1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueSymbolTable.h" 57 #include "llvm/MC/LaneBitmask.h" 58 #include "llvm/MC/MCDwarf.h" 59 #include "llvm/MC/MCInstrDesc.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/SMLoc.h" 68 #include "llvm/Support/SourceMgr.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cctype> 75 #include <cstddef> 76 #include <cstdint> 77 #include <limits> 78 #include <string> 79 #include <utility> 80 81 using namespace llvm; 82 83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 84 SourceMgr &SM, const SlotMapping &IRSlots, 85 const Name2RegClassMap &Names2RegClasses, 86 const Name2RegBankMap &Names2RegBanks) 87 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 88 Names2RegBanks(Names2RegBanks) { 89 } 90 91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 92 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 93 if (I.second) { 94 MachineRegisterInfo &MRI = MF.getRegInfo(); 95 VRegInfo *Info = new (Allocator) VRegInfo; 96 Info->VReg = MRI.createIncompleteVirtualRegister(); 97 I.first->second = Info; 98 } 99 return *I.first->second; 100 } 101 102 namespace { 103 104 /// A wrapper struct around the 'MachineOperand' struct that includes a source 105 /// range and other attributes. 106 struct ParsedMachineOperand { 107 MachineOperand Operand; 108 StringRef::iterator Begin; 109 StringRef::iterator End; 110 Optional<unsigned> TiedDefIdx; 111 112 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 113 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 114 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 115 if (TiedDefIdx) 116 assert(Operand.isReg() && Operand.isUse() && 117 "Only used register operands can be tied"); 118 } 119 }; 120 121 class MIParser { 122 MachineFunction &MF; 123 SMDiagnostic &Error; 124 StringRef Source, CurrentSource; 125 MIToken Token; 126 PerFunctionMIParsingState &PFS; 127 /// Maps from instruction names to op codes. 128 StringMap<unsigned> Names2InstrOpCodes; 129 /// Maps from register names to registers. 130 StringMap<unsigned> Names2Regs; 131 /// Maps from register mask names to register masks. 132 StringMap<const uint32_t *> Names2RegMasks; 133 /// Maps from subregister names to subregister indices. 134 StringMap<unsigned> Names2SubRegIndices; 135 /// Maps from slot numbers to function's unnamed basic blocks. 136 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 137 /// Maps from slot numbers to function's unnamed values. 138 DenseMap<unsigned, const Value *> Slots2Values; 139 /// Maps from target index names to target indices. 140 StringMap<int> Names2TargetIndices; 141 /// Maps from direct target flag names to the direct target flag values. 142 StringMap<unsigned> Names2DirectTargetFlags; 143 /// Maps from direct target flag names to the bitmask target flag values. 144 StringMap<unsigned> Names2BitmaskTargetFlags; 145 /// Maps from MMO target flag names to MMO target flag values. 146 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 147 148 public: 149 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 150 StringRef Source); 151 152 /// \p SkipChar gives the number of characters to skip before looking 153 /// for the next token. 154 void lex(unsigned SkipChar = 0); 155 156 /// Report an error at the current location with the given message. 157 /// 158 /// This function always return true. 159 bool error(const Twine &Msg); 160 161 /// Report an error at the given location with the given message. 162 /// 163 /// This function always return true. 164 bool error(StringRef::iterator Loc, const Twine &Msg); 165 166 bool 167 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 168 bool parseBasicBlocks(); 169 bool parse(MachineInstr *&MI); 170 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 171 bool parseStandaloneNamedRegister(unsigned &Reg); 172 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 173 bool parseStandaloneRegister(unsigned &Reg); 174 bool parseStandaloneStackObject(int &FI); 175 bool parseStandaloneMDNode(MDNode *&Node); 176 177 bool 178 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 179 bool parseBasicBlock(MachineBasicBlock &MBB, 180 MachineBasicBlock *&AddFalthroughFrom); 181 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 182 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 183 184 bool parseNamedRegister(unsigned &Reg); 185 bool parseVirtualRegister(VRegInfo *&Info); 186 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 187 bool parseRegisterFlag(unsigned &Flags); 188 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 189 bool parseSubRegisterIndex(unsigned &SubReg); 190 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 191 bool parseRegisterOperand(MachineOperand &Dest, 192 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 193 bool parseImmediateOperand(MachineOperand &Dest); 194 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 195 const Constant *&C); 196 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 197 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 198 bool parseTypedImmediateOperand(MachineOperand &Dest); 199 bool parseFPImmediateOperand(MachineOperand &Dest); 200 bool parseMBBReference(MachineBasicBlock *&MBB); 201 bool parseMBBOperand(MachineOperand &Dest); 202 bool parseStackFrameIndex(int &FI); 203 bool parseStackObjectOperand(MachineOperand &Dest); 204 bool parseFixedStackFrameIndex(int &FI); 205 bool parseFixedStackObjectOperand(MachineOperand &Dest); 206 bool parseGlobalValue(GlobalValue *&GV); 207 bool parseGlobalAddressOperand(MachineOperand &Dest); 208 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 209 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 210 bool parseJumpTableIndexOperand(MachineOperand &Dest); 211 bool parseExternalSymbolOperand(MachineOperand &Dest); 212 bool parseMDNode(MDNode *&Node); 213 bool parseDIExpression(MDNode *&Node); 214 bool parseMetadataOperand(MachineOperand &Dest); 215 bool parseCFIOffset(int &Offset); 216 bool parseCFIRegister(unsigned &Reg); 217 bool parseCFIOperand(MachineOperand &Dest); 218 bool parseIRBlock(BasicBlock *&BB, const