1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueSymbolTable.h"
57 #include "llvm/MC/LaneBitmask.h"
58 #include "llvm/MC/MCDwarf.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SMLoc.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cctype>
75 #include <cstddef>
76 #include <cstdint>
77 #include <limits>
78 #include <string>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
84     SourceMgr &SM, const SlotMapping &IRSlots,
85     const Name2RegClassMap &Names2RegClasses,
86     const Name2RegBankMap &Names2RegBanks)
87   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
88     Names2RegBanks(Names2RegBanks) {
89 }
90 
91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
92   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
93   if (I.second) {
94     MachineRegisterInfo &MRI = MF.getRegInfo();
95     VRegInfo *Info = new (Allocator) VRegInfo;
96     Info->VReg = MRI.createIncompleteVirtualRegister();
97     I.first->second = Info;
98   }
99   return *I.first->second;
100 }
101 
102 namespace {
103 
104 /// A wrapper struct around the 'MachineOperand' struct that includes a source
105 /// range and other attributes.
106 struct ParsedMachineOperand {
107   MachineOperand Operand;
108   StringRef::iterator Begin;
109   StringRef::iterator End;
110   Optional<unsigned> TiedDefIdx;
111 
112   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
113                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
114       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
115     if (TiedDefIdx)
116       assert(Operand.isReg() && Operand.isUse() &&
117              "Only used register operands can be tied");
118   }
119 };
120 
121 class MIParser {
122   MachineFunction &MF;
123   SMDiagnostic &Error;
124   StringRef Source, CurrentSource;
125   MIToken Token;
126   PerFunctionMIParsingState &PFS;
127   /// Maps from instruction names to op codes.
128   StringMap<unsigned> Names2InstrOpCodes;
129   /// Maps from register names to registers.
130   StringMap<unsigned> Names2Regs;
131   /// Maps from register mask names to register masks.
132   StringMap<const uint32_t *> Names2RegMasks;
133   /// Maps from subregister names to subregister indices.
134   StringMap<unsigned> Names2SubRegIndices;
135   /// Maps from slot numbers to function's unnamed basic blocks.
136   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
137   /// Maps from slot numbers to function's unnamed values.
138   DenseMap<unsigned, const Value *> Slots2Values;
139   /// Maps from target index names to target indices.
140   StringMap<int> Names2TargetIndices;
141   /// Maps from direct target flag names to the direct target flag values.
142   StringMap<unsigned> Names2DirectTargetFlags;
143   /// Maps from direct target flag names to the bitmask target flag values.
144   StringMap<unsigned> Names2BitmaskTargetFlags;
145   /// Maps from MMO target flag names to MMO target flag values.
146   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
147 
148 public:
149   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
150            StringRef Source);
151 
152   /// \p SkipChar gives the number of characters to skip before looking
153   /// for the next token.
154   void lex(unsigned SkipChar = 0);
155 
156   /// Report an error at the current location with the given message.
157   ///
158   /// This function always return true.
159   bool error(const Twine &Msg);
160 
161   /// Report an error at the given location with the given message.
162   ///
163   /// This function always return true.
164   bool error(StringRef::iterator Loc, const Twine &Msg);
165 
166   bool
167   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
168   bool parseBasicBlocks();
169   bool parse(MachineInstr *&MI);
170   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
171   bool parseStandaloneNamedRegister(unsigned &Reg);
172   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
173   bool parseStandaloneRegister(unsigned &Reg);
174   bool parseStandaloneStackObject(int &FI);
175   bool parseStandaloneMDNode(MDNode *&Node);
176 
177   bool
178   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
179   bool parseBasicBlock(MachineBasicBlock &MBB,
180                        MachineBasicBlock *&AddFalthroughFrom);
181   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
182   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
183 
184   bool parseNamedRegister(unsigned &Reg);
185   bool parseVirtualRegister(VRegInfo *&Info);
186   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
187   bool parseRegisterFlag(unsigned &Flags);
188   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
189   bool parseSubRegisterIndex(unsigned &SubReg);
190   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
191   bool parseRegisterOperand(MachineOperand &Dest,
192                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
193   bool parseImmediateOperand(MachineOperand &Dest);
194   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
195                        const Constant *&C);
196   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
197   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
198   bool parseTypedImmediateOperand(MachineOperand &Dest);
199   bool parseFPImmediateOperand(MachineOperand &Dest);
200   bool parseMBBReference(MachineBasicBlock *&MBB);
201   bool parseMBBOperand(MachineOperand &Dest);
202   bool parseStackFrameIndex(int &FI);
203   bool parseStackObjectOperand(MachineOperand &Dest);
204   bool parseFixedStackFrameIndex(int &FI);
205   bool parseFixedStackObjectOperand(MachineOperand &Dest);
206   bool parseGlobalValue(GlobalValue *&GV);
207   bool parseGlobalAddressOperand(MachineOperand &Dest);
208   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
209   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
210   bool parseJumpTableIndexOperand(MachineOperand &Dest);
211   bool parseExternalSymbolOperand(MachineOperand &Dest);
212   bool parseMDNode(MDNode *&Node);
213   bool parseDIExpression(MDNode *&Node);
214   bool parseMetadataOperand(MachineOperand &Dest);
215   bool parseCFIOffset(int &Offset);
216   bool parseCFIRegister(unsigned &Reg);
217   bool parseCFIOperand(MachineOperand &Dest);
218   bool parseIRBlock(BasicBlock *&BB, const Function &F);
219   bool parseBlockAddressOperand(MachineOperand &Dest);
220   bool parseIntrinsicOperand(MachineOperand &Dest);
221   bool parsePredicateOperand(MachineOperand &Dest);
222   bool parseTargetIndexOperand(MachineOperand &Dest);
223   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
224   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
225   bool parseMachineOperand(MachineOperand &Dest,
226                            Optional<unsigned> &TiedDefIdx);
227   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
228                                          Optional<unsigned> &TiedDefIdx);
229   bool parseOffset(int64_t &Offset);
230   bool parseAlignment(unsigned &Alignment);
231   bool parseOperandsOffset(MachineOperand &Op);
232   bool parseIRValue(const Value *&V);
233   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
234   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
235   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
236   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
237   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
238   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
239 
240 private:
241   /// Convert the integer literal in the current token into an unsigned integer.
242   ///
243   /// Return true if an error occurred.
244   bool getUnsigned(unsigned &Result);
245 
246   /// Convert the integer literal in the current token into an uint64.
247   ///
248   /// Return true if an error occurred.
249   bool getUint64(uint64_t &Result);
250 
251   /// Convert the hexadecimal literal in the current token into an unsigned
252   ///  APInt with a minimum bitwidth required to represent the value.
253   ///
254   /// Return true if the literal does not represent an integer value.
255   bool getHexUint(APInt &Result);
256 
257   /// If the current token is of the given kind, consume it and return false.
258   /// Otherwise report an error and return true.
259   bool expectAndConsume(MIToken::TokenKind TokenKind);
260 
261   /// If the current token is of the given kind, consume it and return true.
262   /// Otherwise return false.
263   bool consumeIfPresent(MIToken::TokenKind TokenKind);
264 
265   void initNames2InstrOpCodes();
266 
267   /// Try to convert an instruction name to an opcode. Return true if the
268   /// instruction name is invalid.
269   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
270 
271   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
272 
273   bool assignRegisterTies(MachineInstr &MI,
274                           ArrayRef<ParsedMachineOperand> Operands);
275 
276   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
277                               const MCInstrDesc &MCID);
278 
279   void initNames2Regs();
280 
281   /// Try to convert a register name to a register number. Return true if the
282   /// register name is invalid.
283   bool getRegisterByName(StringRef RegName, unsigned &Reg);
284 
285   void initNames2RegMasks();
286 
287   /// Check if the given identifier is a name of a register mask.
288   ///
289   /// Return null if the identifier isn't a register mask.
290   const uint32_t *getRegMask(StringRef Identifier);
291 
292   void initNames2SubRegIndices();
293 
294   /// Check if the given identifier is a name of a subregister index.
295   ///
296   /// Return 0 if the name isn't a subregister index class.
297   unsigned getSubRegIndex(StringRef Name);
298 
299   const BasicBlock *getIRBlock(unsigned Slot);
300   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
301 
302   const Value *getIRValue(unsigned Slot);
303 
304   void initNames2TargetIndices();
305 
306   /// Try to convert a name of target index to the corresponding target index.
307   ///
308   /// Return true if the name isn't a name of a target index.
309   bool getTargetIndex(StringRef Name, int &Index);
310 
311   void initNames2DirectTargetFlags();
312 
313   /// Try to convert a name of a direct target flag to the corresponding
314   /// target flag.
315   ///
316   /// Return true if the name isn't a name of a direct flag.
317   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
318 
319   void initNames2BitmaskTargetFlags();
320 
321   /// Try to convert a name of a bitmask target flag to the corresponding
322   /// target flag.
323   ///
324   /// Return true if the name isn't a name of a bitmask target flag.
325   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
326 
327   void initNames2MMOTargetFlags();
328 
329   /// Try to convert a name of a MachineMemOperand target flag to the
330   /// corresponding target flag.
331   ///
332   /// Return true if the name isn't a name of a target MMO flag.
333   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
334 
335   /// parseStringConstant
336   ///   ::= StringConstant
337   bool parseStringConstant(std::string &Result);
338 };
339 
340 } // end anonymous namespace
341 
342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
343                    StringRef Source)
344     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
345 {}
346 
347 void MIParser::lex(unsigned SkipChar) {
348   CurrentSource = lexMIToken(
349       CurrentSource.data() + SkipChar, Token,
350       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
351 }
352 
353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
354 
355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
356   const SourceMgr &SM = *PFS.SM;
357   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
358   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
359   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
360     // Create an ordinary diagnostic when the source manager's buffer is the
361     // source string.
362     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
363     return true;
364   }
365   // Create a diagnostic for a YAML string literal.
