen)) {
359     do {
360       // TODO: Report an error when multiple same attributes are specified.
361       switch (Token.kind()) {
362       case MIToken::kw_address_taken:
363         HasAddressTaken = true;
364         lex();
365         break;
366       case MIToken::kw_landing_pad:
367         IsLandingPad = true;
368         lex();
369         break;
370       case MIToken::kw_align:
371         if (parseAlignment(Alignment))
372           return true;
373         break;
374       case MIToken::IRBlock:
375         // TODO: Report an error when both name and ir block are specified.
376         if (parseIRBlock(BB, *MF.getFunction()))
377           return true;
378         lex();
379         break;
380       default:
381         break;
382       }
383     } while (consumeIfPresent(MIToken::comma));
384     if (expectAndConsume(MIToken::rparen))
385       return true;
386   }
387   if (expectAndConsume(MIToken::colon))
388     return true;
389 
390   if (!Name.empty()) {
391     BB = dyn_cast_or_null<BasicBlock>(
392         MF.getFunction()->getValueSymbolTable()->lookup(Name));
393     if (!BB)
394       return error(Loc, Twine("basic block '") + Name +
395                             "' is not defined in the function '" +
396                             MF.getName() + "'");
397   }
398   auto *MBB = MF.CreateMachineBasicBlock(BB);
399   MF.insert(MF.end(), MBB);
400   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
401   if (!WasInserted)
402     return error(Loc, Twine("redefinition of machine basic block with id #") +
403                           Twine(ID));
404   if (Alignment)
405     MBB->setAlignment(Alignment);
406   if (HasAddressTaken)
407     MBB->setHasAddressTaken();
408   MBB->setIsEHPad(IsLandingPad);
409   return false;
410 }
411 
412 bool MIParser::parseBasicBlockDefinitions(
413     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
414   lex();
415   // Skip until the first machine basic block.
416   while (Token.is(MIToken::Newline))
417     lex();
418   if (Token.isErrorOrEOF())
419     return Token.isError();
420   if (Token.isNot(MIToken::MachineBasicBlockLabel))
421     return error("expected a basic block definition before instructions");
422   unsigned BraceDepth = 0;
423   do {
424     if (parseBasicBlockDefinition(MBBSlots))
425       return true;
426     bool IsAfterNewline = false;
427     // Skip until the next machine basic block.
428     while (true) {
429       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
430           Token.isErrorOrEOF())
431         break;
432       else if (Token.is(MIToken::MachineBasicBlockLabel))
433         return error("basic block definition should be located at the start of "
434                      "the line");
435       else if (consumeIfPresent(MIToken::Newline)) {
436         IsAfterNewline = true;
437         continue;
438       }
439       IsAfterNewline = false;
440       if (Token.is(MIToken::lbrace))
441         ++BraceDepth;
442       if (Token.is(MIToken::rbrace)) {
443         if (!BraceDepth)
444           return error("extraneous closing brace ('}')");
445         --BraceDepth;
446       }
447       lex();
448     }
449     // Verify that we closed all of the '{' at the end of a file or a block.
450     if (!Token.isError() && BraceDepth)
451       return error("expected '}'"); // FIXME: Report a note that shows '{'.
452   } while (!Token.isErrorOrEOF());
453   return Token.isError();
454 }
455 
456 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
457   assert(Token.is(MIToken::kw_liveins));
458   lex();
459   if (expectAndConsume(MIToken::colon))
460     return true;
461   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
462     return false;
463   do {
464     if (Token.isNot(MIToken::NamedRegister))
465       return error("expected a named register");
466     unsigned Reg = 0;
467     if (parseNamedRegister(Reg))
468       return true;
469     lex();
470     LaneBitmask Mask = LaneBitmask::getAll();
471     if (consumeIfPresent(MIToken::colon)) {
472       // Parse lane mask.
473       if (Token.isNot(MIToken::IntegerLiteral) &&
474           Token.isNot(MIToken::HexLiteral))
475         return error("expected a lane mask");
476       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
477                     "Use correct get-function for lane mask");
478       LaneBitmask::Type V;
479       if (getUnsigned(V))
480         return error("invalid lane mask value");
481       Mask = LaneBitmask(V);
482       lex();
483     }
484     MBB.addLiveIn(Reg, Mask);
485   } while (consumeIfPresent(MIToken::comma));
486   return false;
487 }
488 
489 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
490   assert(Token.is(MIToken::kw_successors));
491   lex();
492   if (expectAndConsume(MIToken::colon))
493     return true;
494   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
495     return false;
496   do {
497     if (Token.isNot(MIToken::MachineBasicBlock))
498       return error("expected a machine basic block reference");
499     MachineBasicBlock *SuccMBB = nullptr;
500     if (parseMBBReference(SuccMBB))
501       return true;
502     lex();
503     unsigned Weight = 0;
504     if (consumeIfPresent(MIToken::lparen)) {
505       if (Token.isNot(MIToken::IntegerLiteral) &&
506           Token.isNot(MIToken::HexLiteral))
507         return error("expected an integer literal after '('");
508       if (getUnsigned(Weight))
509         return true;
510       lex();
511       if (expectAndConsume(MIToken::rparen))
512         return true;
513     }
514     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
515   } while (consumeIfPresent(MIToken::comma));
516   MBB.normalizeSuccProbs();
517   return false;
518 }
519 
520 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
521   // Skip the definition.
522   assert(Token.is(MIToken::MachineBasicBlockLabel));
523   lex();
524   if (consumeIfPresent(MIToken::lparen)) {
525     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
526       lex();
527     consumeIfPresent(MIToken::rparen);
528   }
529   consumeIfPresent(MIToken::colon);
530 
531   // Parse the liveins and successors.
532   // N.B: Multiple lists of successors and liveins are allowed and they're
533   // merged into one.
534   // Example:
535   //   liveins: %edi
536   //   liveins: %esi
537   //
538   // is equivalent to
539   //   liveins: %edi, %esi
540   while (true) {
541     if (Token.is(MIToken::kw_successors)) {
542       if (parseBasicBlockSuccessors(MBB))
543         return true;
544     } else if (Token.is(MIToken::kw_liveins)) {
545       if (parseBasicBlockLiveins(MBB))
546         return true;
547     } else if (consumeIfPresent(MIToken::Newline)) {
548       continue;
549     } else
550       break;
551     if (!Token.isNewlineOrEOF())
552       return error("expected line break at the end of a list");
553     lex();
554   }
555 
556   // Parse the instructions.
557   bool IsInBundle = false;
558   MachineInstr *PrevMI = nullptr;
559   while (true) {
560     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
561       return false;
562     else if (consumeIfPresent(MIToken::Newline))
563       continue;
564     if (consumeIfPresent(MIToken::rbrace)) {
565       // The first parsing pass should verify that all closing '}' have an
566       // opening '{'.
567       assert(IsInBundle);
568       IsInBundle = false;
569       continue;
570     }
571     MachineInstr *MI = nullptr;
572     if (parse(MI))
573       return true;
574     MBB.insert(MBB.end(), MI);
575     if (IsInBundle) {
576       PrevMI->setFlag(MachineInstr::BundledSucc);
577       MI->setFlag(MachineInstr::BundledPred);
578     }
579     PrevMI = MI;
580     if (Token.is(MIToken::lbrace)) {
581       if (IsInBundle)
582         return error("nested instruction bundles are not allowed");
583       lex();
584       // This instruction is the start of the bundle.
585       MI->setFlag(MachineInstr::BundledSucc);
586       IsInBundle = true;
587       if (!Token.is(MIToken::Newline))
588         // The next instruction can be on the same line.
589         continue;
590     }
591     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
592     lex();
593   }
594   return false;
595 }
596 
597 bool MIParser::parseBasicBlocks() {
598   lex();
599   // Skip until the first machine basic block.
600   while (Token.is(MIToken::Newline))
601     lex();
602   if (Token.isErrorOrEOF())
603     return Token.isError();
604   // The first parsing pass should have verified that this token is a MBB label
605   // in the 'parseBasicBlockDefinitions' method.
606   assert(Token.is(MIToken::MachineBasicBlockLabel));
607   do {
608     MachineBasicBlock *MBB = nullptr;
609     if (parseMBBReference(MBB))
610       return true;
611     if (parseBasicBlock(*MBB))
612       return true;
613     // The method 'parseBasicBlock' should parse the whole block until the next
614     // block or the end of file.