Function &F); 219 bool parseBlockAddressOperand(MachineOperand &Dest); 220 bool parseIntrinsicOperand(MachineOperand &Dest); 221 bool parsePredicateOperand(MachineOperand &Dest); 222 bool parseTargetIndexOperand(MachineOperand &Dest); 223 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 224 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 225 bool parseMachineOperand(MachineOperand &Dest, 226 Optional<unsigned> &TiedDefIdx); 227 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 228 Optional<unsigned> &TiedDefIdx); 229 bool parseOffset(int64_t &Offset); 230 bool parseAlignment(unsigned &Alignment); 231 bool parseOperandsOffset(MachineOperand &Op); 232 bool parseIRValue(const Value *&V); 233 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 234 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 235 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 236 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 237 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 238 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 239 240 private: 241 /// Convert the integer literal in the current token into an unsigned integer. 242 /// 243 /// Return true if an error occurred. 244 bool getUnsigned(unsigned &Result); 245 246 /// Convert the integer literal in the current token into an uint64. 247 /// 248 /// Return true if an error occurred. 249 bool getUint64(uint64_t &Result); 250 251 /// Convert the hexadecimal literal in the current token into an unsigned 252 /// APInt with a minimum bitwidth required to represent the value. 253 /// 254 /// Return true if the literal does not represent an integer value. 255 bool getHexUint(APInt &Result); 256 257 /// If the current token is of the given kind, consume it and return false. 258 /// Otherwise report an error and return true. 259 bool expectAndConsume(MIToken::TokenKind TokenKind); 260 261 /// If the current token is of the given kind, consume it and return true. 262 /// Otherwise return false. 263 bool consumeIfPresent(MIToken::TokenKind TokenKind); 264 265 void initNames2InstrOpCodes(); 266 267 /// Try to convert an instruction name to an opcode. Return true if the 268 /// instruction name is invalid. 269 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 270 271 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 272 273 bool assignRegisterTies(MachineInstr &MI, 274 ArrayRef<ParsedMachineOperand> Operands); 275 276 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 277 const MCInstrDesc &MCID); 278 279 void initNames2Regs(); 280 281 /// Try to convert a register name to a register number. Return true if the 282 /// register name is invalid. 283 bool getRegisterByName(StringRef RegName, unsigned &Reg); 284 285 void initNames2RegMasks(); 286 287 /// Check if the given identifier is a name of a register mask. 288 /// 289 /// Return null if the identifier isn't a register mask. 290 const uint32_t *getRegMask(StringRef Identifier); 291 292 void initNames2SubRegIndices(); 293 294 /// Check if the given identifier is a name of a subregister index. 295 /// 296 /// Return 0 if the name isn't a subregister index class. 297 unsigned getSubRegIndex(StringRef Name); 298 299 const BasicBlock *getIRBlock(unsigned Slot); 300 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 301 302 const Value *getIRValue(unsigned Slot); 303 304 void initNames2TargetIndices(); 305 306 /// Try to convert a name of target index to the corresponding target index. 307 /// 308 /// Return true if the name isn't a name of a target index. 309 bool getTargetIndex(StringRef Name, int &Index); 310 311 void initNames2DirectTargetFlags(); 312 313 /// Try to convert a name of a direct target flag to the corresponding 314 /// target flag. 315 /// 316 /// Return true if the name isn't a name of a direct flag. 317 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 318 319 void initNames2BitmaskTargetFlags(); 320 321 /// Try to convert a name of a bitmask target flag to the corresponding 322 /// target flag. 323 /// 324 /// Return true if the name isn't a name of a bitmask target flag. 325 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 326 327 void initNames2MMOTargetFlags(); 328 329 /// Try to convert a name of a MachineMemOperand target flag to the 330 /// corresponding target flag. 331 /// 332 /// Return true if the name isn't a name of a target MMO flag. 333 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 334 335 /// parseStringConstant 336 /// ::= StringConstant 337 bool parseStringConstant(std::string &Result); 338 }; 339 340 } // end anonymous namespace 341 342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 343 StringRef Source) 344 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 345 {} 346 347 void MIParser::lex(unsigned SkipChar) { 348 CurrentSource = lexMIToken( 349 CurrentSource.data() + SkipChar, Token, 350 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 351 } 352 353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 354 355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 356 const SourceMgr &SM = *PFS.SM; 357 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 358 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 359 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 360 // Create an ordinary diagnostic when the source manager's buffer is the 361 // source string. 362 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 363 return true; 364 } 365 // Create a diagnostic for a YAML string literal. 