366   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
367                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
368                        Source, None, None);
369   return true;
370 }
371 
372 static const char *toString(MIToken::TokenKind TokenKind) {
373   switch (TokenKind) {
374   case MIToken::comma:
375     return "','";
376   case MIToken::equal:
377     return "'='";
378   case MIToken::colon:
379     return "':'";
380   case MIToken::lparen:
381     return "'('";
382   case MIToken::rparen:
383     return "')'";
384   default:
385     return "<unknown token>";
386   }
387 }
388 
389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
390   if (Token.isNot(TokenKind))
391     return error(Twine("expected ") + toString(TokenKind));
392   lex();
393   return false;
394 }
395 
396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
397   if (Token.isNot(TokenKind))
398     return false;
399   lex();
400   return true;
401 }
402 
403 bool MIParser::parseBasicBlockDefinition(
404     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
405   assert(Token.is(MIToken::MachineBasicBlockLabel));
406   unsigned ID = 0;
407   if (getUnsigned(ID))
408     return true;
409   auto Loc = Token.location();
410   auto Name = Token.stringValue();
411   lex();
412   bool HasAddressTaken = false;
413   bool IsLandingPad = false;
414   unsigned Alignment = 0;
415   BasicBlock *BB = nullptr;
416   if (consumeIfPresent(MIToken::lparen)) {
417     do {
418       // TODO: Report an error when multiple same attributes are specified.
419       switch (Token.kind()) {
420       case MIToken::kw_address_taken:
421         HasAddressTaken = true;
422         lex();
423         break;
424       case MIToken::kw_landing_pad:
425         IsLandingPad = true;
426         lex();
427         break;
428       case MIToken::kw_align:
429         if (parseAlignment(Alignment))
430           return true;
431         break;
432       case MIToken::IRBlock:
433         // TODO: Report an error when both name and ir block are specified.
434         if (parseIRBlock(BB, *MF.getFunction()))
435           return true;
436         lex();
437         break;
438       default:
439         break;
440       }
441     } while (consumeIfPresent(MIToken::comma));
442     if (expectAndConsume(MIToken::rparen))
443       return true;
444   }
445   if (expectAndConsume(MIToken::colon))
446     return true;
447 
448   if (!Name.empty()) {
449     BB = dyn_cast_or_null<BasicBlock>(
450         MF.getFunction()->getValueSymbolTable()->lookup(Name));
451     if (!BB)
452       return error(Loc, Twine("basic block '") + Name +
453                             "' is not defined in the function '" +
454                             MF.getName() + "'");
455   }
456   auto *MBB = MF.CreateMachineBasicBlock(BB);
457   MF.insert(MF.end(), MBB);
458   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
459   if (!WasInserted)
460     return error(Loc, Twine("redefinition of machine basic block with id #") +
461                           Twine(ID));
462   if (Alignment)
463     MBB->setAlignment(Alignment);
464   if (HasAddressTaken)
465     MBB->setHasAddressTaken();
466   MBB->setIsEHPad(IsLandingPad);
467   return false;
468 }
469 
470 bool MIParser::parseBasicBlockDefinitions(
471     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
472   lex();
473   // Skip until the first machine basic block.
474   while (Token.is(MIToken::Newline))
475     lex();
476   if (Token.isErrorOrEOF())
477     return Token.isError();
478   if (Token.isNot(MIToken::MachineBasicBlockLabel))
479     return error("expected a basic block definition before instructions");
480   unsigned BraceDepth = 0;
481   do {
482     if (parseBasicBlockDefinition(MBBSlots))
483       return true;
484     bool IsAfterNewline = false;
485     // Skip until the next machine basic block.
486     while (true) {
487       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
488           Token.isErrorOrEOF())
489         break;
490       else if (Token.is(MIToken::MachineBasicBlockLabel))
491         return error("basic block definition should be located at the start of "
492                      "the line");
493       else if (consumeIfPresent(MIToken::Newline)) {
494         IsAfterNewline = true;
495         continue;
496       }
497       IsAfterNewline = false;
498       if (Token.is(MIToken::lbrace))
499         ++BraceDepth;
500       if (Token.is(MIToken::rbrace)) {
501         if (!BraceDepth)
502           return error("extraneous closing brace ('}')");
503         --BraceDepth;
504       }
505       lex();
506     }
507     // Verify that we closed all of the '{' at the end of a file or a block.
508     if (!Token.isError() && BraceDepth)
509       return error("expected '}'"); // FIXME: Report a note that shows '{'.
510   } while (!Token.isErrorOrEOF());
511   return Token.isError();
512 }
513 
514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
515   assert(Token.is(MIToken::kw_liveins));
516   lex();
517   if (expectAndConsume(MIToken::colon))
518     return true;
519   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
520     return false;
521   do {
522     if (Token.isNot(MIToken::NamedRegister))
523       return error("expected a named register");
524     unsigned Reg = 0;
525     if (parseNamedRegister(Reg))
526       return true;
527     lex();
528     LaneBitmask Mask = LaneBitmask::getAll();
529     if (consumeIfPresent(MIToken::colon)) {
530       // Parse lane mask.
531       if (Token.isNot(MIToken::IntegerLiteral) &&
532           Token.isNot(MIToken::HexLiteral))
533         return error("expected a lane mask");
534       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
535                     "Use correct get-function for lane mask");
536       LaneBitmask::Type V;
537       if (getUnsigned(V))
538         return error("invalid lane mask value");
539       Mask = LaneBitmask(V);
540       lex();
541     }
542     MBB.addLiveIn(Reg, Mask);
543   } while (consumeIfPresent(MIToken::comma));
544   return false;
545 }
546 
547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
548   assert(Token.is(MIToken::kw_successors));
549   lex();
550   if (expectAndConsume(MIToken::colon))
551     return true;
552   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
553     return false;
554   do {
555     if (Token.isNot(MIToken::MachineBasicBlock))
556       return error("expected a machine basic block reference");
557     MachineBasicBlock *SuccMBB = nullptr;
558     if (parseMBBReference(SuccMBB))
559       return true;
560     lex();
561     unsigned Weight = 0;
562     if (consumeIfPresent(MIToken::lparen)) {
563       if (Token.isNot(MIToken::IntegerLiteral) &&
564           Token.isNot(MIToken::HexLiteral))
565         return error("expected an integer literal after '('");
566       if (getUnsigned(Weight))
567         return true;
568       lex();
569       if (expectAndConsume(MIToken::rparen))
570         return true;
571     }
572     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
573   } while (consumeIfPresent(MIToken::comma));
574   MBB.normalizeSuccProbs();
575   return false;
576 }
577 
578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
579                                MachineBasicBlock *&AddFalthroughFrom) {
580   // Skip the definition.
581   assert(Token.is(MIToken::MachineBasicBlockLabel));
582   lex();
583   if (consumeIfPresent(MIToken::lparen)) {
584     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
585       lex();
586     consumeIfPresent(MIToken::rparen);
587   }
588   consumeIfPresent(MIToken::colon);
589 
590   // Parse the liveins and successors.
591   // N.B: Multiple lists of successors and liveins are allowed and they're
592   // merged into one.
593   // Example:
594   //   liveins: %edi
595   //   liveins: %esi
596   //
597   // is equivalent to
598   //   liveins: %edi, %esi
599   bool ExplicitSuccessors = false;
600   while (true) {
601     if (Token.is(MIToken::kw_successors)) {
602       if (parseBasicBlockSuccessors(MBB))
603         return true;
604       ExplicitSuccessors = true;
605     } else if (Token.is(MIToken::kw_liveins)) {
606       if (parseBasicBlockLiveins(MBB))
607         return true;
608     } else if (consumeIfPresent(MIToken::Newline)) {
609       continue;
610     } else
611       break;
612     if (!Token.isNewlineOrEOF())
613       return error("expected line break at the end of a list");
614     lex();
615   }
616 
617   // Parse the instructions.
618   bool IsInBundle = false;
619   MachineInstr *PrevMI = nullptr;
620   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
621          !Token.is(MIToken::Eof)) {
622     if (consumeIfPresent(MIToken::Newline))
623       continue;
624     if (consumeIfPresent(MIToken::rbrace)) {
625       // The first parsing pass should verify that all closing '}' have an
626       // opening '{'.
627       assert(IsInBundle);
628       IsInBundle = false;
629       continue;
630     }
631     MachineInstr *MI = nullptr;
632     if (parse(MI))
633       return true;
634     MBB.insert(MBB.end(), MI);
635     if (IsInBundle) {
636       PrevMI->setFlag(MachineInstr::BundledSucc);
637       MI->setFlag(MachineInstr::BundledPred);
638     }
639     PrevMI = MI;
640     if (Token.is(MIToken::lbrace)) {
641       if (IsInBundle)
642         return error("nested instruction bundles are not allowed");
643       lex();
644       // This instruction is the start of the bundle.
645       MI->setFlag(MachineInstr::BundledSucc);
646       IsInBundle = true;
647       if (!Token.is(MIToken::Newline))
648         // The next instruction can be on the same line.
649         continue;
650     }
651     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
652     lex();
653   }
654 
655   // Construct successor list by searching for basic block machine operands.
656   if (!ExplicitSuccessors) {
657     SmallVector<MachineBasicBlock*,4> Successors;
658     bool IsFallthrough;
659     guessSuccessors(MBB, Successors, IsFallthrough);
660     for (MachineBasicBlock *Succ : Successors)
661       MBB.addSuccessor(Succ);
662 
663     if (IsFallthrough) {
664       AddFalthroughFrom = &MBB;
665     } else {
666       MBB.normalizeSuccProbs();
667     }
668   }
669 
670   return false;
671 }
672 
673 bool MIParser::parseBasicBlocks() {
674   lex();
675   // Skip until the first machine basic block.
676   while (Token.is(MIToken::Newline))
677     lex();
678   if (Token.isErrorOrEOF())
679     return Token.isError();
680   // The first parsing pass should have verified that this token is a MBB label
681   // in the 'parseBasicBlockDefinitions' method.
682   assert(Token.is(MIToken::MachineBasicBlockLabel));
683   MachineBasicBlock *AddFalthroughFrom = nullptr;
684   do {
685     MachineBasicBlock *MBB = nullptr;
686     if (parseMBBReference(MBB))
687       return true;
688     if (AddFalthroughFrom) {
689       if (!AddFalthroughFrom->isSuccessor(MBB))
690         AddFalthroughFrom->addSuccessor(MBB);
691       AddFalthroughFrom->normalizeSuccProbs();
692       AddFalthroughFrom = nullptr;
693     }
694     if (parseBasicBlock(*MBB, AddFalthroughFrom))
695       return true;
696     // The method 'parseBasicBlock' should parse the whole block until the next
697     // block or the end of file.