615     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
616   } while (Token.isNot(MIToken::Eof));
617   return false;
618 }
619 
620 bool MIParser::parse(MachineInstr *&MI) {
621   // Parse any register operands before '='
622   MachineOperand MO = MachineOperand::CreateImm(0);
623   SmallVector<ParsedMachineOperand, 8> Operands;
624   while (Token.isRegister() || Token.isRegisterFlag()) {
625     auto Loc = Token.location();
626     Optional<unsigned> TiedDefIdx;
627     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
628       return true;
629     Operands.push_back(
630         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
631     if (Token.isNot(MIToken::comma))
632       break;
633     lex();
634   }
635   if (!Operands.empty() && expectAndConsume(MIToken::equal))
636     return true;
637 
638   unsigned OpCode, Flags = 0;
639   if (Token.isError() || parseInstruction(OpCode, Flags))
640     return true;
641 
642   // Parse the remaining machine operands.
643   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
644          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
645     auto Loc = Token.location();
646     Optional<unsigned> TiedDefIdx;
647     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
648       return true;
649     Operands.push_back(
650         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
651     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
652         Token.is(MIToken::lbrace))
653       break;
654     if (Token.isNot(MIToken::comma))
655       return error("expected ',' before the next machine operand");
656     lex();
657   }
658 
659   DebugLoc DebugLocation;
660   if (Token.is(MIToken::kw_debug_location)) {
661     lex();
662     if (Token.isNot(MIToken::exclaim))
663       return error("expected a metadata node after 'debug-location'");
664     MDNode *Node = nullptr;
665     if (parseMDNode(Node))
666       return true;
667     DebugLocation = DebugLoc(Node);
668   }
669 
670   // Parse the machine memory operands.
671   SmallVector<MachineMemOperand *, 2> MemOperands;
672   if (Token.is(MIToken::coloncolon)) {
673     lex();
674     while (!Token.isNewlineOrEOF()) {
675       MachineMemOperand *MemOp = nullptr;
676       if (parseMachineMemoryOperand(MemOp))
677         return true;
678       MemOperands.push_back(MemOp);
679       if (Token.isNewlineOrEOF())
680         break;
681       if (Token.isNot(MIToken::comma))
682         return error("expected ',' before the next machine memory operand");
683       lex();
684     }
685   }
686 
687   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
688   if (!MCID.isVariadic()) {
689     // FIXME: Move the implicit operand verification to the machine verifier.
690     if (verifyImplicitOperands(Operands, MCID))
691       return true;
692   }
693 
694   // TODO: Check for extraneous machine operands.
695   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
696   MI->setFlags(Flags);
697   for (const auto &Operand : Operands)
698     MI->addOperand(MF, Operand.Operand);
699   if (assignRegisterTies(*MI, Operands))
700     return true;
701   if (MemOperands.empty())
702     return false;
703   MachineInstr::mmo_iterator MemRefs =
704       MF.allocateMemRefsArray(MemOperands.size());
705   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
706   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
707   return false;
708 }
709 
710 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
711   lex();
712   if (Token.isNot(MIToken::MachineBasicBlock))
713     return error("expected a machine basic block reference");
714   if (parseMBBReference(MBB))
715     return true;
716   lex();
717   if (Token.isNot(MIToken::Eof))
718     return error(
719         "expected end of string after the machine basic block reference");
720   return false;
721 }
722 
723 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
724   lex();
725   if (Token.isNot(MIToken::NamedRegister))
726     return error("expected a named register");
727   if (parseNamedRegister(Reg))
728     return true;
729   lex();
730   if (Token.isNot(MIToken::Eof))
731     return error("expected end of string after the register reference");
732   return false;
733 }
734 
735 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
736   lex();
737   if (Token.isNot(MIToken::VirtualRegister))
738     return error("expected a virtual register");
739   if (parseVirtualRegister(Info))
740     return true;
741   lex();
742   if (Token.isNot(MIToken::Eof))
743     return error("expected end of string after the register reference");
744   return false;
745 }
746 
747 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
748   lex();
749   if (Token.isNot(MIToken::NamedRegister) &&
750       Token.isNot(MIToken::VirtualRegister))
751     return error("expected either a named or virtual register");
752 
753   VRegInfo *Info;
754   if (parseRegister(Reg, Info))
755     return true;
756 
757   lex();
758   if (Token.isNot(MIToken::Eof))
759     return error("expected end of string after the register reference");
760   return false;
761 }
762 
763 bool MIParser::parseStandaloneStackObject(int &FI) {
764   lex();
765   if (Token.isNot(MIToken::StackObject))
766     return error("expected a stack object");
767   if (parseStackFrameIndex(FI))
768     return true;
769   if (Token.isNot(MIToken::Eof))
770     return error("expected end of string after the stack object reference");
771   return false;
772 }
773 
774 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
775   lex();
776   if (Token.isNot(MIToken::exclaim))
777     return error("expected a metadata node");
778   if (parseMDNode(Node))
779     return true;
780   if (Token.isNot(MIToken::Eof))
781     return error("expected end of string after the metadata node");
782   return false;
783 }
784 
785 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
786   assert(MO.isImplicit());
787   return MO.isDef() ? "implicit-def" : "implicit";
788 }
789 
790 static std::string getRegisterName(const TargetRegisterInfo *TRI,
791                                    unsigned Reg) {
792   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
793   return StringRef(TRI->getName(Reg)).lower();
794 }
795 
796 /// Return true if the parsed machine operands contain a given machine operand.
797 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
798                                 ArrayRef<ParsedMachineOperand> Operands) {
799   for (const auto &I : Operands) {
800     if (ImplicitOperand.isIdenticalTo(I.Operand))
801       return true;
802   }
803   return false;
804 }
805 
806 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
807                                       const MCInstrDesc &MCID) {
808   if (MCID.isCall())
809     // We can't verify call instructions as they can contain arbitrary implicit
810     // register and register mask operands.
811     return false;
812 
813   // Gather all the expected implicit operands.
814   SmallVector<MachineOperand, 4> ImplicitOperands;
815   if (MCID.ImplicitDefs)
816     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
817       ImplicitOperands.push_back(
818           MachineOperand::CreateReg(*ImpDefs, true, true));
819   if (MCID.ImplicitUses)
820     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
821       ImplicitOperands.push_back(
822           MachineOperand::CreateReg(*ImpUses, false, true));
823 
824   const auto *TRI = MF.getSubtarget().getRegisterInfo();
825   assert(TRI && "Expected target register info");
826   for (const auto &I : ImplicitOperands) {
827     if (isImplicitOperandIn(I, Operands))
828       continue;
829     return error(Operands.empty() ? Token.location() : Operands.back().End,
830                  Twine("missing implicit register operand '") +
831                      printImplicitRegisterFlag(I) + " %" +
832                      getRegisterName(TRI, I.getReg()) + "'");
833   }
834   return false;
835 }
836 
837 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
838   if (Token.is(MIToken::kw_frame_setup)) {
839     Flags |= MachineInstr::FrameSetup;
840     lex();
841   }
842   if (Token.isNot(MIToken::Identifier))
843     return error("expected a machine instruction");
844   StringRef InstrName = Token.stringValue();
845   if (parseInstrName(InstrName, OpCode))
846     return error(Twine("unknown machine instruction name '") + InstrName + "'");
847   lex();
848   return false;
849 }
850 
851 bool MIParser::parseNamedRegister(unsigned &Reg) {
852   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
853   StringRef Name = Token.stringValue();
854   if (getRegisterByName(Name, Reg))
855     return error(Twine("unknown register name '") + Name + "'");
856   return false;
857 }
858 
859 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
860   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
861   unsigned ID;
862   if (getUnsigned(ID))
863     return true;
864   Info = &PFS.getVRegInfo(ID);
865   return false;
866 }
867 
868 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
869   switch (Token.kind()) {
870   case MIToken::underscore:
871     Reg = 0;
872     return false;
873   case MIToken::NamedRegister:
874     return parseNamedRegister(Reg);
875   case MIToken::VirtualRegister:
876     if (parseVirtualRegister(Info))
877       return true;
878     Reg = Info->VReg;
879     return false;
880   // TODO: Parse other register kinds.
