1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots)
45   : MF(MF), SM(&SM), IRSlots(IRSlots) {
46 }
47 
48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
49   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
50   if (I.second) {
51     MachineRegisterInfo &MRI = MF.getRegInfo();
52     VRegInfo *Info = new (Allocator) VRegInfo;
53     Info->VReg = MRI.createIncompleteVirtualRegister();
54     I.first->second = Info;
55   }
56   return *I.first->second;
57 }
58 
59 namespace {
60 
61 /// A wrapper struct around the 'MachineOperand' struct that includes a source
62 /// range and other attributes.
63 struct ParsedMachineOperand {
64   MachineOperand Operand;
65   StringRef::iterator Begin;
66   StringRef::iterator End;
67   Optional<unsigned> TiedDefIdx;
68 
69   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
70                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
71       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
72     if (TiedDefIdx)
73       assert(Operand.isReg() && Operand.isUse() &&
74              "Only used register operands can be tied");
75   }
76 };
77 
78 class MIParser {
79   MachineFunction &MF;
80   SMDiagnostic &Error;
81   StringRef Source, CurrentSource;
82   MIToken Token;
83   PerFunctionMIParsingState &PFS;
84   /// Maps from instruction names to op codes.
85   StringMap<unsigned> Names2InstrOpCodes;
86   /// Maps from register names to registers.
87   StringMap<unsigned> Names2Regs;
88   /// Maps from register mask names to register masks.
89   StringMap<const uint32_t *> Names2RegMasks;
90   /// Maps from subregister names to subregister indices.
91   StringMap<unsigned> Names2SubRegIndices;
92   /// Maps from slot numbers to function's unnamed basic blocks.
93   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
94   /// Maps from slot numbers to function's unnamed values.
95   DenseMap<unsigned, const Value *> Slots2Values;
96   /// Maps from target index names to target indices.
97   StringMap<int> Names2TargetIndices;
98   /// Maps from direct target flag names to the direct target flag values.
99   StringMap<unsigned> Names2DirectTargetFlags;
100   /// Maps from direct target flag names to the bitmask target flag values.
101   StringMap<unsigned> Names2BitmaskTargetFlags;
102 
103 public:
104   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
105            StringRef Source);
106 
107   /// \p SkipChar gives the number of characters to skip before looking
108   /// for the next token.
109   void lex(unsigned SkipChar = 0);
110 
111   /// Report an error at the current location with the given message.
112   ///
113   /// This function always return true.
114   bool error(const Twine &Msg);
115 
116   /// Report an error at the given location with the given message.
117   ///
118   /// This function always return true.
119   bool error(StringRef::iterator Loc, const Twine &Msg);
120 
121   bool
122   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
123   bool parseBasicBlocks();
124   bool parse(MachineInstr *&MI);
125   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
126   bool parseStandaloneNamedRegister(unsigned &Reg);
127   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
128   bool parseStandaloneStackObject(int &FI);
129   bool parseStandaloneMDNode(MDNode *&Node);
130 
131   bool
132   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
133   bool parseBasicBlock(MachineBasicBlock &MBB);
134   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
135   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
136 
137   bool parseNamedRegister(unsigned &Reg);
138   bool parseVirtualRegister(VRegInfo *&Info);
139   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
140   bool parseRegisterFlag(unsigned &Flags);
141   bool parseSubRegisterIndex(unsigned &SubReg);
142   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
143   bool parseRegisterOperand(MachineOperand &Dest,
144                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
145   bool parseImmediateOperand(MachineOperand &Dest);
146   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
147                        const Constant *&C);
148   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
149   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
150   bool parseTypedImmediateOperand(MachineOperand &Dest);
151   bool parseFPImmediateOperand(MachineOperand &Dest);
152   bool parseMBBReference(MachineBasicBlock *&MBB);
153   bool parseMBBOperand(MachineOperand &Dest);
154   bool parseStackFrameIndex(int &FI);
155   bool parseStackObjectOperand(MachineOperand &Dest);
156   bool parseFixedStackFrameIndex(int &FI);
157   bool parseFixedStackObjectOperand(MachineOperand &Dest);
158   bool parseGlobalValue(GlobalValue *&GV);
159   bool parseGlobalAddressOperand(MachineOperand &Dest);
160   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
161   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
162   bool parseJumpTableIndexOperand(MachineOperand &Dest);
163   bool parseExternalSymbolOperand(MachineOperand &Dest);
164   bool parseMDNode(MDNode *&Node);
165   bool parseMetadataOperand(MachineOperand &Dest);
166   bool parseCFIOffset(int &Offset);
167   bool parseCFIRegister(unsigned &Reg);
168   bool parseCFIOperand(MachineOperand &Dest);
169   bool parseIRBlock(BasicBlock *&BB, const Function &F);
170   bool parseBlockAddressOperand(MachineOperand &Dest);
171   bool parseIntrinsicOperand(MachineOperand &Dest);
172   bool parsePredicateOperand(MachineOperand &Dest);
173   bool parseTargetIndexOperand(MachineOperand &Dest);
174   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
175   bool parseMachineOperand(MachineOperand &Dest,
176                            Optional<unsigned> &TiedDefIdx);
177   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
178                                          Optional<unsigned> &TiedDefIdx);
179   bool parseOffset(int64_t &Offset);
180   bool parseAlignment(unsigned &Alignment);
181   bool parseOperandsOffset(MachineOperand &Op);
182   bool parseIRValue(const Value *&V);
183   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
184   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
185   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
186   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
187 
188 private:
189   /// Convert the integer literal in the current token into an unsigned integer.
190   ///
191   /// Return true if an error occurred.
192   bool getUnsigned(unsigned &Result);
193 
194   /// Convert the integer literal in the current token into an uint64.
195   ///
196   /// Return true if an error occurred.
197   bool getUint64(uint64_t &Result);
198 
199   /// If the current token is of the given kind, consume it and return false.
200   /// Otherwise report an error and return true.
201   bool expectAndConsume(MIToken::TokenKind TokenKind);
202 
203   /// If the current token is of the given kind, consume it and return true.
204   /// Otherwise return false.
205   bool consumeIfPresent(MIToken::TokenKind TokenKind);
206 
207   void initNames2InstrOpCodes();
208 
209   /// Try to convert an instruction name to an opcode. Return true if the
210   /// instruction name is invalid.
211   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
212 
213   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
214 
215   bool assignRegisterTies(MachineInstr &MI,
216                           ArrayRef<ParsedMachineOperand> Operands);
217 
218   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
219                               const MCInstrDesc &MCID);
220 
221   void initNames2Regs();
222 
223   /// Try to convert a register name to a register number. Return true if the
224   /// register name is invalid.
225   bool getRegisterByName(StringRef RegName, unsigned &Reg);
226 
227   void initNames2RegMasks();
228 
229   /// Check if the given identifier is a name of a register mask.
230   ///
231   /// Return null if the identifier isn't a register mask.
232   const uint32_t *getRegMask(StringRef Identifier);
233 
234   void initNames2SubRegIndices();
235 
236   /// Check if the given identifier is a name of a subregister index.
237   ///
238   /// Return 0 if the name isn't a subregister index class.
239   unsigned getSubRegIndex(StringRef Name);
240 
241   const BasicBlock *getIRBlock(unsigned Slot);
242   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
243 
244   const Value *getIRValue(unsigned Slot);
245 
246   void initNames2TargetIndices();
247 
248   /// Try to convert a name of target index to the corresponding target index.
249   ///
250   /// Return true if the name isn't a name of a target index.
251   bool getTargetIndex(StringRef Name, int &Index);
252 
253   void initNames2DirectTargetFlags();
254 
255   /// Try to convert a name of a direct target flag to the corresponding
256   /// target flag.
257   ///
258   /// Return true if the name isn't a name of a direct flag.
259   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
260 
261   void initNames2BitmaskTargetFlags();
262 
263   /// Try to convert a name of a bitmask target flag to the corresponding
264   /// target flag.
265   ///
266   /// Return true if the name isn't a name of a bitmask target flag.
267   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
268 };
269 
270 } // end anonymous namespace
271 
272 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
273                    StringRef Source)
274     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
275 {}
276 
277 void MIParser::lex(unsigned SkipChar) {
278   CurrentSource = lexMIToken(
279       CurrentSource.data() + SkipChar, Token,
280       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
281 }
282 
283 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
284 
285 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
286   const SourceMgr &SM = *PFS.SM;
287   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
288   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
289   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
290     // Create an ordinary diagnostic when the source manager's buffer is the
291     // source string.
292     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
293     return true;
294   }
295   // Create a diagnostic for a YAML string literal.