366 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 367 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 368 Source, None, None); 369 return true; 370 } 371 372 static const char *toString(MIToken::TokenKind TokenKind) { 373 switch (TokenKind) { 374 case MIToken::comma: 375 return "','"; 376 case MIToken::equal: 377 return "'='"; 378 case MIToken::colon: 379 return "':'"; 380 case MIToken::lparen: 381 return "'('"; 382 case MIToken::rparen: 383 return "')'"; 384 default: 385 return "<unknown token>"; 386 } 387 } 388 389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 390 if (Token.isNot(TokenKind)) 391 return error(Twine("expected ") + toString(TokenKind)); 392 lex(); 393 return false; 394 } 395 396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 397 if (Token.isNot(TokenKind)) 398 return false; 399 lex(); 400 return true; 401 } 402 403 bool MIParser::parseBasicBlockDefinition( 404 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 405 assert(Token.is(MIToken::MachineBasicBlockLabel)); 406 unsigned ID = 0; 407 if (getUnsigned(ID)) 408 return true; 409 auto Loc = Token.location(); 410 auto Name = Token.stringValue(); 411 lex(); 412 bool HasAddressTaken = false; 413 bool IsLandingPad = false; 414 unsigned Alignment = 0; 415 BasicBlock *BB = nullptr; 416 if (consumeIfPresent(MIToken::lparen)) { 417 do { 418 // TODO: Report an error when multiple same attributes are specified. 419 switch (Token.kind()) { 420 case MIToken::kw_address_taken: 421 HasAddressTaken = true; 422 lex(); 423 break; 424 case MIToken::kw_landing_pad: 425 IsLandingPad = true; 426 lex(); 427 break; 428 case MIToken::kw_align: 429 if (parseAlignment(Alignment)) 430 return true; 431 break; 432 case MIToken::IRBlock: 433 // TODO: Report an error when both name and ir block are specified. 434 if (parseIRBlock(BB, *MF.getFunction())) 435 return true; 436 lex(); 437 break; 438 default: 439 break; 440 } 441 } while (consumeIfPresent(MIToken::comma)); 442 if (expectAndConsume(MIToken::rparen)) 443 return true; 444 } 445 if (expectAndConsume(MIToken::colon)) 446 return true; 447 448 if (!Name.empty()) { 449 BB = dyn_cast_or_null<BasicBlock>( 450 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 451 if (!BB) 452 return error(Loc, Twine("basic block '") + Name + 453 "' is not defined in the function '" + 454 MF.getName() + "'"); 455 } 456 auto *MBB = MF.CreateMachineBasicBlock(BB); 457 MF.insert(MF.end(), MBB); 458 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 459 if (!WasInserted) 460 return error(Loc, Twine("redefinition of machine basic block with id #") + 461 Twine(ID)); 462 if (Alignment) 463 MBB->setAlignment(Alignment); 464 if (HasAddressTaken) 465 MBB->setHasAddressTaken(); 466 MBB->setIsEHPad(IsLandingPad); 467 return false; 468 } 469 470 bool MIParser::parseBasicBlockDefinitions( 471 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 472 lex(); 473 // Skip until the first machine basic block. 474 while (Token.is(MIToken::Newline)) 475 lex(); 476 if (Token.isErrorOrEOF()) 477 return Token.isError(); 478 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 479 return error("expected a basic block definition before instructions"); 480 unsigned BraceDepth = 0; 481 do { 482 if (parseBasicBlockDefinition(MBBSlots)) 483 return true; 484 bool IsAfterNewline = false; 485 // Skip until the next machine basic block. 486 while (true) { 487 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 488 Token.isErrorOrEOF()) 489 break; 490 else if (Token.is(MIToken::MachineBasicBlockLabel)) 491 return error("basic block definition should be located at the start of " 492 "the line"); 493 else if (consumeIfPresent(MIToken::Newline)) { 494 IsAfterNewline = true; 495 continue; 496 } 497 IsAfterNewline = false; 498 if (Token.is(MIToken::lbrace)) 499 ++BraceDepth; 500 if (Token.is(MIToken::rbrace)) { 501 if (!BraceDepth) 502 return error("extraneous closing brace ('}')"); 503 --BraceDepth; 504 } 505 lex(); 506 } 507 // Verify that we closed all of the '{' at the end of a file or a block. 508 if (!Token.isError() && BraceDepth) 509 return error("expected '}'"); // FIXME: Report a note that shows '{'. 510 } while (!Token.isErrorOrEOF()); 511 return Token.isError(); 512 } 513 514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 515 assert(Token.is(MIToken::kw_liveins)); 516 lex(); 517 if (expectAndConsume(MIToken::colon)) 518 return true; 519 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 520 return false; 521 do { 522 if (Token.isNot(MIToken::NamedRegister)) 523 return error("expected a named register"); 524 unsigned Reg = 0; 525 if (parseNamedRegister(Reg)) 526 return true; 527 lex(); 528 LaneBitmask Mask = LaneBitmask::getAll(); 529 if (consumeIfPresent(MIToken::colon)) { 530 // Parse lane mask. 531 if (Token.isNot(MIToken::IntegerLiteral) && 532 Token.isNot(MIToken::HexLiteral)) 533 return error("expected a lane mask"); 534 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 535 "Use correct get-function for lane mask"); 536 LaneBitmask::Type V; 537 if (getUnsigned(V)) 538 return error("invalid lane mask value"); 539 Mask = LaneBitmask(V); 540 lex(); 541 } 542 MBB.addLiveIn(Reg, Mask); 543 } while (consumeIfPresent(MIToken::comma)); 544 return false; 545 } 546 547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 548 assert(Token.is(MIToken::kw_successors)); 549 lex(); 550 if (expectAndConsume(MIToken::colon)) 551 return true; 552 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 553 return false; 554 do { 555 if (Token.isNot(MIToken::MachineBasicBlock)) 556 return error("expected a machine basic block reference"); 557 MachineBasicBlock *SuccMBB = nullptr; 558 if (parseMBBReference(SuccMBB)) 559 return true; 560 lex(); 561 unsigned Weight = 0; 562 if (consumeIfPresent(MIToken::lparen)) { 563 if (Token.isNot(MIToken::IntegerLiteral) && 564 Token.isNot(MIToken::HexLiteral)) 565 return error("expected an integer literal after '('"); 566 if (getUnsigned(Weight)) 567 return true; 568 lex(); 569 if (expectAndConsume(MIToken::rparen)) 570 return true; 571 } 572 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 573 } while (consumeIfPresent(MIToken::comma)); 574 MBB.normalizeSuccProbs(); 575 return false; 576 } 577 578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 579 MachineBasicBlock *&AddFalthroughFrom) { 580 // Skip the definition. 581 assert(Token.is(MIToken::MachineBasicBlockLabel)); 582 lex(); 583 if (consumeIfPresent(MIToken::lparen)) { 584 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 585 lex(); 586 consumeIfPresent(MIToken::rparen); 587 } 588 consumeIfPresent(MIToken::colon); 589 590 // Parse the liveins and successors. 