698     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
699   } while (Token.isNot(MIToken::Eof));
700   return false;
701 }
702 
703 bool MIParser::parse(MachineInstr *&MI) {
704   // Parse any register operands before '='
705   MachineOperand MO = MachineOperand::CreateImm(0);
706   SmallVector<ParsedMachineOperand, 8> Operands;
707   while (Token.isRegister() || Token.isRegisterFlag()) {
708     auto Loc = Token.location();
709     Optional<unsigned> TiedDefIdx;
710     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
711       return true;
712     Operands.push_back(
713         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
714     if (Token.isNot(MIToken::comma))
715       break;
716     lex();
717   }
718   if (!Operands.empty() && expectAndConsume(MIToken::equal))
719     return true;
720 
721   unsigned OpCode, Flags = 0;
722   if (Token.isError() || parseInstruction(OpCode, Flags))
723     return true;
724 
725   // Parse the remaining machine operands.
726   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
727          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
728     auto Loc = Token.location();
729     Optional<unsigned> TiedDefIdx;
730     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
731       return true;
732     Operands.push_back(
733         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
734     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
735         Token.is(MIToken::lbrace))
736       break;
737     if (Token.isNot(MIToken::comma))
738       return error("expected ',' before the next machine operand");
739     lex();
740   }
741 
742   DebugLoc DebugLocation;
743   if (Token.is(MIToken::kw_debug_location)) {
744     lex();
745     if (Token.isNot(MIToken::exclaim))
746       return error("expected a metadata node after 'debug-location'");
747     MDNode *Node = nullptr;
748     if (parseMDNode(Node))
749       return true;
750     DebugLocation = DebugLoc(Node);
751   }
752 
753   // Parse the machine memory operands.
754   SmallVector<MachineMemOperand *, 2> MemOperands;
755   if (Token.is(MIToken::coloncolon)) {
756     lex();
757     while (!Token.isNewlineOrEOF()) {
758       MachineMemOperand *MemOp = nullptr;
759       if (parseMachineMemoryOperand(MemOp))
760         return true;
761       MemOperands.push_back(MemOp);
762       if (Token.isNewlineOrEOF())
763         break;
764       if (Token.isNot(MIToken::comma))
765         return error("expected ',' before the next machine memory operand");
766       lex();
767     }
768   }
769 
770   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
771   if (!MCID.isVariadic()) {
772     // FIXME: Move the implicit operand verification to the machine verifier.
773     if (verifyImplicitOperands(Operands, MCID))
774       return true;
775   }
776 
777   // TODO: Check for extraneous machine operands.
778   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
779   MI->setFlags(Flags);
780   for (const auto &Operand : Operands)
781     MI->addOperand(MF, Operand.Operand);
782   if (assignRegisterTies(*MI, Operands))
783     return true;
784   if (MemOperands.empty())
785     return false;
786   MachineInstr::mmo_iterator MemRefs =
787       MF.allocateMemRefsArray(MemOperands.size());
788   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
789   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
790   return false;
791 }
792 
793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
794   lex();
795   if (Token.isNot(MIToken::MachineBasicBlock))
796     return error("expected a machine basic block reference");
797   if (parseMBBReference(MBB))
798     return true;
799   lex();
800   if (Token.isNot(MIToken::Eof))
801     return error(
802         "expected end of string after the machine basic block reference");
803   return false;
804 }
805 
806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
807   lex();
808   if (Token.isNot(MIToken::NamedRegister))
809     return error("expected a named register");
810   if (parseNamedRegister(Reg))
811     return true;
812   lex();
813   if (Token.isNot(MIToken::Eof))
814     return error("expected end of string after the register reference");
815   return false;
816 }
817 
818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
819   lex();
820   if (Token.isNot(MIToken::VirtualRegister))
821     return error("expected a virtual register");
822   if (parseVirtualRegister(Info))
823     return true;
824   lex();
825   if (Token.isNot(MIToken::Eof))
826     return error("expected end of string after the register reference");
827   return false;
828 }
829 
830 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
831   lex();
832   if (Token.isNot(MIToken::NamedRegister) &&
833       Token.isNot(MIToken::VirtualRegister))
834     return error("expected either a named or virtual register");
835 
836   VRegInfo *Info;
837   if (parseRegister(Reg, Info))
838     return true;
839 
840   lex();
841   if (Token.isNot(MIToken::Eof))
842     return error("expected end of string after the register reference");
843   return false;
844 }
845 
846 bool MIParser::parseStandaloneStackObject(int &FI) {
847   lex();
848   if (Token.isNot(MIToken::StackObject))
849     return error("expected a stack object");
850   if (parseStackFrameIndex(FI))
851     return true;
852   if (Token.isNot(MIToken::Eof))
853     return error("expected end of string after the stack object reference");
854   return false;
855 }
856 
857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
858   lex();
859   if (Token.is(MIToken::exclaim)) {
860     if (parseMDNode(Node))
861       return true;
862   } else if (Token.is(MIToken::md_diexpr)) {
863     if (parseDIExpression(Node))
864       return true;
865   } else
866     return error("expected a metadata node");
867   if (Token.isNot(MIToken::Eof))
868     return error("expected end of string after the metadata node");
869   return false;
870 }
871 
872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
873   assert(MO.isImplicit());
874   return MO.isDef() ? "implicit-def" : "implicit";
875 }
876 
877 static std::string getRegisterName(const TargetRegisterInfo *TRI,
878                                    unsigned Reg) {
879   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
880   return StringRef(TRI->getName(Reg)).lower();
881 }
882 
883 /// Return true if the parsed machine operands contain a given machine operand.
884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
885                                 ArrayRef<ParsedMachineOperand> Operands) {
886   for (const auto &I : Operands) {
887     if (ImplicitOperand.isIdenticalTo(I.Operand))
888       return true;
889   }
890   return false;
891 }
892 
893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
894                                       const MCInstrDesc &MCID) {
895   if (MCID.isCall())
896     // We can't verify call instructions as they can contain arbitrary implicit
897     // register and register mask operands.
898     return false;
899 
900   // Gather all the expected implicit operands.
901   SmallVector<MachineOperand, 4> ImplicitOperands;
902   if (MCID.ImplicitDefs)
903     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
904       ImplicitOperands.push_back(
905           MachineOperand::CreateReg(*ImpDefs, true, true));
906   if (MCID.ImplicitUses)
907     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
908       ImplicitOperands.push_back(
909           MachineOperand::CreateReg(*ImpUses, false, true));
910 
911   const auto *TRI = MF.getSubtarget().getRegisterInfo();
912   assert(TRI && "Expected target register info");
913   for (const auto &I : ImplicitOperands) {
914     if (isImplicitOperandIn(I, Operands))
915       continue;
916     return error(Operands.empty() ? Token.location() : Operands.back().End,
917                  Twine("missing implicit register operand '") +
918                      printImplicitRegisterFlag(I) + " %" +
919                      getRegisterName(TRI, I.getReg()) + "'");
920   }
921   return false;
922 }
923 
924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
925   if (Token.is(MIToken::kw_frame_setup)) {
926     Flags |= MachineInstr::FrameSetup;
927     lex();
928   }
929   if (Token.isNot(MIToken::Identifier))
930     return error("expected a machine instruction");
931   StringRef InstrName = Token.stringValue();
932   if (parseInstrName(InstrName, OpCode))
933     return error(Twine("unknown machine instruction name '") + InstrName + "'");
934   lex();
935   return false;
936 }
937 
938 bool MIParser::parseNamedRegister(unsigned &Reg) {
939   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
940   StringRef Name = Token.stringValue();
941   if (getRegisterByName(Name, Reg))
942     return error(Twine("unknown register name '") + Name + "'");
943   return false;
944 }
945 
946 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
947   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
948   unsigned ID;
949   if (getUnsigned(ID))
950     return true;
951   Info = &PFS.getVRegInfo(ID);
952   return false;
953 }
954 
955 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
956   switch (Token.kind()) {
957   case MIToken::underscore:
958     Reg = 0;
959     return false;
960   case MIToken::NamedRegister:
961     return parseNamedRegister(Reg);
962   case MIToken::VirtualRegister:
963     if (parseVirtualRegister(Info))
964       return true;
965     Reg = Info->VReg;
966     return false;
967   // TODO: Parse other register kinds.
968   default:
969     llvm_unreachable("The current token should be a register");
970   }
971 }
972 
973 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
974   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
975     return error("expected '_', register class, or register bank name");
976   StringRef::iterator Loc = Token.location();
977   StringRef Name = Token.stringValue();
978 
979   // Was it a register class?
980   auto RCNameI = PFS.Names2RegClasses.find(Name);
981   if (RCNameI != PFS.Names2RegClasses.end()) {
982     lex();
983     const TargetRegisterClass &RC = *RCNameI->getValue();
984 
985     switch (RegInfo.Kind) {
986     case VRegInfo::UNKNOWN:
987     case VRegInfo::NORMAL:
988       RegInfo.Kind = VRegInfo::NORMAL;
989       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
990         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
991         return error(Loc, Twine("conflicting register classes, previously: ") +
992                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
993       }
994       RegInfo.D.RC = &RC;
995       RegInfo.Explicit = true;
996       return false;
997 
998     case VRegInfo::GENERIC:
999     case VRegInfo::REGBANK:
1000       return error(Loc, "register class specification on generic register");
1001     }
1002     llvm_unreachable("Unexpected register kind");
1003   }
1004 
1005   // Should be a register bank or a generic register.
1006   const RegisterBank *RegBank = nullptr;
1007   if (Name != "_") {
1008     auto RBNameI = PFS.Names2RegBanks.find(Name);
1009     if (RBNameI == PFS.Names2RegBanks.end())
1010       return error(Loc, "expected '_', register class, or register bank name");
1011     RegBank = RBNameI->getValue();
1012   }
1013 
1014   lex();
1015 
1016   switch (RegInfo.Kind) {
1017   case VRegInfo::UNKNOWN:
1018   case VRegInfo::GENERIC:
1019   case VRegInfo::REGBANK:
1020     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1021     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1022       return error(Loc, "conflicting generic register banks");
1023     RegInfo.D.RegBank = RegBank;
1024     RegInfo.Explicit = true;
1025     return false;
1026 
1027   case VRegInfo::NORMAL:
1028     return error(Loc, "register bank specification on normal register");
1029   }
1030   llvm_unreachable("Unexpected register kind");
1031 }
1032 
1033 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1034   const unsigned OldFlags = Flags;
1035   switch (Token.kind()) {
1036   case MIToken::kw_implicit:
1037     Flags |= RegState::Implicit;
1038     break;
1039   case MIToken::kw_implicit_define:
1040     Flags |= RegState::ImplicitDefine;
1041     break;
1042   case MIToken::kw_def:
1043     Flags |= RegState::Define;
1044     break;
1045   case MIToken::kw_dead:
1046     Flags |= RegState::Dead;
1047     break;
1048   case MIToken::kw_killed:
1049     Flags |= RegState::Kill;
1050     break;
1051   case MIToken::kw_undef:
1052     Flags |= RegState::Undef;
1053     break;
1054   case MIToken::kw_internal:
1055     Flags |= RegState::InternalRead;
1056     break;
1057   case MIToken::kw_early_clobber:
1058     Flags |= RegState::EarlyClobber;
1059     break;
1060   case MIToken::kw_debug_use:
1061     Flags |= RegState::Debug;
1062     break;
1063   case MIToken::kw_renamable:
1064     Flags |= RegState::Renamable;
1065     break;
1066   default:
1067     llvm_unreachable("The current token should be a register flag");
1068   }
1069   if (OldFlags == Flags)
1070     // We know that the same flag is specified more than once when the flags
1071     // weren't modified.
