1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/AsmParser/Parser.h" 29 #include "llvm/AsmParser/SlotMapping.h" 30 #include "llvm/CodeGen/MIRPrinter.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueSymbolTable.h" 57 #include "llvm/MC/LaneBitmask.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCDwarf.h" 60 #include "llvm/MC/MCInstrDesc.h" 61 #include "llvm/MC/MCRegisterInfo.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/SMLoc.h" 69 #include "llvm/Support/SourceMgr.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cctype> 76 #include <cstddef> 77 #include <cstdint> 78 #include <limits> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 85 SourceMgr &SM, const SlotMapping &IRSlots, 86 const Name2RegClassMap &Names2RegClasses, 87 const Name2RegBankMap &Names2RegBanks) 88 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 89 Names2RegBanks(Names2RegBanks) { 90 } 91 92 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 93 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 94 if (I.second) { 95 MachineRegisterInfo &MRI = MF.getRegInfo(); 96 VRegInfo *Info = new (Allocator) VRegInfo; 97 Info->VReg = MRI.createIncompleteVirtualRegister(); 98 I.first->second = Info; 99 } 100 return *I.first->second; 101 } 102 103 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 104 assert(RegName != "" && "Expected named reg."); 105 106 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 107 if (I.second) { 108 VRegInfo *Info = new (Allocator) VRegInfo; 109 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 110 I.first->second = Info; 111 } 112 return *I.first->second; 113 } 114 115 namespace { 116 117 /// A wrapper struct around the 'MachineOperand' struct that includes a source 118 /// range and other attributes. 119 struct ParsedMachineOperand { 120 MachineOperand Operand; 121 StringRef::iterator Begin; 122 StringRef::iterator End; 123 Optional<unsigned> TiedDefIdx; 124 125 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 126 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 127 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 128 if (TiedDefIdx) 129 assert(Operand.isReg() && Operand.isUse() && 130 "Only used register operands can be tied"); 131 } 132 }; 133 134 class MIParser { 135 MachineFunction &MF; 136 SMDiagnostic &Error; 137 StringRef Source, CurrentSource; 138 MIToken Token; 139 PerFunctionMIParsingState &PFS; 140 /// Maps from instruction names to op codes. 141 StringMap<unsigned> Names2InstrOpCodes; 142 /// Maps from register names to registers. 143 StringMap<unsigned> Names2Regs; 144 /// Maps from register mask names to register masks. 145 StringMap<const uint32_t *> Names2RegMasks; 146 /// Maps from subregister names to subregister indices. 147 StringMap<unsigned> Names2SubRegIndices; 148 /// Maps from slot numbers to function's unnamed basic blocks. 149 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 150 /// Maps from slot numbers to function's unnamed values. 151 DenseMap<unsigned, const Value *> Slots2Values; 152 /// Maps from target index names to target indices. 153 StringMap<int> Names2TargetIndices; 154 /// Maps from direct target flag names to the direct target flag values. 155 StringMap<unsigned> Names2DirectTargetFlags; 156 /// Maps from direct target flag names to the bitmask target flag values. 157 StringMap<unsigned> Names2BitmaskTargetFlags; 158 /// Maps from MMO target flag names to MMO target flag values. 159 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 160 161 public: 162 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 163 StringRef Source); 164 165 /// \p SkipChar gives the number of characters to skip before looking 166 /// for the next token. 167 void lex(unsigned SkipChar = 0); 168 169 /// Report an error at the current location with the given message. 170 /// 171 /// This function always return true. 172 bool error(const Twine &Msg); 173 174 /// Report an error at the given location with the given message. 175 /// 176 /// This function always return true. 177 bool error(StringRef::iterator Loc, const Twine &Msg); 178 179 bool 180 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 181 bool parseBasicBlocks(); 182 bool parse(MachineInstr *&MI); 183 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 184 bool parseStandaloneNamedRegister(unsigned &Reg); 185 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 186 bool parseStandaloneRegister(unsigned &Reg); 187 bool parseStandaloneStackObject(int &FI); 188 bool parseStandaloneMDNode(MDNode *&Node); 189 190 bool 191 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 192 bool parseBasicBlock(MachineBasicBlock &MBB, 193 MachineBasicBlock *&AddFalthroughFrom); 194 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 195 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 196 197 bool parseNamedRegister(unsigned &Reg); 198 bool parseVirtualRegister(VRegInfo *&Info); 199 bool parseNamedVirtualRegister(VRegInfo *&Info); 200 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 201 bool parseRegisterFlag(unsigned &Flags); 202 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 203 bool parseSubRegisterIndex(unsigned &SubReg); 204 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 205 bool parseRegisterOperand(MachineOperand &Dest, 206 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 207 bool parseImmediateOperand(MachineOperand &Dest); 208 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 209 const Constant *&C); 210 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 211 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 212 bool parseTypedImmediateOperand(MachineOperand &Dest); 213 bool parseFPImmediateOperand(MachineOperand &Dest); 214 bool parseMBBReference(MachineBasicBlock *&MBB); 215 bool parseMBBOperand(MachineOperand &Dest); 216 bool parseStackFrameIndex(int &FI); 217 bool parseStackObjectOperand(MachineOperand &Dest); 218 bool parseFixedStackFrameIndex(int &FI); 219 bool parseFixedStackObjectOperand(MachineOperand &Dest); 220 bool parseGlobalValue(GlobalValue *&GV); 221 bool parseGlobalAddressOperand(MachineOperand &Dest); 222 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 223 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 224 bool parseJumpTableIndexOperand(MachineOperand &Dest); 225 bool parseExternalSymbolOperand(MachineOperand &Dest); 226 bool parseMCSymbolOperand(MachineOperand &Dest); 227 bool parseMDNode(MDNode *&Node); 228 bool parseDIExpression(MDNode *&Expr); 229 bool parseDILocation(MDNode *&Expr); 230 bool parseMetadataOperand(MachineOperand &Dest); 231 bool parseCFIOffset(int &Offset); 232 bool parseCFIRegister(unsigned &Reg); 233 bool parseCFIEscapeValues(std::string& Values); 234 bool parseCFIOperand(MachineOperand &Dest); 235 bool parseIRBlock(BasicBlock *&BB, const Function &F); 236 bool parseBlockAddressOperand(MachineOperand &Dest); 237 bool parseIntrinsicOperand(MachineOperand &Dest); 238 bool parsePredicateOperand(MachineOperand &Dest); 239 bool parseTargetIndexOperand(MachineOperand &Dest); 240 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 241 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 242 bool parseMachineOperand(MachineOperand &Dest, 243 Optional<unsigned> &TiedDefIdx); 244 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 245 Optional<unsigned> &TiedDefIdx); 246 bool parseOffset(int64_t &Offset); 247 bool parseAlignment(unsigned &Alignment); 248 bool parseAddrspace(unsigned &Addrspace); 249 bool parseOperandsOffset(MachineOperand &Op); 250 bool parseIRValue(const Value *&V); 251 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 252 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 253 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 254 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 255 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 256 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 257 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 258 259 private: 260 /// Convert the integer literal in the current token into an unsigned integer. 261 /// 262 /// Return true if an error occurred. 263 bool getUnsigned(unsigned &Result); 264 265 /// Convert the integer literal in the current token into an uint64. 266 /// 267 /// Return true if an error occurred. 268 bool getUint64(uint64_t &Result); 269 270 /// Convert the hexadecimal literal in the current token into an unsigned 271 /// APInt with a minimum bitwidth required to represent the value. 272 /// 273 /// Return true if the literal does not represent an integer value. 274 bool getHexUint(APInt &Result); 275 276 /// If the current token is of the given kind, consume it and return false. 277 /// Otherwise report an error and return true. 278 bool expectAndConsume(MIToken::TokenKind TokenKind); 279 280 /// If the current token is of the given kind, consume it and return true. 281 /// Otherwise return false. 282 bool consumeIfPresent(MIToken::TokenKind TokenKind); 283 284 void initNames2InstrOpCodes(); 285 286 /// Try to convert an instruction name to an opcode. Return true if the 287 /// instruction name is invalid. 288 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 289 290 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 291 292 bool assignRegisterTies(MachineInstr &MI, 293 ArrayRef<ParsedMachineOperand> Operands); 294 295 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 296 const MCInstrDesc &MCID); 297 298 void initNames2Regs(); 299 300 /// Try to convert a register name to a register number. Return true if the 301 /// register name is invalid. 302 bool getRegisterByName(StringRef RegName, unsigned &Reg); 303 304 void initNames2RegMasks(); 305 306 /// Check if the given identifier is a name of a register mask. 307 /// 308 /// Return null if the identifier isn't a register mask. 309 const uint32_t *getRegMask(StringRef Identifier); 310 311 void initNames2SubRegIndices(); 312 313 /// Check if the given identifier is a name of a subregister index. 314 /// 315 /// Return 0 if the name isn't a subregister index class. 316 unsigned getSubRegIndex(StringRef Name); 317 318 const BasicBlock *getIRBlock(unsigned Slot); 319 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 320 321 const Value *getIRValue(unsigned Slot); 322 323 void initNames2TargetIndices(); 324 325 /// Try to convert a name of target index to the corresponding target index. 326 /// 327 /// Return true if the name isn't a name of a target index. 328 bool getTargetIndex(StringRef Name, int &Index); 329 330 void initNames2DirectTargetFlags(); 331 332 /// Try to convert a name of a direct target flag to the corresponding 333 /// target flag. 334 /// 335 /// Return true if the name isn't a name of a direct flag. 336 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 337 338 void initNames2BitmaskTargetFlags(); 339 340 /// Try to convert a name of a bitmask target flag to the corresponding 341 /// target flag. 342 /// 343 /// Return true if the name isn't a name of a bitmask target flag. 344 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 345 346 void initNames2MMOTargetFlags(); 347 348 /// Try to convert a name of a MachineMemOperand target flag to the 349 /// corresponding target flag. 350 /// 351 /// Return true if the name isn't a name of a target MMO flag. 352 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 353 354 /// Get or create an MCSymbol for a given name. 355 MCSymbol *getOrCreateMCSymbol(StringRef Name); 356 357 /// parseStringConstant 358 /// ::= StringConstant 359 bool parseStringConstant(std::string &Result); 360 }; 361 362 } // end anonymous namespace 363 364 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 365 StringRef Source) 366 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 367 {} 368 369 void MIParser::lex(unsigned SkipChar) { 370 CurrentSource = lexMIToken( 371 CurrentSource.data() + SkipChar, Token, 372 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 373 } 374 375 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 376 377 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 378 const SourceMgr &SM = *PFS.SM; 379 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 380 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 381 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 382 // Create an ordinary diagnostic when the source manager's buffer is the 383 // source string. 