296   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
297                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
298                        Source, None, None);
299   return true;
300 }
301 
302 static const char *toString(MIToken::TokenKind TokenKind) {
303   switch (TokenKind) {
304   case MIToken::comma:
305     return "','";
306   case MIToken::equal:
307     return "'='";
308   case MIToken::colon:
309     return "':'";
310   case MIToken::lparen:
311     return "'('";
312   case MIToken::rparen:
313     return "')'";
314   default:
315     return "<unknown token>";
316   }
317 }
318 
319 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
320   if (Token.isNot(TokenKind))
321     return error(Twine("expected ") + toString(TokenKind));
322   lex();
323   return false;
324 }
325 
326 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
327   if (Token.isNot(TokenKind))
328     return false;
329   lex();
330   return true;
331 }
332 
333 bool MIParser::parseBasicBlockDefinition(
334     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
335   assert(Token.is(MIToken::MachineBasicBlockLabel));
336   unsigned ID = 0;
337   if (getUnsigned(ID))
338     return true;
339   auto Loc = Token.location();
340   auto Name = Token.stringValue();
341   lex();
342   bool HasAddressTaken = false;
343   bool IsLandingPad = false;
344   unsigned Alignment = 0;
345   BasicBlock *BB = nullptr;
346   if (consumeIfPresent(MIToken::lparen)) {
347     do {
348       // TODO: Report an error when multiple same attributes are specified.
349       switch (Token.kind()) {
350       case MIToken::kw_address_taken:
351         HasAddressTaken = true;
352         lex();
353         break;
354       case MIToken::kw_landing_pad:
355         IsLandingPad = true;
356         lex();
357         break;
358       case MIToken::kw_align:
359         if (parseAlignment(Alignment))
360           return true;
361         break;
362       case MIToken::IRBlock:
363         // TODO: Report an error when both name and ir block are specified.
364         if (parseIRBlock(BB, *MF.getFunction()))
365           return true;
366         lex();
367         break;
368       default:
369         break;
370       }
371     } while (consumeIfPresent(MIToken::comma));
372     if (expectAndConsume(MIToken::rparen))
373       return true;
374   }
375   if (expectAndConsume(MIToken::colon))
376     return true;
377 
378   if (!Name.empty()) {
379     BB = dyn_cast_or_null<BasicBlock>(
380         MF.getFunction()->getValueSymbolTable()->lookup(Name));
381     if (!BB)
382       return error(Loc, Twine("basic block '") + Name +
383                             "' is not defined in the function '" +
384                             MF.getName() + "'");
385   }
386   auto *MBB = MF.CreateMachineBasicBlock(BB);
387   MF.insert(MF.end(), MBB);
388   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
389   if (!WasInserted)
390     return error(Loc, Twine("redefinition of machine basic block with id #") +
391                           Twine(ID));
392   if (Alignment)
393     MBB->setAlignment(Alignment);
394   if (HasAddressTaken)
395     MBB->setHasAddressTaken();
396   MBB->setIsEHPad(IsLandingPad);
397   return false;
398 }
399 
400 bool MIParser::parseBasicBlockDefinitions(
401     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
402   lex();
403   // Skip until the first machine basic block.
404   while (Token.is(MIToken::Newline))
405     lex();
406   if (Token.isErrorOrEOF())
407     return Token.isError();
408   if (Token.isNot(MIToken::MachineBasicBlockLabel))
409     return error("expected a basic block definition before instructions");
410   unsigned BraceDepth = 0;
411   do {
412     if (parseBasicBlockDefinition(MBBSlots))
413       return true;
414     bool IsAfterNewline = false;
415     // Skip until the next machine basic block.
416     while (true) {
417       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
418           Token.isErrorOrEOF())
419         break;
420       else if (Token.is(MIToken::MachineBasicBlockLabel))
421         return error("basic block definition should be located at the start of "
422                      "the line");
423       else if (consumeIfPresent(MIToken::Newline)) {
424         IsAfterNewline = true;
425         continue;
426       }
427       IsAfterNewline = false;
428       if (Token.is(MIToken::lbrace))
429         ++BraceDepth;
430       if (Token.is(MIToken::rbrace)) {
431         if (!BraceDepth)
432           return error("extraneous closing brace ('}')");
433         --BraceDepth;
434       }
435       lex();
436     }
437     // Verify that we closed all of the '{' at the end of a file or a block.
438     if (!Token.isError() && BraceDepth)
439       return error("expected '}'"); // FIXME: Report a note that shows '{'.
440   } while (!Token.isErrorOrEOF());
441   return Token.isError();
442 }
443 
444 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
445   assert(Token.is(MIToken::kw_liveins));
446   lex();
447   if (expectAndConsume(MIToken::colon))
448     return true;
449   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
450     return false;
451   do {
452     if (Token.isNot(MIToken::NamedRegister))
453       return error("expected a named register");
454     unsigned Reg = 0;
455     if (parseNamedRegister(Reg))
456       return true;
457     lex();
458     LaneBitmask Mask = ~LaneBitmask(0);
459     if (consumeIfPresent(MIToken::colon)) {
460       // Parse lane mask.
461       if (Token.isNot(MIToken::IntegerLiteral) &&
462           Token.isNot(MIToken::HexLiteral))
463         return error("expected a lane mask");
464       static_assert(sizeof(LaneBitmask) == sizeof(unsigned), "");
465       if (getUnsigned(Mask))
466         return error("invalid lane mask value");
467       lex();
468     }
469     MBB.addLiveIn(Reg, Mask);
470   } while (consumeIfPresent(MIToken::comma));
471   return false;
472 }
473 
474 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
475   assert(Token.is(MIToken::kw_successors));
476   lex();
477   if (expectAndConsume(MIToken::colon))
478     return true;
479   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
480     return false;
481   do {
482     if (Token.isNot(MIToken::MachineBasicBlock))
483       return error("expected a machine basic block reference");
484     MachineBasicBlock *SuccMBB = nullptr;
485     if (parseMBBReference(SuccMBB))
486       return true;
487     lex();
488     unsigned Weight = 0;
489     if (consumeIfPresent(MIToken::lparen)) {
490       if (Token.isNot(MIToken::IntegerLiteral))
491         return error("expected an integer literal after '('");
492       if (getUnsigned(Weight))
493         return true;
494       lex();
495       if (expectAndConsume(MIToken::rparen))
496         return true;
497     }
498     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
499   } while (consumeIfPresent(MIToken::comma));
500   MBB.normalizeSuccProbs();
501   return false;
502 }
503 
504 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
505   // Skip the definition.
506   assert(Token.is(MIToken::MachineBasicBlockLabel));
507   lex();
508   if (consumeIfPresent(MIToken::lparen)) {
509     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
510       lex();
511     consumeIfPresent(MIToken::rparen);
512   }
513   consumeIfPresent(MIToken::colon);
514 
515   // Parse the liveins and successors.
516   // N.B: Multiple lists of successors and liveins are allowed and they're
517   // merged into one.
518   // Example:
519   //   liveins: %edi
520   //   liveins: %esi
521   //
522   // is equivalent to
523   //   liveins: %edi, %esi
524   while (true) {
525     if (Token.is(MIToken::kw_successors)) {
526       if (parseBasicBlockSuccessors(MBB))
527         return true;
528     } else if (Token.is(MIToken::kw_liveins)) {
529       if (parseBasicBlockLiveins(MBB))
530         return true;
531     } else if (consumeIfPresent(MIToken::Newline)) {
532       continue;
533     } else
534       break;
535     if (!Token.isNewlineOrEOF())
536       return error("expected line break at the end of a list");
537     lex();
538   }
539 
540   // Parse the instructions.
541   bool IsInBundle = false;
542   MachineInstr *PrevMI = nullptr;
543   while (true) {
544     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
545       return false;
546     else if (consumeIfPresent(MIToken::Newline))
547       continue;
548     if (consumeIfPresent(MIToken::rbrace)) {
549       // The first parsing pass should verify that all closing '}' have an
550       // opening '{'.
551       assert(IsInBundle);
552       IsInBundle = false;
553       continue;
554     }
555     MachineInstr *MI = nullptr;
556     if (parse(MI))
557       return true;
558     MBB.insert(MBB.end(), MI);
559     if (IsInBundle) {
560       PrevMI->setFlag(MachineInstr::BundledSucc);
561       MI->setFlag(MachineInstr::BundledPred);
562     }
563     PrevMI = MI;
564     if (Token.is(MIToken::lbrace)) {
565       if (IsInBundle)
566         return error("nested instruction bundles are not allowed");
567       lex();
568       // This instruction is the start of the bundle.
569       MI->setFlag(MachineInstr::BundledSucc);
570       IsInBundle = true;
571       if (!Token.is(MIToken::Newline))
572         // The next instruction can be on the same line.
573         continue;
574     }
575     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
576     lex();
577   }
578   return false;
579 }
580 
581 bool MIParser::parseBasicBlocks() {
582   lex();
583   // Skip until the first machine basic block.
584   while (Token.is(MIToken::Newline))
585     lex();
586   if (Token.isErrorOrEOF())
587     return Token.isError();
588   // The first parsing pass should have verified that this token is a MBB label
589   // in the 'parseBasicBlockDefinitions' method.