881   default:
882     llvm_unreachable("The current token should be a register");
883   }
884 }
885 
886 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
887   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
888     return error("expected '_', register class, or register bank name");
889   StringRef::iterator Loc = Token.location();
890   StringRef Name = Token.stringValue();
891 
892   // Was it a register class?
893   auto RCNameI = PFS.Names2RegClasses.find(Name);
894   if (RCNameI != PFS.Names2RegClasses.end()) {
895     lex();
896     const TargetRegisterClass &RC = *RCNameI->getValue();
897 
898     switch (RegInfo.Kind) {
899     case VRegInfo::UNKNOWN:
900     case VRegInfo::NORMAL:
901       RegInfo.Kind = VRegInfo::NORMAL;
902       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
903         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
904         return error(Loc, Twine("conflicting register classes, previously: ") +
905                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
906       }
907       RegInfo.D.RC = &RC;
908       RegInfo.Explicit = true;
909       return false;
910 
911     case VRegInfo::GENERIC:
912     case VRegInfo::REGBANK:
913       return error(Loc, "register class specification on generic register");
914     }
915     llvm_unreachable("Unexpected register kind");
916   }
917 
918   // Should be a register bank or a generic register.
919   const RegisterBank *RegBank = nullptr;
920   if (Name != "_") {
921     auto RBNameI = PFS.Names2RegBanks.find(Name);
922     if (RBNameI == PFS.Names2RegBanks.end())
923       return error(Loc, "expected '_', register class, or register bank name");
924     RegBank = RBNameI->getValue();
925   }
926 
927   lex();
928 
929   switch (RegInfo.Kind) {
930   case VRegInfo::UNKNOWN:
931   case VRegInfo::GENERIC:
932   case VRegInfo::REGBANK:
933     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
934     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
935       return error(Loc, "conflicting generic register banks");
936     RegInfo.D.RegBank = RegBank;
937     RegInfo.Explicit = true;
938     return false;
939 
940   case VRegInfo::NORMAL:
941     return error(Loc, "register bank specification on normal register");
942   }
943   llvm_unreachable("Unexpected register kind");
944 }
945 
946 bool MIParser::parseRegisterFlag(unsigned &Flags) {
947   const unsigned OldFlags = Flags;
948   switch (Token.kind()) {
949   case MIToken::kw_implicit:
950     Flags |= RegState::Implicit;
951     break;
952   case MIToken::kw_implicit_define:
953     Flags |= RegState::ImplicitDefine;
954     break;
955   case MIToken::kw_def:
956     Flags |= RegState::Define;
957     break;
958   case MIToken::kw_dead:
959     Flags |= RegState::Dead;
960     break;
961   case MIToken::kw_killed:
962     Flags |= RegState::Kill;
963     break;
964   case MIToken::kw_undef:
965     Flags |= RegState::Undef;
966     break;
967   case MIToken::kw_internal:
968     Flags |= RegState::InternalRead;
969     break;
970   case MIToken::kw_early_clobber:
971     Flags |= RegState::EarlyClobber;
972     break;
973   case MIToken::kw_debug_use:
974     Flags |= RegState::Debug;
975     break;
976   default:
977     llvm_unreachable("The current token should be a register flag");
978   }
979   if (OldFlags == Flags)
980     // We know that the same flag is specified more than once when the flags
981     // weren't modified.
982     return error("duplicate '" + Token.stringValue() + "' register flag");
983   lex();
984   return false;
985 }
986 
987 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
988   assert(Token.is(MIToken::dot));
989   lex();
990   if (Token.isNot(MIToken::Identifier))
991     return error("expected a subregister index after '.'");
992   auto Name = Token.stringValue();
993   SubReg = getSubRegIndex(Name);
994   if (!SubReg)
995     return error(Twine("use of unknown subregister index '") + Name + "'");
996   lex();
997   return false;
998 }
999 
1000 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1001   if (!consumeIfPresent(MIToken::kw_tied_def))
1002     return true;
1003   if (Token.isNot(MIToken::IntegerLiteral))
1004     return error("expected an integer literal after 'tied-def'");
1005   if (getUnsigned(TiedDefIdx))
1006     return true;
1007   lex();
1008   if (expectAndConsume(MIToken::rparen))
1009     return true;
1010   return false;
1011 }
1012 
1013 bool MIParser::assignRegisterTies(MachineInstr &MI,
1014                                   ArrayRef<ParsedMachineOperand> Operands) {
1015   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1016   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1017     if (!Operands[I].TiedDefIdx)
1018       continue;
1019     // The parser ensures that this operand is a register use, so we just have
1020     // to check the tied-def operand.
1021     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1022     if (DefIdx >= E)
1023       return error(Operands[I].Begin,
1024                    Twine("use of invalid tied-def operand index '" +
1025                          Twine(DefIdx) + "'; instruction has only ") +
1026                        Twine(E) + " operands");
1027     const auto &DefOperand = Operands[DefIdx].Operand;
1028     if (!DefOperand.isReg() || !DefOperand.isDef())
1029       // FIXME: add note with the def operand.
1030       return error(Operands[I].Begin,
1031                    Twine("use of invalid tied-def operand index '") +
1032                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1033                        " isn't a defined register");
1034     // Check that the tied-def operand wasn't tied elsewhere.
1035     for (const auto &TiedPair : TiedRegisterPairs) {
1036       if (TiedPair.first == DefIdx)
1037         return error(Operands[I].Begin,
1038                      Twine("the tied-def operand #") + Twine(DefIdx) +
1039                          " is already tied with another register operand");
1040     }
1041     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1042   }
1043   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1044   // indices must be less than tied max.
1045   for (const auto &TiedPair : TiedRegisterPairs)
1046     MI.tieOperands(TiedPair.first, TiedPair.second);
1047   return false;
1048 }
1049 
1050 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1051                                     Optional<unsigned> &TiedDefIdx,
1052                                     bool IsDef) {
1053   unsigned Flags = IsDef ? RegState::Define : 0;
1054   while (Token.isRegisterFlag()) {
1055     if (parseRegisterFlag(Flags))
1056       return true;
1057   }
1058   if (!Token.isRegister())
1059     return error("expected a register after register flags");
1060   unsigned Reg;
1061   VRegInfo *RegInfo;
1062   if (parseRegister(Reg, RegInfo))
1063     return true;
1064   lex();
1065   unsigned SubReg = 0;
1066   if (Token.is(MIToken::dot)) {
1067     if (parseSubRegisterIndex(SubReg))
1068       return true;
1069     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1070       return error("subregister index expects a virtual register");
1071   }
1072   if (Token.is(MIToken::colon)) {
1073     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1074       return error("register class specification expects a virtual register");
1075     lex();
1076     if (parseRegisterClassOrBank(*RegInfo))
1077         return true;
1078   }
1079   MachineRegisterInfo &MRI = MF.getRegInfo();
1080   if ((Flags & RegState::Define) == 0) {
1081     if (consumeIfPresent(MIToken::lparen)) {
1082       unsigned Idx;
1083       if (!parseRegisterTiedDefIndex(Idx))
1084         TiedDefIdx = Idx;
1085       else {
1086         // Try a redundant low-level type.
1087         LLT Ty;
1088         if (parseLowLevelType(Token.location(), Ty))
1089           return error("expected tied-def or low-level type after '('");
1090 
1091         if (expectAndConsume(MIToken::rparen))
1092           return true;
1093 
1094         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1095           return error("inconsistent type for generic virtual register");
1096 
1097         MRI.setType(Reg, Ty);
1098       }
1099     }
1100   } else if (consumeIfPresent(MIToken::lparen)) {
1101     // Virtual registers may have a tpe with GlobalISel.
1102     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1103       return error("unexpected type on physical register");
1104 
1105     LLT Ty;
1106     if (parseLowLevelType(Token.location(), Ty))
1107       return true;
1108 
1109     if (expectAndConsume(MIToken::rparen))
1110       return true;
1111 
1112     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1113       return error("inconsistent type for generic virtual register");
1114 
1115     MRI.setType(Reg, Ty);
1116   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1117     // Generic virtual registers must have a type.
1118     // If we end up here this means the type hasn't been specified and
1119     // this is bad!