1072     return error("duplicate '" + Token.stringValue() + "' register flag");
1073   lex();
1074   return false;
1075 }
1076 
1077 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1078   assert(Token.is(MIToken::dot));
1079   lex();
1080   if (Token.isNot(MIToken::Identifier))
1081     return error("expected a subregister index after '.'");
1082   auto Name = Token.stringValue();
1083   SubReg = getSubRegIndex(Name);
1084   if (!SubReg)
1085     return error(Twine("use of unknown subregister index '") + Name + "'");
1086   lex();
1087   return false;
1088 }
1089 
1090 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1091   if (!consumeIfPresent(MIToken::kw_tied_def))
1092     return true;
1093   if (Token.isNot(MIToken::IntegerLiteral))
1094     return error("expected an integer literal after 'tied-def'");
1095   if (getUnsigned(TiedDefIdx))
1096     return true;
1097   lex();
1098   if (expectAndConsume(MIToken::rparen))
1099     return true;
1100   return false;
1101 }
1102 
1103 bool MIParser::assignRegisterTies(MachineInstr &MI,
1104                                   ArrayRef<ParsedMachineOperand> Operands) {
1105   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1106   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1107     if (!Operands[I].TiedDefIdx)
1108       continue;
1109     // The parser ensures that this operand is a register use, so we just have
1110     // to check the tied-def operand.
1111     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1112     if (DefIdx >= E)
1113       return error(Operands[I].Begin,
1114                    Twine("use of invalid tied-def operand index '" +
1115                          Twine(DefIdx) + "'; instruction has only ") +
1116                        Twine(E) + " operands");
1117     const auto &DefOperand = Operands[DefIdx].Operand;
1118     if (!DefOperand.isReg() || !DefOperand.isDef())
1119       // FIXME: add note with the def operand.
1120       return error(Operands[I].Begin,
1121                    Twine("use of invalid tied-def operand index '") +
1122                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1123                        " isn't a defined register");
1124     // Check that the tied-def operand wasn't tied elsewhere.
1125     for (const auto &TiedPair : TiedRegisterPairs) {
1126       if (TiedPair.first == DefIdx)
1127         return error(Operands[I].Begin,
1128                      Twine("the tied-def operand #") + Twine(DefIdx) +
1129                          " is already tied with another register operand");
1130     }
1131     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1132   }
1133   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1134   // indices must be less than tied max.
1135   for (const auto &TiedPair : TiedRegisterPairs)
1136     MI.tieOperands(TiedPair.first, TiedPair.second);
1137   return false;
1138 }
1139 
1140 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1141                                     Optional<unsigned> &TiedDefIdx,
1142                                     bool IsDef) {
1143   unsigned Flags = IsDef ? RegState::Define : 0;
1144   while (Token.isRegisterFlag()) {
1145     if (parseRegisterFlag(Flags))
1146       return true;
1147   }
1148   if (!Token.isRegister())
1149     return error("expected a register after register flags");
1150   unsigned Reg;
1151   VRegInfo *RegInfo;
1152   if (parseRegister(Reg, RegInfo))
1153     return true;
1154   lex();
1155   unsigned SubReg = 0;
1156   if (Token.is(MIToken::dot)) {
1157     if (parseSubRegisterIndex(SubReg))
1158       return true;
1159     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1160       return error("subregister index expects a virtual register");
1161   }
1162   if (Token.is(MIToken::colon)) {
1163     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1164       return error("register class specification expects a virtual register");
1165     lex();
1166     if (parseRegisterClassOrBank(*RegInfo))
1167         return true;
1168   }
1169   MachineRegisterInfo &MRI = MF.getRegInfo();
1170   if ((Flags & RegState::Define) == 0) {
1171     if (consumeIfPresent(MIToken::lparen)) {
1172       unsigned Idx;
1173       if (!parseRegisterTiedDefIndex(Idx))
1174         TiedDefIdx = Idx;
1175       else {
1176         // Try a redundant low-level type.
1177         LLT Ty;
1178         if (parseLowLevelType(Token.location(), Ty))
1179           return error("expected tied-def or low-level type after '('");
1180 
1181         if (expectAndConsume(MIToken::rparen))
1182           return true;
1183 
1184         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1185           return error("inconsistent type for generic virtual register");
1186 
1187         MRI.setType(Reg, Ty);
1188       }
1189     }
1190   } else if (consumeIfPresent(MIToken::lparen)) {
1191     // Virtual registers may have a tpe with GlobalISel.
1192     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1193       return error("unexpected type on physical register");
1194 
1195     LLT Ty;
1196     if (parseLowLevelType(Token.location(), Ty))
1197       return true;
1198 
1199     if (expectAndConsume(MIToken::rparen))
1200       return true;
1201 
1202     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1203       return error("inconsistent type for generic virtual register");
1204 
1205     MRI.setType(Reg, Ty);
1206   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1207     // Generic virtual registers must have a type.
1208     // If we end up here this means the type hasn't been specified and
1209     // this is bad!
1210     if (RegInfo->Kind == VRegInfo::GENERIC ||
1211         RegInfo->Kind == VRegInfo::REGBANK)
1212       return error("generic virtual registers must have a type");
1213   }
1214   Dest = MachineOperand::CreateReg(
1215       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1216       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1217       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1218       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1219 
1220   return false;
1221 }
1222 
1223 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1224   assert(Token.is(MIToken::IntegerLiteral));
1225   const APSInt &Int = Token.integerValue();
1226   if (Int.getMinSignedBits() > 64)
1227     return error("integer literal is too large to be an immediate operand");
1228   Dest = MachineOperand::CreateImm(Int.getExtValue());
1229   lex();
1230   return false;
1231 }
1232 
1233 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1234                                const Constant *&C) {
1235   auto Source = StringValue.str(); // The source has to be null terminated.
1236   SMDiagnostic Err;
1237   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1238                          &PFS.IRSlots);
1239   if (!C)
1240     return error(Loc + Err.getColumnNo(), Err.getMessage());
1241   return false;
1242 }
1243 
1244 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1245   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1246     return true;
1247   lex();
1248   return false;
1249 }
1250 
1251 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1252   if (Token.is(MIToken::ScalarType)) {
1253     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1254     lex();
1255     return false;
1256   } else if (Token.is(MIToken::PointerType)) {
1257     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1258     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1259     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1260     lex();
1261     return false;
1262   }
1263 
1264   // Now we're looking for a vector.
1265   if (Token.isNot(MIToken::less))
1266     return error(Loc,
1267                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1268 
1269   lex();
1270 
1271   if (Token.isNot(MIToken::IntegerLiteral))
1272     return error(Loc, "expected <N x sM> for vctor type");
1273   uint64_t NumElements = Token.integerValue().getZExtValue();
1274   lex();
1275 
1276   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1277     return error(Loc, "expected '<N x sM>' for vector type");
1278   lex();
1279 
1280   if (Token.isNot(MIToken::ScalarType))
1281     return error(Loc, "expected '<N x sM>' for vector type");
1282   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1283   lex();
1284 
1285   if (Token.isNot(MIToken::greater))
1286     return error(Loc, "expected '<N x sM>' for vector type");
1287   lex();
1288 
1289   Ty = LLT::vector(NumElements, ScalarSize);
1290   return false;
1291 }
1292 
1293 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1294   assert(Token.is(MIToken::IntegerType));
1295   auto Loc = Token.location();
1296   lex();
1297   if (Token.isNot(MIToken::IntegerLiteral))
1298     return error("expected an integer literal");
1299   const Constant *C = nullptr;
1300   if (parseIRConstant(Loc, C))
1301     return true;
1302   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1303   return false;
1304 }
1305 
1306 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1307   auto Loc = Token.location();
1308   lex();
1309   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1310       Token.isNot(MIToken::HexLiteral))
1311     return error("expected a floating point literal");
1312   const Constant *C = nullptr;
1313   if (parseIRConstant(Loc, C))
1314     return true;
1315   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1316   return false;
1317 }
1318 
1319 bool MIParser::getUnsigned(unsigned &Result) {
1320   if (Token.hasIntegerValue()) {
1321     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1322     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1323     if (Val64 == Limit)
1324       return error("expected 32-bit integer (too large)");
1325     Result = Val64;
1326     return false;
1327   }
1328   if (Token.is(MIToken::HexLiteral)) {
1329     APInt A;
1330     if (getHexUint(A))
1331       return true;
1332     if (A.getBitWidth() > 32)
1333       return error("expected 32-bit integer (too large)");
1334     Result = A.getZExtValue();
1335     return false;
1336   }
1337   return true;
1338 }
1339 
1340 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1341   assert(Token.is(MIToken::MachineBasicBlock) ||
1342          Token.is(MIToken::MachineBasicBlockLabel));
1343   unsigned Number;
1344   if (getUnsigned(Number))
1345     return true;
1346   auto MBBInfo = PFS.MBBSlots.find(Number);
1347   if (MBBInfo == PFS.MBBSlots.end())
1348     return error(Twine("use of undefined machine basic block #") +
1349                  Twine(Number));
1350   MBB = MBBInfo->second;
1351   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1352   // we drop the <irname> from the bb.<id>.<irname> format.