384 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 385 return true; 386 } 387 // Create a diagnostic for a YAML string literal. 388 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 389 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 390 Source, None, None); 391 return true; 392 } 393 394 static const char *toString(MIToken::TokenKind TokenKind) { 395 switch (TokenKind) { 396 case MIToken::comma: 397 return "','"; 398 case MIToken::equal: 399 return "'='"; 400 case MIToken::colon: 401 return "':'"; 402 case MIToken::lparen: 403 return "'('"; 404 case MIToken::rparen: 405 return "')'"; 406 default: 407 return "<unknown token>"; 408 } 409 } 410 411 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 412 if (Token.isNot(TokenKind)) 413 return error(Twine("expected ") + toString(TokenKind)); 414 lex(); 415 return false; 416 } 417 418 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 419 if (Token.isNot(TokenKind)) 420 return false; 421 lex(); 422 return true; 423 } 424 425 bool MIParser::parseBasicBlockDefinition( 426 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 427 assert(Token.is(MIToken::MachineBasicBlockLabel)); 428 unsigned ID = 0; 429 if (getUnsigned(ID)) 430 return true; 431 auto Loc = Token.location(); 432 auto Name = Token.stringValue(); 433 lex(); 434 bool HasAddressTaken = false; 435 bool IsLandingPad = false; 436 unsigned Alignment = 0; 437 BasicBlock *BB = nullptr; 438 if (consumeIfPresent(MIToken::lparen)) { 439 do { 440 // TODO: Report an error when multiple same attributes are specified. 441 switch (Token.kind()) { 442 case MIToken::kw_address_taken: 443 HasAddressTaken = true; 444 lex(); 445 break; 446 case MIToken::kw_landing_pad: 447 IsLandingPad = true; 448 lex(); 449 break; 450 case MIToken::kw_align: 451 if (parseAlignment(Alignment)) 452 return true; 453 break; 454 case MIToken::IRBlock: 455 // TODO: Report an error when both name and ir block are specified. 456 if (parseIRBlock(BB, MF.getFunction())) 457 return true; 458 lex(); 459 break; 460 default: 461 break; 462 } 463 } while (consumeIfPresent(MIToken::comma)); 464 if (expectAndConsume(MIToken::rparen)) 465 return true; 466 } 467 if (expectAndConsume(MIToken::colon)) 468 return true; 469 470 if (!Name.empty()) { 471 BB = dyn_cast_or_null<BasicBlock>( 472 MF.getFunction().getValueSymbolTable()->lookup(Name)); 473 if (!BB) 474 return error(Loc, Twine("basic block '") + Name + 475 "' is not defined in the function '" + 476 MF.getName() + "'"); 477 } 478 auto *MBB = MF.CreateMachineBasicBlock(BB); 479 MF.insert(MF.end(), MBB); 480 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 481 if (!WasInserted) 482 return error(Loc, Twine("redefinition of machine basic block with id #") + 483 Twine(ID)); 484 if (Alignment) 485 MBB->setAlignment(Alignment); 486 if (HasAddressTaken) 487 MBB->setHasAddressTaken(); 488 MBB->setIsEHPad(IsLandingPad); 489 return false; 490 } 491 492 bool MIParser::parseBasicBlockDefinitions( 493 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 494 lex(); 495 // Skip until the first machine basic block. 496 while (Token.is(MIToken::Newline)) 497 lex(); 498 if (Token.isErrorOrEOF()) 499 return Token.isError(); 500 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 501 return error("expected a basic block definition before instructions"); 502 unsigned BraceDepth = 0; 503 do { 504 if (parseBasicBlockDefinition(MBBSlots)) 505 return true; 506 bool IsAfterNewline = false; 507 // Skip until the next machine basic block. 508 while (true) { 509 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 510 Token.isErrorOrEOF()) 511 break; 512 else if (Token.is(MIToken::MachineBasicBlockLabel)) 513 return error("basic block definition should be located at the start of " 514 "the line"); 515 else if (consumeIfPresent(MIToken::Newline)) { 516 IsAfterNewline = true; 517 continue; 518 } 519 IsAfterNewline = false; 520 if (Token.is(MIToken::lbrace)) 521 ++BraceDepth; 522 if (Token.is(MIToken::rbrace)) { 523 if (!BraceDepth) 524 return error("extraneous closing brace ('}')"); 525 --BraceDepth; 526 } 527 lex(); 528 } 529 // Verify that we closed all of the '{' at the end of a file or a block. 530 if (!Token.isError() && BraceDepth) 531 return error("expected '}'"); // FIXME: Report a note that shows '{'. 532 } while (!Token.isErrorOrEOF()); 533 return Token.isError(); 534 } 535 536 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 537 assert(Token.is(MIToken::kw_liveins)); 538 lex(); 539 if (expectAndConsume(MIToken::colon)) 540 return true; 541 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 542 return false; 543 do { 544 if (Token.isNot(MIToken::NamedRegister)) 545 return error("expected a named register"); 546 unsigned Reg = 0; 547 if (parseNamedRegister(Reg)) 548 return true; 549 lex(); 550 LaneBitmask Mask = LaneBitmask::getAll(); 551 if (consumeIfPresent(MIToken::colon)) { 552 // Parse lane mask. 553 if (Token.isNot(MIToken::IntegerLiteral) && 554 Token.isNot(MIToken::HexLiteral)) 555 return error("expected a lane mask"); 556 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 557 "Use correct get-function for lane mask"); 558 LaneBitmask::Type V; 559 if (getUnsigned(V)) 560 return error("invalid lane mask value"); 561 Mask = LaneBitmask(V); 562 lex(); 563 } 564 MBB.addLiveIn(Reg, Mask); 565 } while (consumeIfPresent(MIToken::comma)); 566 return false; 567 } 568 569 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 570 assert(Token.is(MIToken::kw_successors)); 571 lex(); 572 if (expectAndConsume(MIToken::colon)) 573 return true; 574 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 575 return false; 576 do { 577 if (Token.isNot(MIToken::MachineBasicBlock)) 578 return error("expected a machine basic block reference"); 579 MachineBasicBlock *SuccMBB = nullptr; 580 if (parseMBBReference(SuccMBB)) 581 return true; 582 lex(); 583 unsigned Weight = 0; 584 if (consumeIfPresent(MIToken::lparen)) { 585 if (Token.isNot(MIToken::IntegerLiteral) && 586 Token.isNot(MIToken::HexLiteral)) 587 return error("expected an integer literal after '('"); 588 if (getUnsigned(Weight)) 589 return true; 590 lex(); 591 if (expectAndConsume(MIToken::rparen)) 592 return true; 593 } 594 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 595 } while (consumeIfPresent(MIToken::comma)); 596 MBB.normalizeSuccProbs(); 597 return false; 598 } 599 600 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 601 MachineBasicBlock *&AddFalthroughFrom) { 602 // Skip the definition. 603 assert(Token.is(MIToken::MachineBasicBlockLabel)); 604 lex(); 605 if (consumeIfPresent(MIToken::lparen)) { 606 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 607 lex(); 608 consumeIfPresent(MIToken::rparen); 609 } 610 consumeIfPresent(MIToken::colon); 611 612 // Parse the liveins and successors. 613 // N.B: Multiple lists of successors and liveins are allowed and they're 614 // merged into one. 615 // Example: 616 // liveins: %edi 617 // liveins: %esi 618 // 619 // is equivalent to 620 // liveins: %edi, %esi 621 bool ExplicitSuccessors = false; 622 while (true) { 623 if (Token.is(MIToken::kw_successors)) { 624 if (parseBasicBlockSuccessors(MBB)) 625 return true; 626 ExplicitSuccessors = true; 627 } else if (Token.is(MIToken::kw_liveins)) { 628 if (parseBasicBlockLiveins(MBB)) 629 return true; 630 } else if (consumeIfPresent(MIToken::Newline)) { 631 continue; 632 } else 633 break; 634 if (!Token.isNewlineOrEOF()) 635 return error("expected line break at the end of a list"); 636 lex(); 637 } 638 639 // Parse the instructions. 640 bool IsInBundle = false; 641 MachineInstr *PrevMI = nullptr; 642 while (!Token.is(MIToken::MachineBasicBlockLabel) && 643 !Token.is(MIToken::Eof)) { 644 if (consumeIfPresent(MIToken::Newline)) 645 continue; 646 if (consumeIfPresent(MIToken::rbrace)) { 647 // The first parsing pass should verify that all closing '}' have an 648 // opening '{'. 649 assert(IsInBundle); 650 IsInBundle = false; 651 continue; 652 } 653 MachineInstr *MI = nullptr; 654 if (parse(MI)) 655 return true; 656 MBB.insert(MBB.end(), MI); 657 if (IsInBundle) { 658 PrevMI->setFlag(MachineInstr::BundledSucc); 659 MI->setFlag(MachineInstr::BundledPred); 660 } 661 PrevMI = MI; 662 if (Token.is(MIToken::lbrace)) { 663 if (IsInBundle) 664 return error("nested instruction bundles are not allowed"); 665 lex(); 666 // This instruction is the start of the bundle. 667 MI->setFlag(MachineInstr::BundledSucc); 668 IsInBundle = true; 669 if (!Token.is(MIToken::Newline)) 670 // The next instruction can be on the same line. 671 continue; 672 } 673 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 674 lex(); 675 } 676 677 // Construct successor list by searching for basic block machine operands. 678 if (!ExplicitSuccessors) { 679 SmallVector<MachineBasicBlock*,4> Successors; 680 bool IsFallthrough; 681 guessSuccessors(MBB, Successors, IsFallthrough); 682 for (MachineBasicBlock *Succ : Successors) 683 MBB.addSuccessor(Succ); 684 685 if (IsFallthrough) { 686 AddFalthroughFrom = &MBB; 687 } else { 688 MBB.normalizeSuccProbs(); 689 } 690 } 691 692 return false; 693 } 694 695 bool MIParser::parseBasicBlocks() { 696 lex(); 697 // Skip until the first machine basic block. 698 while (Token.is(MIToken::Newline)) 699 lex(); 700 if (Token.isErrorOrEOF()) 701 return Token.isError(); 702 // The first parsing pass should have verified that this token is a MBB label 703 // in the 'parseBasicBlockDefinitions' method. 704 assert(Token.is(MIToken::MachineBasicBlockLabel)); 705 MachineBasicBlock *AddFalthroughFrom = nullptr; 706 do { 707 MachineBasicBlock *MBB = nullptr; 708 if (parseMBBReference(MBB)) 709 return true; 710 if (AddFalthroughFrom) { 711 if (!AddFalthroughFrom->isSuccessor(MBB)) 712 AddFalthroughFrom->addSuccessor(MBB); 713 AddFalthroughFrom->normalizeSuccProbs(); 714 AddFalthroughFrom = nullptr; 715 } 716 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 717 return true; 718 // The method 'parseBasicBlock' should parse the whole block until the next 719 // block or the end of file. 720 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 721 } while (Token.isNot(MIToken::Eof)); 722 return false; 723 } 724 725 bool MIParser::parse(MachineInstr *&MI) { 726 // Parse any register operands before '=' 727 MachineOperand MO = MachineOperand::CreateImm(0); 728 SmallVector<ParsedMachineOperand, 8> Operands; 729 while (Token.isRegister() || Token.isRegisterFlag()) { 730 auto Loc = Token.location(); 731 Optional<unsigned> TiedDefIdx; 732 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 733 return true; 734 Operands.push_back( 735 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 736 if (Token.isNot(MIToken::comma)) 737 break; 738 lex(); 739 } 740 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 741 return true; 742 743 unsigned OpCode, Flags = 0; 744 if (Token.isError() || parseInstruction(OpCode, Flags)) 745 return true; 746 747 // Parse the remaining machine operands. 748 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 749 Token.isNot(MIToken::kw_post_instr_symbol) && 750 Token.isNot(MIToken::kw_debug_location) && 751 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 752 auto Loc = Token.location(); 753 Optional<unsigned> TiedDefIdx; 754 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 755 return true; 756 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 757 MO.setIsDebug(); 758 Operands.push_back( 759 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 760 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 761 Token.is(MIToken::lbrace)) 762 break; 763 if (Token.isNot(MIToken::comma)) 764 return error("expected ',' before the next machine operand"); 765 lex(); 766 } 767 768 MCSymbol *PreInstrSymbol = nullptr; 769 if (Token.is(MIToken::kw_pre_instr_symbol)) 770 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 771 return true; 772 MCSymbol *PostInstrSymbol = nullptr; 773 if (Token.is(MIToken::kw_post_instr_symbol)) 774 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 775 return true; 776 777 DebugLoc DebugLocation; 778 if (Token.is(MIToken::kw_debug_location)) { 779 lex(); 780 MDNode *Node = nullptr; 781 if (Token.is(MIToken::exclaim)) { 782 if (parseMDNode(Node)) 783 return true; 784 } else if (Token.is(MIToken::md_dilocation)) { 785 if (parseDILocation(Node)) 786 return true; 787 } else 788 return error("expected a metadata node after 'debug-location'"); 789 if (!isa<DILocation>(Node)) 790 return error("referenced metadata is not a DILocation"); 791 DebugLocation = DebugLoc(Node); 792 } 793 794 // Parse the machine memory operands. 