1120     if (RegInfo->Kind == VRegInfo::GENERIC ||
1121         RegInfo->Kind == VRegInfo::REGBANK)
1122       return error("generic virtual registers must have a type");
1123   }
1124   Dest = MachineOperand::CreateReg(
1125       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1126       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1127       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1128       Flags & RegState::InternalRead);
1129   return false;
1130 }
1131 
1132 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1133   assert(Token.is(MIToken::IntegerLiteral));
1134   const APSInt &Int = Token.integerValue();
1135   if (Int.getMinSignedBits() > 64)
1136     return error("integer literal is too large to be an immediate operand");
1137   Dest = MachineOperand::CreateImm(Int.getExtValue());
1138   lex();
1139   return false;
1140 }
1141 
1142 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1143                                const Constant *&C) {
1144   auto Source = StringValue.str(); // The source has to be null terminated.
1145   SMDiagnostic Err;
1146   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1147                          &PFS.IRSlots);
1148   if (!C)
1149     return error(Loc + Err.getColumnNo(), Err.getMessage());
1150   return false;
1151 }
1152 
1153 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1154   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1155     return true;
1156   lex();
1157   return false;
1158 }
1159 
1160 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1161   if (Token.is(MIToken::ScalarType)) {
1162     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1163     lex();
1164     return false;
1165   } else if (Token.is(MIToken::PointerType)) {
1166     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1167     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1168     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1169     lex();
1170     return false;
1171   }
1172 
1173   // Now we're looking for a vector.
1174   if (Token.isNot(MIToken::less))
1175     return error(Loc,
1176                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1177 
1178   lex();
1179 
1180   if (Token.isNot(MIToken::IntegerLiteral))
1181     return error(Loc, "expected <N x sM> for vctor type");
1182   uint64_t NumElements = Token.integerValue().getZExtValue();
1183   lex();
1184 
1185   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1186     return error(Loc, "expected '<N x sM>' for vector type");
1187   lex();
1188 
1189   if (Token.isNot(MIToken::ScalarType))
1190     return error(Loc, "expected '<N x sM>' for vector type");
1191   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1192   lex();
1193 
1194   if (Token.isNot(MIToken::greater))
1195     return error(Loc, "expected '<N x sM>' for vector type");
1196   lex();
1197 
1198   Ty = LLT::vector(NumElements, ScalarSize);
1199   return false;
1200 }
1201 
1202 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1203   assert(Token.is(MIToken::IntegerType));
1204   auto Loc = Token.location();
1205   lex();
1206   if (Token.isNot(MIToken::IntegerLiteral))
1207     return error("expected an integer literal");
1208   const Constant *C = nullptr;
1209   if (parseIRConstant(Loc, C))
1210     return true;
1211   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1212   return false;
1213 }
1214 
1215 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1216   auto Loc = Token.location();
1217   lex();
1218   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1219       Token.isNot(MIToken::HexLiteral))
1220     return error("expected a floating point literal");
1221   const Constant *C = nullptr;
1222   if (parseIRConstant(Loc, C))
1223     return true;
1224   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1225   return false;
1226 }
1227 
1228 bool MIParser::getUnsigned(unsigned &Result) {
1229   if (Token.hasIntegerValue()) {
1230     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1231     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1232     if (Val64 == Limit)
1233       return error("expected 32-bit integer (too large)");
1234     Result = Val64;
1235     return false;
1236   }
1237   if (Token.is(MIToken::HexLiteral)) {
1238     APInt A;
1239     if (getHexUint(A))
1240       return true;
1241     if (A.getBitWidth() > 32)
1242       return error("expected 32-bit integer (too large)");
1243     Result = A.getZExtValue();
1244     return false;
1245   }
1246   return true;
1247 }
1248 
1249 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1250   assert(Token.is(MIToken::MachineBasicBlock) ||
1251          Token.is(MIToken::MachineBasicBlockLabel));
1252   unsigned Number;
1253   if (getUnsigned(Number))
1254     return true;
1255   auto MBBInfo = PFS.MBBSlots.find(Number);
1256   if (MBBInfo == PFS.MBBSlots.end())
1257     return error(Twine("use of undefined machine basic block #") +
1258                  Twine(Number));
1259   MBB = MBBInfo->second;
1260   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1261     return error(Twine("the name of machine basic block #") + Twine(Number) +
1262                  " isn't '" + Token.stringValue() + "'");
1263   return false;
1264 }
1265 
1266 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1267   MachineBasicBlock *MBB;
1268   if (parseMBBReference(MBB))
1269     return true;
1270   Dest = MachineOperand::CreateMBB(MBB);
1271   lex();
1272   return false;
1273 }
1274 
1275 bool MIParser::parseStackFrameIndex(int &FI) {
1276   assert(Token.is(MIToken::StackObject));
1277   unsigned ID;
1278   if (getUnsigned(ID))
1279     return true;
1280   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1281   if (ObjectInfo == PFS.StackObjectSlots.end())
1282     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1283                  "'");
1284   StringRef Name;
1285   if (const auto *Alloca =
1286           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1287     Name = Alloca->getName();
1288   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1289     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1290                  "' isn't '" + Token.stringValue() + "'");
1291   lex();
1292   FI = ObjectInfo->second;
1293   return false;
1294 }
1295 
1296 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1297   int FI;
1298   if (parseStackFrameIndex(FI))
1299     return true;
1300   Dest = MachineOperand::CreateFI(FI);
1301   return false;
1302 }
1303 
1304 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1305   assert(Token.is(MIToken::FixedStackObject));
1306   unsigned ID;
1307   if (getUnsigned(ID))
1308     return true;
1309   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1310   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1311     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1312                  Twine(ID) + "'");
1313   lex();
1314   FI = ObjectInfo->second;
1315   return false;
1316 }
1317 
1318 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1319   int FI;
1320   if (parseFixedStackFrameIndex(FI))
1321     return true;
1322   Dest = MachineOperand::CreateFI(FI);
1323   return false;
1324 }
1325 
1326 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1327   switch (Token.kind()) {
1328   case MIToken::NamedGlobalValue: {
1329     const Module *M = MF.getFunction()->getParent();
1330     GV = M->getNamedValue(Token.stringValue());
1331     if (!GV)
1332       return error(Twine("use of undefined global value '") + Token.range() +
1333                    "'");
1334     break;
1335   }
1336   case MIToken::GlobalValue: {
1337     unsigned GVIdx;
1338     if (getUnsigned(GVIdx))
1339       return true;
1340     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1341       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1342                    "'");
1343     GV = PFS.IRSlots.GlobalValues[GVIdx];
1344     break;
1345   }
1346   default:
1347     llvm_unreachable("The current token should be a global value");
1348   }
1349   return false;
1350 }
1351 
1352 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1353   GlobalValue *GV = nullptr;
1354   if (parseGlobalValue(GV))
1355     return true;
1356   lex();
1357   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1358   if (parseOperandsOffset(Dest))
1359     return true;
1360   return false;
1361 }
1362 
1363 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1364   assert(Token.is(MIToken::ConstantPoolItem));
1365   unsigned ID;
1366   if (getUnsigned(ID))
1367     return true;
1368   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1369   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1370     return error("use of undefined constant '%const." + Twine(ID) + "'");
1371   lex();
1372   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1373   if (parseOperandsOffset(Dest))
1374     return true;
1375   return false;
1376 }
1377 
1378 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1379   assert(Token.is(MIToken::JumpTableIndex));
1380   unsigned ID;
1381   if (getUnsigned(ID))
1382     return true;
1383   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1384   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1385     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1386   lex();
1387   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1388   return false;
1389 }
1390 
1391 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1392   assert(Token.is(MIToken::ExternalSymbol));
1393   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1394   lex();
1395   Dest = MachineOperand::CreateES(Symbol);
1396   if (parseOperandsOffset(Dest))
1397     return true;
1398   return false;
1399 }
1400 
1401 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1402   assert(Token.is(MIToken::SubRegisterIndex));
1403   StringRef Name = Token.stringValue();
1404   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1405   if (SubRegIndex == 0)
1406     return error(Twine("unknown subregister index '") + Name + "'");
1407   lex();
1408   Dest = MachineOperand::CreateImm(SubRegIndex);
1409   return false;
1410 }
1411 
1412 bool MIParser::parseMDNode(MDNode *&Node) {
1413   assert(Token.is(MIToken::exclaim));
1414   auto Loc = Token.location();
1415   lex();