1353   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1354     return error(Twine("the name of machine basic block #") + Twine(Number) +
1355                  " isn't '" + Token.stringValue() + "'");
1356   return false;
1357 }
1358 
1359 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1360   MachineBasicBlock *MBB;
1361   if (parseMBBReference(MBB))
1362     return true;
1363   Dest = MachineOperand::CreateMBB(MBB);
1364   lex();
1365   return false;
1366 }
1367 
1368 bool MIParser::parseStackFrameIndex(int &FI) {
1369   assert(Token.is(MIToken::StackObject));
1370   unsigned ID;
1371   if (getUnsigned(ID))
1372     return true;
1373   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1374   if (ObjectInfo == PFS.StackObjectSlots.end())
1375     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1376                  "'");
1377   StringRef Name;
1378   if (const auto *Alloca =
1379           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1380     Name = Alloca->getName();
1381   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1382     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1383                  "' isn't '" + Token.stringValue() + "'");
1384   lex();
1385   FI = ObjectInfo->second;
1386   return false;
1387 }
1388 
1389 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1390   int FI;
1391   if (parseStackFrameIndex(FI))
1392     return true;
1393   Dest = MachineOperand::CreateFI(FI);
1394   return false;
1395 }
1396 
1397 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1398   assert(Token.is(MIToken::FixedStackObject));
1399   unsigned ID;
1400   if (getUnsigned(ID))
1401     return true;
1402   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1403   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1404     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1405                  Twine(ID) + "'");
1406   lex();
1407   FI = ObjectInfo->second;
1408   return false;
1409 }
1410 
1411 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1412   int FI;
1413   if (parseFixedStackFrameIndex(FI))
1414     return true;
1415   Dest = MachineOperand::CreateFI(FI);
1416   return false;
1417 }
1418 
1419 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1420   switch (Token.kind()) {
1421   case MIToken::NamedGlobalValue: {
1422     const Module *M = MF.getFunction()->getParent();
1423     GV = M->getNamedValue(Token.stringValue());
1424     if (!GV)
1425       return error(Twine("use of undefined global value '") + Token.range() +
1426                    "'");
1427     break;
1428   }
1429   case MIToken::GlobalValue: {
1430     unsigned GVIdx;
1431     if (getUnsigned(GVIdx))
1432       return true;
1433     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1434       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1435                    "'");
1436     GV = PFS.IRSlots.GlobalValues[GVIdx];
1437     break;
1438   }
1439   default:
1440     llvm_unreachable("The current token should be a global value");
1441   }
1442   return false;
1443 }
1444 
1445 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1446   GlobalValue *GV = nullptr;
1447   if (parseGlobalValue(GV))
1448     return true;
1449   lex();
1450   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1451   if (parseOperandsOffset(Dest))
1452     return true;
1453   return false;
1454 }
1455 
1456 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1457   assert(Token.is(MIToken::ConstantPoolItem));
1458   unsigned ID;
1459   if (getUnsigned(ID))
1460     return true;
1461   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1462   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1463     return error("use of undefined constant '%const." + Twine(ID) + "'");
1464   lex();
1465   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1466   if (parseOperandsOffset(Dest))
1467     return true;
1468   return false;
1469 }
1470 
1471 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1472   assert(Token.is(MIToken::JumpTableIndex));
1473   unsigned ID;
1474   if (getUnsigned(ID))
1475     return true;
1476   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1477   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1478     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1479   lex();
1480   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1481   return false;
1482 }
1483 
1484 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1485   assert(Token.is(MIToken::ExternalSymbol));
1486   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1487   lex();
1488   Dest = MachineOperand::CreateES(Symbol);
1489   if (parseOperandsOffset(Dest))
1490     return true;
1491   return false;
1492 }
1493 
1494 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1495   assert(Token.is(MIToken::SubRegisterIndex));
1496   StringRef Name = Token.stringValue();
1497   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1498   if (SubRegIndex == 0)
1499     return error(Twine("unknown subregister index '") + Name + "'");
1500   lex();
1501   Dest = MachineOperand::CreateImm(SubRegIndex);
1502   return false;
1503 }
1504 
1505 bool MIParser::parseMDNode(MDNode *&Node) {
1506   assert(Token.is(MIToken::exclaim));
1507 
1508   auto Loc = Token.location();
1509   lex();
1510   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1511     return error("expected metadata id after '!'");
1512   unsigned ID;
1513   if (getUnsigned(ID))
1514     return true;
1515   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1516   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1517     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1518   lex();
1519   Node = NodeInfo->second.get();
1520   return false;
1521 }
1522 
1523 bool MIParser::parseDIExpression(MDNode *&Expr) {
1524   assert(Token.is(MIToken::md_diexpr));
1525   lex();
1526 
1527   // FIXME: Share this parsing with the IL parser.
1528   SmallVector<uint64_t, 8> Elements;
1529 
1530   if (expectAndConsume(MIToken::lparen))
1531     return true;
1532 
1533   if (Token.isNot(MIToken::rparen)) {
1534     do {
1535       if (Token.is(MIToken::Identifier)) {
1536         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1537           lex();
1538           Elements.push_back(Op);
1539           continue;
1540         }
1541         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1542       }
1543 
1544       if (Token.isNot(MIToken::IntegerLiteral) ||
1545           Token.integerValue().isSigned())
1546         return error("expected unsigned integer");
1547 
1548       auto &U = Token.integerValue();
1549       if (U.ugt(UINT64_MAX))
1550         return error("element too large, limit is " + Twine(UINT64_MAX));
1551       Elements.push_back(U.getZExtValue());
1552       lex();
1553 
1554     } while (consumeIfPresent(MIToken::comma));
1555   }
1556 
1557   if (expectAndConsume(MIToken::rparen))
1558     return true;
1559 
1560   Expr = DIExpression::get(MF.getFunction()->getContext(), Elements);
1561   return false;
1562 }
1563 
1564 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1565   MDNode *Node = nullptr;
1566   if (Token.is(MIToken::exclaim)) {
1567     if (parseMDNode(Node))
1568       return true;
1569   } else if (Token.is(MIToken::md_diexpr)) {
1570     if (parseDIExpression(Node))
1571       return true;
1572   }
1573   Dest = MachineOperand::CreateMetadata(Node);
1574   return false;
1575 }
1576 
1577 bool MIParser::parseCFIOffset(int &Offset) {
1578   if (Token.isNot(MIToken::IntegerLiteral))
1579     return error("expected a cfi offset");
1580   if (Token.integerValue().getMinSignedBits() > 32)
1581     return error("expected a 32 bit integer (the cfi offset is too large)");
1582   Offset = (int)Token.integerValue().getExtValue();
1583   lex();
1584   return false;
1585 }
1586 
1587 bool MIParser::parseCFIRegister(unsigned &Reg) {
1588   if (Token.isNot(MIToken::NamedRegister))
1589     return error("expected a cfi register");
1590   unsigned LLVMReg;
1591   if (parseNamedRegister(LLVMReg))
1592     return true;
1593   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1594   assert(TRI && "Expected target register info");
1595   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1596   if (DwarfReg < 0)
1597     return error("invalid DWARF register");
1598   Reg = (unsigned)DwarfReg;
1599   lex();
1600   return false;
1601 }
1602 
1603 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1604   auto Kind = Token.kind();
1605   lex();
1606   int Offset;
1607   unsigned Reg;
1608   unsigned CFIIndex;
1609   switch (Kind) {
1610   case MIToken::kw_cfi_same_value:
1611     if (parseCFIRegister(Reg))
1612       return true;
1613     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1614     break;
1615   case MIToken::kw_cfi_offset:
1616     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1617         parseCFIOffset(Offset))
1618       return true;
1619     CFIIndex =
1620         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1621     break;
1622   case MIToken::kw_cfi_def_cfa_register:
1623     if (parseCFIRegister(Reg))
1624       return true;
1625     CFIIndex =
1626         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1627     break;
1628   case MIToken::kw_cfi_def_cfa_offset:
1629     if (parseCFIOffset(Offset))
1630       return true;
1631     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1632     CFIIndex = MF.addFrameInst(
1633         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1634     break;
1635   case MIToken::kw_cfi_def_cfa:
1636     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1637         parseCFIOffset(Offset))
1638       return true;
1639     // NB: MCCFIInstruction::createDefCfa negates the offset.
1640     CFIIndex =
1641         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1642     break;
1643   case MIToken::kw_cfi_restore:
1644     if (parseCFIRegister(Reg))
1645       return true;
1646     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1647     break;
1648 
1649   default:
1650     // TODO: Parse the other CFI operands.
1651     llvm_unreachable("The current token should be a cfi operand");
1652   }
1653   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1654   return false;
1655 }
1656 
1657 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1658   switch (Token.kind()) {
1659   case MIToken::NamedIRBlock: {
1660     BB = dyn_cast_or_null<BasicBlock>(
1661         F.getValueSymbolTable()->lookup(Token.stringValue()));
1662     if (!BB)
1663       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1664     break;
1665   }
1666   case MIToken::IRBlock: {
1667     unsigned SlotNumber = 0;
1668     if (getUnsigned(SlotNumber))
1669       return true;
1670     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1671     if (!BB)
1672       return error(Twine("use of undefined IR block '%ir-block.") +
1673                    Twine(SlotNumber) + "'");
1674     break;
1675   }
1676   default:
1677     llvm_unreachable("The current token should be an IR block reference");
1678   }
1679   return false;
1680 }
1681 
1682 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1683   assert(Token.is(MIToken::kw_blockaddress));
1684   lex();
1685   if (expectAndConsume(MIToken::lparen))
1686     return true;
1687   if (Token.isNot(MIToken::GlobalValue) &&
1688       Token.isNot(MIToken::NamedGlobalValue))
1689     return error("expected a global value");
1690   GlobalValue *GV = nullptr;
1691   if (parseGlobalValue(GV))
1692     return true;
1693   auto *F = dyn_cast<Function>(GV);
1694   if (!F)
1695     return error("expected an IR function reference");
1696   lex();
1697   if (expectAndConsume(MIToken::comma))
1698     return true;
1699   BasicBlock *BB = nullptr;
1700   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1701     return error("expected an IR block reference");
1702   if (parseIRBlock(BB, *F))
1703     return true;
1704   lex();
1705   if (expectAndConsume(MIToken::rparen))
1706     return true;
1707   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1708   if (parseOperandsOffset(Dest))
1709     return true;
1710   return false;
1711 }
1712 
1713 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1714   assert(Token.is(MIToken::kw_intrinsic));
1715   lex();
1716   if (expectAndConsume(MIToken::lparen))
1717     return error("expected syntax intrinsic(@llvm.whatever)");
1718 
1719   if (Token.isNot(MIToken::NamedGlobalValue))
1720     return error("expected syntax intrinsic(@llvm.whatever)");
1721 
1722   std::string Name = Token.stringValue();
1723   lex();
1724 
1725   if (expectAndConsume(MIToken::rparen))
1726     return error("expected ')' to terminate intrinsic name");
1727 
1728   // Find out what intrinsic we're dealing with, first try the global namespace
1729   // and then the target's private intrinsics if that fails.