795 SmallVector<MachineMemOperand *, 2> MemOperands; 796 if (Token.is(MIToken::coloncolon)) { 797 lex(); 798 while (!Token.isNewlineOrEOF()) { 799 MachineMemOperand *MemOp = nullptr; 800 if (parseMachineMemoryOperand(MemOp)) 801 return true; 802 MemOperands.push_back(MemOp); 803 if (Token.isNewlineOrEOF()) 804 break; 805 if (Token.isNot(MIToken::comma)) 806 return error("expected ',' before the next machine memory operand"); 807 lex(); 808 } 809 } 810 811 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 812 if (!MCID.isVariadic()) { 813 // FIXME: Move the implicit operand verification to the machine verifier. 814 if (verifyImplicitOperands(Operands, MCID)) 815 return true; 816 } 817 818 // TODO: Check for extraneous machine operands. 819 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 820 MI->setFlags(Flags); 821 for (const auto &Operand : Operands) 822 MI->addOperand(MF, Operand.Operand); 823 if (assignRegisterTies(*MI, Operands)) 824 return true; 825 if (PreInstrSymbol) 826 MI->setPreInstrSymbol(MF, PreInstrSymbol); 827 if (PostInstrSymbol) 828 MI->setPostInstrSymbol(MF, PostInstrSymbol); 829 if (!MemOperands.empty()) 830 MI->setMemRefs(MF, MemOperands); 831 return false; 832 } 833 834 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 835 lex(); 836 if (Token.isNot(MIToken::MachineBasicBlock)) 837 return error("expected a machine basic block reference"); 838 if (parseMBBReference(MBB)) 839 return true; 840 lex(); 841 if (Token.isNot(MIToken::Eof)) 842 return error( 843 "expected end of string after the machine basic block reference"); 844 return false; 845 } 846 847 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 848 lex(); 849 if (Token.isNot(MIToken::NamedRegister)) 850 return error("expected a named register"); 851 if (parseNamedRegister(Reg)) 852 return true; 853 lex(); 854 if (Token.isNot(MIToken::Eof)) 855 return error("expected end of string after the register reference"); 856 return false; 857 } 858 859 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 860 lex(); 861 if (Token.isNot(MIToken::VirtualRegister)) 862 return error("expected a virtual register"); 863 if (parseVirtualRegister(Info)) 864 return true; 865 lex(); 866 if (Token.isNot(MIToken::Eof)) 867 return error("expected end of string after the register reference"); 868 return false; 869 } 870 871 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 872 lex(); 873 if (Token.isNot(MIToken::NamedRegister) && 874 Token.isNot(MIToken::VirtualRegister)) 875 return error("expected either a named or virtual register"); 876 877 VRegInfo *Info; 878 if (parseRegister(Reg, Info)) 879 return true; 880 881 lex(); 882 if (Token.isNot(MIToken::Eof)) 883 return error("expected end of string after the register reference"); 884 return false; 885 } 886 887 bool MIParser::parseStandaloneStackObject(int &FI) { 888 lex(); 889 if (Token.isNot(MIToken::StackObject)) 890 return error("expected a stack object"); 891 if (parseStackFrameIndex(FI)) 892 return true; 893 if (Token.isNot(MIToken::Eof)) 894 return error("expected end of string after the stack object reference"); 895 return false; 896 } 897 898 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 899 lex(); 900 if (Token.is(MIToken::exclaim)) { 901 if (parseMDNode(Node)) 902 return true; 903 } else if (Token.is(MIToken::md_diexpr)) { 904 if (parseDIExpression(Node)) 905 return true; 906 } else if (Token.is(MIToken::md_dilocation)) { 907 if (parseDILocation(Node)) 908 return true; 909 } else 910 return error("expected a metadata node"); 911 if (Token.isNot(MIToken::Eof)) 912 return error("expected end of string after the metadata node"); 913 return false; 914 } 915 916 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 917 assert(MO.isImplicit()); 918 return MO.isDef() ? "implicit-def" : "implicit"; 919 } 920 921 static std::string getRegisterName(const TargetRegisterInfo *TRI, 922 unsigned Reg) { 923 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 924 return StringRef(TRI->getName(Reg)).lower(); 925 } 926 927 /// Return true if the parsed machine operands contain a given machine operand. 928 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 929 ArrayRef<ParsedMachineOperand> Operands) { 930 for (const auto &I : Operands) { 931 if (ImplicitOperand.isIdenticalTo(I.Operand)) 932 return true; 933 } 934 return false; 935 } 936 937 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 938 const MCInstrDesc &MCID) { 939 if (MCID.isCall()) 940 // We can't verify call instructions as they can contain arbitrary implicit 941 // register and register mask operands. 942 return false; 943 944 // Gather all the expected implicit operands. 945 SmallVector<MachineOperand, 4> ImplicitOperands; 946 if (MCID.ImplicitDefs) 947 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 948 ImplicitOperands.push_back( 949 MachineOperand::CreateReg(*ImpDefs, true, true)); 950 if (MCID.ImplicitUses) 951 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 952 ImplicitOperands.push_back( 953 MachineOperand::CreateReg(*ImpUses, false, true)); 954 955 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 956 assert(TRI && "Expected target register info"); 957 for (const auto &I : ImplicitOperands) { 958 if (isImplicitOperandIn(I, Operands)) 959 continue; 960 return error(Operands.empty() ? Token.location() : Operands.back().End, 961 Twine("missing implicit register operand '") + 962 printImplicitRegisterFlag(I) + " $" + 963 getRegisterName(TRI, I.getReg()) + "'"); 964 } 965 return false; 966 } 967 968 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 969 // Allow frame and fast math flags for OPCODE 970 while (Token.is(MIToken::kw_frame_setup) || 971 Token.is(MIToken::kw_frame_destroy) || 972 Token.is(MIToken::kw_nnan) || 973 Token.is(MIToken::kw_ninf) || 974 Token.is(MIToken::kw_nsz) || 975 Token.is(MIToken::kw_arcp) || 976 Token.is(MIToken::kw_contract) || 977 Token.is(MIToken::kw_afn) || 978 Token.is(MIToken::kw_reassoc) || 979 Token.is(MIToken::kw_nuw) || 980 Token.is(MIToken::kw_nsw) || 981 Token.is(MIToken::kw_exact)) { 982 // Mine frame and fast math flags 983 if (Token.is(MIToken::kw_frame_setup)) 984 Flags |= MachineInstr::FrameSetup; 985 if (Token.is(MIToken::kw_frame_destroy)) 986 Flags |= MachineInstr::FrameDestroy; 987 if (Token.is(MIToken::kw_nnan)) 988 Flags |= MachineInstr::FmNoNans; 989 if (Token.is(MIToken::kw_ninf)) 990 Flags |= MachineInstr::FmNoInfs; 991 if (Token.is(MIToken::kw_nsz)) 992 Flags |= MachineInstr::FmNsz; 993 if (Token.is(MIToken::kw_arcp)) 994 Flags |= MachineInstr::FmArcp; 995 if (Token.is(MIToken::kw_contract)) 996 Flags |= MachineInstr::FmContract; 997 if (Token.is(MIToken::kw_afn)) 998 Flags |= MachineInstr::FmAfn; 999 if (Token.is(MIToken::kw_reassoc)) 1000 Flags |= MachineInstr::FmReassoc; 1001 if (Token.is(MIToken::kw_nuw)) 1002 Flags |= MachineInstr::NoUWrap; 1003 if (Token.is(MIToken::kw_nsw)) 1004 Flags |= MachineInstr::NoSWrap; 1005 if (Token.is(MIToken::kw_exact)) 1006 Flags |= MachineInstr::IsExact; 1007 1008 lex(); 1009 } 1010 if (Token.isNot(MIToken::Identifier)) 1011 return error("expected a machine instruction"); 1012 StringRef InstrName = Token.stringValue(); 1013 if (parseInstrName(InstrName, OpCode)) 1014 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1015 lex(); 1016 return false; 1017 } 1018 1019 bool MIParser::parseNamedRegister(unsigned &Reg) { 1020 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1021 StringRef Name = Token.stringValue(); 1022 if (getRegisterByName(Name, Reg)) 1023 return error(Twine("unknown register name '") + Name + "'"); 1024 return false; 1025 } 1026 1027 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1028 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1029 StringRef Name = Token.stringValue(); 1030 // TODO: Check that the VReg name is not the same as a physical register name. 1031 // If it is, then print a warning (when warnings are implemented). 1032 Info = &PFS.getVRegInfoNamed(Name); 1033 return false; 1034 } 1035 1036 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1037 if (Token.is(MIToken::NamedVirtualRegister)) 1038 return parseNamedVirtualRegister(Info); 1039 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1040 unsigned ID; 1041 if (getUnsigned(ID)) 1042 return true; 1043 Info = &PFS.getVRegInfo(ID); 1044 return false; 1045 } 1046 1047 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1048 switch (Token.kind()) { 1049 case MIToken::underscore: 1050 Reg = 0; 1051 return false; 1052 case MIToken::NamedRegister: 1053 return parseNamedRegister(Reg); 1054 case MIToken::NamedVirtualRegister: 1055 case MIToken::VirtualRegister: 1056 if (parseVirtualRegister(Info)) 1057 return true; 1058 Reg = Info->VReg; 1059 return false; 1060 // TODO: Parse other register kinds. 1061 default: 1062 llvm_unreachable("The current token should be a register"); 1063 } 1064 } 1065 1066 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1067 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1068 return error("expected '_', register class, or register bank name"); 1069 StringRef::iterator Loc = Token.location(); 1070 StringRef Name = Token.stringValue(); 1071 1072 // Was it a register class? 1073 auto RCNameI = PFS.Names2RegClasses.find(Name); 1074 if (RCNameI != PFS.Names2RegClasses.end()) { 1075 lex(); 1076 const TargetRegisterClass &RC = *RCNameI->getValue(); 1077 1078 switch (RegInfo.Kind) { 1079 case VRegInfo::UNKNOWN: 1080 case VRegInfo::NORMAL: 1081 RegInfo.Kind = VRegInfo::NORMAL; 1082 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1083 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1084 return error(Loc, Twine("conflicting register classes, previously: ") + 1085 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1086 } 1087 RegInfo.D.RC = &RC; 1088 RegInfo.Explicit = true; 1089 return false; 1090 1091 case VRegInfo::GENERIC: 1092 case VRegInfo::REGBANK: 1093 return error(Loc, "register class specification on generic register"); 1094 } 1095 llvm_unreachable("Unexpected register kind"); 1096 } 1097 1098 // Should be a register bank or a generic register. 1099 const RegisterBank *RegBank = nullptr; 1100 if (Name != "_") { 1101 auto RBNameI = PFS.Names2RegBanks.find(Name); 1102 if (RBNameI == PFS.Names2RegBanks.end()) 1103 return error(Loc, "expected '_', register class, or register bank name"); 1104 RegBank = RBNameI->getValue(); 1105 } 1106 1107 lex(); 1108 1109 switch (RegInfo.Kind) { 1110 case VRegInfo::UNKNOWN: 1111 case VRegInfo::GENERIC: 1112 case VRegInfo::REGBANK: 1113 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1114 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1115 return error(Loc, "conflicting generic register banks"); 1116 RegInfo.D.RegBank = RegBank; 1117 RegInfo.Explicit = true; 1118 return false; 1119 1120 case VRegInfo::NORMAL: 1121 return error(Loc, "register bank specification on normal register"); 1122 } 1123 llvm_unreachable("Unexpected register kind"); 1124 } 1125 1126 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1127 const unsigned OldFlags = Flags; 1128 switch (Token.kind()) { 1129 case MIToken::kw_implicit: 1130 Flags |= RegState::Implicit; 1131 break; 1132 case MIToken::kw_implicit_define: 1133 Flags |= RegState::ImplicitDefine; 1134 break; 1135 case MIToken::kw_def: 1136 Flags |= RegState::Define; 1137 break; 1138 case MIToken::kw_dead: 1139 Flags |= RegState::Dead; 1140 break; 1141 case MIToken::kw_killed: 1142 Flags |= RegState::Kill; 1143 break; 1144 case MIToken::kw_undef: 1145 Flags |= RegState::Undef; 1146 break; 1147 case MIToken::kw_internal: 1148 Flags |= RegState::InternalRead; 1149 break; 1150 case MIToken::kw_early_clobber: 1151 Flags |= RegState::EarlyClobber; 1152 break; 1153 case MIToken::kw_debug_use: 1154 Flags |= RegState::Debug; 1155 break; 1156 case MIToken::kw_renamable: 1157 Flags |= RegState::Renamable; 1158 break; 1159 default: 1160 llvm_unreachable("The current token should be a register flag"); 1161 } 1162 if (OldFlags == Flags) 1163 // We know that the same flag is specified more than once when the flags 1164 // weren't modified. 