1416   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1417     return error("expected metadata id after '!'");
1418   unsigned ID;
1419   if (getUnsigned(ID))
1420     return true;
1421   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1422   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1423     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1424   lex();
1425   Node = NodeInfo->second.get();
1426   return false;
1427 }
1428 
1429 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1430   MDNode *Node = nullptr;
1431   if (parseMDNode(Node))
1432     return true;
1433   Dest = MachineOperand::CreateMetadata(Node);
1434   return false;
1435 }
1436 
1437 bool MIParser::parseCFIOffset(int &Offset) {
1438   if (Token.isNot(MIToken::IntegerLiteral))
1439     return error("expected a cfi offset");
1440   if (Token.integerValue().getMinSignedBits() > 32)
1441     return error("expected a 32 bit integer (the cfi offset is too large)");
1442   Offset = (int)Token.integerValue().getExtValue();
1443   lex();
1444   return false;
1445 }
1446 
1447 bool MIParser::parseCFIRegister(unsigned &Reg) {
1448   if (Token.isNot(MIToken::NamedRegister))
1449     return error("expected a cfi register");
1450   unsigned LLVMReg;
1451   if (parseNamedRegister(LLVMReg))
1452     return true;
1453   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1454   assert(TRI && "Expected target register info");
1455   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1456   if (DwarfReg < 0)
1457     return error("invalid DWARF register");
1458   Reg = (unsigned)DwarfReg;
1459   lex();
1460   return false;
1461 }
1462 
1463 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1464   auto Kind = Token.kind();
1465   lex();
1466   int Offset;
1467   unsigned Reg;
1468   unsigned CFIIndex;
1469   switch (Kind) {
1470   case MIToken::kw_cfi_same_value:
1471     if (parseCFIRegister(Reg))
1472       return true;
1473     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1474     break;
1475   case MIToken::kw_cfi_offset:
1476     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1477         parseCFIOffset(Offset))
1478       return true;
1479     CFIIndex =
1480         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1481     break;
1482   case MIToken::kw_cfi_def_cfa_register:
1483     if (parseCFIRegister(Reg))
1484       return true;
1485     CFIIndex =
1486         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1487     break;
1488   case MIToken::kw_cfi_def_cfa_offset:
1489     if (parseCFIOffset(Offset))
1490       return true;
1491     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1492     CFIIndex = MF.addFrameInst(
1493         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1494     break;
1495   case MIToken::kw_cfi_def_cfa:
1496     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1497         parseCFIOffset(Offset))
1498       return true;
1499     // NB: MCCFIInstruction::createDefCfa negates the offset.
1500     CFIIndex =
1501         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1502     break;
1503   default:
1504     // TODO: Parse the other CFI operands.
1505     llvm_unreachable("The current token should be a cfi operand");
1506   }
1507   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1508   return false;
1509 }
1510 
1511 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1512   switch (Token.kind()) {
1513   case MIToken::NamedIRBlock: {
1514     BB = dyn_cast_or_null<BasicBlock>(
1515         F.getValueSymbolTable()->lookup(Token.stringValue()));
1516     if (!BB)
1517       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1518     break;
1519   }
1520   case MIToken::IRBlock: {
1521     unsigned SlotNumber = 0;
1522     if (getUnsigned(SlotNumber))
1523       return true;
1524     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1525     if (!BB)
1526       return error(Twine("use of undefined IR block '%ir-block.") +
1527                    Twine(SlotNumber) + "'");
1528     break;
1529   }
1530   default:
1531     llvm_unreachable("The current token should be an IR block reference");
1532   }
1533   return false;
1534 }
1535 
1536 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1537   assert(Token.is(MIToken::kw_blockaddress));
1538   lex();
1539   if (expectAndConsume(MIToken::lparen))
1540     return true;
1541   if (Token.isNot(MIToken::GlobalValue) &&
1542       Token.isNot(MIToken::NamedGlobalValue))
1543     return error("expected a global value");
1544   GlobalValue *GV = nullptr;
1545   if (parseGlobalValue(GV))
1546     return true;
1547   auto *F = dyn_cast<Function>(GV);
1548   if (!F)
1549     return error("expected an IR function reference");
1550   lex();
1551   if (expectAndConsume(MIToken::comma))
1552     return true;
1553   BasicBlock *BB = nullptr;
1554   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1555     return error("expected an IR block reference");
1556   if (parseIRBlock(BB, *F))
1557     return true;
1558   lex();
1559   if (expectAndConsume(MIToken::rparen))
1560     return true;
1561   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1562   if (parseOperandsOffset(Dest))
1563     return true;
1564   return false;
1565 }
1566 
1567 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1568   assert(Token.is(MIToken::kw_intrinsic));
1569   lex();
1570   if (expectAndConsume(MIToken::lparen))
1571     return error("expected syntax intrinsic(@llvm.whatever)");
1572 
1573   if (Token.isNot(MIToken::NamedGlobalValue))
1574     return error("expected syntax intrinsic(@llvm.whatever)");
1575 
1576   std::string Name = Token.stringValue();
1577   lex();
1578 
1579   if (expectAndConsume(MIToken::rparen))
1580     return error("expected ')' to terminate intrinsic name");
1581 
1582   // Find out what intrinsic we're dealing with, first try the global namespace
1583   // and then the target's private intrinsics if that fails.
1584   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1585   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1586   if (ID == Intrinsic::not_intrinsic && TII)
1587     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1588 
1589   if (ID == Intrinsic::not_intrinsic)
1590     return error("unknown intrinsic name");
1591   Dest = MachineOperand::CreateIntrinsicID(ID);
1592 
1593   return false;
1594 }
1595 
1596 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1597   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1598   bool IsFloat = Token.is(MIToken::kw_floatpred);
1599   lex();
1600 
1601   if (expectAndConsume(MIToken::lparen))
1602     return error("expected syntax intpred(whatever) or floatpred(whatever");
1603 
1604   if (Token.isNot(MIToken::Identifier))
1605     return error("whatever");
1606 
1607   CmpInst::Predicate Pred;
1608   if (IsFloat) {
1609     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1610                .Case("false", CmpInst::FCMP_FALSE)
1611                .Case("oeq", CmpInst::FCMP_OEQ)
1612                .Case("ogt", CmpInst::FCMP_OGT)
1613                .Case("oge", CmpInst::FCMP_OGE)
1614                .Case("olt", CmpInst::FCMP_OLT)
1615                .Case("ole", CmpInst::FCMP_OLE)
1616                .Case("one", CmpInst::FCMP_ONE)
1617                .Case("ord", CmpInst::FCMP_ORD)
1618                .Case("uno", CmpInst::FCMP_UNO)
1619                .Case("ueq", CmpInst::FCMP_UEQ)
1620                .Case("ugt", CmpInst::FCMP_UGT)
1621                .Case("uge", CmpInst::FCMP_UGE)
1622                .Case("ult", CmpInst::FCMP_ULT)
1623                .Case("ule", CmpInst::FCMP_ULE)
1624                .Case("une", CmpInst::FCMP_UNE)
1625                .Case("true", CmpInst::FCMP_TRUE)
1626                .Default(CmpInst::BAD_FCMP_PREDICATE);
1627     if (!CmpInst::isFPPredicate(Pred))
1628       return error("invalid floating-point predicate");
1629   } else {
1630     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1631                .Case("eq", CmpInst::ICMP_EQ)
1632                .Case("ne", CmpInst::ICMP_NE)
1633                .Case("sgt", CmpInst::ICMP_SGT)
1634                .Case("sge", CmpInst::ICMP_SGE)
1635                .Case("slt", CmpInst::ICMP_SLT)
1636                .Case("sle", CmpInst::ICMP_SLE)
1637                .Case("ugt", CmpInst::ICMP_UGT)
1638                .Case("uge", CmpInst::ICMP_UGE)
1639                .Case("ult", CmpInst::ICMP_ULT)
1640                .Case("ule", CmpInst::ICMP_ULE)
1641                .Default(CmpInst::BAD_ICMP_PREDICATE);
1642     if (!CmpInst::isIntPredicate(Pred))
1643       return error("invalid integer predicate");
1644   }
1645 
1646   lex();
1647   Dest = MachineOperand::CreatePredicate(Pred);
1648   if (expectAndConsume(MIToken::rparen))
1649     return error("predicate should be terminated by ')'.");
1650 
1651   return false;
1652 }
1653 
1654 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1655   assert(Token.is(MIToken::kw_target_index));
1656   lex();
1657   if (expectAndConsume(MIToken::lparen))
1658     return true;
1659   if (Token.isNot(MIToken::Identifier))
1660     return error("expected the name of the target index");
1661   int Index = 0;
1662   if (getTargetIndex(Token.stringValue(), Index))
1663     return error("use of undefined target index '" + Token.stringValue() + "'");
1664   lex();
1665   if (expectAndConsume(MIToken::rparen))
1666     return true;
1667   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1668   if (parseOperandsOffset(Dest))
1669     return true;
1670   return false;
1671 }
1672 
1673 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1674   assert(Token.is(MIToken::kw_liveout));
1675   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1676   assert(TRI && "Expected target register info");
1677   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1678   lex();
1679   if (expectAndConsume(MIToken::lparen))
1680     return true;
1681   while (true) {
1682     if (Token.isNot(MIToken::NamedRegister))
1683       return error("expected a named register");
1684     unsigned Reg;
1685     if (parseNamedRegister(Reg))
1686       return true;
1687     lex();
1688     Mask[Reg / 32] |= 1U << (Reg % 32);
1689     // TODO: Report an error if the same register is used more than once.