591 // N.B: Multiple lists of successors and liveins are allowed and they're 592 // merged into one. 593 // Example: 594 // liveins: %edi 595 // liveins: %esi 596 // 597 // is equivalent to 598 // liveins: %edi, %esi 599 bool ExplicitSuccessors = false; 600 while (true) { 601 if (Token.is(MIToken::kw_successors)) { 602 if (parseBasicBlockSuccessors(MBB)) 603 return true; 604 ExplicitSuccessors = true; 605 } else if (Token.is(MIToken::kw_liveins)) { 606 if (parseBasicBlockLiveins(MBB)) 607 return true; 608 } else if (consumeIfPresent(MIToken::Newline)) { 609 continue; 610 } else 611 break; 612 if (!Token.isNewlineOrEOF()) 613 return error("expected line break at the end of a list"); 614 lex(); 615 } 616 617 // Parse the instructions. 618 bool IsInBundle = false; 619 MachineInstr *PrevMI = nullptr; 620 while (!Token.is(MIToken::MachineBasicBlockLabel) && 621 !Token.is(MIToken::Eof)) { 622 if (consumeIfPresent(MIToken::Newline)) 623 continue; 624 if (consumeIfPresent(MIToken::rbrace)) { 625 // The first parsing pass should verify that all closing '}' have an 626 // opening '{'. 627 assert(IsInBundle); 628 IsInBundle = false; 629 continue; 630 } 631 MachineInstr *MI = nullptr; 632 if (parse(MI)) 633 return true; 634 MBB.insert(MBB.end(), MI); 635 if (IsInBundle) { 636 PrevMI->setFlag(MachineInstr::BundledSucc); 637 MI->setFlag(MachineInstr::BundledPred); 638 } 639 PrevMI = MI; 640 if (Token.is(MIToken::lbrace)) { 641 if (IsInBundle) 642 return error("nested instruction bundles are not allowed"); 643 lex(); 644 // This instruction is the start of the bundle. 645 MI->setFlag(MachineInstr::BundledSucc); 646 IsInBundle = true; 647 if (!Token.is(MIToken::Newline)) 648 // The next instruction can be on the same line. 649 continue; 650 } 651 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 652 lex(); 653 } 654 655 // Construct successor list by searching for basic block machine operands. 656 if (!ExplicitSuccessors) { 657 SmallVector<MachineBasicBlock*,4> Successors; 658 bool IsFallthrough; 659 guessSuccessors(MBB, Successors, IsFallthrough); 660 for (MachineBasicBlock *Succ : Successors) 661 MBB.addSuccessor(Succ); 662 663 if (IsFallthrough) { 664 AddFalthroughFrom = &MBB; 665 } else { 666 MBB.normalizeSuccProbs(); 667 } 668 } 669 670 return false; 671 } 672 673 bool MIParser::parseBasicBlocks() { 674 lex(); 675 // Skip until the first machine basic block. 676 while (Token.is(MIToken::Newline)) 677 lex(); 678 if (Token.isErrorOrEOF()) 679 return Token.isError(); 680 // The first parsing pass should have verified that this token is a MBB label 681 // in the 'parseBasicBlockDefinitions' method. 682 assert(Token.is(MIToken::MachineBasicBlockLabel)); 683 MachineBasicBlock *AddFalthroughFrom = nullptr; 684 do { 685 MachineBasicBlock *MBB = nullptr; 686 if (parseMBBReference(MBB)) 687 return true; 688 if (AddFalthroughFrom) { 689 if (!AddFalthroughFrom->isSuccessor(MBB)) 690 AddFalthroughFrom->addSuccessor(MBB); 691 AddFalthroughFrom->normalizeSuccProbs(); 692 AddFalthroughFrom = nullptr; 693 } 694 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 695 return true; 696 // The method 'parseBasicBlock' should parse the whole block until the next 697 // block or the end of file. 698 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 699 } while (Token.isNot(MIToken::Eof)); 700 return false; 701 } 702 703 bool MIParser::parse(MachineInstr *&MI) { 704 // Parse any register operands before '=' 705 MachineOperand MO = MachineOperand::CreateImm(0); 706 SmallVector<ParsedMachineOperand, 8> Operands; 707 while (Token.isRegister() || Token.isRegisterFlag()) { 708 auto Loc = Token.location(); 709 Optional<unsigned> TiedDefIdx; 710 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 711 return true; 712 Operands.push_back( 713 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 714 if (Token.isNot(MIToken::comma)) 715 break; 716 lex(); 717 } 718 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 719 return true; 720 721 unsigned OpCode, Flags = 0; 722 if (Token.isError() || parseInstruction(OpCode, Flags)) 723 return true; 724 725 // Parse the remaining machine operands. 726 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 727 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 728 auto Loc = Token.location(); 729 Optional<unsigned> TiedDefIdx; 730 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 731 return true; 732 Operands.push_back( 733 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 734 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 735 Token.is(MIToken::lbrace)) 736 break; 737 if (Token.isNot(MIToken::comma)) 738 return error("expected ',' before the next machine operand"); 739 lex(); 740 } 741 742 DebugLoc DebugLocation; 743 if (Token.is(MIToken::kw_debug_location)) { 744 lex(); 745 if (Token.isNot(MIToken::exclaim)) 746 return error("expected a metadata node after 'debug-location'"); 747 MDNode *Node = nullptr; 748 if (parseMDNode(Node)) 749 return true; 750 DebugLocation = DebugLoc(Node); 751 } 752 753 // Parse the machine memory operands. 754 SmallVector<MachineMemOperand *, 2> MemOperands; 755 if (Token.is(MIToken::coloncolon)) { 756 lex(); 757 while (!Token.isNewlineOrEOF()) { 758 MachineMemOperand *MemOp = nullptr; 759 if (parseMachineMemoryOperand(MemOp)) 760 return true; 761 MemOperands.push_back(MemOp); 762 if (Token.isNewlineOrEOF()) 763 break; 764 if (Token.isNot(MIToken::comma)) 765 return error("expected ',' before the next machine memory operand"); 766 lex(); 767 } 768 } 769 770 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 771 if (!MCID.isVariadic()) { 772 // FIXME: Move the implicit operand verification to the machine verifier. 773 if (verifyImplicitOperands(Operands, MCID)) 774 return true; 775 } 776 777 // TODO: Check for extraneous machine operands. 