1165 return error("duplicate '" + Token.stringValue() + "' register flag"); 1166 lex(); 1167 return false; 1168 } 1169 1170 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1171 assert(Token.is(MIToken::dot)); 1172 lex(); 1173 if (Token.isNot(MIToken::Identifier)) 1174 return error("expected a subregister index after '.'"); 1175 auto Name = Token.stringValue(); 1176 SubReg = getSubRegIndex(Name); 1177 if (!SubReg) 1178 return error(Twine("use of unknown subregister index '") + Name + "'"); 1179 lex(); 1180 return false; 1181 } 1182 1183 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1184 if (!consumeIfPresent(MIToken::kw_tied_def)) 1185 return true; 1186 if (Token.isNot(MIToken::IntegerLiteral)) 1187 return error("expected an integer literal after 'tied-def'"); 1188 if (getUnsigned(TiedDefIdx)) 1189 return true; 1190 lex(); 1191 if (expectAndConsume(MIToken::rparen)) 1192 return true; 1193 return false; 1194 } 1195 1196 bool MIParser::assignRegisterTies(MachineInstr &MI, 1197 ArrayRef<ParsedMachineOperand> Operands) { 1198 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1199 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1200 if (!Operands[I].TiedDefIdx) 1201 continue; 1202 // The parser ensures that this operand is a register use, so we just have 1203 // to check the tied-def operand. 1204 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1205 if (DefIdx >= E) 1206 return error(Operands[I].Begin, 1207 Twine("use of invalid tied-def operand index '" + 1208 Twine(DefIdx) + "'; instruction has only ") + 1209 Twine(E) + " operands"); 1210 const auto &DefOperand = Operands[DefIdx].Operand; 1211 if (!DefOperand.isReg() || !DefOperand.isDef()) 1212 // FIXME: add note with the def operand. 1213 return error(Operands[I].Begin, 1214 Twine("use of invalid tied-def operand index '") + 1215 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1216 " isn't a defined register"); 1217 // Check that the tied-def operand wasn't tied elsewhere. 1218 for (const auto &TiedPair : TiedRegisterPairs) { 1219 if (TiedPair.first == DefIdx) 1220 return error(Operands[I].Begin, 1221 Twine("the tied-def operand #") + Twine(DefIdx) + 1222 " is already tied with another register operand"); 1223 } 1224 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1225 } 1226 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1227 // indices must be less than tied max. 1228 for (const auto &TiedPair : TiedRegisterPairs) 1229 MI.tieOperands(TiedPair.first, TiedPair.second); 1230 return false; 1231 } 1232 1233 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1234 Optional<unsigned> &TiedDefIdx, 1235 bool IsDef) { 1236 unsigned Flags = IsDef ? RegState::Define : 0; 1237 while (Token.isRegisterFlag()) { 1238 if (parseRegisterFlag(Flags)) 1239 return true; 1240 } 1241 if (!Token.isRegister()) 1242 return error("expected a register after register flags"); 1243 unsigned Reg; 1244 VRegInfo *RegInfo; 1245 if (parseRegister(Reg, RegInfo)) 1246 return true; 1247 lex(); 1248 unsigned SubReg = 0; 1249 if (Token.is(MIToken::dot)) { 1250 if (parseSubRegisterIndex(SubReg)) 1251 return true; 1252 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1253 return error("subregister index expects a virtual register"); 1254 } 1255 if (Token.is(MIToken::colon)) { 1256 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1257 return error("register class specification expects a virtual register"); 1258 lex(); 1259 if (parseRegisterClassOrBank(*RegInfo)) 1260 return true; 1261 } 1262 MachineRegisterInfo &MRI = MF.getRegInfo(); 1263 if ((Flags & RegState::Define) == 0) { 1264 if (consumeIfPresent(MIToken::lparen)) { 1265 unsigned Idx; 1266 if (!parseRegisterTiedDefIndex(Idx)) 1267 TiedDefIdx = Idx; 1268 else { 1269 // Try a redundant low-level type. 1270 LLT Ty; 1271 if (parseLowLevelType(Token.location(), Ty)) 1272 return error("expected tied-def or low-level type after '('"); 1273 1274 if (expectAndConsume(MIToken::rparen)) 1275 return true; 1276 1277 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1278 return error("inconsistent type for generic virtual register"); 1279 1280 MRI.setType(Reg, Ty); 1281 } 1282 } 1283 } else if (consumeIfPresent(MIToken::lparen)) { 1284 // Virtual registers may have a tpe with GlobalISel. 1285 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1286 return error("unexpected type on physical register"); 1287 1288 LLT Ty; 1289 if (parseLowLevelType(Token.location(), Ty)) 1290 return true; 1291 1292 if (expectAndConsume(MIToken::rparen)) 1293 return true; 1294 1295 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1296 return error("inconsistent type for generic virtual register"); 1297 1298 MRI.setType(Reg, Ty); 1299 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1300 // Generic virtual registers must have a type. 1301 // If we end up here this means the type hasn't been specified and 1302 // this is bad! 1303 if (RegInfo->Kind == VRegInfo::GENERIC || 1304 RegInfo->Kind == VRegInfo::REGBANK) 1305 return error("generic virtual registers must have a type"); 1306 } 1307 Dest = MachineOperand::CreateReg( 1308 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1309 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1310 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1311 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1312 1313 return false; 1314 } 1315 1316 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1317 assert(Token.is(MIToken::IntegerLiteral)); 1318 const APSInt &Int = Token.integerValue(); 1319 if (Int.getMinSignedBits() > 64) 1320 return error("integer literal is too large to be an immediate operand"); 1321 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1322 lex(); 1323 return false; 1324 } 1325 1326 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1327 const Constant *&C) { 1328 auto Source = StringValue.str(); // The source has to be null terminated. 1329 SMDiagnostic Err; 1330 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1331 &PFS.IRSlots); 1332 if (!C) 1333 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1334 return false; 1335 } 1336 1337 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1338 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1339 return true; 1340 lex(); 1341 return false; 1342 } 1343 1344 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1345 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1346 StringRef SizeStr = Token.range().drop_front(); 1347 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1348 return error("expected integers after 's'/'p' type character"); 1349 } 1350 1351 if (Token.range().front() == 's') { 1352 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1353 lex(); 1354 return false; 1355 } else if (Token.range().front() == 'p') { 1356 const DataLayout &DL = MF.getDataLayout(); 1357 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1358 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1359 lex(); 1360 return false; 1361 } 1362 1363 // Now we're looking for a vector. 1364 if (Token.isNot(MIToken::less)) 1365 return error(Loc, 1366 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1367 lex(); 1368 1369 if (Token.isNot(MIToken::IntegerLiteral)) 1370 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1371 uint64_t NumElements = Token.integerValue().getZExtValue(); 1372 lex(); 1373 1374 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1375 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1376 lex(); 1377 1378 if (Token.range().front() != 's' && Token.range().front() != 'p') 1379 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1380 StringRef SizeStr = Token.range().drop_front(); 1381 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1382 return error("expected integers after 's'/'p' type character"); 1383 1384 if (Token.range().front() == 's') 1385 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1386 else if (Token.range().front() == 'p') { 1387 const DataLayout &DL = MF.getDataLayout(); 1388 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1389 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1390 } else 1391 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1392 lex(); 1393 1394 if (Token.isNot(MIToken::greater)) 1395 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1396 lex(); 1397 1398 Ty = LLT::vector(NumElements, Ty); 1399 return false; 1400 } 1401 1402 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1403 assert(Token.is(MIToken::Identifier)); 1404 StringRef TypeStr = Token.range(); 1405 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1406 TypeStr.front() != 'p') 1407 return error( 1408 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1409 StringRef SizeStr = Token.range().drop_front(); 1410 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1411 return error("expected integers after 'i'/'s'/'p' type character"); 1412 1413 auto Loc = Token.location(); 1414 lex(); 1415 if (Token.isNot(MIToken::IntegerLiteral)) { 1416 if (Token.isNot(MIToken::Identifier) || 1417 !(Token.range() == "true" || Token.range() == "false")) 1418 return error("expected an integer literal"); 1419 } 1420 const Constant *C = nullptr; 1421 if (parseIRConstant(Loc, C)) 1422 return true; 1423 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1424 return false; 1425 } 1426 1427 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1428 auto Loc = Token.location(); 1429 lex(); 1430 if (Token.isNot(MIToken::FloatingPointLiteral) && 1431 Token.isNot(MIToken::HexLiteral)) 1432 return error("expected a floating point literal"); 1433 const Constant *C = nullptr; 1434 if (parseIRConstant(Loc, C)) 1435 return true; 1436 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1437 return false; 1438 } 1439 1440 bool MIParser::getUnsigned(unsigned &Result) { 1441 if (Token.hasIntegerValue()) { 1442 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1443 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1444 if (Val64 == Limit) 1445 return error("expected 32-bit integer (too large)"); 1446 Result = Val64; 1447 return false; 1448 } 1449 if (Token.is(MIToken::HexLiteral)) { 1450 APInt A; 1451 if (getHexUint(A)) 1452 return true; 1453 if (A.getBitWidth() > 32) 1454 return error("expected 32-bit integer (too large)"); 1455 Result = A.getZExtValue(); 1456 return false; 1457 } 1458 return true; 1459 } 1460 1461 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1462 assert(Token.is(MIToken::MachineBasicBlock) || 1463 Token.is(MIToken::MachineBasicBlockLabel)); 1464 unsigned Number; 1465 if (getUnsigned(Number)) 1466 return true; 1467 auto MBBInfo = PFS.MBBSlots.find(Number); 1468 if (MBBInfo == PFS.MBBSlots.end()) 1469 return error(Twine("use of undefined machine basic block #") + 1470 Twine(Number)); 1471 MBB = MBBInfo->second; 1472 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1473 // we drop the <irname> from the bb.<id>.<irname> format. 