590   assert(Token.is(MIToken::MachineBasicBlockLabel));
591   do {
592     MachineBasicBlock *MBB = nullptr;
593     if (parseMBBReference(MBB))
594       return true;
595     if (parseBasicBlock(*MBB))
596       return true;
597     // The method 'parseBasicBlock' should parse the whole block until the next
598     // block or the end of file.
599     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
600   } while (Token.isNot(MIToken::Eof));
601   return false;
602 }
603 
604 bool MIParser::parse(MachineInstr *&MI) {
605   // Parse any register operands before '='
606   MachineOperand MO = MachineOperand::CreateImm(0);
607   SmallVector<ParsedMachineOperand, 8> Operands;
608   while (Token.isRegister() || Token.isRegisterFlag()) {
609     auto Loc = Token.location();
610     Optional<unsigned> TiedDefIdx;
611     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
612       return true;
613     Operands.push_back(
614         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
615     if (Token.isNot(MIToken::comma))
616       break;
617     lex();
618   }
619   if (!Operands.empty() && expectAndConsume(MIToken::equal))
620     return true;
621 
622   unsigned OpCode, Flags = 0;
623   if (Token.isError() || parseInstruction(OpCode, Flags))
624     return true;
625 
626   // Parse the remaining machine operands.
627   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
628          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
629     auto Loc = Token.location();
630     Optional<unsigned> TiedDefIdx;
631     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
632       return true;
633     Operands.push_back(
634         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
635     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
636         Token.is(MIToken::lbrace))
637       break;
638     if (Token.isNot(MIToken::comma))
639       return error("expected ',' before the next machine operand");
640     lex();
641   }
642 
643   DebugLoc DebugLocation;
644   if (Token.is(MIToken::kw_debug_location)) {
645     lex();
646     if (Token.isNot(MIToken::exclaim))
647       return error("expected a metadata node after 'debug-location'");
648     MDNode *Node = nullptr;
649     if (parseMDNode(Node))
650       return true;
651     DebugLocation = DebugLoc(Node);
652   }
653 
654   // Parse the machine memory operands.
655   SmallVector<MachineMemOperand *, 2> MemOperands;
656   if (Token.is(MIToken::coloncolon)) {
657     lex();
658     while (!Token.isNewlineOrEOF()) {
659       MachineMemOperand *MemOp = nullptr;
660       if (parseMachineMemoryOperand(MemOp))
661         return true;
662       MemOperands.push_back(MemOp);
663       if (Token.isNewlineOrEOF())
664         break;
665       if (Token.isNot(MIToken::comma))
666         return error("expected ',' before the next machine memory operand");
667       lex();
668     }
669   }
670 
671   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
672   if (!MCID.isVariadic()) {
673     // FIXME: Move the implicit operand verification to the machine verifier.
674     if (verifyImplicitOperands(Operands, MCID))
675       return true;
676   }
677 
678   // TODO: Check for extraneous machine operands.
679   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
680   MI->setFlags(Flags);
681   for (const auto &Operand : Operands)
682     MI->addOperand(MF, Operand.Operand);
683   if (assignRegisterTies(*MI, Operands))
684     return true;
685   if (MemOperands.empty())
686     return false;
687   MachineInstr::mmo_iterator MemRefs =
688       MF.allocateMemRefsArray(MemOperands.size());
689   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
690   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
691   return false;
692 }
693 
694 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
695   lex();
696   if (Token.isNot(MIToken::MachineBasicBlock))
697     return error("expected a machine basic block reference");
698   if (parseMBBReference(MBB))
699     return true;
700   lex();
701   if (Token.isNot(MIToken::Eof))
702     return error(
703         "expected end of string after the machine basic block reference");
704   return false;
705 }
706 
707 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
708   lex();
709   if (Token.isNot(MIToken::NamedRegister))
710     return error("expected a named register");
711   if (parseNamedRegister(Reg))
712     return true;
713   lex();
714   if (Token.isNot(MIToken::Eof))
715     return error("expected end of string after the register reference");
716   return false;
717 }
718 
719 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
720   lex();
721   if (Token.isNot(MIToken::VirtualRegister))
722     return error("expected a virtual register");
723   if (parseVirtualRegister(Info))
724     return true;
725   lex();
726   if (Token.isNot(MIToken::Eof))
727     return error("expected end of string after the register reference");
728   return false;
729 }
730 
731 bool MIParser::parseStandaloneStackObject(int &FI) {
732   lex();
733   if (Token.isNot(MIToken::StackObject))
734     return error("expected a stack object");
735   if (parseStackFrameIndex(FI))
736     return true;
737   if (Token.isNot(MIToken::Eof))
738     return error("expected end of string after the stack object reference");
739   return false;
740 }
741 
742 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
743   lex();
744   if (Token.isNot(MIToken::exclaim))
745     return error("expected a metadata node");
746   if (parseMDNode(Node))
747     return true;
748   if (Token.isNot(MIToken::Eof))
749     return error("expected end of string after the metadata node");
750   return false;
751 }
752 
753 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
754   assert(MO.isImplicit());
755   return MO.isDef() ? "implicit-def" : "implicit";
756 }
757 
758 static std::string getRegisterName(const TargetRegisterInfo *TRI,
759                                    unsigned Reg) {
760   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
761   return StringRef(TRI->getName(Reg)).lower();
762 }
763 
764 /// Return true if the parsed machine operands contain a given machine operand.
765 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
766                                 ArrayRef<ParsedMachineOperand> Operands) {
767   for (const auto &I : Operands) {
768     if (ImplicitOperand.isIdenticalTo(I.Operand))
769       return true;
770   }
771   return false;
772 }
773 
774 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
775                                       const MCInstrDesc &MCID) {
776   if (MCID.isCall())
777     // We can't verify call instructions as they can contain arbitrary implicit
778     // register and register mask operands.
779     return false;
780 
781   // Gather all the expected implicit operands.
782   SmallVector<MachineOperand, 4> ImplicitOperands;
783   if (MCID.ImplicitDefs)
784     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
785       ImplicitOperands.push_back(
786           MachineOperand::CreateReg(*ImpDefs, true, true));
787   if (MCID.ImplicitUses)
788     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
789       ImplicitOperands.push_back(
790           MachineOperand::CreateReg(*ImpUses, false, true));
791 
792   const auto *TRI = MF.getSubtarget().getRegisterInfo();
793   assert(TRI && "Expected target register info");
794   for (const auto &I : ImplicitOperands) {
795     if (isImplicitOperandIn(I, Operands))
796       continue;
797     return error(Operands.empty() ? Token.location() : Operands.back().End,
798                  Twine("missing implicit register operand '") +
799                      printImplicitRegisterFlag(I) + " %" +
800                      getRegisterName(TRI, I.getReg()) + "'");
801   }
802   return false;
803 }
804 
805 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
806   if (Token.is(MIToken::kw_frame_setup)) {
807     Flags |= MachineInstr::FrameSetup;
808     lex();
809   }
810   if (Token.isNot(MIToken::Identifier))
811     return error("expected a machine instruction");
812   StringRef InstrName = Token.stringValue();
813   if (parseInstrName(InstrName, OpCode))
814     return error(Twine("unknown machine instruction name '") + InstrName + "'");
815   lex();
816   return false;
817 }
818 
819 bool MIParser::parseNamedRegister(unsigned &Reg) {
820   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
821   StringRef Name = Token.stringValue();
822   if (getRegisterByName(Name, Reg))
823     return error(Twine("unknown register name '") + Name + "'");
824   return false;
825 }
826 
827 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
828   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
829   unsigned ID;
830   if (getUnsigned(ID))
831     return true;
832   Info = &PFS.getVRegInfo(ID);
833   return false;
834 }
835 
836 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
837   switch (Token.kind()) {
838   case MIToken::underscore:
839     Reg = 0;
840     return false;
841   case MIToken::NamedRegister:
842     return parseNamedRegister(Reg);
843   case MIToken::VirtualRegister:
844     if (parseVirtualRegister(Info))
845       return true;
846     Reg = Info->VReg;
847     return false;
848   // TODO: Parse other register kinds.
849   default:
850     llvm_unreachable("The current token should be a register");
851   }
852 }
853 
854 bool MIParser::parseRegisterFlag(unsigned &Flags) {
855   const unsigned OldFlags = Flags;
856   switch (Token.kind()) {
857   case MIToken::kw_implicit:
858     Flags |= RegState::Implicit;
859     break;
860   case MIToken::kw_implicit_define:
861     Flags |= RegState::ImplicitDefine;
862     break;
863   case MIToken::kw_def:
864     Flags |= RegState::Define;
865     break;
866   case MIToken::kw_dead:
867     Flags |= RegState::Dead;
868     break;
869   case MIToken::kw_killed:
870     Flags |= RegState::Kill;
871     break;
872   case MIToken::kw_undef:
873     Flags |= RegState::Undef;
874     break;
875   case MIToken::kw_internal:
876     Flags |= RegState::InternalRead;
877     break;
878   case MIToken::kw_early_clobber:
879     Flags |= RegState::EarlyClobber;
880     break;
881   case MIToken::kw_debug_use:
882     Flags |= RegState::Debug;
883     break;
884   default:
885     llvm_unreachable("The current token should be a register flag");
886   }
887   if (OldFlags == Flags)
888     // We know that the same flag is specified more than once when the flags
889     // weren't modified.