1730   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1731   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1732   if (ID == Intrinsic::not_intrinsic && TII)
1733     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1734 
1735   if (ID == Intrinsic::not_intrinsic)
1736     return error("unknown intrinsic name");
1737   Dest = MachineOperand::CreateIntrinsicID(ID);
1738 
1739   return false;
1740 }
1741 
1742 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1743   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1744   bool IsFloat = Token.is(MIToken::kw_floatpred);
1745   lex();
1746 
1747   if (expectAndConsume(MIToken::lparen))
1748     return error("expected syntax intpred(whatever) or floatpred(whatever");
1749 
1750   if (Token.isNot(MIToken::Identifier))
1751     return error("whatever");
1752 
1753   CmpInst::Predicate Pred;
1754   if (IsFloat) {
1755     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1756                .Case("false", CmpInst::FCMP_FALSE)
1757                .Case("oeq", CmpInst::FCMP_OEQ)
1758                .Case("ogt", CmpInst::FCMP_OGT)
1759                .Case("oge", CmpInst::FCMP_OGE)
1760                .Case("olt", CmpInst::FCMP_OLT)
1761                .Case("ole", CmpInst::FCMP_OLE)
1762                .Case("one", CmpInst::FCMP_ONE)
1763                .Case("ord", CmpInst::FCMP_ORD)
1764                .Case("uno", CmpInst::FCMP_UNO)
1765                .Case("ueq", CmpInst::FCMP_UEQ)
1766                .Case("ugt", CmpInst::FCMP_UGT)
1767                .Case("uge", CmpInst::FCMP_UGE)
1768                .Case("ult", CmpInst::FCMP_ULT)
1769                .Case("ule", CmpInst::FCMP_ULE)
1770                .Case("une", CmpInst::FCMP_UNE)
1771                .Case("true", CmpInst::FCMP_TRUE)
1772                .Default(CmpInst::BAD_FCMP_PREDICATE);
1773     if (!CmpInst::isFPPredicate(Pred))
1774       return error("invalid floating-point predicate");
1775   } else {
1776     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1777                .Case("eq", CmpInst::ICMP_EQ)
1778                .Case("ne", CmpInst::ICMP_NE)
1779                .Case("sgt", CmpInst::ICMP_SGT)
1780                .Case("sge", CmpInst::ICMP_SGE)
1781                .Case("slt", CmpInst::ICMP_SLT)
1782                .Case("sle", CmpInst::ICMP_SLE)
1783                .Case("ugt", CmpInst::ICMP_UGT)
1784                .Case("uge", CmpInst::ICMP_UGE)
1785                .Case("ult", CmpInst::ICMP_ULT)
1786                .Case("ule", CmpInst::ICMP_ULE)
1787                .Default(CmpInst::BAD_ICMP_PREDICATE);
1788     if (!CmpInst::isIntPredicate(Pred))
1789       return error("invalid integer predicate");
1790   }
1791 
1792   lex();
1793   Dest = MachineOperand::CreatePredicate(Pred);
1794   if (expectAndConsume(MIToken::rparen))
1795     return error("predicate should be terminated by ')'.");
1796 
1797   return false;
1798 }
1799 
1800 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1801   assert(Token.is(MIToken::kw_target_index));
1802   lex();
1803   if (expectAndConsume(MIToken::lparen))
1804     return true;
1805   if (Token.isNot(MIToken::Identifier))
1806     return error("expected the name of the target index");
1807   int Index = 0;
1808   if (getTargetIndex(Token.stringValue(), Index))
1809     return error("use of undefined target index '" + Token.stringValue() + "'");
1810   lex();
1811   if (expectAndConsume(MIToken::rparen))
1812     return true;
1813   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1814   if (parseOperandsOffset(Dest))
1815     return true;
1816   return false;
1817 }
1818 
1819 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1820   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1821   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1822   assert(TRI && "Expected target register info");
1823   lex();
1824   if (expectAndConsume(MIToken::lparen))
1825     return true;
1826 
1827   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1828   while (true) {
1829     if (Token.isNot(MIToken::NamedRegister))
1830       return error("expected a named register");
1831     unsigned Reg;
1832     if (parseNamedRegister(Reg))
1833       return true;
1834     lex();
1835     Mask[Reg / 32] |= 1U << (Reg % 32);
1836     // TODO: Report an error if the same register is used more than once.
1837     if (Token.isNot(MIToken::comma))
1838       break;
1839     lex();
1840   }
1841 
1842   if (expectAndConsume(MIToken::rparen))
1843     return true;
1844   Dest = MachineOperand::CreateRegMask(Mask);
1845   return false;
1846 }
1847 
1848 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1849   assert(Token.is(MIToken::kw_liveout));
1850   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1851   assert(TRI && "Expected target register info");
1852   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1853   lex();
1854   if (expectAndConsume(MIToken::lparen))
1855     return true;
1856   while (true) {
1857     if (Token.isNot(MIToken::NamedRegister))
1858       return error("expected a named register");
1859     unsigned Reg;
1860     if (parseNamedRegister(Reg))
1861       return true;
1862     lex();
1863     Mask[Reg / 32] |= 1U << (Reg % 32);
1864     // TODO: Report an error if the same register is used more than once.
1865     if (Token.isNot(MIToken::comma))
1866       break;
1867     lex();
1868   }
1869   if (expectAndConsume(MIToken::rparen))
1870     return true;
1871   Dest = MachineOperand::CreateRegLiveOut(Mask);
1872   return false;
1873 }
1874 
1875 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1876                                    Optional<unsigned> &TiedDefIdx) {
1877   switch (Token.kind()) {
1878   case MIToken::kw_implicit:
1879   case MIToken::kw_implicit_define:
1880   case MIToken::kw_def:
1881   case MIToken::kw_dead:
1882   case MIToken::kw_killed:
1883   case MIToken::kw_undef:
1884   case MIToken::kw_internal:
1885   case MIToken::kw_early_clobber:
1886   case MIToken::kw_debug_use:
1887   case MIToken::kw_renamable:
1888   case MIToken::underscore:
1889   case MIToken::NamedRegister:
1890   case MIToken::VirtualRegister:
1891     return parseRegisterOperand(Dest, TiedDefIdx);
1892   case MIToken::IntegerLiteral:
1893     return parseImmediateOperand(Dest);
1894   case MIToken::IntegerType:
1895     return parseTypedImmediateOperand(Dest);
1896   case MIToken::kw_half:
1897   case MIToken::kw_float:
1898   case MIToken::kw_double:
1899   case MIToken::kw_x86_fp80:
1900   case MIToken::kw_fp128:
1901   case MIToken::kw_ppc_fp128:
1902     return parseFPImmediateOperand(Dest);
1903   case MIToken::MachineBasicBlock:
1904     return parseMBBOperand(Dest);
1905   case MIToken::StackObject:
1906     return parseStackObjectOperand(Dest);
1907   case MIToken::FixedStackObject:
1908     return parseFixedStackObjectOperand(Dest);
1909   case MIToken::GlobalValue:
1910   case MIToken::NamedGlobalValue:
1911     return parseGlobalAddressOperand(Dest);
1912   case MIToken::ConstantPoolItem:
1913     return parseConstantPoolIndexOperand(Dest);
1914   case MIToken::JumpTableIndex:
1915     return parseJumpTableIndexOperand(Dest);
1916   case MIToken::ExternalSymbol:
1917     return parseExternalSymbolOperand(Dest);
1918   case MIToken::SubRegisterIndex:
1919     return parseSubRegisterIndexOperand(Dest);
1920   case MIToken::md_diexpr:
1921   case MIToken::exclaim:
1922     return parseMetadataOperand(Dest);
1923   case MIToken::kw_cfi_same_value:
1924   case MIToken::kw_cfi_offset:
1925   case MIToken::kw_cfi_def_cfa_register:
1926   case MIToken::kw_cfi_def_cfa_offset:
1927   case MIToken::kw_cfi_def_cfa:
1928   case MIToken::kw_cfi_restore:
1929     return parseCFIOperand(Dest);
1930   case MIToken::kw_blockaddress:
1931     return parseBlockAddressOperand(Dest);
1932   case MIToken::kw_intrinsic:
1933     return parseIntrinsicOperand(Dest);
1934   case MIToken::kw_target_index:
1935     return parseTargetIndexOperand(Dest);
1936   case MIToken::kw_liveout:
1937     return parseLiveoutRegisterMaskOperand(Dest);
1938   case MIToken::kw_floatpred:
1939   case MIToken::kw_intpred:
1940     return parsePredicateOperand(Dest);
1941   case MIToken::Error:
1942     return true;
1943   case MIToken::Identifier:
1944     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1945       Dest = MachineOperand::CreateRegMask(RegMask);
1946       lex();
1947       break;
1948     } else
1949       return parseCustomRegisterMaskOperand(Dest);
1950   default:
1951     // FIXME: Parse the MCSymbol machine operand.
1952     return error("expected a machine operand");
1953   }
1954   return false;
1955 }
1956 
1957 bool MIParser::parseMachineOperandAndTargetFlags(
1958     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1959   unsigned TF = 0;
1960   bool HasTargetFlags = false;
1961   if (Token.is(MIToken::kw_target_flags)) {
1962     HasTargetFlags = true;
1963     lex();
1964     if (expectAndConsume(MIToken::lparen))
1965       return true;
1966     if (Token.isNot(MIToken::Identifier))
1967       return error("expected the name of the target flag");
1968     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1969       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1970         return error("use of undefined target flag '" + Token.stringValue() +
1971                      "'");
1972     }
1973     lex();
1974     while (Token.is(MIToken::comma)) {
1975       lex();
1976       if (Token.isNot(MIToken::Identifier))
1977         return error("expected the name of the target flag");
1978       unsigned BitFlag = 0;
1979       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1980         return error("use of undefined target flag '" + Token.stringValue() +
1981                      "'");
1982       // TODO: Report an error when using a duplicate bit target flag.