1690     if (Token.isNot(MIToken::comma))
1691       break;
1692     lex();
1693   }
1694   if (expectAndConsume(MIToken::rparen))
1695     return true;
1696   Dest = MachineOperand::CreateRegLiveOut(Mask);
1697   return false;
1698 }
1699 
1700 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1701                                    Optional<unsigned> &TiedDefIdx) {
1702   switch (Token.kind()) {
1703   case MIToken::kw_implicit:
1704   case MIToken::kw_implicit_define:
1705   case MIToken::kw_def:
1706   case MIToken::kw_dead:
1707   case MIToken::kw_killed:
1708   case MIToken::kw_undef:
1709   case MIToken::kw_internal:
1710   case MIToken::kw_early_clobber:
1711   case MIToken::kw_debug_use:
1712   case MIToken::underscore:
1713   case MIToken::NamedRegister:
1714   case MIToken::VirtualRegister:
1715     return parseRegisterOperand(Dest, TiedDefIdx);
1716   case MIToken::IntegerLiteral:
1717     return parseImmediateOperand(Dest);
1718   case MIToken::IntegerType:
1719     return parseTypedImmediateOperand(Dest);
1720   case MIToken::kw_half:
1721   case MIToken::kw_float:
1722   case MIToken::kw_double:
1723   case MIToken::kw_x86_fp80:
1724   case MIToken::kw_fp128:
1725   case MIToken::kw_ppc_fp128:
1726     return parseFPImmediateOperand(Dest);
1727   case MIToken::MachineBasicBlock:
1728     return parseMBBOperand(Dest);
1729   case MIToken::StackObject:
1730     return parseStackObjectOperand(Dest);
1731   case MIToken::FixedStackObject:
1732     return parseFixedStackObjectOperand(Dest);
1733   case MIToken::GlobalValue:
1734   case MIToken::NamedGlobalValue:
1735     return parseGlobalAddressOperand(Dest);
1736   case MIToken::ConstantPoolItem:
1737     return parseConstantPoolIndexOperand(Dest);
1738   case MIToken::JumpTableIndex:
1739     return parseJumpTableIndexOperand(Dest);
1740   case MIToken::ExternalSymbol:
1741     return parseExternalSymbolOperand(Dest);
1742   case MIToken::SubRegisterIndex:
1743     return parseSubRegisterIndexOperand(Dest);
1744   case MIToken::exclaim:
1745     return parseMetadataOperand(Dest);
1746   case MIToken::kw_cfi_same_value:
1747   case MIToken::kw_cfi_offset:
1748   case MIToken::kw_cfi_def_cfa_register:
1749   case MIToken::kw_cfi_def_cfa_offset:
1750   case MIToken::kw_cfi_def_cfa:
1751     return parseCFIOperand(Dest);
1752   case MIToken::kw_blockaddress:
1753     return parseBlockAddressOperand(Dest);
1754   case MIToken::kw_intrinsic:
1755     return parseIntrinsicOperand(Dest);
1756   case MIToken::kw_target_index:
1757     return parseTargetIndexOperand(Dest);
1758   case MIToken::kw_liveout:
1759     return parseLiveoutRegisterMaskOperand(Dest);
1760   case MIToken::kw_floatpred:
1761   case MIToken::kw_intpred:
1762     return parsePredicateOperand(Dest);
1763   case MIToken::Error:
1764     return true;
1765   case MIToken::Identifier:
1766     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1767       Dest = MachineOperand::CreateRegMask(RegMask);
1768       lex();
1769       break;
1770     }
1771     LLVM_FALLTHROUGH;
1772   default:
1773     // FIXME: Parse the MCSymbol machine operand.
1774     return error("expected a machine operand");
1775   }
1776   return false;
1777 }
1778 
1779 bool MIParser::parseMachineOperandAndTargetFlags(
1780     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1781   unsigned TF = 0;
1782   bool HasTargetFlags = false;
1783   if (Token.is(MIToken::kw_target_flags)) {
1784     HasTargetFlags = true;
1785     lex();
1786     if (expectAndConsume(MIToken::lparen))
1787       return true;
1788     if (Token.isNot(MIToken::Identifier))
1789       return error("expected the name of the target flag");
1790     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1791       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1792         return error("use of undefined target flag '" + Token.stringValue() +
1793                      "'");
1794     }
1795     lex();
1796     while (Token.is(MIToken::comma)) {
1797       lex();
1798       if (Token.isNot(MIToken::Identifier))
1799         return error("expected the name of the target flag");
1800       unsigned BitFlag = 0;
1801       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1802         return error("use of undefined target flag '" + Token.stringValue() +
1803                      "'");
1804       // TODO: Report an error when using a duplicate bit target flag.
1805       TF |= BitFlag;
1806       lex();
1807     }
1808     if (expectAndConsume(MIToken::rparen))
1809       return true;
1810   }
1811   auto Loc = Token.location();
1812   if (parseMachineOperand(Dest, TiedDefIdx))
1813     return true;
1814   if (!HasTargetFlags)
1815     return false;
1816   if (Dest.isReg())
1817     return error(Loc, "register operands can't have target flags");
1818   Dest.setTargetFlags(TF);
1819   return false;
1820 }
1821 
1822 bool MIParser::parseOffset(int64_t &Offset) {
1823   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1824     return false;
1825   StringRef Sign = Token.range();
1826   bool IsNegative = Token.is(MIToken::minus);
1827   lex();
1828   if (Token.isNot(MIToken::IntegerLiteral))
1829     return error("expected an integer literal after '" + Sign + "'");
1830   if (Token.integerValue().getMinSignedBits() > 64)
1831     return error("expected 64-bit integer (too large)");
1832   Offset = Token.integerValue().getExtValue();
1833   if (IsNegative)
1834     Offset = -Offset;
1835   lex();
1836   return false;
1837 }
1838 
1839 bool MIParser::parseAlignment(unsigned &Alignment) {
1840   assert(Token.is(MIToken::kw_align));
1841   lex();
1842   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1843     return error("expected an integer literal after 'align'");
1844   if (getUnsigned(Alignment))
1845     return true;
1846   lex();
1847   return false;
1848 }
1849 
1850 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1851   int64_t Offset = 0;
1852   if (parseOffset(Offset))
1853     return true;
1854   Op.setOffset(Offset);
1855   return false;
1856 }
1857 
1858 bool MIParser::parseIRValue(const Value *&V) {
1859   switch (Token.kind()) {
1860   case MIToken::NamedIRValue: {
1861     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1862     break;
1863   }
1864   case MIToken::IRValue: {
1865     unsigned SlotNumber = 0;
1866     if (getUnsigned(SlotNumber))
1867       return true;
1868     V = getIRValue(SlotNumber);
1869     break;
1870   }
1871   case MIToken::NamedGlobalValue:
1872   case MIToken::GlobalValue: {
1873     GlobalValue *GV = nullptr;
1874     if (parseGlobalValue(GV))
1875       return true;
1876     V = GV;
1877     break;
1878   }
1879   case MIToken::QuotedIRValue: {
1880     const Constant *C = nullptr;
1881     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1882       return true;
1883     V = C;
1884     break;
1885   }
1886   default:
1887     llvm_unreachable("The current token should be an IR block reference");
1888   }
1889   if (!V)
1890     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1891   return false;
1892 }
1893 
1894 bool MIParser::getUint64(uint64_t &Result) {
1895   if (Token.hasIntegerValue()) {
1896     if (Token.integerValue().getActiveBits() > 64)
1897       return error("expected 64-bit integer (too large)");
1898     Result = Token.integerValue().getZExtValue();
1899     return false;
1900   }
1901   if (Token.is(MIToken::HexLiteral)) {
1902     APInt A;
1903     if (getHexUint(A))
1904       return true;
1905     if (A.getBitWidth() > 64)
1906       return error("expected 64-bit integer (too large)");
1907     Result = A.getZExtValue();
1908     return false;
1909   }
1910   return true;
1911 }
1912 
1913 bool MIParser::getHexUint(APInt &Result) {
1914   assert(Token.is(MIToken::HexLiteral));
1915   StringRef S = Token.range();
1916   assert(S[0] == '0' && tolower(S[1]) == 'x');
1917   // This could be a floating point literal with a special prefix.