890     return error("duplicate '" + Token.stringValue() + "' register flag");
891   lex();
892   return false;
893 }
894 
895 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
896   assert(Token.is(MIToken::dot));
897   lex();
898   if (Token.isNot(MIToken::Identifier))
899     return error("expected a subregister index after '.'");
900   auto Name = Token.stringValue();
901   SubReg = getSubRegIndex(Name);
902   if (!SubReg)
903     return error(Twine("use of unknown subregister index '") + Name + "'");
904   lex();
905   return false;
906 }
907 
908 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
909   if (!consumeIfPresent(MIToken::kw_tied_def))
910     return true;
911   if (Token.isNot(MIToken::IntegerLiteral))
912     return error("expected an integer literal after 'tied-def'");
913   if (getUnsigned(TiedDefIdx))
914     return true;
915   lex();
916   if (expectAndConsume(MIToken::rparen))
917     return true;
918   return false;
919 }
920 
921 bool MIParser::assignRegisterTies(MachineInstr &MI,
922                                   ArrayRef<ParsedMachineOperand> Operands) {
923   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
924   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
925     if (!Operands[I].TiedDefIdx)
926       continue;
927     // The parser ensures that this operand is a register use, so we just have
928     // to check the tied-def operand.
929     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
930     if (DefIdx >= E)
931       return error(Operands[I].Begin,
932                    Twine("use of invalid tied-def operand index '" +
933                          Twine(DefIdx) + "'; instruction has only ") +
934                        Twine(E) + " operands");
935     const auto &DefOperand = Operands[DefIdx].Operand;
936     if (!DefOperand.isReg() || !DefOperand.isDef())
937       // FIXME: add note with the def operand.
938       return error(Operands[I].Begin,
939                    Twine("use of invalid tied-def operand index '") +
940                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
941                        " isn't a defined register");
942     // Check that the tied-def operand wasn't tied elsewhere.
943     for (const auto &TiedPair : TiedRegisterPairs) {
944       if (TiedPair.first == DefIdx)
945         return error(Operands[I].Begin,
946                      Twine("the tied-def operand #") + Twine(DefIdx) +
947                          " is already tied with another register operand");
948     }
949     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
950   }
951   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
952   // indices must be less than tied max.
953   for (const auto &TiedPair : TiedRegisterPairs)
954     MI.tieOperands(TiedPair.first, TiedPair.second);
955   return false;
956 }
957 
958 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
959                                     Optional<unsigned> &TiedDefIdx,
960                                     bool IsDef) {
961   unsigned Flags = IsDef ? RegState::Define : 0;
962   while (Token.isRegisterFlag()) {
963     if (parseRegisterFlag(Flags))
964       return true;
965   }
966   if (!Token.isRegister())
967     return error("expected a register after register flags");
968   unsigned Reg;
969   VRegInfo *RegInfo;
970   if (parseRegister(Reg, RegInfo))
971     return true;
972   lex();
973   unsigned SubReg = 0;
974   if (Token.is(MIToken::dot)) {
975     if (parseSubRegisterIndex(SubReg))
976       return true;
977     if (!TargetRegisterInfo::isVirtualRegister(Reg))
978       return error("subregister index expects a virtual register");
979   }
980   MachineRegisterInfo &MRI = MF.getRegInfo();
981   if ((Flags & RegState::Define) == 0) {
982     if (consumeIfPresent(MIToken::lparen)) {
983       unsigned Idx;
984       if (!parseRegisterTiedDefIndex(Idx))
985         TiedDefIdx = Idx;
986       else {
987         // Try a redundant low-level type.
988         LLT Ty;
989         if (parseLowLevelType(Token.location(), Ty))
990           return error("expected tied-def or low-level type after '('");
991 
992         if (expectAndConsume(MIToken::rparen))
993           return true;
994 
995         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
996           return error("inconsistent type for generic virtual register");
997 
998         MRI.setType(Reg, Ty);
999       }
1000     }
1001   } else if (consumeIfPresent(MIToken::lparen)) {
1002     // Virtual registers may have a size with GlobalISel.
1003     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1004       return error("unexpected size on physical register");
1005     if (RegInfo->Kind != VRegInfo::GENERIC &&
1006         RegInfo->Kind != VRegInfo::REGBANK)
1007       return error("unexpected size on non-generic virtual register");
1008 
1009     LLT Ty;
1010     if (parseLowLevelType(Token.location(), Ty))
1011       return true;
1012 
1013     if (expectAndConsume(MIToken::rparen))
1014       return true;
1015 
1016     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1017       return error("inconsistent type for generic virtual register");
1018 
1019     MRI.setType(Reg, Ty);
1020   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1021     // Generic virtual registers must have a size.
1022     // If we end up here this means the size hasn't been specified and
1023     // this is bad!
1024     if (RegInfo->Kind == VRegInfo::GENERIC ||
1025         RegInfo->Kind == VRegInfo::REGBANK)
1026       return error("generic virtual registers must have a size");
1027   }
1028   Dest = MachineOperand::CreateReg(
1029       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1030       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1031       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1032       Flags & RegState::InternalRead);
1033   return false;
1034 }
1035 
1036 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1037   assert(Token.is(MIToken::IntegerLiteral));
1038   const APSInt &Int = Token.integerValue();
1039   if (Int.getMinSignedBits() > 64)
1040     return error("integer literal is too large to be an immediate operand");
1041   Dest = MachineOperand::CreateImm(Int.getExtValue());
1042   lex();
1043   return false;
1044 }
1045 
1046 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1047                                const Constant *&C) {
1048   auto Source = StringValue.str(); // The source has to be null terminated.
1049   SMDiagnostic Err;
1050   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1051                          &PFS.IRSlots);
1052   if (!C)
1053     return error(Loc + Err.getColumnNo(), Err.getMessage());
1054   return false;
1055 }
1056 
1057 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1058   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1059     return true;
1060   lex();
1061   return false;
1062 }
1063 
1064 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1065   if (Token.is(MIToken::ScalarType)) {
1066     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1067     lex();
1068     return false;
1069   } else if (Token.is(MIToken::PointerType)) {
1070     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1071     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1072     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1073     lex();
1074     return false;
1075   }
1076 
1077   // Now we're looking for a vector.
1078   if (Token.isNot(MIToken::less))
1079     return error(Loc,
1080                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1081 
1082   lex();
1083 
1084   if (Token.isNot(MIToken::IntegerLiteral))
1085     return error(Loc, "expected <N x sM> for vctor type");
1086   uint64_t NumElements = Token.integerValue().getZExtValue();
1087   lex();
1088 
1089   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1090     return error(Loc, "expected '<N x sM>' for vector type");
1091   lex();
1092 
1093   if (Token.isNot(MIToken::ScalarType))
1094     return error(Loc, "expected '<N x sM>' for vector type");
1095   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1096   lex();
1097 
1098   if (Token.isNot(MIToken::greater))
1099     return error(Loc, "expected '<N x sM>' for vector type");
1100   lex();
1101 
1102   Ty = LLT::vector(NumElements, ScalarSize);
1103   return false;
1104 }
1105 
1106 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1107   assert(Token.is(MIToken::IntegerType));
1108   auto Loc = Token.location();
1109   lex();
1110   if (Token.isNot(MIToken::IntegerLiteral))
1111     return error("expected an integer literal");
1112   const Constant *C = nullptr;
1113   if (parseIRConstant(Loc, C))
1114     return true;
1115   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1116   return false;
1117 }
1118 
1119 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1120   auto Loc = Token.location();
1121   lex();
1122   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1123       Token.isNot(MIToken::HexLiteral))
1124     return error("expected a floating point literal");
1125   const Constant *C = nullptr;
1126   if (parseIRConstant(Loc, C))
1127     return true;
1128   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1129   return false;
1130 }
1131 
1132 bool MIParser::getUnsigned(unsigned &Result) {
1133   if (Token.hasIntegerValue()) {
1134     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1135     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1136     if (Val64 == Limit)
1137       return error("expected 32-bit integer (too large)");
1138     Result = Val64;
1139     return false;
1140   }
1141   if (Token.is(MIToken::HexLiteral)) {
1142     StringRef S = Token.range();
1143     assert(S[0] == '0' && tolower(S[1]) == 'x');
1144     // This could be a floating point literal with a special prefix.