1983       TF |= BitFlag;
1984       lex();
1985     }
1986     if (expectAndConsume(MIToken::rparen))
1987       return true;
1988   }
1989   auto Loc = Token.location();
1990   if (parseMachineOperand(Dest, TiedDefIdx))
1991     return true;
1992   if (!HasTargetFlags)
1993     return false;
1994   if (Dest.isReg())
1995     return error(Loc, "register operands can't have target flags");
1996   Dest.setTargetFlags(TF);
1997   return false;
1998 }
1999 
2000 bool MIParser::parseOffset(int64_t &Offset) {
2001   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2002     return false;
2003   StringRef Sign = Token.range();
2004   bool IsNegative = Token.is(MIToken::minus);
2005   lex();
2006   if (Token.isNot(MIToken::IntegerLiteral))
2007     return error("expected an integer literal after '" + Sign + "'");
2008   if (Token.integerValue().getMinSignedBits() > 64)
2009     return error("expected 64-bit integer (too large)");
2010   Offset = Token.integerValue().getExtValue();
2011   if (IsNegative)
2012     Offset = -Offset;
2013   lex();
2014   return false;
2015 }
2016 
2017 bool MIParser::parseAlignment(unsigned &Alignment) {
2018   assert(Token.is(MIToken::kw_align));
2019   lex();
2020   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2021     return error("expected an integer literal after 'align'");
2022   if (getUnsigned(Alignment))
2023     return true;
2024   lex();
2025   return false;
2026 }
2027 
2028 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2029   int64_t Offset = 0;
2030   if (parseOffset(Offset))
2031     return true;
2032   Op.setOffset(Offset);
2033   return false;
2034 }
2035 
2036 bool MIParser::parseIRValue(const Value *&V) {
2037   switch (Token.kind()) {
2038   case MIToken::NamedIRValue: {
2039     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
2040     break;
2041   }
2042   case MIToken::IRValue: {
2043     unsigned SlotNumber = 0;
2044     if (getUnsigned(SlotNumber))
2045       return true;
2046     V = getIRValue(SlotNumber);
2047     break;
2048   }
2049   case MIToken::NamedGlobalValue:
2050   case MIToken::GlobalValue: {
2051     GlobalValue *GV = nullptr;
2052     if (parseGlobalValue(GV))
2053       return true;
2054     V = GV;
2055     break;
2056   }
2057   case MIToken::QuotedIRValue: {
2058     const Constant *C = nullptr;
2059     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2060       return true;
2061     V = C;
2062     break;
2063   }
2064   default:
2065     llvm_unreachable("The current token should be an IR block reference");
2066   }
2067   if (!V)
2068     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2069   return false;
2070 }
2071 
2072 bool MIParser::getUint64(uint64_t &Result) {
2073   if (Token.hasIntegerValue()) {
2074     if (Token.integerValue().getActiveBits() > 64)
2075       return error("expected 64-bit integer (too large)");
2076     Result = Token.integerValue().getZExtValue();
2077     return false;
2078   }
2079   if (Token.is(MIToken::HexLiteral)) {
2080     APInt A;
2081     if (getHexUint(A))
2082       return true;
2083     if (A.getBitWidth() > 64)
2084       return error("expected 64-bit integer (too large)");
2085     Result = A.getZExtValue();
2086     return false;
2087   }
2088   return true;
2089 }
2090 
2091 bool MIParser::getHexUint(APInt &Result) {
2092   assert(Token.is(MIToken::HexLiteral));
2093   StringRef S = Token.range();
2094   assert(S[0] == '0' && tolower(S[1]) == 'x');
2095   // This could be a floating point literal with a special prefix.
2096   if (!isxdigit(S[2]))
2097     return true;
2098   StringRef V = S.substr(2);
2099   APInt A(V.size()*4, V, 16);
2100 
2101   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2102   // sure it isn't the case before constructing result.
2103   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2104   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2105   return false;
2106 }
2107 
2108 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2109   const auto OldFlags = Flags;
2110   switch (Token.kind()) {
2111   case MIToken::kw_volatile:
2112     Flags |= MachineMemOperand::MOVolatile;
2113     break;
2114   case MIToken::kw_non_temporal:
2115     Flags |= MachineMemOperand::MONonTemporal;
2116     break;
2117   case MIToken::kw_dereferenceable:
2118     Flags |= MachineMemOperand::MODereferenceable;
2119     break;
2120   case MIToken::kw_invariant:
2121     Flags |= MachineMemOperand::MOInvariant;
2122     break;
2123   case MIToken::StringConstant: {
2124     MachineMemOperand::Flags TF;
2125     if (getMMOTargetFlag(Token.stringValue(), TF))
2126       return error("use of undefined target MMO flag '" + Token.stringValue() +
2127                    "'");
2128     Flags |= TF;
2129     break;
2130   }
2131   default:
2132     llvm_unreachable("The current token should be a memory operand flag");
2133   }
2134   if (OldFlags == Flags)
2135     // We know that the same flag is specified more than once when the flags
2136     // weren't modified.
2137     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2138   lex();
2139   return false;
2140 }
2141 
2142 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2143   switch (Token.kind()) {
2144   case MIToken::kw_stack:
2145     PSV = MF.getPSVManager().getStack();
2146     break;
2147   case MIToken::kw_got:
2148     PSV = MF.getPSVManager().getGOT();
2149     break;
2150   case MIToken::kw_jump_table:
2151     PSV = MF.getPSVManager().getJumpTable();
2152     break;
2153   case MIToken::kw_constant_pool:
2154     PSV = MF.getPSVManager().getConstantPool();
2155     break;
2156   case MIToken::FixedStackObject: {
2157     int FI;
2158     if (parseFixedStackFrameIndex(FI))
2159       return true;
2160     PSV = MF.getPSVManager().getFixedStack(FI);
2161     // The token was already consumed, so use return here instead of break.
2162     return false;
2163   }
2164   case MIToken::StackObject: {
2165     int FI;
2166     if (parseStackFrameIndex(FI))
2167       return true;
2168     PSV = MF.getPSVManager().getFixedStack(FI);
2169     // The token was already consumed, so use return here instead of break.
2170     return false;
2171   }
2172   case MIToken::kw_call_entry:
2173     lex();
2174     switch (Token.kind()) {
2175     case MIToken::GlobalValue:
2176     case MIToken::NamedGlobalValue: {
2177       GlobalValue *GV = nullptr;
2178       if (parseGlobalValue(GV))
2179         return true;
2180       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2181       break;
2182     }
2183     case MIToken::ExternalSymbol:
2184       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2185           MF.createExternalSymbolName(Token.stringValue()));
2186       break;
2187     default:
2188       return error(
2189           "expected a global value or an external symbol after 'call-entry'");
2190     }
2191     break;
2192   default:
2193     llvm_unreachable("The current token should be pseudo source value");
2194   }
2195   lex();
2196   return false;
2197 }
2198 
2199 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2200   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2201       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2202       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2203       Token.is(MIToken::kw_call_entry)) {
2204     const PseudoSourceValue *PSV = nullptr;
2205     if (parseMemoryPseudoSourceValue(PSV))
2206       return true;
2207     int64_t Offset = 0;
2208     if (parseOffset(Offset))
2209       return true;
2210     Dest = MachinePointerInfo(PSV, Offset);
2211     return false;
2212   }
2213   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2214       Token.isNot(MIToken::GlobalValue) &&
2215       Token.isNot(MIToken::NamedGlobalValue) &&
2216       Token.isNot(MIToken::QuotedIRValue))
2217     return error("expected an IR value reference");
2218   const Value *V = nullptr;
2219   if (parseIRValue(V))
2220     return true;
2221   if (!V->getType()->isPointerTy())
2222     return error("expected a pointer IR value");
2223   lex();
2224   int64_t Offset = 0;
2225   if (parseOffset(Offset))
2226     return true;
2227   Dest = MachinePointerInfo(V, Offset);
2228   return false;
2229 }
2230 
2231 bool MIParser::parseOptionalScope(LLVMContext &Context,
2232                                   SyncScope::ID &SSID) {
2233   SSID = SyncScope::System;
2234   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2235     lex();
2236     if (expectAndConsume(MIToken::lparen))
2237       return error("expected '(' in syncscope");
2238 
2239     std::string SSN;
2240     if (parseStringConstant(SSN))
2241       return true;
2242 
2243     SSID = Context.getOrInsertSyncScopeID(SSN);
2244     if (expectAndConsume(MIToken::rparen))
2245       return error("expected ')' in syncscope");
2246   }
2247 
2248   return false;
2249 }
2250 
2251 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2252   Order = AtomicOrdering::NotAtomic;
2253   if (Token.isNot(MIToken::Identifier))
2254     return false;
2255 
2256   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2257               .Case("unordered", AtomicOrdering::Unordered)
2258               .Case("monotonic", AtomicOrdering::Monotonic)
2259               .Case("acquire", AtomicOrdering::Acquire)
2260               .Case("release", AtomicOrdering::Release)
2261               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2262               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2263               .Default(AtomicOrdering::NotAtomic);
2264 
2265   if (Order != AtomicOrdering::NotAtomic) {
2266     lex();
2267     return false;
2268   }
2269 
2270   return error("expected an atomic scope, ordering or a size integer literal");
2271 }
2272 
2273 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2274   if (expectAndConsume(MIToken::lparen))
2275     return true;
2276   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2277   while (Token.isMemoryOperandFlag()) {
2278     if (parseMemoryOperandFlag(Flags))
2279       return true;
2280   }
2281   if (Token.isNot(MIToken::Identifier) ||
2282       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2283     return error("expected 'load' or 'store' memory operation");
2284   if (Token.stringValue() == "load")
2285     Flags |= MachineMemOperand::MOLoad;
2286   else
2287     Flags |= MachineMemOperand::MOStore;
2288   lex();
2289 
2290   // Optional 'store' for operands that both load and store.
2291   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2292     Flags |= MachineMemOperand::MOStore;
2293     lex();
2294   }
2295 
2296   // Optional synchronization scope.