1474 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1475 return error(Twine("the name of machine basic block #") + Twine(Number) + 1476 " isn't '" + Token.stringValue() + "'"); 1477 return false; 1478 } 1479 1480 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1481 MachineBasicBlock *MBB; 1482 if (parseMBBReference(MBB)) 1483 return true; 1484 Dest = MachineOperand::CreateMBB(MBB); 1485 lex(); 1486 return false; 1487 } 1488 1489 bool MIParser::parseStackFrameIndex(int &FI) { 1490 assert(Token.is(MIToken::StackObject)); 1491 unsigned ID; 1492 if (getUnsigned(ID)) 1493 return true; 1494 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1495 if (ObjectInfo == PFS.StackObjectSlots.end()) 1496 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1497 "'"); 1498 StringRef Name; 1499 if (const auto *Alloca = 1500 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1501 Name = Alloca->getName(); 1502 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1503 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1504 "' isn't '" + Token.stringValue() + "'"); 1505 lex(); 1506 FI = ObjectInfo->second; 1507 return false; 1508 } 1509 1510 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1511 int FI; 1512 if (parseStackFrameIndex(FI)) 1513 return true; 1514 Dest = MachineOperand::CreateFI(FI); 1515 return false; 1516 } 1517 1518 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1519 assert(Token.is(MIToken::FixedStackObject)); 1520 unsigned ID; 1521 if (getUnsigned(ID)) 1522 return true; 1523 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1524 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1525 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1526 Twine(ID) + "'"); 1527 lex(); 1528 FI = ObjectInfo->second; 1529 return false; 1530 } 1531 1532 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1533 int FI; 1534 if (parseFixedStackFrameIndex(FI)) 1535 return true; 1536 Dest = MachineOperand::CreateFI(FI); 1537 return false; 1538 } 1539 1540 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1541 switch (Token.kind()) { 1542 case MIToken::NamedGlobalValue: { 1543 const Module *M = MF.getFunction().getParent(); 1544 GV = M->getNamedValue(Token.stringValue()); 1545 if (!GV) 1546 return error(Twine("use of undefined global value '") + Token.range() + 1547 "'"); 1548 break; 1549 } 1550 case MIToken::GlobalValue: { 1551 unsigned GVIdx; 1552 if (getUnsigned(GVIdx)) 1553 return true; 1554 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1555 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1556 "'"); 1557 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1558 break; 1559 } 1560 default: 1561 llvm_unreachable("The current token should be a global value"); 1562 } 1563 return false; 1564 } 1565 1566 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1567 GlobalValue *GV = nullptr; 1568 if (parseGlobalValue(GV)) 1569 return true; 1570 lex(); 1571 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1572 if (parseOperandsOffset(Dest)) 1573 return true; 1574 return false; 1575 } 1576 1577 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1578 assert(Token.is(MIToken::ConstantPoolItem)); 1579 unsigned ID; 1580 if (getUnsigned(ID)) 1581 return true; 1582 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1583 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1584 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1585 lex(); 1586 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1587 if (parseOperandsOffset(Dest)) 1588 return true; 1589 return false; 1590 } 1591 1592 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1593 assert(Token.is(MIToken::JumpTableIndex)); 1594 unsigned ID; 1595 if (getUnsigned(ID)) 1596 return true; 1597 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1598 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1599 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1600 lex(); 1601 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1602 return false; 1603 } 1604 1605 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1606 assert(Token.is(MIToken::ExternalSymbol)); 1607 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1608 lex(); 1609 Dest = MachineOperand::CreateES(Symbol); 1610 if (parseOperandsOffset(Dest)) 1611 return true; 1612 return false; 1613 } 1614 1615 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1616 assert(Token.is(MIToken::MCSymbol)); 1617 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1618 lex(); 1619 Dest = MachineOperand::CreateMCSymbol(Symbol); 1620 if (parseOperandsOffset(Dest)) 1621 return true; 1622 return false; 1623 } 1624 1625 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1626 assert(Token.is(MIToken::SubRegisterIndex)); 1627 StringRef Name = Token.stringValue(); 1628 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1629 if (SubRegIndex == 0) 1630 return error(Twine("unknown subregister index '") + Name + "'"); 1631 lex(); 1632 Dest = MachineOperand::CreateImm(SubRegIndex); 1633 return false; 1634 } 1635 1636 bool MIParser::parseMDNode(MDNode *&Node) { 1637 assert(Token.is(MIToken::exclaim)); 1638 1639 auto Loc = Token.location(); 1640 lex(); 1641 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1642 return error("expected metadata id after '!'"); 1643 unsigned ID; 1644 if (getUnsigned(ID)) 1645 return true; 1646 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1647 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1648 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1649 lex(); 1650 Node = NodeInfo->second.get(); 1651 return false; 1652 } 1653 1654 bool MIParser::parseDIExpression(MDNode *&Expr) { 1655 assert(Token.is(MIToken::md_diexpr)); 1656 lex(); 1657 1658 // FIXME: Share this parsing with the IL parser. 1659 SmallVector<uint64_t, 8> Elements; 1660 1661 if (expectAndConsume(MIToken::lparen)) 1662 return true; 1663 1664 if (Token.isNot(MIToken::rparen)) { 1665 do { 1666 if (Token.is(MIToken::Identifier)) { 1667 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1668 lex(); 1669 Elements.push_back(Op); 1670 continue; 1671 } 1672 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1673 } 1674 1675 if (Token.isNot(MIToken::IntegerLiteral) || 1676 Token.integerValue().isSigned()) 1677 return error("expected unsigned integer"); 1678 1679 auto &U = Token.integerValue(); 1680 if (U.ugt(UINT64_MAX)) 1681 return error("element too large, limit is " + Twine(UINT64_MAX)); 1682 Elements.push_back(U.getZExtValue()); 1683 lex(); 1684 1685 } while (consumeIfPresent(MIToken::comma)); 1686 } 1687 1688 if (expectAndConsume(MIToken::rparen)) 1689 return true; 1690 1691 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1692 return false; 1693 } 1694 1695 bool MIParser::parseDILocation(MDNode *&Loc) { 1696 assert(Token.is(MIToken::md_dilocation)); 1697 lex(); 1698 1699 bool HaveLine = false; 1700 unsigned Line = 0; 1701 unsigned Column = 0; 1702 MDNode *Scope = nullptr; 1703 MDNode *InlinedAt = nullptr; 1704 bool ImplicitCode = false; 1705 1706 if (expectAndConsume(MIToken::lparen)) 1707 return true; 1708 1709 if (Token.isNot(MIToken::rparen)) { 1710 do { 1711 if (Token.is(MIToken::Identifier)) { 1712 if (Token.stringValue() == "line") { 1713 lex(); 1714 if (expectAndConsume(MIToken::colon)) 1715 return true; 1716 if (Token.isNot(MIToken::IntegerLiteral) || 1717 Token.integerValue().isSigned()) 1718 return error("expected unsigned integer"); 1719 Line = Token.integerValue().getZExtValue(); 1720 HaveLine = true; 1721 lex(); 1722 continue; 1723 } 1724 if (Token.stringValue() == "column") { 1725 lex(); 1726 if (expectAndConsume(MIToken::colon)) 1727 return true; 1728 if (Token.isNot(MIToken::IntegerLiteral) || 1729 Token.integerValue().isSigned()) 1730 return error("expected unsigned integer"); 1731 Column = Token.integerValue().getZExtValue(); 1732 lex(); 1733 continue; 1734 } 1735 if (Token.stringValue() == "scope") { 1736 lex(); 1737 if (expectAndConsume(MIToken::colon)) 1738 return true; 1739 if (parseMDNode(Scope)) 1740 return error("expected metadata node"); 1741 if (!isa<DIScope>(Scope)) 1742 return error("expected DIScope node"); 1743 continue; 1744 } 1745 if (Token.stringValue() == "inlinedAt") { 1746 lex(); 1747 if (expectAndConsume(MIToken::colon)) 1748 return true; 1749 if (Token.is(MIToken::exclaim)) { 1750 if (parseMDNode(InlinedAt)) 1751 return true; 1752 } else if (Token.is(MIToken::md_dilocation)) { 1753 if (parseDILocation(InlinedAt)) 1754 return true; 1755 } else 1756 return error("expected metadata node"); 1757 if (!isa<DILocation>(InlinedAt)) 1758 return error("expected DILocation node"); 1759 continue; 1760 } 1761 if (Token.stringValue() == "isImplicitCode") { 1762 lex(); 1763 if (expectAndConsume(MIToken::colon)) 1764 return true; 1765 if (!Token.is(MIToken::Identifier)) 1766 return error("expected true/false"); 1767 // As far as I can see, we don't have any existing need for parsing 1768 // true/false in MIR yet. Do it ad-hoc until there's something else 1769 // that needs it. 1770 if (Token.stringValue() == "true") 1771 ImplicitCode = true; 1772 else if (Token.stringValue() == "false") 1773 ImplicitCode = false; 1774 else 1775 return error("expected true/false"); 1776 lex(); 1777 continue; 1778 } 1779 } 1780 return error(Twine("invalid DILocation argument '") + 1781 Token.stringValue() + "'"); 1782 } while (consumeIfPresent(MIToken::comma)); 1783 } 1784 1785 if (expectAndConsume(MIToken::rparen)) 1786 return true; 1787 1788 if (!HaveLine) 1789 return error("DILocation requires line number"); 1790 if (!Scope) 1791 return error("DILocation requires a scope"); 1792 1793 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1794 InlinedAt, ImplicitCode); 1795 return false; 1796 } 1797 1798 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1799 MDNode *Node = nullptr; 1800 if (Token.is(MIToken::exclaim)) { 1801 if (parseMDNode(Node)) 1802 return true; 1803 } else if (Token.is(MIToken::md_diexpr)) { 1804 if (parseDIExpression(Node)) 1805 return true; 1806 } 1807 Dest = MachineOperand::CreateMetadata(Node); 1808 return false; 1809 } 1810 1811 bool MIParser::parseCFIOffset(int &Offset) { 1812 if (Token.isNot(MIToken::IntegerLiteral)) 1813 return error("expected a cfi offset"); 1814 if (Token.integerValue().getMinSignedBits() > 32) 1815 return error("expected a 32 bit integer (the cfi offset is too large)"); 1816 Offset = (int)Token.integerValue().getExtValue(); 1817 lex(); 1818 return false; 1819 } 1820 1821 bool MIParser::parseCFIRegister(unsigned &Reg) { 1822 if (Token.isNot(MIToken::NamedRegister)) 1823 return error("expected a cfi register"); 1824 unsigned LLVMReg; 1825 if (parseNamedRegister(LLVMReg)) 1826 return true; 1827 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1828 assert(TRI && "Expected target register info"); 1829 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1830 if (DwarfReg < 0) 1831 return error("invalid DWARF register"); 1832 Reg = (unsigned)DwarfReg; 1833 lex(); 1834 return false; 1835 } 1836 1837 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1838 do { 1839 if (Token.isNot(MIToken::HexLiteral)) 1840 return error("expected a hexadecimal literal"); 1841 unsigned Value; 1842 if (getUnsigned(Value)) 1843 return true; 1844 if (Value > UINT8_MAX) 1845 return error("expected a 8-bit integer (too large)"); 1846 Values.push_back(static_cast<uint8_t>(Value)); 1847 lex(); 1848 } while (consumeIfPresent(MIToken::comma)); 1849 return false; 1850 } 1851 1852 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1853 auto Kind = Token.kind(); 1854 lex(); 1855 int Offset; 1856 unsigned Reg; 1857 unsigned CFIIndex; 1858 switch (Kind) { 1859 case MIToken::kw_cfi_same_value: 1860 if (parseCFIRegister(Reg)) 1861 return true; 1862 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1863 break; 1864 case MIToken::kw_cfi_offset: 1865 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1866 parseCFIOffset(Offset)) 1867 return true; 1868 CFIIndex = 1869 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1870 break; 1871 case MIToken::kw_cfi_rel_offset: 1872 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1873 parseCFIOffset(Offset)) 1874 return true; 1875 CFIIndex = MF.addFrameInst( 1876 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1877 break; 1878 case MIToken::kw_cfi_def_cfa_register: 1879 if (parseCFIRegister(Reg)) 1880 return true; 1881 CFIIndex = 1882 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1883 break; 1884 case MIToken::kw_cfi_def_cfa_offset: 1885 if (parseCFIOffset(Offset)) 1886 return true; 1887 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1888 CFIIndex = MF.addFrameInst( 1889 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1890 break; 1891 case MIToken::kw_cfi_adjust_cfa_offset: 1892 if (parseCFIOffset(Offset)) 1893 return true; 1894 CFIIndex = MF.addFrameInst( 1895 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1896 break; 1897 case MIToken::kw_cfi_def_cfa: 1898 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1899 parseCFIOffset(Offset)) 1900 return true; 1901 // NB: MCCFIInstruction::createDefCfa negates the offset. 