778 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 779 MI->setFlags(Flags); 780 for (const auto &Operand : Operands) 781 MI->addOperand(MF, Operand.Operand); 782 if (assignRegisterTies(*MI, Operands)) 783 return true; 784 if (MemOperands.empty()) 785 return false; 786 MachineInstr::mmo_iterator MemRefs = 787 MF.allocateMemRefsArray(MemOperands.size()); 788 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 789 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 790 return false; 791 } 792 793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 794 lex(); 795 if (Token.isNot(MIToken::MachineBasicBlock)) 796 return error("expected a machine basic block reference"); 797 if (parseMBBReference(MBB)) 798 return true; 799 lex(); 800 if (Token.isNot(MIToken::Eof)) 801 return error( 802 "expected end of string after the machine basic block reference"); 803 return false; 804 } 805 806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 807 lex(); 808 if (Token.isNot(MIToken::NamedRegister)) 809 return error("expected a named register"); 810 if (parseNamedRegister(Reg)) 811 return true; 812 lex(); 813 if (Token.isNot(MIToken::Eof)) 814 return error("expected end of string after the register reference"); 815 return false; 816 } 817 818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 819 lex(); 820 if (Token.isNot(MIToken::VirtualRegister)) 821 return error("expected a virtual register"); 822 if (parseVirtualRegister(Info)) 823 return true; 824 lex(); 825 if (Token.isNot(MIToken::Eof)) 826 return error("expected end of string after the register reference"); 827 return false; 828 } 829 830 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 831 lex(); 832 if (Token.isNot(MIToken::NamedRegister) && 833 Token.isNot(MIToken::VirtualRegister)) 834 return error("expected either a named or virtual register"); 835 836 VRegInfo *Info; 837 if (parseRegister(Reg, Info)) 838 return true; 839 840 lex(); 841 if (Token.isNot(MIToken::Eof)) 842 return error("expected end of string after the register reference"); 843 return false; 844 } 845 846 bool MIParser::parseStandaloneStackObject(int &FI) { 847 lex(); 848 if (Token.isNot(MIToken::StackObject)) 849 return error("expected a stack object"); 850 if (parseStackFrameIndex(FI)) 851 return true; 852 if (Token.isNot(MIToken::Eof)) 853 return error("expected end of string after the stack object reference"); 854 return false; 855 } 856 857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 858 lex(); 859 if (Token.is(MIToken::exclaim)) { 860 if (parseMDNode(Node)) 861 return true; 862 } else if (Token.is(MIToken::md_diexpr)) { 863 if (parseDIExpression(Node)) 864 return true; 865 } else 866 return error("expected a metadata node"); 867 if (Token.isNot(MIToken::Eof)) 868 return error("expected end of string after the metadata node"); 869 return false; 870 } 871 872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 873 assert(MO.isImplicit()); 874 return MO.isDef() ? "implicit-def" : "implicit"; 875 } 876 877 static std::string getRegisterName(const TargetRegisterInfo *TRI, 878 unsigned Reg) { 879 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 880 return StringRef(TRI->getName(Reg)).lower(); 881 } 882 883 /// Return true if the parsed machine operands contain a given machine operand. 884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 885 ArrayRef<ParsedMachineOperand> Operands) { 886 for (const auto &I : Operands) { 887 if (ImplicitOperand.isIdenticalTo(I.Operand)) 888 return true; 889 } 890 return false; 891 } 892 893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 894 const MCInstrDesc &MCID) { 895 if (MCID.isCall()) 896 // We can't verify call instructions as they can contain arbitrary implicit 897 // register and register mask operands. 898 return false; 899 900 // Gather all the expected implicit operands. 901 SmallVector<MachineOperand, 4> ImplicitOperands; 902 if (MCID.ImplicitDefs) 903 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 904 ImplicitOperands.push_back( 905 MachineOperand::CreateReg(*ImpDefs, true, true)); 906 if (MCID.ImplicitUses) 907 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 908 ImplicitOperands.push_back( 909 MachineOperand::CreateReg(*ImpUses, false, true)); 910 911 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 912 assert(TRI && "Expected target register info"); 913 for (const auto &I : ImplicitOperands) { 914 if (isImplicitOperandIn(I, Operands)) 915 continue; 916 return error(Operands.empty() ? Token.location() : Operands.back().End, 917 Twine("missing implicit register operand '") + 918 printImplicitRegisterFlag(I) + " %" + 919 getRegisterName(TRI, I.getReg()) + "'"); 920 } 921 return false; 922 } 923 924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 925 if (Token.is(MIToken::kw_frame_setup)) { 926 Flags |= MachineInstr::FrameSetup; 927 lex(); 928 } 929 if (Token.isNot(MIToken::Identifier)) 930 return error("expected a machine instruction"); 931 StringRef InstrName = Token.stringValue(); 932 if (parseInstrName(InstrName, OpCode)) 933 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 934 lex(); 935 return false; 936 } 937 938 bool MIParser::parseNamedRegister(unsigned &Reg) { 939 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 940 StringRef Name = Token.stringValue(); 941 if (getRegisterByName(Name, Reg)) 942 return error(Twine("unknown register name '") + Name + "'"); 943 return false; 944 } 945 946 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 947 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 948 unsigned ID; 949 if (getUnsigned(ID)) 950 return true; 951 Info = &PFS.getVRegInfo(ID); 952 return false; 953 } 954 955 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 956 switch (Token.kind()) { 957 case MIToken::underscore: 958 Reg = 0; 959 return false; 960 case MIToken::NamedRegister: 961 return parseNamedRegister(Reg); 962 case MIToken::VirtualRegister: 963 if (parseVirtualRegister(Info)) 964 return true; 965 Reg = Info->VReg; 966 return false; 967 // TODO: Parse other register kinds. 968 default: 969 llvm_unreachable("The current token should be a register"); 970 } 971 } 972 973 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 974 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 975 return error("expected '_', register class, or register bank name"); 976 StringRef::iterator Loc = Token.location(); 977 StringRef Name = Token.stringValue(); 978 979 // Was it a register class? 