1145     if (!isxdigit(S[2]))
1146       return true;
1147     StringRef V = S.substr(2);
1148     unsigned BW = std::min<unsigned>(V.size()*4, 32);
1149     APInt A(BW, V, 16);
1150     APInt Limit = APInt(BW, std::numeric_limits<unsigned>::max());
1151     if (A.ugt(Limit))
1152       return error("expected 32-bit integer (too large)");
1153     Result = A.getZExtValue();
1154     return false;
1155   }
1156   return true;
1157 }
1158 
1159 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1160   assert(Token.is(MIToken::MachineBasicBlock) ||
1161          Token.is(MIToken::MachineBasicBlockLabel));
1162   unsigned Number;
1163   if (getUnsigned(Number))
1164     return true;
1165   auto MBBInfo = PFS.MBBSlots.find(Number);
1166   if (MBBInfo == PFS.MBBSlots.end())
1167     return error(Twine("use of undefined machine basic block #") +
1168                  Twine(Number));
1169   MBB = MBBInfo->second;
1170   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1171     return error(Twine("the name of machine basic block #") + Twine(Number) +
1172                  " isn't '" + Token.stringValue() + "'");
1173   return false;
1174 }
1175 
1176 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1177   MachineBasicBlock *MBB;
1178   if (parseMBBReference(MBB))
1179     return true;
1180   Dest = MachineOperand::CreateMBB(MBB);
1181   lex();
1182   return false;
1183 }
1184 
1185 bool MIParser::parseStackFrameIndex(int &FI) {
1186   assert(Token.is(MIToken::StackObject));
1187   unsigned ID;
1188   if (getUnsigned(ID))
1189     return true;
1190   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1191   if (ObjectInfo == PFS.StackObjectSlots.end())
1192     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1193                  "'");
1194   StringRef Name;
1195   if (const auto *Alloca =
1196           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1197     Name = Alloca->getName();
1198   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1199     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1200                  "' isn't '" + Token.stringValue() + "'");
1201   lex();
1202   FI = ObjectInfo->second;
1203   return false;
1204 }
1205 
1206 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1207   int FI;
1208   if (parseStackFrameIndex(FI))
1209     return true;
1210   Dest = MachineOperand::CreateFI(FI);
1211   return false;
1212 }
1213 
1214 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1215   assert(Token.is(MIToken::FixedStackObject));
1216   unsigned ID;
1217   if (getUnsigned(ID))
1218     return true;
1219   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1220   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1221     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1222                  Twine(ID) + "'");
1223   lex();
1224   FI = ObjectInfo->second;
1225   return false;
1226 }
1227 
1228 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1229   int FI;
1230   if (parseFixedStackFrameIndex(FI))
1231     return true;
1232   Dest = MachineOperand::CreateFI(FI);
1233   return false;
1234 }
1235 
1236 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1237   switch (Token.kind()) {
1238   case MIToken::NamedGlobalValue: {
1239     const Module *M = MF.getFunction()->getParent();
1240     GV = M->getNamedValue(Token.stringValue());
1241     if (!GV)
1242       return error(Twine("use of undefined global value '") + Token.range() +
1243                    "'");
1244     break;
1245   }
1246   case MIToken::GlobalValue: {
1247     unsigned GVIdx;
1248     if (getUnsigned(GVIdx))
1249       return true;
1250     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1251       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1252                    "'");
1253     GV = PFS.IRSlots.GlobalValues[GVIdx];
1254     break;
1255   }
1256   default:
1257     llvm_unreachable("The current token should be a global value");
1258   }
1259   return false;
1260 }
1261 
1262 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1263   GlobalValue *GV = nullptr;
1264   if (parseGlobalValue(GV))
1265     return true;
1266   lex();
1267   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1268   if (parseOperandsOffset(Dest))
1269     return true;
1270   return false;
1271 }
1272 
1273 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1274   assert(Token.is(MIToken::ConstantPoolItem));
1275   unsigned ID;
1276   if (getUnsigned(ID))
1277     return true;
1278   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1279   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1280     return error("use of undefined constant '%const." + Twine(ID) + "'");
1281   lex();
1282   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1283   if (parseOperandsOffset(Dest))
1284     return true;
1285   return false;
1286 }
1287 
1288 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1289   assert(Token.is(MIToken::JumpTableIndex));
1290   unsigned ID;
1291   if (getUnsigned(ID))
1292     return true;
1293   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1294   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1295     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1296   lex();
1297   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1298   return false;
1299 }
1300 
1301 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1302   assert(Token.is(MIToken::ExternalSymbol));
1303   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1304   lex();
1305   Dest = MachineOperand::CreateES(Symbol);
1306   if (parseOperandsOffset(Dest))
1307     return true;
1308   return false;
1309 }
1310 
1311 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1312   assert(Token.is(MIToken::SubRegisterIndex));
1313   StringRef Name = Token.stringValue();
1314   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1315   if (SubRegIndex == 0)
1316     return error(Twine("unknown subregister index '") + Name + "'");
1317   lex();
1318   Dest = MachineOperand::CreateImm(SubRegIndex);
1319   return false;
1320 }
1321 
1322 bool MIParser::parseMDNode(MDNode *&Node) {
1323   assert(Token.is(MIToken::exclaim));
1324   auto Loc = Token.location();
1325   lex();
1326   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1327     return error("expected metadata id after '!'");
1328   unsigned ID;
1329   if (getUnsigned(ID))
1330     return true;
1331   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1332   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1333     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1334   lex();
1335   Node = NodeInfo->second.get();
1336   return false;
1337 }
1338 
1339 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1340   MDNode *Node = nullptr;
1341   if (parseMDNode(Node))
1342     return true;
1343   Dest = MachineOperand::CreateMetadata(Node);
1344   return false;
1345 }
1346 
1347 bool MIParser::parseCFIOffset(int &Offset) {
1348   if (Token.isNot(MIToken::IntegerLiteral))
1349     return error("expected a cfi offset");
1350   if (Token.integerValue().getMinSignedBits() > 32)
1351     return error("expected a 32 bit integer (the cfi offset is too large)");
1352   Offset = (int)Token.integerValue().getExtValue();
1353   lex();
1354   return false;
1355 }
1356 
1357 bool MIParser::parseCFIRegister(unsigned &Reg) {
1358   if (Token.isNot(MIToken::NamedRegister))
1359     return error("expected a cfi register");
1360   unsigned LLVMReg;
1361   if (parseNamedRegister(LLVMReg))
1362     return true;
1363   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1364   assert(TRI && "Expected target register info");
1365   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1366   if (DwarfReg < 0)
1367     return error("invalid DWARF register");
1368   Reg = (unsigned)DwarfReg;
1369   lex();
1370   return false;
1371 }
1372 
1373 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1374   auto Kind = Token.kind();
1375   lex();
1376   auto &MMI = MF.getMMI();
1377   int Offset;
1378   unsigned Reg;
1379   unsigned CFIIndex;
1380   switch (Kind) {
1381   case MIToken::kw_cfi_same_value:
1382     if (parseCFIRegister(Reg))
1383       return true;
1384     CFIIndex =
1385         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1386     break;
1387   case MIToken::kw_cfi_offset:
1388     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1389         parseCFIOffset(Offset))
1390       return true;
1391     CFIIndex =
1392         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1393     break;
1394   case MIToken::kw_cfi_def_cfa_register:
1395     if (parseCFIRegister(Reg))
1396       return true;
1397     CFIIndex =
1398         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1399     break;
1400   case MIToken::kw_cfi_def_cfa_offset:
1401     if (parseCFIOffset(Offset))
1402       return true;
1403     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1404     CFIIndex = MMI.addFrameInst(
1405         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1406     break;
1407   case MIToken::kw_cfi_def_cfa:
1408     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1409         parseCFIOffset(Offset))
1410       return true;
1411     // NB: MCCFIInstruction::createDefCfa negates the offset.
1412     CFIIndex =
1413         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1414     break;
1415   default:
1416     // TODO: Parse the other CFI operands.