1902 CFIIndex = 1903 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1904 break; 1905 case MIToken::kw_cfi_remember_state: 1906 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1907 break; 1908 case MIToken::kw_cfi_restore: 1909 if (parseCFIRegister(Reg)) 1910 return true; 1911 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1912 break; 1913 case MIToken::kw_cfi_restore_state: 1914 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1915 break; 1916 case MIToken::kw_cfi_undefined: 1917 if (parseCFIRegister(Reg)) 1918 return true; 1919 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1920 break; 1921 case MIToken::kw_cfi_register: { 1922 unsigned Reg2; 1923 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1924 parseCFIRegister(Reg2)) 1925 return true; 1926 1927 CFIIndex = 1928 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1929 break; 1930 } 1931 case MIToken::kw_cfi_window_save: 1932 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1933 break; 1934 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 1935 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 1936 break; 1937 case MIToken::kw_cfi_escape: { 1938 std::string Values; 1939 if (parseCFIEscapeValues(Values)) 1940 return true; 1941 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1942 break; 1943 } 1944 default: 1945 // TODO: Parse the other CFI operands. 1946 llvm_unreachable("The current token should be a cfi operand"); 1947 } 1948 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1949 return false; 1950 } 1951 1952 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1953 switch (Token.kind()) { 1954 case MIToken::NamedIRBlock: { 1955 BB = dyn_cast_or_null<BasicBlock>( 1956 F.getValueSymbolTable()->lookup(Token.stringValue())); 1957 if (!BB) 1958 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1959 break; 1960 } 1961 case MIToken::IRBlock: { 1962 unsigned SlotNumber = 0; 1963 if (getUnsigned(SlotNumber)) 1964 return true; 1965 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1966 if (!BB) 1967 return error(Twine("use of undefined IR block '%ir-block.") + 1968 Twine(SlotNumber) + "'"); 1969 break; 1970 } 1971 default: 1972 llvm_unreachable("The current token should be an IR block reference"); 1973 } 1974 return false; 1975 } 1976 1977 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1978 assert(Token.is(MIToken::kw_blockaddress)); 1979 lex(); 1980 if (expectAndConsume(MIToken::lparen)) 1981 return true; 1982 if (Token.isNot(MIToken::GlobalValue) && 1983 Token.isNot(MIToken::NamedGlobalValue)) 1984 return error("expected a global value"); 1985 GlobalValue *GV = nullptr; 1986 if (parseGlobalValue(GV)) 1987 return true; 1988 auto *F = dyn_cast<Function>(GV); 1989 if (!F) 1990 return error("expected an IR function reference"); 1991 lex(); 1992 if (expectAndConsume(MIToken::comma)) 1993 return true; 1994 BasicBlock *BB = nullptr; 1995 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1996 return error("expected an IR block reference"); 1997 if (parseIRBlock(BB, *F)) 1998 return true; 1999 lex(); 2000 if (expectAndConsume(MIToken::rparen)) 2001 return true; 2002 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2003 if (parseOperandsOffset(Dest)) 2004 return true; 2005 return false; 2006 } 2007 2008 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2009 assert(Token.is(MIToken::kw_intrinsic)); 2010 lex(); 2011 if (expectAndConsume(MIToken::lparen)) 2012 return error("expected syntax intrinsic(@llvm.whatever)"); 2013 2014 if (Token.isNot(MIToken::NamedGlobalValue)) 2015 return error("expected syntax intrinsic(@llvm.whatever)"); 2016 2017 std::string Name = Token.stringValue(); 2018 lex(); 2019 2020 if (expectAndConsume(MIToken::rparen)) 2021 return error("expected ')' to terminate intrinsic name"); 2022 2023 // Find out what intrinsic we're dealing with, first try the global namespace 2024 // and then the target's private intrinsics if that fails. 2025 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2026 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2027 if (ID == Intrinsic::not_intrinsic && TII) 2028 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2029 2030 if (ID == Intrinsic::not_intrinsic) 2031 return error("unknown intrinsic name"); 2032 Dest = MachineOperand::CreateIntrinsicID(ID); 2033 2034 return false; 2035 } 2036 2037 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2038 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2039 bool IsFloat = Token.is(MIToken::kw_floatpred); 2040 lex(); 2041 2042 if (expectAndConsume(MIToken::lparen)) 2043 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2044 2045 if (Token.isNot(MIToken::Identifier)) 2046 return error("whatever"); 2047 2048 CmpInst::Predicate Pred; 2049 if (IsFloat) { 2050 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2051 .Case("false", CmpInst::FCMP_FALSE) 2052 .Case("oeq", CmpInst::FCMP_OEQ) 2053 .Case("ogt", CmpInst::FCMP_OGT) 2054 .Case("oge", CmpInst::FCMP_OGE) 2055 .Case("olt", CmpInst::FCMP_OLT) 2056 .Case("ole", CmpInst::FCMP_OLE) 2057 .Case("one", CmpInst::FCMP_ONE) 2058 .Case("ord", CmpInst::FCMP_ORD) 2059 .Case("uno", CmpInst::FCMP_UNO) 2060 .Case("ueq", CmpInst::FCMP_UEQ) 2061 .Case("ugt", CmpInst::FCMP_UGT) 2062 .Case("uge", CmpInst::FCMP_UGE) 2063 .Case("ult", CmpInst::FCMP_ULT) 2064 .Case("ule", CmpInst::FCMP_ULE) 2065 .Case("une", CmpInst::FCMP_UNE) 2066 .Case("true", CmpInst::FCMP_TRUE) 2067 .Default(CmpInst::BAD_FCMP_PREDICATE); 2068 if (!CmpInst::isFPPredicate(Pred)) 2069 return error("invalid floating-point predicate"); 2070 } else { 2071 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2072 .Case("eq", CmpInst::ICMP_EQ) 2073 .Case("ne", CmpInst::ICMP_NE) 2074 .Case("sgt", CmpInst::ICMP_SGT) 2075 .Case("sge", CmpInst::ICMP_SGE) 2076 .Case("slt", CmpInst::ICMP_SLT) 2077 .Case("sle", CmpInst::ICMP_SLE) 2078 .Case("ugt", CmpInst::ICMP_UGT) 2079 .Case("uge", CmpInst::ICMP_UGE) 2080 .Case("ult", CmpInst::ICMP_ULT) 2081 .Case("ule", CmpInst::ICMP_ULE) 2082 .Default(CmpInst::BAD_ICMP_PREDICATE); 2083 if (!CmpInst::isIntPredicate(Pred)) 2084 return error("invalid integer predicate"); 2085 } 2086 2087 lex(); 2088 Dest = MachineOperand::CreatePredicate(Pred); 2089 if (expectAndConsume(MIToken::rparen)) 2090 return error("predicate should be terminated by ')'."); 2091 2092 return false; 2093 } 2094 2095 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2096 assert(Token.is(MIToken::kw_target_index)); 2097 lex(); 2098 if (expectAndConsume(MIToken::lparen)) 2099 return true; 2100 if (Token.isNot(MIToken::Identifier)) 2101 return error("expected the name of the target index"); 2102 int Index = 0; 2103 if (getTargetIndex(Token.stringValue(), Index)) 2104 return error("use of undefined target index '" + Token.stringValue() + "'"); 2105 lex(); 2106 if (expectAndConsume(MIToken::rparen)) 2107 return true; 2108 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2109 if (parseOperandsOffset(Dest)) 2110 return true; 2111 return false; 2112 } 2113 2114 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2115 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2116 lex(); 2117 if (expectAndConsume(MIToken::lparen)) 2118 return true; 2119 2120 uint32_t *Mask = MF.allocateRegMask(); 2121 while (true) { 2122 if (Token.isNot(MIToken::NamedRegister)) 2123 return error("expected a named register"); 2124 unsigned Reg; 2125 if (parseNamedRegister(Reg)) 2126 return true; 2127 lex(); 2128 Mask[Reg / 32] |= 1U << (Reg % 32); 2129 // TODO: Report an error if the same register is used more than once. 2130 if (Token.isNot(MIToken::comma)) 2131 break; 2132 lex(); 2133 } 2134 2135 if (expectAndConsume(MIToken::rparen)) 2136 return true; 2137 Dest = MachineOperand::CreateRegMask(Mask); 2138 return false; 2139 } 2140 2141 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2142 assert(Token.is(MIToken::kw_liveout)); 2143 uint32_t *Mask = MF.allocateRegMask(); 2144 lex(); 2145 if (expectAndConsume(MIToken::lparen)) 2146 return true; 2147 while (true) { 2148 if (Token.isNot(MIToken::NamedRegister)) 2149 return error("expected a named register"); 2150 unsigned Reg; 2151 if (parseNamedRegister(Reg)) 2152 return true; 2153 lex(); 2154 Mask[Reg / 32] |= 1U << (Reg % 32); 2155 // TODO: Report an error if the same register is used more than once. 2156 if (Token.isNot(MIToken::comma)) 2157 break; 2158 lex(); 2159 } 2160 if (expectAndConsume(MIToken::rparen)) 2161 return true; 2162 Dest = MachineOperand::CreateRegLiveOut(Mask); 2163 return false; 2164 } 2165 2166 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2167 Optional<unsigned> &TiedDefIdx) { 2168 switch (Token.kind()) { 2169 case MIToken::kw_implicit: 2170 case MIToken::kw_implicit_define: 2171 case MIToken::kw_def: 2172 case MIToken::kw_dead: 2173 case MIToken::kw_killed: 2174 case MIToken::kw_undef: 2175 case MIToken::kw_internal: 2176 case MIToken::kw_early_clobber: 2177 case MIToken::kw_debug_use: 2178 case MIToken::kw_renamable: 2179 case MIToken::underscore: 2180 case MIToken::NamedRegister: 2181 case MIToken::VirtualRegister: 2182 case MIToken::NamedVirtualRegister: 2183 return parseRegisterOperand(Dest, TiedDefIdx); 2184 case MIToken::IntegerLiteral: 2185 return parseImmediateOperand(Dest); 2186 case MIToken::kw_half: 2187 case MIToken::kw_float: 2188 case MIToken::kw_double: 2189 case MIToken::kw_x86_fp80: 2190 case MIToken::kw_fp128: 2191 case MIToken::kw_ppc_fp128: 2192 return parseFPImmediateOperand(Dest); 2193 case MIToken::MachineBasicBlock: 2194 return parseMBBOperand(Dest); 2195 case MIToken::StackObject: 2196 return parseStackObjectOperand(Dest); 2197 case MIToken::FixedStackObject: 2198 return parseFixedStackObjectOperand(Dest); 2199 case MIToken::GlobalValue: 2200 case MIToken::NamedGlobalValue: 2201 return parseGlobalAddressOperand(Dest); 2202 case MIToken::ConstantPoolItem: 2203 return parseConstantPoolIndexOperand(Dest); 2204 case MIToken::JumpTableIndex: 2205 return parseJumpTableIndexOperand(Dest); 2206 case MIToken::ExternalSymbol: 2207 return parseExternalSymbolOperand(Dest); 2208 case MIToken::MCSymbol: 2209 return parseMCSymbolOperand(Dest); 2210 case MIToken::SubRegisterIndex: 2211 return parseSubRegisterIndexOperand(Dest); 2212 case MIToken::md_diexpr: 2213 case MIToken::exclaim: 2214 return parseMetadataOperand(Dest); 2215 case MIToken::kw_cfi_same_value: 2216 case MIToken::kw_cfi_offset: 2217 case MIToken::kw_cfi_rel_offset: 2218 case MIToken::kw_cfi_def_cfa_register: 2219 case MIToken::kw_cfi_def_cfa_offset: 2220 case MIToken::kw_cfi_adjust_cfa_offset: 2221 case MIToken::kw_cfi_escape: 2222 case MIToken::kw_cfi_def_cfa: 2223 case MIToken::kw_cfi_register: 2224 case MIToken::kw_cfi_remember_state: 2225 case MIToken::kw_cfi_restore: 2226 case MIToken::kw_cfi_restore_state: 2227 case MIToken::kw_cfi_undefined: 2228 case MIToken::kw_cfi_window_save: 2229 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2230 return parseCFIOperand(Dest); 2231 case MIToken::kw_blockaddress: 2232 return parseBlockAddressOperand(Dest); 2233 case MIToken::kw_intrinsic: 2234 return parseIntrinsicOperand(Dest); 2235 case MIToken::kw_target_index: 2236 return parseTargetIndexOperand(Dest); 2237 case MIToken::kw_liveout: 2238 return parseLiveoutRegisterMaskOperand(Dest); 2239 case MIToken::kw_floatpred: 2240 case MIToken::kw_intpred: 2241 return parsePredicateOperand(Dest); 2242 case MIToken::Error: 2243 return true; 2244 case MIToken::Identifier: 2245 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2246 Dest = MachineOperand::CreateRegMask(RegMask); 2247 lex(); 2248 break; 2249 } else if (Token.stringValue() == "CustomRegMask") { 2250 return parseCustomRegisterMaskOperand(Dest); 2251 } else 2252 return parseTypedImmediateOperand(Dest); 2253 default: 2254 // FIXME: Parse the MCSymbol machine operand. 