2297   SyncScope::ID SSID;
2298   if (parseOptionalScope(MF.getFunction()->getContext(), SSID))
2299     return true;
2300 
2301   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2302   AtomicOrdering Order, FailureOrder;
2303   if (parseOptionalAtomicOrdering(Order))
2304     return true;
2305 
2306   if (parseOptionalAtomicOrdering(FailureOrder))
2307     return true;
2308 
2309   if (Token.isNot(MIToken::IntegerLiteral))
2310     return error("expected the size integer literal after memory operation");
2311   uint64_t Size;
2312   if (getUint64(Size))
2313     return true;
2314   lex();
2315 
2316   MachinePointerInfo Ptr = MachinePointerInfo();
2317   if (Token.is(MIToken::Identifier)) {
2318     const char *Word =
2319         ((Flags & MachineMemOperand::MOLoad) &&
2320          (Flags & MachineMemOperand::MOStore))
2321             ? "on"
2322             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2323     if (Token.stringValue() != Word)
2324       return error(Twine("expected '") + Word + "'");
2325     lex();
2326 
2327     if (parseMachinePointerInfo(Ptr))
2328       return true;
2329   }
2330   unsigned BaseAlignment = Size;
2331   AAMDNodes AAInfo;
2332   MDNode *Range = nullptr;
2333   while (consumeIfPresent(MIToken::comma)) {
2334     switch (Token.kind()) {
2335     case MIToken::kw_align:
2336       if (parseAlignment(BaseAlignment))
2337         return true;
2338       break;
2339     case MIToken::md_tbaa:
2340       lex();
2341       if (parseMDNode(AAInfo.TBAA))
2342         return true;
2343       break;
2344     case MIToken::md_alias_scope:
2345       lex();
2346       if (parseMDNode(AAInfo.Scope))
2347         return true;
2348       break;
2349     case MIToken::md_noalias:
2350       lex();
2351       if (parseMDNode(AAInfo.NoAlias))
2352         return true;
2353       break;
2354     case MIToken::md_range:
2355       lex();
2356       if (parseMDNode(Range))
2357         return true;
2358       break;
2359     // TODO: Report an error on duplicate metadata nodes.
2360     default:
2361       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2362                    "'!noalias' or '!range'");
2363     }
2364   }
2365   if (expectAndConsume(MIToken::rparen))
2366     return true;
2367   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2368                                  SSID, Order, FailureOrder);
2369   return false;
2370 }
2371 
2372 void MIParser::initNames2InstrOpCodes() {
2373   if (!Names2InstrOpCodes.empty())
2374     return;
2375   const auto *TII = MF.getSubtarget().getInstrInfo();
2376   assert(TII && "Expected target instruction info");
2377   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2378     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2379 }
2380 
2381 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2382   initNames2InstrOpCodes();
2383   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2384   if (InstrInfo == Names2InstrOpCodes.end())
2385     return true;
2386   OpCode = InstrInfo->getValue();
2387   return false;
2388 }
2389 
2390 void MIParser::initNames2Regs() {
2391   if (!Names2Regs.empty())
2392     return;
2393   // The '%noreg' register is the register 0.
2394   Names2Regs.insert(std::make_pair("noreg", 0));
2395   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2396   assert(TRI && "Expected target register info");
2397   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2398     bool WasInserted =
2399         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2400             .second;
2401     (void)WasInserted;
2402     assert(WasInserted && "Expected registers to be unique case-insensitively");
2403   }
2404 }
2405 
2406 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2407   initNames2Regs();
2408   auto RegInfo = Names2Regs.find(RegName);
2409   if (RegInfo == Names2Regs.end())
2410     return true;
2411   Reg = RegInfo->getValue();
2412   return false;
2413 }
2414 
2415 void MIParser::initNames2RegMasks() {
2416   if (!Names2RegMasks.empty())
2417     return;
2418   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2419   assert(TRI && "Expected target register info");
2420   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2421   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2422   assert(RegMasks.size() == RegMaskNames.size());
2423   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2424     Names2RegMasks.insert(
2425         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2426 }
2427 
2428 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2429   initNames2RegMasks();
2430   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2431   if (RegMaskInfo == Names2RegMasks.end())
2432     return nullptr;
2433   return RegMaskInfo->getValue();
2434 }
2435 
2436 void MIParser::initNames2SubRegIndices() {
2437   if (!Names2SubRegIndices.empty())
2438     return;
2439   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2440   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2441     Names2SubRegIndices.insert(
2442         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2443 }
2444 
2445 unsigned MIParser::getSubRegIndex(StringRef Name) {
2446   initNames2SubRegIndices();
2447   auto SubRegInfo = Names2SubRegIndices.find(Name);
2448   if (SubRegInfo == Names2SubRegIndices.end())
2449     return 0;
2450   return SubRegInfo->getValue();
2451 }
2452 
2453 static void initSlots2BasicBlocks(
2454     const Function &F,
2455     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2456   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2457   MST.incorporateFunction(F);
2458   for (auto &BB : F) {
2459     if (BB.hasName())
2460       continue;
2461     int Slot = MST.getLocalSlot(&BB);
2462     if (Slot == -1)
2463       continue;
2464     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2465   }
2466 }
2467 
2468 static const BasicBlock *getIRBlockFromSlot(
2469     unsigned Slot,
2470     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2471   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2472   if (BlockInfo == Slots2BasicBlocks.end())
2473     return nullptr;
2474   return BlockInfo->second;
2475 }
2476 
2477 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2478   if (Slots2BasicBlocks.empty())
2479     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2480   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2481 }
2482 
2483 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2484   if (&F == MF.getFunction())
2485     return getIRBlock(Slot);
2486   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2487   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2488   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2489 }
2490 
2491 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2492                            DenseMap<unsigned, const Value *> &Slots2Values) {
2493   int Slot = MST.getLocalSlot(V);
2494   if (Slot == -1)
2495     return;
2496   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2497 }
2498 
2499 /// Creates the mapping from slot numbers to function's unnamed IR values.
2500 static void initSlots2Values(const Function &F,
2501                              DenseMap<unsigned, const Value *> &Slots2Values) {
2502   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2503   MST.incorporateFunction(F);
2504   for (const auto &Arg : F.args())
2505     mapValueToSlot(&Arg, MST, Slots2Values);
2506   for (const auto &BB : F) {
2507     mapValueToSlot(&BB, MST, Slots2Values);
2508     for (const auto &I : BB)
2509       mapValueToSlot(&I, MST, Slots2Values);
2510   }
2511 }
2512 
2513 const Value *MIParser::getIRValue(unsigned Slot) {
2514   if (Slots2Values.empty())
2515     initSlots2Values(*MF.getFunction(), Slots2Values);
2516   auto ValueInfo = Slots2Values.find(Slot);
2517   if (ValueInfo == Slots2Values.end())
2518     return nullptr;
2519   return ValueInfo->second;
2520 }
2521 
2522 void MIParser::initNames2TargetIndices() {
2523   if (!Names2TargetIndices.empty())
2524     return;
2525   const auto *TII = MF.getSubtarget().getInstrInfo();
2526   assert(TII && "Expected target instruction info");
2527   auto Indices = TII->getSerializableTargetIndices();
2528   for (const auto &I : Indices)
2529     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2530 }
2531 
2532 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2533   initNames2TargetIndices();
2534   auto IndexInfo = Names2TargetIndices.find(Name);
2535   if (IndexInfo == Names2TargetIndices.end())
2536     return true;
2537   Index = IndexInfo->second;
2538   return false;
2539 }
2540 
2541 void MIParser::initNames2DirectTargetFlags() {
2542   if (!Names2DirectTargetFlags.empty())
2543     return;
2544   const auto *TII = MF.getSubtarget().getInstrInfo();
2545   assert(TII && "Expected target instruction info");
2546   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2547   for (const auto &I : Flags)
2548     Names2DirectTargetFlags.insert(
2549         std::make_pair(StringRef(I.second), I.first));
2550 }
2551 
2552 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2553   initNames2DirectTargetFlags();
2554   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2555   if (FlagInfo == Names2DirectTargetFlags.end())
2556     return true;
2557   Flag = FlagInfo->second;
2558   return false;
2559 }
2560 
2561 void MIParser::initNames2BitmaskTargetFlags() {
2562   if (!Names2BitmaskTargetFlags.empty())
2563     return;
2564   const auto *TII = MF.getSubtarget().getInstrInfo();
2565   assert(TII && "Expected target instruction info");
2566   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2567   for (const auto &I : Flags)
2568     Names2BitmaskTargetFlags.insert(
2569         std::make_pair(StringRef(I.second), I.first));
2570 }
2571 
2572 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2573   initNames2BitmaskTargetFlags();
2574   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2575   if (FlagInfo == Names2BitmaskTargetFlags.end())
2576     return true;
2577   Flag = FlagInfo->second;
2578   return false;
2579 }
2580 
2581 void MIParser::initNames2MMOTargetFlags() {
2582   if (!Names2MMOTargetFlags.empty())
2583     return;
2584   const auto *TII = MF.getSubtarget().getInstrInfo();
2585   assert(TII && "Expected target instruction info");
2586   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2587   for (const auto &I : Flags)
2588     Names2MMOTargetFlags.insert(
2589         std::make_pair(StringRef(I.second), I.first));
2590 }
2591 
2592 bool MIParser::getMMOTargetFlag(StringRef Name,
2593                                 MachineMemOperand::Flags &Flag) {
2594   initNames2MMOTargetFlags();
2595   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2596   if (FlagInfo == Names2MMOTargetFlags.end())
2597     return true;
2598   Flag = FlagInfo->second;
2599   return false;
2600 }
2601 
2602 bool MIParser::parseStringConstant(std::string &Result) {
2603   if (Token.isNot(MIToken::StringConstant))
2604     return error("expected string constant");
2605   Result = Token.stringValue();
2606   lex();
2607   return false;
2608 }
2609 
2610 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2611                                              StringRef Src,
2612                                              SMDiagnostic &Error) {
2613   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2614 }
2615 
2616 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2617                                     StringRef Src, SMDiagnostic &Error) {
2618   return MIParser(PFS, Error, Src).parseBasicBlocks();
2619 }
2620 
2621 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2622                              MachineBasicBlock *&MBB, StringRef Src,
2623                              SMDiagnostic &Error) {
2624   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2625 }
2626 
2627 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2628                                   unsigned &Reg, StringRef Src,
2629                                   SMDiagnostic &Error) {
2630   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2631 }
2632 
2633 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2634                                        unsigned &Reg, StringRef Src,
2635                                        SMDiagnostic &Error) {
2636   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2637 }
2638 
2639 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2640                                          VRegInfo *&Info, StringRef Src,
2641                                          SMDiagnostic &Error) {
2642   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2643 }
2644 
2645 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2646                                      int &FI, StringRef Src,
2647                                      SMDiagnostic &Error) {
2648   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2649 }
2650 
2651 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2652                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2653   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2654 }
2655