1918   if (!isxdigit(S[2]))
1919     return true;
1920   StringRef V = S.substr(2);
1921   APInt A(V.size()*4, V, 16);
1922   Result = APInt(A.getActiveBits(),
1923                  ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1924   return false;
1925 }
1926 
1927 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1928   const auto OldFlags = Flags;
1929   switch (Token.kind()) {
1930   case MIToken::kw_volatile:
1931     Flags |= MachineMemOperand::MOVolatile;
1932     break;
1933   case MIToken::kw_non_temporal:
1934     Flags |= MachineMemOperand::MONonTemporal;
1935     break;
1936   case MIToken::kw_dereferenceable:
1937     Flags |= MachineMemOperand::MODereferenceable;
1938     break;
1939   case MIToken::kw_invariant:
1940     Flags |= MachineMemOperand::MOInvariant;
1941     break;
1942   // TODO: parse the target specific memory operand flags.
1943   default:
1944     llvm_unreachable("The current token should be a memory operand flag");
1945   }
1946   if (OldFlags == Flags)
1947     // We know that the same flag is specified more than once when the flags
1948     // weren't modified.
1949     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1950   lex();
1951   return false;
1952 }
1953 
1954 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1955   switch (Token.kind()) {
1956   case MIToken::kw_stack:
1957     PSV = MF.getPSVManager().getStack();
1958     break;
1959   case MIToken::kw_got:
1960     PSV = MF.getPSVManager().getGOT();
1961     break;
1962   case MIToken::kw_jump_table:
1963     PSV = MF.getPSVManager().getJumpTable();
1964     break;
1965   case MIToken::kw_constant_pool:
1966     PSV = MF.getPSVManager().getConstantPool();
1967     break;
1968   case MIToken::FixedStackObject: {
1969     int FI;
1970     if (parseFixedStackFrameIndex(FI))
1971       return true;
1972     PSV = MF.getPSVManager().getFixedStack(FI);
1973     // The token was already consumed, so use return here instead of break.
1974     return false;
1975   }
1976   case MIToken::StackObject: {
1977     int FI;
1978     if (parseStackFrameIndex(FI))
1979       return true;
1980     PSV = MF.getPSVManager().getFixedStack(FI);
1981     // The token was already consumed, so use return here instead of break.
1982     return false;
1983   }
1984   case MIToken::kw_call_entry: {
1985     lex();
1986     switch (Token.kind()) {
1987     case MIToken::GlobalValue:
1988     case MIToken::NamedGlobalValue: {
1989       GlobalValue *GV = nullptr;
1990       if (parseGlobalValue(GV))
1991         return true;
1992       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1993       break;
1994     }
1995     case MIToken::ExternalSymbol:
1996       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1997           MF.createExternalSymbolName(Token.stringValue()));
1998       break;
1999     default:
2000       return error(
2001           "expected a global value or an external symbol after 'call-entry'");
2002     }
2003     break;
2004   }
2005   default:
2006     llvm_unreachable("The current token should be pseudo source value");
2007   }
2008   lex();
2009   return false;
2010 }
2011 
2012 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2013   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2014       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2015       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2016       Token.is(MIToken::kw_call_entry)) {
2017     const PseudoSourceValue *PSV = nullptr;
2018     if (parseMemoryPseudoSourceValue(PSV))
2019       return true;
2020     int64_t Offset = 0;
2021     if (parseOffset(Offset))
2022       return true;
2023     Dest = MachinePointerInfo(PSV, Offset);
2024     return false;
2025   }
2026   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2027       Token.isNot(MIToken::GlobalValue) &&
2028       Token.isNot(MIToken::NamedGlobalValue) &&
2029       Token.isNot(MIToken::QuotedIRValue))
2030     return error("expected an IR value reference");
2031   const Value *V = nullptr;
2032   if (parseIRValue(V))
2033     return true;
2034   if (!V->getType()->isPointerTy())
2035     return error("expected a pointer IR value");
2036   lex();
2037   int64_t Offset = 0;
2038   if (parseOffset(Offset))
2039     return true;
2040   Dest = MachinePointerInfo(V, Offset);
2041   return false;
2042 }
2043 
2044 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2045   Order = AtomicOrdering::NotAtomic;
2046   if (Token.isNot(MIToken::Identifier))
2047     return false;
2048 
2049   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2050               .Case("unordered", AtomicOrdering::Unordered)
2051               .Case("monotonic", AtomicOrdering::Monotonic)
2052               .Case("acquire", AtomicOrdering::Acquire)
2053               .Case("release", AtomicOrdering::Release)
2054               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2055               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2056               .Default(AtomicOrdering::NotAtomic);
2057 
2058   if (Order != AtomicOrdering::NotAtomic) {
2059     lex();
2060     return false;
2061   }
2062 
2063   return error("expected an atomic scope, ordering or a size integer literal");
2064 }
2065 
2066 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2067   if (expectAndConsume(MIToken::lparen))
2068     return true;
2069   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2070   while (Token.isMemoryOperandFlag()) {
2071     if (parseMemoryOperandFlag(Flags))
2072       return true;
2073   }
2074   if (Token.isNot(MIToken::Identifier) ||
2075       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2076     return error("expected 'load' or 'store' memory operation");
2077   if (Token.stringValue() == "load")
2078     Flags |= MachineMemOperand::MOLoad;
2079   else
2080     Flags |= MachineMemOperand::MOStore;
2081   lex();
2082 
2083   // Optional "singlethread" scope.
2084   SynchronizationScope Scope = SynchronizationScope::CrossThread;
2085   if (Token.is(MIToken::Identifier) && Token.stringValue() == "singlethread") {
2086     Scope = SynchronizationScope::SingleThread;
2087     lex();
2088   }
2089 
2090   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2091   AtomicOrdering Order, FailureOrder;
2092   if (parseOptionalAtomicOrdering(Order))
2093     return true;
2094 
2095   if (parseOptionalAtomicOrdering(FailureOrder))
2096     return true;
2097 
2098   if (Token.isNot(MIToken::IntegerLiteral))
2099     return error("expected the size integer literal after memory operation");
2100   uint64_t Size;
2101   if (getUint64(Size))
2102     return true;
2103   lex();
2104 
2105   MachinePointerInfo Ptr = MachinePointerInfo();
2106   if (Token.is(MIToken::Identifier)) {
2107     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
2108     if (Token.stringValue() != Word)
2109       return error(Twine("expected '") + Word + "'");
2110     lex();
2111 
2112     if (parseMachinePointerInfo(Ptr))
2113       return true;
2114   }
2115   unsigned BaseAlignment = Size;
2116   AAMDNodes AAInfo;
2117   MDNode *Range = nullptr;
2118   while (consumeIfPresent(MIToken::comma)) {
2119     switch (Token.kind()) {
2120     case MIToken::kw_align:
2121       if (parseAlignment(BaseAlignment))
2122         return true;
2123       break;
2124     case MIToken::md_tbaa:
2125       lex();
2126       if (parseMDNode(AAInfo.TBAA))
2127         return true;
2128       break;
2129     case MIToken::md_alias_scope:
2130       lex();
2131       if (parseMDNode(AAInfo.Scope))
2132         return true;
2133       break;
2134     case MIToken::md_noalias:
2135       lex();
2136       if (parseMDNode(AAInfo.NoAlias))
2137         return true;
2138       break;
2139     case MIToken::md_range:
2140       lex();
2141       if (parseMDNode(Range))
2142         return true;
2143       break;
2144     // TODO: Report an error on duplicate metadata nodes.