1417     llvm_unreachable("The current token should be a cfi operand");
1418   }
1419   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1420   return false;
1421 }
1422 
1423 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1424   switch (Token.kind()) {
1425   case MIToken::NamedIRBlock: {
1426     BB = dyn_cast_or_null<BasicBlock>(
1427         F.getValueSymbolTable()->lookup(Token.stringValue()));
1428     if (!BB)
1429       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1430     break;
1431   }
1432   case MIToken::IRBlock: {
1433     unsigned SlotNumber = 0;
1434     if (getUnsigned(SlotNumber))
1435       return true;
1436     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1437     if (!BB)
1438       return error(Twine("use of undefined IR block '%ir-block.") +
1439                    Twine(SlotNumber) + "'");
1440     break;
1441   }
1442   default:
1443     llvm_unreachable("The current token should be an IR block reference");
1444   }
1445   return false;
1446 }
1447 
1448 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1449   assert(Token.is(MIToken::kw_blockaddress));
1450   lex();
1451   if (expectAndConsume(MIToken::lparen))
1452     return true;
1453   if (Token.isNot(MIToken::GlobalValue) &&
1454       Token.isNot(MIToken::NamedGlobalValue))
1455     return error("expected a global value");
1456   GlobalValue *GV = nullptr;
1457   if (parseGlobalValue(GV))
1458     return true;
1459   auto *F = dyn_cast<Function>(GV);
1460   if (!F)
1461     return error("expected an IR function reference");
1462   lex();
1463   if (expectAndConsume(MIToken::comma))
1464     return true;
1465   BasicBlock *BB = nullptr;
1466   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1467     return error("expected an IR block reference");
1468   if (parseIRBlock(BB, *F))
1469     return true;
1470   lex();
1471   if (expectAndConsume(MIToken::rparen))
1472     return true;
1473   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1474   if (parseOperandsOffset(Dest))
1475     return true;
1476   return false;
1477 }
1478 
1479 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1480   assert(Token.is(MIToken::kw_intrinsic));
1481   lex();
1482   if (expectAndConsume(MIToken::lparen))
1483     return error("expected syntax intrinsic(@llvm.whatever)");
1484 
1485   if (Token.isNot(MIToken::NamedGlobalValue))
1486     return error("expected syntax intrinsic(@llvm.whatever)");
1487 
1488   std::string Name = Token.stringValue();
1489   lex();
1490 
1491   if (expectAndConsume(MIToken::rparen))
1492     return error("expected ')' to terminate intrinsic name");
1493 
1494   // Find out what intrinsic we're dealing with, first try the global namespace
1495   // and then the target's private intrinsics if that fails.
1496   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1497   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1498   if (ID == Intrinsic::not_intrinsic && TII)
1499     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1500 
1501   if (ID == Intrinsic::not_intrinsic)
1502     return error("unknown intrinsic name");
1503   Dest = MachineOperand::CreateIntrinsicID(ID);
1504 
1505   return false;
1506 }
1507 
1508 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1509   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1510   bool IsFloat = Token.is(MIToken::kw_floatpred);
1511   lex();
1512 
1513   if (expectAndConsume(MIToken::lparen))
1514     return error("expected syntax intpred(whatever) or floatpred(whatever");
1515 
1516   if (Token.isNot(MIToken::Identifier))
1517     return error("whatever");
1518 
1519   CmpInst::Predicate Pred;
1520   if (IsFloat) {
1521     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1522                .Case("false", CmpInst::FCMP_FALSE)
1523                .Case("oeq", CmpInst::FCMP_OEQ)
1524                .Case("ogt", CmpInst::FCMP_OGT)
1525                .Case("oge", CmpInst::FCMP_OGE)
1526                .Case("olt", CmpInst::FCMP_OLT)
1527                .Case("ole", CmpInst::FCMP_OLE)
1528                .Case("one", CmpInst::FCMP_ONE)
1529                .Case("ord", CmpInst::FCMP_ORD)
1530                .Case("uno", CmpInst::FCMP_UNO)
1531                .Case("ueq", CmpInst::FCMP_UEQ)
1532                .Case("ugt", CmpInst::FCMP_UGT)
1533                .Case("uge", CmpInst::FCMP_UGE)
1534                .Case("ult", CmpInst::FCMP_ULT)
1535                .Case("ule", CmpInst::FCMP_ULE)
1536                .Case("une", CmpInst::FCMP_UNE)
1537                .Case("true", CmpInst::FCMP_TRUE)
1538                .Default(CmpInst::BAD_FCMP_PREDICATE);
1539     if (!CmpInst::isFPPredicate(Pred))
1540       return error("invalid floating-point predicate");
1541   } else {
1542     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1543                .Case("eq", CmpInst::ICMP_EQ)
1544                .Case("ne", CmpInst::ICMP_NE)
1545                .Case("sgt", CmpInst::ICMP_SGT)
1546                .Case("sge", CmpInst::ICMP_SGE)
1547                .Case("slt", CmpInst::ICMP_SLT)
1548                .Case("sle", CmpInst::ICMP_SLE)
1549                .Case("ugt", CmpInst::ICMP_UGT)
1550                .Case("uge", CmpInst::ICMP_UGE)
1551                .Case("ult", CmpInst::ICMP_ULT)
1552                .Case("ule", CmpInst::ICMP_ULE)
1553                .Default(CmpInst::BAD_ICMP_PREDICATE);
1554     if (!CmpInst::isIntPredicate(Pred))
1555       return error("invalid integer predicate");
1556   }
1557 
1558   lex();
1559   Dest = MachineOperand::CreatePredicate(Pred);
1560   if (expectAndConsume(MIToken::rparen))
1561     return error("predicate should be terminated by ')'.");
1562 
1563   return false;
1564 }
1565 
1566 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1567   assert(Token.is(MIToken::kw_target_index));
1568   lex();
1569   if (expectAndConsume(MIToken::lparen))
1570     return true;
1571   if (Token.isNot(MIToken::Identifier))
1572     return error("expected the name of the target index");
1573   int Index = 0;
1574   if (getTargetIndex(Token.stringValue(), Index))
1575     return error("use of undefined target index '" + Token.stringValue() + "'");
1576   lex();
1577   if (expectAndConsume(MIToken::rparen))
1578     return true;
1579   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1580   if (parseOperandsOffset(Dest))
1581     return true;
1582   return false;
1583 }
1584 
1585 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1586   assert(Token.is(MIToken::kw_liveout));
1587   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1588   assert(TRI && "Expected target register info");
1589   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1590   lex();
1591   if (expectAndConsume(MIToken::lparen))
1592     return true;
1593   while (true) {
1594     if (Token.isNot(MIToken::NamedRegister))
1595       return error("expected a named register");
1596     unsigned Reg;
1597     if (parseNamedRegister(Reg))
1598       return true;
1599     lex();
1600     Mask[Reg / 32] |= 1U << (Reg % 32);
1601     // TODO: Report an error if the same register is used more than once.
1602     if (Token.isNot(MIToken::comma))
1603       break;
1604     lex();
1605   }
1606   if (expectAndConsume(MIToken::rparen))
1607     return true;
1608   Dest = MachineOperand::CreateRegLiveOut(Mask);
1609   return false;
1610 }
1611 
1612 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1613                                    Optional<unsigned> &TiedDefIdx) {
1614   switch (Token.kind()) {
1615   case MIToken::kw_implicit:
1616   case MIToken::kw_implicit_define:
1617   case MIToken::kw_def:
1618   case MIToken::kw_dead:
1619   case MIToken::kw_killed:
1620   case MIToken::kw_undef:
1621   case MIToken::kw_internal:
1622   case MIToken::kw_early_clobber:
1623   case MIToken::kw_debug_use:
1624   case MIToken::underscore:
1625   case MIToken::NamedRegister:
1626   case MIToken::VirtualRegister:
1627     return parseRegisterOperand(Dest, TiedDefIdx);
1628   case MIToken::IntegerLiteral:
1629     return parseImmediateOperand(Dest);
1630   case MIToken::IntegerType:
1631     return parseTypedImmediateOperand(Dest);
1632   case MIToken::kw_half:
1633   case MIToken::kw_float:
1634   case MIToken::kw_double:
1635   case MIToken::kw_x86_fp80:
1636   case MIToken::kw_fp128:
1637   case MIToken::kw_ppc_fp128:
1638     return parseFPImmediateOperand(Dest);
1639   case MIToken::MachineBasicBlock:
1640     return parseMBBOperand(Dest);
1641   case MIToken::StackObject:
1642     return parseStackObjectOperand(Dest);
1643   case MIToken::FixedStackObject:
1644     return parseFixedStackObjectOperand(Dest);
1645   case MIToken::GlobalValue:
1646   case MIToken::NamedGlobalValue:
1647     return parseGlobalAddressOperand(Dest);
1648   case MIToken::ConstantPoolItem:
1649     return parseConstantPoolIndexOperand(Dest);
1650   case MIToken::JumpTableIndex:
1651     return parseJumpTableIndexOperand(Dest);
1652   case MIToken::ExternalSymbol:
1653     return parseExternalSymbolOperand(Dest);
1654   case MIToken::SubRegisterIndex:
1655     return parseSubRegisterIndexOperand(Dest);
1656   case MIToken::exclaim:
1657     return parseMetadataOperand(Dest);
1658   case MIToken::kw_cfi_same_value:
1659   case MIToken::kw_cfi_offset:
1660   case MIToken::kw_cfi_def_cfa_register:
1661   case MIToken::kw_cfi_def_cfa_offset:
1662   case MIToken::kw_cfi_def_cfa:
1663     return parseCFIOperand(Dest);
1664   case MIToken::kw_blockaddress:
1665     return parseBlockAddressOperand(Dest);
1666   case MIToken::kw_intrinsic:
1667     return parseIntrinsicOperand(Dest);
1668   case MIToken::kw_target_index:
1669     return parseTargetIndexOperand(Dest);
1670   case MIToken::kw_liveout:
1671     return parseLiveoutRegisterMaskOperand(Dest);
1672   case MIToken::kw_floatpred:
1673   case MIToken::kw_intpred:
1674     return parsePredicateOperand(Dest);
1675   case MIToken::Error:
1676     return true;
1677   case MIToken::Identifier:
1678     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1679       Dest = MachineOperand::CreateRegMask(RegMask);
1680       lex();
1681       break;
1682     }
1683     LLVM_FALLTHROUGH;
1684   default:
1685     // FIXME: Parse the MCSymbol machine operand.