980 auto RCNameI = PFS.Names2RegClasses.find(Name); 981 if (RCNameI != PFS.Names2RegClasses.end()) { 982 lex(); 983 const TargetRegisterClass &RC = *RCNameI->getValue(); 984 985 switch (RegInfo.Kind) { 986 case VRegInfo::UNKNOWN: 987 case VRegInfo::NORMAL: 988 RegInfo.Kind = VRegInfo::NORMAL; 989 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 990 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 991 return error(Loc, Twine("conflicting register classes, previously: ") + 992 Twine(TRI.getRegClassName(RegInfo.D.RC))); 993 } 994 RegInfo.D.RC = &RC; 995 RegInfo.Explicit = true; 996 return false; 997 998 case VRegInfo::GENERIC: 999 case VRegInfo::REGBANK: 1000 return error(Loc, "register class specification on generic register"); 1001 } 1002 llvm_unreachable("Unexpected register kind"); 1003 } 1004 1005 // Should be a register bank or a generic register. 1006 const RegisterBank *RegBank = nullptr; 1007 if (Name != "_") { 1008 auto RBNameI = PFS.Names2RegBanks.find(Name); 1009 if (RBNameI == PFS.Names2RegBanks.end()) 1010 return error(Loc, "expected '_', register class, or register bank name"); 1011 RegBank = RBNameI->getValue(); 1012 } 1013 1014 lex(); 1015 1016 switch (RegInfo.Kind) { 1017 case VRegInfo::UNKNOWN: 1018 case VRegInfo::GENERIC: 1019 case VRegInfo::REGBANK: 1020 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1021 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1022 return error(Loc, "conflicting generic register banks"); 1023 RegInfo.D.RegBank = RegBank; 1024 RegInfo.Explicit = true; 1025 return false; 1026 1027 case VRegInfo::NORMAL: 1028 return error(Loc, "register bank specification on normal register"); 1029 } 1030 llvm_unreachable("Unexpected register kind"); 1031 } 1032 1033 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1034 const unsigned OldFlags = Flags; 1035 switch (Token.kind()) { 1036 case MIToken::kw_implicit: 1037 Flags |= RegState::Implicit; 1038 break; 1039 case MIToken::kw_implicit_define: 1040 Flags |= RegState::ImplicitDefine; 1041 break; 1042 case MIToken::kw_def: 1043 Flags |= RegState::Define; 1044 break; 1045 case MIToken::kw_dead: 1046 Flags |= RegState::Dead; 1047 break; 1048 case MIToken::kw_killed: 1049 Flags |= RegState::Kill; 1050 break; 1051 case MIToken::kw_undef: 1052 Flags |= RegState::Undef; 1053 break; 1054 case MIToken::kw_internal: 1055 Flags |= RegState::InternalRead; 1056 break; 1057 case MIToken::kw_early_clobber: 1058 Flags |= RegState::EarlyClobber; 1059 break; 1060 case MIToken::kw_debug_use: 1061 Flags |= RegState::Debug; 1062 break; 1063 case MIToken::kw_renamable: 1064 Flags |= RegState::Renamable; 1065 break; 1066 default: 1067 llvm_unreachable("The current token should be a register flag"); 1068 } 1069 if (OldFlags == Flags) 1070 // We know that the same flag is specified more than once when the flags 1071 // weren't modified. 1072 return error("duplicate '" + Token.stringValue() + "' register flag"); 1073 lex(); 1074 return false; 1075 } 1076 1077 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1078 assert(Token.is(MIToken::dot)); 1079 lex(); 1080 if (Token.isNot(MIToken::Identifier)) 1081 return error("expected a subregister index after '.'"); 1082 auto Name = Token.stringValue(); 1083 SubReg = getSubRegIndex(Name); 1084 if (!SubReg) 1085 return error(Twine("use of unknown subregister index '") + Name + "'"); 1086 lex(); 1087 return false; 1088 } 1089 1090 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1091 if (!consumeIfPresent(MIToken::kw_tied_def)) 1092 return true; 1093 if (Token.isNot(MIToken::IntegerLiteral)) 1094 return error("expected an integer literal after 'tied-def'"); 1095 if (getUnsigned(TiedDefIdx)) 1096 return true; 1097 lex(); 1098 if (expectAndConsume(MIToken::rparen)) 1099 return true; 1100 return false; 1101 } 1102 1103 bool MIParser::assignRegisterTies(MachineInstr &MI, 1104 ArrayRef<ParsedMachineOperand> Operands) { 1105 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1106 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1107 if (!Operands[I].TiedDefIdx) 1108 continue; 1109 // The parser ensures that this operand is a register use, so we just have 1110 // to check the tied-def operand. 1111 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1112 if (DefIdx >= E) 1113 return error(Operands[I].Begin, 1114 Twine("use of invalid tied-def operand index '" + 1115 Twine(DefIdx) + "'; instruction has only ") + 1116 Twine(E) + " operands"); 1117 const auto &DefOperand = Operands[DefIdx].Operand; 1118 if (!DefOperand.isReg() || !DefOperand.isDef()) 1119 // FIXME: add note with the def operand. 1120 return error(Operands[I].Begin, 1121 Twine("use of invalid tied-def operand index '") + 1122 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1123 " isn't a defined register"); 1124 // Check that the tied-def operand wasn't tied elsewhere. 1125 for (const auto &TiedPair : TiedRegisterPairs) { 1126 if (TiedPair.first == DefIdx) 1127 return error(Operands[I].Begin, 1128 Twine("the tied-def operand #") + Twine(DefIdx) + 1129 " is already tied with another register operand"); 1130 } 1131 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1132 } 1133 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1134 // indices must be less than tied max. 1135 for (const auto &TiedPair : TiedRegisterPairs) 1136 MI.tieOperands(TiedPair.first, TiedPair.second); 1137 return false; 1138 } 1139 1140 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1141 Optional<unsigned> &TiedDefIdx, 1142 bool IsDef) { 1143 unsigned Flags = IsDef ? RegState::Define : 0; 1144 while (Token.isRegisterFlag()) { 1145 if (parseRegisterFlag(Flags)) 1146 return true; 1147 } 1148 if (!Token.isRegister()) 1149 return error("expected a register after register flags"); 1150 unsigned Reg; 1151 VRegInfo *RegInfo; 1152 if (parseRegister(Reg, RegInfo)) 1153 return true; 1154 lex(); 1155 unsigned SubReg = 0; 1156 if (Token.is(MIToken::dot)) { 1157 if (parseSubRegisterIndex(SubReg)) 1158 return true; 1159 