2145     default:
2146       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2147                    "'!noalias' or '!range'");
2148     }
2149   }
2150   if (expectAndConsume(MIToken::rparen))
2151     return true;
2152   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2153                                  Scope, Order, FailureOrder);
2154   return false;
2155 }
2156 
2157 void MIParser::initNames2InstrOpCodes() {
2158   if (!Names2InstrOpCodes.empty())
2159     return;
2160   const auto *TII = MF.getSubtarget().getInstrInfo();
2161   assert(TII && "Expected target instruction info");
2162   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2163     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2164 }
2165 
2166 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2167   initNames2InstrOpCodes();
2168   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2169   if (InstrInfo == Names2InstrOpCodes.end())
2170     return true;
2171   OpCode = InstrInfo->getValue();
2172   return false;
2173 }
2174 
2175 void MIParser::initNames2Regs() {
2176   if (!Names2Regs.empty())
2177     return;
2178   // The '%noreg' register is the register 0.
2179   Names2Regs.insert(std::make_pair("noreg", 0));
2180   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2181   assert(TRI && "Expected target register info");
2182   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2183     bool WasInserted =
2184         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2185             .second;
2186     (void)WasInserted;
2187     assert(WasInserted && "Expected registers to be unique case-insensitively");
2188   }
2189 }
2190 
2191 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2192   initNames2Regs();
2193   auto RegInfo = Names2Regs.find(RegName);
2194   if (RegInfo == Names2Regs.end())
2195     return true;
2196   Reg = RegInfo->getValue();
2197   return false;
2198 }
2199 
2200 void MIParser::initNames2RegMasks() {
2201   if (!Names2RegMasks.empty())
2202     return;
2203   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2204   assert(TRI && "Expected target register info");
2205   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2206   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2207   assert(RegMasks.size() == RegMaskNames.size());
2208   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2209     Names2RegMasks.insert(
2210         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2211 }
2212 
2213 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2214   initNames2RegMasks();
2215   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2216   if (RegMaskInfo == Names2RegMasks.end())
2217     return nullptr;
2218   return RegMaskInfo->getValue();
2219 }
2220 
2221 void MIParser::initNames2SubRegIndices() {
2222   if (!Names2SubRegIndices.empty())
2223     return;
2224   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2225   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2226     Names2SubRegIndices.insert(
2227         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2228 }
2229 
2230 unsigned MIParser::getSubRegIndex(StringRef Name) {
2231   initNames2SubRegIndices();
2232   auto SubRegInfo = Names2SubRegIndices.find(Name);
2233   if (SubRegInfo == Names2SubRegIndices.end())
2234     return 0;
2235   return SubRegInfo->getValue();
2236 }
2237 
2238 static void initSlots2BasicBlocks(
2239     const Function &F,
2240     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2241   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2242   MST.incorporateFunction(F);
2243   for (auto &BB : F) {
2244     if (BB.hasName())
2245       continue;
2246     int Slot = MST.getLocalSlot(&BB);
2247     if (Slot == -1)
2248       continue;
2249     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2250   }
2251 }
2252 
2253 static const BasicBlock *getIRBlockFromSlot(
2254     unsigned Slot,
2255     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2256   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2257   if (BlockInfo == Slots2BasicBlocks.end())
2258     return nullptr;
2259   return BlockInfo->second;
2260 }
2261 
2262 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2263   if (Slots2BasicBlocks.empty())
2264     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2265   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2266 }
2267 
2268 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2269   if (&F == MF.getFunction())
2270     return getIRBlock(Slot);
2271   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2272   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2273   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2274 }
2275 
2276 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2277                            DenseMap<unsigned, const Value *> &Slots2Values) {
2278   int Slot = MST.getLocalSlot(V);
2279   if (Slot == -1)
2280     return;
2281   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2282 }
2283 
2284 /// Creates the mapping from slot numbers to function's unnamed IR values.
2285 static void initSlots2Values(const Function &F,
2286                              DenseMap<unsigned, const Value *> &Slots2Values) {
2287   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2288   MST.incorporateFunction(F);
2289   for (const auto &Arg : F.args())
2290     mapValueToSlot(&Arg, MST, Slots2Values);
2291   for (const auto &BB : F) {
2292     mapValueToSlot(&BB, MST, Slots2Values);
2293     for (const auto &I : BB)
2294       mapValueToSlot(&I, MST, Slots2Values);
2295   }
2296 }
2297 
2298 const Value *MIParser::getIRValue(unsigned Slot) {
2299   if (Slots2Values.empty())
2300     initSlots2Values(*MF.getFunction(), Slots2Values);
2301   auto ValueInfo = Slots2Values.find(Slot);
2302   if (ValueInfo == Slots2Values.end())
2303     return nullptr;
2304   return ValueInfo->second;
2305 }
2306 
2307 void MIParser::initNames2TargetIndices() {
2308   if (!Names2TargetIndices.empty())
2309     return;
2310   const auto *TII = MF.getSubtarget().getInstrInfo();
2311   assert(TII && "Expected target instruction info");
2312   auto Indices = TII->getSerializableTargetIndices();
2313   for (const auto &I : Indices)
2314     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2315 }
2316 
2317 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2318   initNames2TargetIndices();
2319   auto IndexInfo = Names2TargetIndices.find(Name);
2320   if (IndexInfo == Names2TargetIndices.end())
2321     return true;
2322   Index = IndexInfo->second;
2323   return false;
2324 }
2325 
2326 void MIParser::initNames2DirectTargetFlags() {
2327   if (!Names2DirectTargetFlags.empty())
2328     return;
2329   const auto *TII = MF.getSubtarget().getInstrInfo();
2330   assert(TII && "Expected target instruction info");
2331   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2332   for (const auto &I : Flags)
2333     Names2DirectTargetFlags.insert(
2334         std::make_pair(StringRef(I.second), I.first));
2335 }
2336 
2337 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2338   initNames2DirectTargetFlags();
2339   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2340   if (FlagInfo == Names2DirectTargetFlags.end())
2341     return true;
2342   Flag = FlagInfo->second;
2343   return false;
2344 }
2345 
2346 void MIParser::initNames2BitmaskTargetFlags() {
2347   if (!Names2BitmaskTargetFlags.empty())
2348     return;
2349   const auto *TII = MF.getSubtarget().getInstrInfo();
2350   assert(TII && "Expected target instruction info");
2351   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2352   for (const auto &I : Flags)
2353     Names2BitmaskTargetFlags.insert(
2354         std::make_pair(StringRef(I.second), I.first));
2355 }
2356 
2357 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2358   initNames2BitmaskTargetFlags();
2359   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2360   if (FlagInfo == Names2BitmaskTargetFlags.end())
2361     return true;
2362   Flag = FlagInfo->second;
2363   return false;
2364 }
2365 
2366 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2367                                              StringRef Src,
2368                                              SMDiagnostic &Error) {
2369   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2370 }
2371 
2372 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2373                                     StringRef Src, SMDiagnostic &Error) {
2374   return MIParser(PFS, Error, Src).parseBasicBlocks();
2375 }
2376 
2377 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2378                              MachineBasicBlock *&MBB, StringRef Src,
2379                              SMDiagnostic &Error) {
2380   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2381 }
2382 
2383 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2384                                   unsigned &Reg, StringRef Src,
2385                                   SMDiagnostic &Error) {
2386   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2387 }
2388 
2389 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2390                                        unsigned &Reg, StringRef Src,
2391                                        SMDiagnostic &Error) {
2392   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2393 }
2394 
2395 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2396                                          VRegInfo *&Info, StringRef Src,
2397                                          SMDiagnostic &Error) {
2398   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2399 }
2400 
2401 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2402                                      int &FI, StringRef Src,
2403                                      SMDiagnostic &Error) {
2404   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2405 }
2406 
2407 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2408                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2409   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2410 }
2411