1686     return error("expected a machine operand");
1687   }
1688   return false;
1689 }
1690 
1691 bool MIParser::parseMachineOperandAndTargetFlags(
1692     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1693   unsigned TF = 0;
1694   bool HasTargetFlags = false;
1695   if (Token.is(MIToken::kw_target_flags)) {
1696     HasTargetFlags = true;
1697     lex();
1698     if (expectAndConsume(MIToken::lparen))
1699       return true;
1700     if (Token.isNot(MIToken::Identifier))
1701       return error("expected the name of the target flag");
1702     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1703       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1704         return error("use of undefined target flag '" + Token.stringValue() +
1705                      "'");
1706     }
1707     lex();
1708     while (Token.is(MIToken::comma)) {
1709       lex();
1710       if (Token.isNot(MIToken::Identifier))
1711         return error("expected the name of the target flag");
1712       unsigned BitFlag = 0;
1713       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1714         return error("use of undefined target flag '" + Token.stringValue() +
1715                      "'");
1716       // TODO: Report an error when using a duplicate bit target flag.
1717       TF |= BitFlag;
1718       lex();
1719     }
1720     if (expectAndConsume(MIToken::rparen))
1721       return true;
1722   }
1723   auto Loc = Token.location();
1724   if (parseMachineOperand(Dest, TiedDefIdx))
1725     return true;
1726   if (!HasTargetFlags)
1727     return false;
1728   if (Dest.isReg())
1729     return error(Loc, "register operands can't have target flags");
1730   Dest.setTargetFlags(TF);
1731   return false;
1732 }
1733 
1734 bool MIParser::parseOffset(int64_t &Offset) {
1735   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1736     return false;
1737   StringRef Sign = Token.range();
1738   bool IsNegative = Token.is(MIToken::minus);
1739   lex();
1740   if (Token.isNot(MIToken::IntegerLiteral))
1741     return error("expected an integer literal after '" + Sign + "'");
1742   if (Token.integerValue().getMinSignedBits() > 64)
1743     return error("expected 64-bit integer (too large)");
1744   Offset = Token.integerValue().getExtValue();
1745   if (IsNegative)
1746     Offset = -Offset;
1747   lex();
1748   return false;
1749 }
1750 
1751 bool MIParser::parseAlignment(unsigned &Alignment) {
1752   assert(Token.is(MIToken::kw_align));
1753   lex();
1754   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1755     return error("expected an integer literal after 'align'");
1756   if (getUnsigned(Alignment))
1757     return true;
1758   lex();
1759   return false;
1760 }
1761 
1762 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1763   int64_t Offset = 0;
1764   if (parseOffset(Offset))
1765     return true;
1766   Op.setOffset(Offset);
1767   return false;
1768 }
1769 
1770 bool MIParser::parseIRValue(const Value *&V) {
1771   switch (Token.kind()) {
1772   case MIToken::NamedIRValue: {
1773     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1774     break;
1775   }
1776   case MIToken::IRValue: {
1777     unsigned SlotNumber = 0;
1778     if (getUnsigned(SlotNumber))
1779       return true;
1780     V = getIRValue(SlotNumber);
1781     break;
1782   }
1783   case MIToken::NamedGlobalValue:
1784   case MIToken::GlobalValue: {
1785     GlobalValue *GV = nullptr;
1786     if (parseGlobalValue(GV))
1787       return true;
1788     V = GV;
1789     break;
1790   }
1791   case MIToken::QuotedIRValue: {
1792     const Constant *C = nullptr;
1793     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1794       return true;
1795     V = C;
1796     break;
1797   }
1798   default:
1799     llvm_unreachable("The current token should be an IR block reference");
1800   }
1801   if (!V)
1802     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1803   return false;
1804 }
1805 
1806 bool MIParser::getUint64(uint64_t &Result) {
1807   assert(Token.hasIntegerValue());
1808   if (Token.integerValue().getActiveBits() > 64)
1809     return error("expected 64-bit integer (too large)");
1810   Result = Token.integerValue().getZExtValue();
1811   return false;
1812 }
1813 
1814 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1815   const auto OldFlags = Flags;
1816   switch (Token.kind()) {
1817   case MIToken::kw_volatile:
1818     Flags |= MachineMemOperand::MOVolatile;
1819     break;
1820   case MIToken::kw_non_temporal:
1821     Flags |= MachineMemOperand::MONonTemporal;
1822     break;
1823   case MIToken::kw_dereferenceable:
1824     Flags |= MachineMemOperand::MODereferenceable;
1825     break;
1826   case MIToken::kw_invariant:
1827     Flags |= MachineMemOperand::MOInvariant;
1828     break;
1829   // TODO: parse the target specific memory operand flags.
1830   default:
1831     llvm_unreachable("The current token should be a memory operand flag");
1832   }
1833   if (OldFlags == Flags)
1834     // We know that the same flag is specified more than once when the flags
1835     // weren't modified.
1836     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1837   lex();
1838   return false;
1839 }
1840 
1841 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1842   switch (Token.kind()) {
1843   case MIToken::kw_stack:
1844     PSV = MF.getPSVManager().getStack();
1845     break;
1846   case MIToken::kw_got:
1847     PSV = MF.getPSVManager().getGOT();
1848     break;
1849   case MIToken::kw_jump_table:
1850     PSV = MF.getPSVManager().getJumpTable();
1851     break;
1852   case MIToken::kw_constant_pool:
1853     PSV = MF.getPSVManager().getConstantPool();
1854     break;
1855   case MIToken::FixedStackObject: {
1856     int FI;
1857     if (parseFixedStackFrameIndex(FI))
1858       return true;
1859     PSV = MF.getPSVManager().getFixedStack(FI);
1860     // The token was already consumed, so use return here instead of break.
1861     return false;
1862   }
1863   case MIToken::StackObject: {
1864     int FI;
1865     if (parseStackFrameIndex(FI))
1866       return true;
1867     PSV = MF.getPSVManager().getFixedStack(FI);
1868     // The token was already consumed, so use return here instead of break.
1869     return false;
1870   }
1871   case MIToken::kw_call_entry: {
1872     lex();
1873     switch (Token.kind()) {
1874     case MIToken::GlobalValue:
1875     case MIToken::NamedGlobalValue: {
1876       GlobalValue *GV = nullptr;
1877       if (parseGlobalValue(GV))
1878         return true;
1879       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1880       break;
1881     }
1882     case MIToken::ExternalSymbol:
1883       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1884           MF.createExternalSymbolName(Token.stringValue()));
1885       break;
1886     default:
1887       return error(
1888           "expected a global value or an external symbol after 'call-entry'");
1889     }
1890     break;
1891   }
1892   default:
1893     llvm_unreachable("The current token should be pseudo source value");
1894   }
1895   lex();
1896   return false;
1897 }
1898 
1899 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1900   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1901       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1902       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1903       Token.is(MIToken::kw_call_entry)) {
1904     const PseudoSourceValue *PSV = nullptr;
1905     if (parseMemoryPseudoSourceValue(PSV))
1906       return true;
1907     int64_t Offset = 0;
1908     if (parseOffset(Offset))
1909       return true;
1910     Dest = MachinePointerInfo(PSV, Offset);
1911     return false;
1912   }
1913   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1914       Token.isNot(MIToken::GlobalValue) &&
1915       Token.isNot(MIToken::NamedGlobalValue) &&
1916       Token.isNot(MIToken::QuotedIRValue))
1917     return error("expected an IR value reference");
1918   const Value *V = nullptr;
1919   if (parseIRValue(V))
1920     return true;
1921   if (!V->getType()->isPointerTy())
1922     return error("expected a pointer IR value");
1923   lex();
1924   int64_t Offset = 0;
1925   if (parseOffset(Offset))
1926     return true;
1927   Dest = MachinePointerInfo(V, Offset);
1928   return false;
1929 }
1930 
1931 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1932   if (expectAndConsume(MIToken::lparen))
1933     return true;
1934   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1935   while (Token.isMemoryOperandFlag()) {
1936     if (parseMemoryOperandFlag(Flags))
1937       return true;
1938   }
1939   if (Token.isNot(MIToken::Identifier) ||
1940       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1941     return error("expected 'load' or 'store' memory operation");
1942   if (Token.stringValue() == "load")
1943     Flags |= MachineMemOperand::MOLoad;
1944   else
1945     Flags |= MachineMemOperand::MOStore;
1946   lex();
1947 
1948   if (Token.isNot(MIToken::IntegerLiteral))
1949     return error("expected the size integer literal after memory operation");
1950   uint64_t Size;
1951   if (getUint64(Size))
1952     return true;
1953   lex();
1954 
1955   MachinePointerInfo Ptr = MachinePointerInfo();
1956   if (Token.is(MIToken::Identifier)) {
1957     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1958     if (Token.stringValue() != Word)
1959       return error(Twine("expected '") + Word + "'");
1960     lex();
1961 
1962     if (parseMachinePointerInfo(Ptr))
1963       return true;
1964   }
1965   unsigned BaseAlignment = Size;
1966   AAMDNodes AAInfo;
1967   MDNode *Range = nullptr;
1968   while (consumeIfPresent(MIToken::comma)) {
1969     switch (Token.kind()) {
1970     case MIToken::kw_align:
1971       if (parseAlignment(BaseAlignment))
1972         return true;
1973       break;
1974     case MIToken::md_tbaa:
1975       lex();
1976       if (parseMDNode(AAInfo.TBAA))
1977         return true;
1978       break;
1979     case MIToken::md_alias_scope:
1980       lex();
1981       if (parseMDNode(AAInfo.Scope))
1982         return true;
1983       break;
1984     case MIToken::md_noalias:
1985       lex();
1986       if (parseMDNode(AAInfo.NoAlias))
1987         return true;
1988       break;
1989     case MIToken::md_range:
1990       lex();
1991       if (parseMDNode(Range))
1992         return true;
1993       break;
1994     // TODO: Report an error on duplicate metadata nodes.