2255 return error("expected a machine operand"); 2256 } 2257 return false; 2258 } 2259 2260 bool MIParser::parseMachineOperandAndTargetFlags( 2261 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2262 unsigned TF = 0; 2263 bool HasTargetFlags = false; 2264 if (Token.is(MIToken::kw_target_flags)) { 2265 HasTargetFlags = true; 2266 lex(); 2267 if (expectAndConsume(MIToken::lparen)) 2268 return true; 2269 if (Token.isNot(MIToken::Identifier)) 2270 return error("expected the name of the target flag"); 2271 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2272 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2273 return error("use of undefined target flag '" + Token.stringValue() + 2274 "'"); 2275 } 2276 lex(); 2277 while (Token.is(MIToken::comma)) { 2278 lex(); 2279 if (Token.isNot(MIToken::Identifier)) 2280 return error("expected the name of the target flag"); 2281 unsigned BitFlag = 0; 2282 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2283 return error("use of undefined target flag '" + Token.stringValue() + 2284 "'"); 2285 // TODO: Report an error when using a duplicate bit target flag. 2286 TF |= BitFlag; 2287 lex(); 2288 } 2289 if (expectAndConsume(MIToken::rparen)) 2290 return true; 2291 } 2292 auto Loc = Token.location(); 2293 if (parseMachineOperand(Dest, TiedDefIdx)) 2294 return true; 2295 if (!HasTargetFlags) 2296 return false; 2297 if (Dest.isReg()) 2298 return error(Loc, "register operands can't have target flags"); 2299 Dest.setTargetFlags(TF); 2300 return false; 2301 } 2302 2303 bool MIParser::parseOffset(int64_t &Offset) { 2304 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2305 return false; 2306 StringRef Sign = Token.range(); 2307 bool IsNegative = Token.is(MIToken::minus); 2308 lex(); 2309 if (Token.isNot(MIToken::IntegerLiteral)) 2310 return error("expected an integer literal after '" + Sign + "'"); 2311 if (Token.integerValue().getMinSignedBits() > 64) 2312 return error("expected 64-bit integer (too large)"); 2313 Offset = Token.integerValue().getExtValue(); 2314 if (IsNegative) 2315 Offset = -Offset; 2316 lex(); 2317 return false; 2318 } 2319 2320 bool MIParser::parseAlignment(unsigned &Alignment) { 2321 assert(Token.is(MIToken::kw_align)); 2322 lex(); 2323 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2324 return error("expected an integer literal after 'align'"); 2325 if (getUnsigned(Alignment)) 2326 return true; 2327 lex(); 2328 return false; 2329 } 2330 2331 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2332 assert(Token.is(MIToken::kw_addrspace)); 2333 lex(); 2334 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2335 return error("expected an integer literal after 'addrspace'"); 2336 if (getUnsigned(Addrspace)) 2337 return true; 2338 lex(); 2339 return false; 2340 } 2341 2342 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2343 int64_t Offset = 0; 2344 if (parseOffset(Offset)) 2345 return true; 2346 Op.setOffset(Offset); 2347 return false; 2348 } 2349 2350 bool MIParser::parseIRValue(const Value *&V) { 2351 switch (Token.kind()) { 2352 case MIToken::NamedIRValue: { 2353 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2354 break; 2355 } 2356 case MIToken::IRValue: { 2357 unsigned SlotNumber = 0; 2358 if (getUnsigned(SlotNumber)) 2359 return true; 2360 V = getIRValue(SlotNumber); 2361 break; 2362 } 2363 case MIToken::NamedGlobalValue: 2364 case MIToken::GlobalValue: { 2365 GlobalValue *GV = nullptr; 2366 if (parseGlobalValue(GV)) 2367 return true; 2368 V = GV; 2369 break; 2370 } 2371 case MIToken::QuotedIRValue: { 2372 const Constant *C = nullptr; 2373 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2374 return true; 2375 V = C; 2376 break; 2377 } 2378 default: 2379 llvm_unreachable("The current token should be an IR block reference"); 2380 } 2381 if (!V) 2382 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2383 return false; 2384 } 2385 2386 bool MIParser::getUint64(uint64_t &Result) { 2387 if (Token.hasIntegerValue()) { 2388 if (Token.integerValue().getActiveBits() > 64) 2389 return error("expected 64-bit integer (too large)"); 2390 Result = Token.integerValue().getZExtValue(); 2391 return false; 2392 } 2393 if (Token.is(MIToken::HexLiteral)) { 2394 APInt A; 2395 if (getHexUint(A)) 2396 return true; 2397 if (A.getBitWidth() > 64) 2398 return error("expected 64-bit integer (too large)"); 2399 Result = A.getZExtValue(); 2400 return false; 2401 } 2402 return true; 2403 } 2404 2405 bool MIParser::getHexUint(APInt &Result) { 2406 assert(Token.is(MIToken::HexLiteral)); 2407 StringRef S = Token.range(); 2408 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2409 // This could be a floating point literal with a special prefix. 2410 if (!isxdigit(S[2])) 2411 return true; 2412 StringRef V = S.substr(2); 2413 APInt A(V.size()*4, V, 16); 2414 2415 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2416 // sure it isn't the case before constructing result. 2417 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2418 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2419 return false; 2420 } 2421 2422 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2423 const auto OldFlags = Flags; 2424 switch (Token.kind()) { 2425 case MIToken::kw_volatile: 2426 Flags |= MachineMemOperand::MOVolatile; 2427 break; 2428 case MIToken::kw_non_temporal: 2429 Flags |= MachineMemOperand::MONonTemporal; 2430 break; 2431 case MIToken::kw_dereferenceable: 2432 Flags |= MachineMemOperand::MODereferenceable; 2433 break; 2434 case MIToken::kw_invariant: 2435 Flags |= MachineMemOperand::MOInvariant; 2436 break; 2437 case MIToken::StringConstant: { 2438 MachineMemOperand::Flags TF; 2439 if (getMMOTargetFlag(Token.stringValue(), TF)) 2440 return error("use of undefined target MMO flag '" + Token.stringValue() + 2441 "'"); 2442 Flags |= TF; 2443 break; 2444 } 2445 default: 2446 llvm_unreachable("The current token should be a memory operand flag"); 2447 } 2448 if (OldFlags == Flags) 2449 // We know that the same flag is specified more than once when the flags 2450 // weren't modified. 2451 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2452 lex(); 2453 return false; 2454 } 2455 2456 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2457 switch (Token.kind()) { 2458 case MIToken::kw_stack: 2459 PSV = MF.getPSVManager().getStack(); 2460 break; 2461 case MIToken::kw_got: 2462 PSV = MF.getPSVManager().getGOT(); 2463 break; 2464 case MIToken::kw_jump_table: 2465 PSV = MF.getPSVManager().getJumpTable(); 2466 break; 2467 case MIToken::kw_constant_pool: 2468 PSV = MF.getPSVManager().getConstantPool(); 2469 break; 2470 case MIToken::FixedStackObject: { 2471 int FI; 2472 if (parseFixedStackFrameIndex(FI)) 2473 return true; 2474 PSV = MF.getPSVManager().getFixedStack(FI); 2475 // The token was already consumed, so use return here instead of break. 2476 return false; 2477 } 2478 case MIToken::StackObject: { 2479 int FI; 2480 if (parseStackFrameIndex(FI)) 2481 return true; 2482 PSV = MF.getPSVManager().getFixedStack(FI); 2483 // The token was already consumed, so use return here instead of break. 2484 return false; 2485 } 2486 case MIToken::kw_call_entry: 2487 lex(); 2488 switch (Token.kind()) { 2489 case MIToken::GlobalValue: 2490 case MIToken::NamedGlobalValue: { 2491 GlobalValue *GV = nullptr; 2492 if (parseGlobalValue(GV)) 2493 return true; 2494 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2495 break; 2496 } 2497 case MIToken::ExternalSymbol: 2498 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2499 MF.createExternalSymbolName(Token.stringValue())); 2500 break; 2501 default: 2502 return error( 2503 "expected a global value or an external symbol after 'call-entry'"); 2504 } 2505 break; 2506 default: 2507 llvm_unreachable("The current token should be pseudo source value"); 2508 } 2509 lex(); 2510 return false; 2511 } 2512 2513 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2514 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2515 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2516 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2517 Token.is(MIToken::kw_call_entry)) { 2518 const PseudoSourceValue *PSV = nullptr; 2519 if (parseMemoryPseudoSourceValue(PSV)) 2520 return true; 2521 int64_t Offset = 0; 2522 if (parseOffset(Offset)) 2523 return true; 2524 Dest = MachinePointerInfo(PSV, Offset); 2525 return false; 2526 } 2527 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2528 Token.isNot(MIToken::GlobalValue) && 2529 Token.isNot(MIToken::NamedGlobalValue) && 2530 Token.isNot(MIToken::QuotedIRValue)) 2531 return error("expected an IR value reference"); 2532 const Value *V = nullptr; 2533 if (parseIRValue(V)) 2534 return true; 2535 if (!V->getType()->isPointerTy()) 2536 return error("expected a pointer IR value"); 2537 lex(); 2538 int64_t Offset = 0; 2539 if (parseOffset(Offset)) 2540 return true; 2541 Dest = MachinePointerInfo(V, Offset); 2542 return false; 2543 } 2544 2545 bool MIParser::parseOptionalScope(LLVMContext &Context, 2546 SyncScope::ID &SSID) { 2547 SSID = SyncScope::System; 2548 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2549 lex(); 2550 if (expectAndConsume(MIToken::lparen)) 2551 return error("expected '(' in syncscope"); 2552 2553 std::string SSN; 2554 if (parseStringConstant(SSN)) 2555 return true; 2556 2557 SSID = Context.getOrInsertSyncScopeID(SSN); 2558 if (expectAndConsume(MIToken::rparen)) 2559 return error("expected ')' in syncscope"); 2560 } 2561 2562 return false; 2563 } 2564 2565 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2566 Order = AtomicOrdering::NotAtomic; 2567 if (Token.isNot(MIToken::Identifier)) 2568 return false; 2569 2570 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2571 .Case("unordered", AtomicOrdering::Unordered) 2572 .Case("monotonic", AtomicOrdering::Monotonic) 2573 .Case("acquire", AtomicOrdering::Acquire) 2574 .Case("release", AtomicOrdering::Release) 2575 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2576 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2577 .Default(AtomicOrdering::NotAtomic); 2578 2579 if (Order != AtomicOrdering::NotAtomic) { 2580 lex(); 2581 return false; 2582 } 2583 2584 return error("expected an atomic scope, ordering or a size specification"); 2585 } 2586 2587 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2588 if (expectAndConsume(MIToken::lparen)) 2589 return true; 2590 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2591 while (Token.isMemoryOperandFlag()) { 2592 if (parseMemoryOperandFlag(Flags)) 2593 return true; 2594 } 2595 if (Token.isNot(MIToken::Identifier) || 2596 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2597 return error("expected 'load' or 'store' memory operation"); 2598 if (Token.stringValue() == "load") 2599 Flags |= MachineMemOperand::MOLoad; 2600 else 2601 Flags |= MachineMemOperand::MOStore; 2602 lex(); 2603 2604 // Optional 'store' for operands that both load and store. 2605 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2606 Flags |= MachineMemOperand::MOStore; 2607 lex(); 2608 } 2609 2610 // Optional synchronization scope. 2611 SyncScope::ID SSID; 2612 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2613 return true; 2614 2615 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2616 AtomicOrdering Order, FailureOrder; 2617 if (parseOptionalAtomicOrdering(Order)) 2618 return true; 2619 2620 if (parseOptionalAtomicOrdering(FailureOrder)) 2621 return true; 2622 2623 if (Token.isNot(MIToken::IntegerLiteral) && 2624 Token.isNot(MIToken::kw_unknown_size)) 2625 return error("expected the size integer literal or 'unknown-size' after " 2626 "memory operation"); 2627 uint64_t Size; 2628 if (Token.is(MIToken::IntegerLiteral)) { 2629 if (getUint64(Size)) 2630 return true; 2631 } else if (Token.is(MIToken::kw_unknown_size)) { 2632 Size = MemoryLocation::UnknownSize; 2633 } 2634 lex(); 2635 2636 MachinePointerInfo Ptr = MachinePointerInfo(); 2637 if (Token.is(MIToken::Identifier)) { 2638 const char *Word = 2639 ((Flags & MachineMemOperand::MOLoad) && 2640 (Flags & MachineMemOperand::MOStore)) 2641 ? "on" 2642 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2643 if (Token.stringValue() != Word) 2644 return error(Twine("expected '") + Word + "'"); 2645 lex(); 2646 2647 if (parseMachinePointerInfo(Ptr)) 2648 return true; 2649 } 2650 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2651 AAMDNodes AAInfo; 2652 MDNode *Range = nullptr; 2653 while (consumeIfPresent(MIToken::comma)) { 2654 switch (Token.kind()) { 2655 case MIToken::kw_align: 2656 if (parseAlignment(BaseAlignment)) 2657 return true; 2658 break; 2659 case MIToken::kw_addrspace: 2660 if (parseAddrspace(Ptr.AddrSpace)) 2661 return true; 2662 break; 2663 case MIToken::md_tbaa: 2664 lex(); 2665 if (parseMDNode(AAInfo.TBAA)) 2666 return true; 2667 break; 2668 case MIToken::md_alias_scope: 2669 lex(); 2670 if (parseMDNode(AAInfo.Scope)) 2671 return true; 2672 break; 2673 case MIToken::md_noalias: 2674 lex(); 2675 if (parseMDNode(AAInfo.NoAlias)) 2676 return true; 2677 break; 2678 case MIToken::md_range: 2679 lex(); 2680 if (parseMDNode(Range)) 2681 return true; 2682 break; 2683 // TODO: Report an error on duplicate metadata nodes. 