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1160 return error("subregister index expects a virtual register"); 1161 } 1162 if (Token.is(MIToken::colon)) { 1163 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1164 return error("register class specification expects a virtual register"); 1165 lex(); 1166 if (parseRegisterClassOrBank(*RegInfo)) 1167 return true; 1168 } 1169 MachineRegisterInfo &MRI = MF.getRegInfo(); 1170 if ((Flags & RegState::Define) == 0) { 1171 if (consumeIfPresent(MIToken::lparen)) { 1172 unsigned Idx; 1173 if (!parseRegisterTiedDefIndex(Idx)) 1174 TiedDefIdx = Idx; 1175 else { 1176 // Try a redundant low-level type. 1177 LLT Ty; 1178 if (parseLowLevelType(Token.location(), Ty)) 1179 return error("expected tied-def or low-level type after '('"); 1180 1181 if (expectAndConsume(MIToken::rparen)) 1182 return true; 1183 1184 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1185 return error("inconsistent type for generic virtual register"); 1186 1187 MRI.setType(Reg, Ty); 1188 } 1189 } 1190 } else if (consumeIfPresent(MIToken::lparen)) { 1191 // Virtual registers may have a tpe with GlobalISel. 1192 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1193 return error("unexpected type on physical register"); 1194 1195 LLT Ty; 1196 if (parseLowLevelType(Token.location(), Ty)) 1197 return true; 1198 1199 if (expectAndConsume(MIToken::rparen)) 1200 return true; 1201 1202 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1203 return error("inconsistent type for generic virtual register"); 1204 1205 MRI.setType(Reg, Ty); 1206 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1207 // Generic virtual registers must have a type. 1208 // If we end up here this means the type hasn't been specified and 1209 // this is bad! 1210 if (RegInfo->Kind == VRegInfo::GENERIC || 1211 RegInfo->Kind == VRegInfo::REGBANK) 1212 return error("generic virtual registers must have a type"); 1213 } 1214 Dest = MachineOperand::CreateReg( 1215 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1216 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1217 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1218 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1219 1220 return false; 1221 } 1222 1223 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1224 assert(Token.is(MIToken::IntegerLiteral)); 1225 const APSInt &Int = Token.integerValue(); 1226 if (Int.getMinSignedBits() > 64) 1227 return error("integer literal is too large to be an immediate operand"); 1228 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1229 lex(); 1230 return false; 1231 } 1232 1233 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1234 const Constant *&C) { 1235 auto Source = StringValue.str(); // The source has to be null terminated. 1236 SMDiagnostic Err; 1237 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1238 &PFS.IRSlots); 1239 if (!C) 1240 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1241 return false; 1242 } 1243 1244 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1245 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1246 return true; 1247 lex(); 1248 return false; 1249 } 1250 1251 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1252 if (Token.is(MIToken::ScalarType)) { 1253 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1254 lex(); 1255 return false; 1256 } else if (Token.is(MIToken::PointerType)) { 1257 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1258 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1259 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1260 lex(); 1261 return false; 1262 } 1263 1264 // Now we're looking for a vector. 1265 if (Token.isNot(MIToken::less)) 1266 return error(Loc, 1267 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1268 1269 lex(); 1270 1271 if (Token.isNot(MIToken::IntegerLiteral)) 1272 return error(Loc, "expected <N x sM> for vctor type"); 1273 uint64_t NumElements = Token.integerValue().getZExtValue(); 1274 lex(); 1275 1276 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1277 return error(Loc, "expected '<N x sM>' for vector type"); 1278 lex(); 1279 1280 if (Token.isNot(MIToken::ScalarType)) 1281 return error(Loc, "expected '<N x sM>' for vector type"); 1282 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1283 lex(); 1284 1285 if (Token.isNot(MIToken::greater)) 1286 return error(Loc, "expected '<N x sM>' for vector type"); 1287 lex(); 1288 1289 Ty = LLT::vector(NumElements, ScalarSize); 1290 return false; 1291 } 1292 1293 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1294 assert(Token.is(MIToken::IntegerType)); 1295 auto Loc = Token.location(); 1296 lex(); 1297 if (Token.isNot(MIToken::IntegerLiteral)) 1298 return error("expected an integer literal"); 1299 const Constant *C = nullptr; 1300 if (parseIRConstant(Loc, C)) 1301 return true; 1302 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1303 return false; 1304 } 1305 1306 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1307 auto Loc = Token.location(); 1308 lex(); 1309 if (Token.isNot(MIToken::FloatingPointLiteral) && 1310 Token.isNot(MIToken::HexLiteral)) 1311 return error("expected a floating point literal"); 1312 const Constant *C = nullptr; 1313 if (parseIRConstant(Loc, C)) 1314 return true; 1315 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1316 return false; 1317 } 1318 1319 bool MIParser::getUnsigned(unsigned &Result) { 1320 if (Token.hasIntegerValue()) { 1321 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1322 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1323 if (Val64 == Limit) 1324 return error("expected 32-bit integer (too large)"); 1325 Result = Val64; 1326 return false; 1327 } 1328 if (Token.is(MIToken::HexLiteral)) { 1329 APInt A; 1330 if (getHexUint(A)) 1331 return true; 1332 if (A.getBitWidth() > 32) 1333 return error("expected 32-bit integer (too large)"); 1334 Result = A.getZExtValue(); 1335 return false; 1336 } 1337 return true; 1338 } 1339 1340 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1341 assert(Token.is(MIToken::MachineBasicBlock) || 1342 Token.is(MIToken::MachineBasicBlockLabel)); 1343 unsigned Number; 1344 if (getUnsigned(Number)) 1345 return true; 1346 auto MBBInfo = PFS.MBBSlots.find(Number); 1347 if (MBBInfo == PFS.MBBSlots.end()) 1348 return error(Twine("use of undefined machine basic block #") + 1349 Twine(Number)); 1350 MBB = MBBInfo->second; 1351 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1352 // we drop the <irname> from the bb.