1995     default:
1996       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1997                    "'!noalias' or '!range'");
1998     }
1999   }
2000   if (expectAndConsume(MIToken::rparen))
2001     return true;
2002   Dest =
2003       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
2004   return false;
2005 }
2006 
2007 void MIParser::initNames2InstrOpCodes() {
2008   if (!Names2InstrOpCodes.empty())
2009     return;
2010   const auto *TII = MF.getSubtarget().getInstrInfo();
2011   assert(TII && "Expected target instruction info");
2012   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2013     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2014 }
2015 
2016 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2017   initNames2InstrOpCodes();
2018   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2019   if (InstrInfo == Names2InstrOpCodes.end())
2020     return true;
2021   OpCode = InstrInfo->getValue();
2022   return false;
2023 }
2024 
2025 void MIParser::initNames2Regs() {
2026   if (!Names2Regs.empty())
2027     return;
2028   // The '%noreg' register is the register 0.
2029   Names2Regs.insert(std::make_pair("noreg", 0));
2030   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2031   assert(TRI && "Expected target register info");
2032   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2033     bool WasInserted =
2034         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2035             .second;
2036     (void)WasInserted;
2037     assert(WasInserted && "Expected registers to be unique case-insensitively");
2038   }
2039 }
2040 
2041 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2042   initNames2Regs();
2043   auto RegInfo = Names2Regs.find(RegName);
2044   if (RegInfo == Names2Regs.end())
2045     return true;
2046   Reg = RegInfo->getValue();
2047   return false;
2048 }
2049 
2050 void MIParser::initNames2RegMasks() {
2051   if (!Names2RegMasks.empty())
2052     return;
2053   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2054   assert(TRI && "Expected target register info");
2055   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2056   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2057   assert(RegMasks.size() == RegMaskNames.size());
2058   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2059     Names2RegMasks.insert(
2060         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2061 }
2062 
2063 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2064   initNames2RegMasks();
2065   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2066   if (RegMaskInfo == Names2RegMasks.end())
2067     return nullptr;
2068   return RegMaskInfo->getValue();
2069 }
2070 
2071 void MIParser::initNames2SubRegIndices() {
2072   if (!Names2SubRegIndices.empty())
2073     return;
2074   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2075   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2076     Names2SubRegIndices.insert(
2077         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2078 }
2079 
2080 unsigned MIParser::getSubRegIndex(StringRef Name) {
2081   initNames2SubRegIndices();
2082   auto SubRegInfo = Names2SubRegIndices.find(Name);
2083   if (SubRegInfo == Names2SubRegIndices.end())
2084     return 0;
2085   return SubRegInfo->getValue();
2086 }
2087 
2088 static void initSlots2BasicBlocks(
2089     const Function &F,
2090     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2091   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2092   MST.incorporateFunction(F);
2093   for (auto &BB : F) {
2094     if (BB.hasName())
2095       continue;
2096     int Slot = MST.getLocalSlot(&BB);
2097     if (Slot == -1)
2098       continue;
2099     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2100   }
2101 }
2102 
2103 static const BasicBlock *getIRBlockFromSlot(
2104     unsigned Slot,
2105     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2106   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2107   if (BlockInfo == Slots2BasicBlocks.end())
2108     return nullptr;
2109   return BlockInfo->second;
2110 }
2111 
2112 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2113   if (Slots2BasicBlocks.empty())
2114     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2115   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2116 }
2117 
2118 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2119   if (&F == MF.getFunction())
2120     return getIRBlock(Slot);
2121   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2122   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2123   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2124 }
2125 
2126 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2127                            DenseMap<unsigned, const Value *> &Slots2Values) {
2128   int Slot = MST.getLocalSlot(V);
2129   if (Slot == -1)
2130     return;
2131   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2132 }
2133 
2134 /// Creates the mapping from slot numbers to function's unnamed IR values.
2135 static void initSlots2Values(const Function &F,
2136                              DenseMap<unsigned, const Value *> &Slots2Values) {
2137   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2138   MST.incorporateFunction(F);
2139   for (const auto &Arg : F.args())
2140     mapValueToSlot(&Arg, MST, Slots2Values);
2141   for (const auto &BB : F) {
2142     mapValueToSlot(&BB, MST, Slots2Values);
2143     for (const auto &I : BB)
2144       mapValueToSlot(&I, MST, Slots2Values);
2145   }
2146 }
2147 
2148 const Value *MIParser::getIRValue(unsigned Slot) {
2149   if (Slots2Values.empty())
2150     initSlots2Values(*MF.getFunction(), Slots2Values);
2151   auto ValueInfo = Slots2Values.find(Slot);
2152   if (ValueInfo == Slots2Values.end())
2153     return nullptr;
2154   return ValueInfo->second;
2155 }
2156 
2157 void MIParser::initNames2TargetIndices() {
2158   if (!Names2TargetIndices.empty())
2159     return;
2160   const auto *TII = MF.getSubtarget().getInstrInfo();
2161   assert(TII && "Expected target instruction info");
2162   auto Indices = TII->getSerializableTargetIndices();
2163   for (const auto &I : Indices)
2164     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2165 }
2166 
2167 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2168   initNames2TargetIndices();
2169   auto IndexInfo = Names2TargetIndices.find(Name);
2170   if (IndexInfo == Names2TargetIndices.end())
2171     return true;
2172   Index = IndexInfo->second;
2173   return false;
2174 }
2175 
2176 void MIParser::initNames2DirectTargetFlags() {
2177   if (!Names2DirectTargetFlags.empty())
2178     return;
2179   const auto *TII = MF.getSubtarget().getInstrInfo();
2180   assert(TII && "Expected target instruction info");
2181   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2182   for (const auto &I : Flags)
2183     Names2DirectTargetFlags.insert(
2184         std::make_pair(StringRef(I.second), I.first));
2185 }
2186 
2187 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2188   initNames2DirectTargetFlags();
2189   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2190   if (FlagInfo == Names2DirectTargetFlags.end())
2191     return true;
2192   Flag = FlagInfo->second;
2193   return false;
2194 }
2195 
2196 void MIParser::initNames2BitmaskTargetFlags() {
2197   if (!Names2BitmaskTargetFlags.empty())
2198     return;
2199   const auto *TII = MF.getSubtarget().getInstrInfo();
2200   assert(TII && "Expected target instruction info");
2201   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2202   for (const auto &I : Flags)
2203     Names2BitmaskTargetFlags.insert(
2204         std::make_pair(StringRef(I.second), I.first));
2205 }
2206 
2207 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2208   initNames2BitmaskTargetFlags();
2209   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2210   if (FlagInfo == Names2BitmaskTargetFlags.end())
2211     return true;
2212   Flag = FlagInfo->second;
2213   return false;
2214 }
2215 
2216 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2217                                              StringRef Src,
2218                                              SMDiagnostic &Error) {
2219   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2220 }
2221 
2222 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2223                                     StringRef Src, SMDiagnostic &Error) {
2224   return MIParser(PFS, Error, Src).parseBasicBlocks();
2225 }
2226 
2227 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2228                              MachineBasicBlock *&MBB, StringRef Src,
2229                              SMDiagnostic &Error) {
2230   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2231 }
2232 
2233 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2234                                        unsigned &Reg, StringRef Src,
2235                                        SMDiagnostic &Error) {
2236   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2237 }
2238 
2239 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2240                                          VRegInfo *&Info, StringRef Src,
2241                                          SMDiagnostic &Error) {
2242   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2243 }
2244 
2245 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2246                                      int &FI, StringRef Src,
2247                                      SMDiagnostic &Error) {
2248   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2249 }
2250 
2251 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2252                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2253   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2254 }
2255