2684 default: 2685 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2686 "'!noalias' or '!range'"); 2687 } 2688 } 2689 if (expectAndConsume(MIToken::rparen)) 2690 return true; 2691 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2692 SSID, Order, FailureOrder); 2693 return false; 2694 } 2695 2696 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2697 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2698 Token.is(MIToken::kw_post_instr_symbol)) && 2699 "Invalid token for a pre- post-instruction symbol!"); 2700 lex(); 2701 if (Token.isNot(MIToken::MCSymbol)) 2702 return error("expected a symbol after 'pre-instr-symbol'"); 2703 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2704 lex(); 2705 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2706 Token.is(MIToken::lbrace)) 2707 return false; 2708 if (Token.isNot(MIToken::comma)) 2709 return error("expected ',' before the next machine operand"); 2710 lex(); 2711 return false; 2712 } 2713 2714 void MIParser::initNames2InstrOpCodes() { 2715 if (!Names2InstrOpCodes.empty()) 2716 return; 2717 const auto *TII = MF.getSubtarget().getInstrInfo(); 2718 assert(TII && "Expected target instruction info"); 2719 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2720 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2721 } 2722 2723 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2724 initNames2InstrOpCodes(); 2725 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2726 if (InstrInfo == Names2InstrOpCodes.end()) 2727 return true; 2728 OpCode = InstrInfo->getValue(); 2729 return false; 2730 } 2731 2732 void MIParser::initNames2Regs() { 2733 if (!Names2Regs.empty()) 2734 return; 2735 // The '%noreg' register is the register 0. 2736 Names2Regs.insert(std::make_pair("noreg", 0)); 2737 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2738 assert(TRI && "Expected target register info"); 2739 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2740 bool WasInserted = 2741 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2742 .second; 2743 (void)WasInserted; 2744 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2745 } 2746 } 2747 2748 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2749 initNames2Regs(); 2750 auto RegInfo = Names2Regs.find(RegName); 2751 if (RegInfo == Names2Regs.end()) 2752 return true; 2753 Reg = RegInfo->getValue(); 2754 return false; 2755 } 2756 2757 void MIParser::initNames2RegMasks() { 2758 if (!Names2RegMasks.empty()) 2759 return; 2760 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2761 assert(TRI && "Expected target register info"); 2762 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2763 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2764 assert(RegMasks.size() == RegMaskNames.size()); 2765 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2766 Names2RegMasks.insert( 2767 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2768 } 2769 2770 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2771 initNames2RegMasks(); 2772 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2773 if (RegMaskInfo == Names2RegMasks.end()) 2774 return nullptr; 2775 return RegMaskInfo->getValue(); 2776 } 2777 2778 void MIParser::initNames2SubRegIndices() { 2779 if (!Names2SubRegIndices.empty()) 2780 return; 2781 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2782 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2783 Names2SubRegIndices.insert( 2784 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2785 } 2786 2787 unsigned MIParser::getSubRegIndex(StringRef Name) { 2788 initNames2SubRegIndices(); 2789 auto SubRegInfo = Names2SubRegIndices.find(Name); 2790 if (SubRegInfo == Names2SubRegIndices.end()) 2791 return 0; 2792 return SubRegInfo->getValue(); 2793 } 2794 2795 static void initSlots2BasicBlocks( 2796 const Function &F, 2797 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2798 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2799 MST.incorporateFunction(F); 2800 for (auto &BB : F) { 2801 if (BB.hasName()) 2802 continue; 2803 int Slot = MST.getLocalSlot(&BB); 2804 if (Slot == -1) 2805 continue; 2806 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2807 } 2808 } 2809 2810 static const BasicBlock *getIRBlockFromSlot( 2811 unsigned Slot, 2812 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2813 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2814 if (BlockInfo == Slots2BasicBlocks.end()) 2815 return nullptr; 2816 return BlockInfo->second; 2817 } 2818 2819 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2820 if (Slots2BasicBlocks.empty()) 2821 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2822 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2823 } 2824 2825 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2826 if (&F == &MF.getFunction()) 2827 return getIRBlock(Slot); 2828 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2829 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2830 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2831 } 2832 2833 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2834 DenseMap<unsigned, const Value *> &Slots2Values) { 2835 int Slot = MST.getLocalSlot(V); 2836 if (Slot == -1) 2837 return; 2838 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2839 } 2840 2841 /// Creates the mapping from slot numbers to function's unnamed IR values. 2842 static void initSlots2Values(const Function &F, 2843 DenseMap<unsigned, const Value *> &Slots2Values) { 2844 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2845 MST.incorporateFunction(F); 2846 for (const auto &Arg : F.args()) 2847 mapValueToSlot(&Arg, MST, Slots2Values); 2848 for (const auto &BB : F) { 2849 mapValueToSlot(&BB, MST, Slots2Values); 2850 for (const auto &I : BB) 2851 mapValueToSlot(&I, MST, Slots2Values); 2852 } 2853 } 2854 2855 const Value *MIParser::getIRValue(unsigned Slot) { 2856 if (Slots2Values.empty()) 2857 initSlots2Values(MF.getFunction(), Slots2Values); 2858 auto ValueInfo = Slots2Values.find(Slot); 2859 if (ValueInfo == Slots2Values.end()) 2860 return nullptr; 2861 return ValueInfo->second; 2862 } 2863 2864 void MIParser::initNames2TargetIndices() { 2865 if (!Names2TargetIndices.empty()) 2866 return; 2867 const auto *TII = MF.getSubtarget().getInstrInfo(); 2868 assert(TII && "Expected target instruction info"); 2869 auto Indices = TII->getSerializableTargetIndices(); 2870 for (const auto &I : Indices) 2871 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2872 } 2873 2874 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2875 initNames2TargetIndices(); 2876 auto IndexInfo = Names2TargetIndices.find(Name); 2877 if (IndexInfo == Names2TargetIndices.end()) 2878 return true; 2879 Index = IndexInfo->second; 2880 return false; 2881 } 2882 2883 void MIParser::initNames2DirectTargetFlags() { 2884 if (!Names2DirectTargetFlags.empty()) 2885 return; 2886 const auto *TII = MF.getSubtarget().getInstrInfo(); 2887 assert(TII && "Expected target instruction info"); 2888 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2889 for (const auto &I : Flags) 2890 Names2DirectTargetFlags.insert( 2891 std::make_pair(StringRef(I.second), I.first)); 2892 } 2893 2894 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2895 initNames2DirectTargetFlags(); 2896 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2897 if (FlagInfo == Names2DirectTargetFlags.end()) 2898 return true; 2899 Flag = FlagInfo->second; 2900 return false; 2901 } 2902 2903 void MIParser::initNames2BitmaskTargetFlags() { 2904 if (!Names2BitmaskTargetFlags.empty()) 2905 return; 2906 const auto *TII = MF.getSubtarget().getInstrInfo(); 2907 assert(TII && "Expected target instruction info"); 2908 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2909 for (const auto &I : Flags) 2910 Names2BitmaskTargetFlags.insert( 2911 std::make_pair(StringRef(I.second), I.first)); 2912 } 2913 2914 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2915 initNames2BitmaskTargetFlags(); 2916 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2917 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2918 return true; 2919 Flag = FlagInfo->second; 2920 return false; 2921 } 2922 2923 void MIParser::initNames2MMOTargetFlags() { 2924 if (!Names2MMOTargetFlags.empty()) 2925 return; 2926 const auto *TII = MF.getSubtarget().getInstrInfo(); 2927 assert(TII && "Expected target instruction info"); 2928 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2929 for (const auto &I : Flags) 2930 Names2MMOTargetFlags.insert( 2931 std::make_pair(StringRef(I.second), I.first)); 2932 } 2933 2934 bool MIParser::getMMOTargetFlag(StringRef Name, 2935 MachineMemOperand::Flags &Flag) { 2936 initNames2MMOTargetFlags(); 2937 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2938 if (FlagInfo == Names2MMOTargetFlags.end()) 2939 return true; 2940 Flag = FlagInfo->second; 2941 return false; 2942 } 2943 2944 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2945 // FIXME: Currently we can't recognize temporary or local symbols and call all 2946 // of the appropriate forms to create them. However, this handles basic cases 2947 // well as most of the special aspects are recognized by a prefix on their 2948 // name, and the input names should already be unique. For test cases, keeping 2949 // the symbol name out of the symbol table isn't terribly important. 2950 return MF.getContext().getOrCreateSymbol(Name); 2951 } 2952 2953 bool MIParser::parseStringConstant(std::string &Result) { 2954 if (Token.isNot(MIToken::StringConstant)) 2955 return error("expected string constant"); 2956 Result = Token.stringValue(); 2957 lex(); 2958 return false; 2959 } 2960 2961 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2962 StringRef Src, 2963 SMDiagnostic &Error) { 2964 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2965 } 2966 2967 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2968 StringRef Src, SMDiagnostic &Error) { 2969 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2970 } 2971 2972 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2973 MachineBasicBlock *&MBB, StringRef Src, 2974 SMDiagnostic &Error) { 2975 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2976 } 2977 2978 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2979 unsigned &Reg, StringRef Src, 2980 SMDiagnostic &Error) { 2981 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2982 } 2983 2984 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2985 unsigned &Reg, StringRef Src, 2986 SMDiagnostic &Error) { 2987 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2988 } 2989 2990 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2991 VRegInfo *&Info, StringRef Src, 2992 SMDiagnostic &Error) { 2993 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2994 } 2995 2996 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2997 int &FI, StringRef Src, 2998 SMDiagnostic &Error) { 2999 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3000 } 3001 3002 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3003 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3004 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3005 } 3006