<id>.<irname> format. 1353 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1354 return error(Twine("the name of machine basic block #") + Twine(Number) + 1355 " isn't '" + Token.stringValue() + "'"); 1356 return false; 1357 } 1358 1359 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1360 MachineBasicBlock *MBB; 1361 if (parseMBBReference(MBB)) 1362 return true; 1363 Dest = MachineOperand::CreateMBB(MBB); 1364 lex(); 1365 return false; 1366 } 1367 1368 bool MIParser::parseStackFrameIndex(int &FI) { 1369 assert(Token.is(MIToken::StackObject)); 1370 unsigned ID; 1371 if (getUnsigned(ID)) 1372 return true; 1373 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1374 if (ObjectInfo == PFS.StackObjectSlots.end()) 1375 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1376 "'"); 1377 StringRef Name; 1378 if (const auto *Alloca = 1379 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1380 Name = Alloca->getName(); 1381 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1382 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1383 "' isn't '" + Token.stringValue() + "'"); 1384 lex(); 1385 FI = ObjectInfo->second; 1386 return false; 1387 } 1388 1389 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1390 int FI; 1391 if (parseStackFrameIndex(FI)) 1392 return true; 1393 Dest = MachineOperand::CreateFI(FI); 1394 return false; 1395 } 1396 1397 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1398 assert(Token.is(MIToken::FixedStackObject)); 1399 unsigned ID; 1400 if (getUnsigned(ID)) 1401 return true; 1402 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1403 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1404 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1405 Twine(ID) + "'"); 1406 lex(); 1407 FI = ObjectInfo->second; 1408 return false; 1409 } 1410 1411 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1412 int FI; 1413 if (parseFixedStackFrameIndex(FI)) 1414 return true; 1415 Dest = MachineOperand::CreateFI(FI); 1416 return false; 1417 } 1418 1419 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1420 switch (Token.kind()) { 1421 case MIToken::NamedGlobalValue: { 1422 const Module *M = MF.getFunction()->getParent(); 1423 GV = M->getNamedValue(Token.stringValue()); 1424 if (!GV) 1425 return error(Twine("use of undefined global value '") + Token.range() + 1426 "'"); 1427 break; 1428 } 1429 case MIToken::GlobalValue: { 1430 unsigned GVIdx; 1431 if (getUnsigned(GVIdx)) 1432 return true; 1433 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1434 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1435 "'"); 1436 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1437 break; 1438 } 1439 default: 1440 llvm_unreachable("The current token should be a global value"); 1441 } 1442 return false; 1443 } 1444 1445 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1446 GlobalValue *GV = nullptr; 1447 if (parseGlobalValue(GV)) 1448 return true; 1449 lex(); 1450 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1451 if (parseOperandsOffset(Dest)) 1452 return true; 1453 return false; 1454 } 1455 1456 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1457 assert(Token.is(MIToken::ConstantPoolItem)); 1458 unsigned ID; 1459 if (getUnsigned(ID)) 1460 return true; 1461 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1462 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1463 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1464 lex(); 1465 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1466 if (parseOperandsOffset(Dest)) 1467 return true; 1468 return false; 1469 } 1470 1471 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1472 assert(Token.is(MIToken::JumpTableIndex)); 1473 unsigned ID; 1474 if (getUnsigned(ID)) 1475 return true; 1476 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1477 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1478 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1479 lex(); 1480 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1481 return false; 1482 } 1483 1484 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1485 assert(Token.is(MIToken::ExternalSymbol)); 1486 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1487 lex(); 1488 Dest = MachineOperand::CreateES(Symbol); 1489 if (parseOperandsOffset(Dest)) 1490 return true; 1491 return false; 1492 } 1493 1494 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1495 assert(Token.is(MIToken::SubRegisterIndex)); 1496 StringRef Name = Token.stringValue(); 1497 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1498 if (SubRegIndex == 0) 1499 return error(Twine("unknown subregister index '") + Name + "'"); 1500 lex(); 1501 Dest = MachineOperand::CreateImm(SubRegIndex); 1502 return false; 1503 } 1504 1505 bool MIParser::parseMDNode(MDNode *&Node) { 1506 assert(Token.is(MIToken::exclaim)); 1507 1508 auto Loc = Token.location(); 1509 lex(); 1510 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1511 return error("expected metadata id after '!'"); 1512 unsigned ID; 1513 if (getUnsigned(ID)) 1514 return true; 1515 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1516 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1517 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1518 lex(); 1519 Node = NodeInfo->second.get(); 1520 return false; 1521 } 1522 1523 bool MIParser::parseDIExpression(MDNode *&Expr) { 1524 assert(Token.is(MIToken::md_diexpr)); 1525 lex(); 1526 1527 // FIXME: Share this parsing with the IL parser. 1528 SmallVector<uint64_t, 8> Elements; 1529 1530 if (expectAndConsume(MIToken::lparen)) 1531 return true; 1532 1533 if (Token.isNot(MIToken::rparen)) { 1534 do { 1535 if (Token.is(MIToken::Identifier)) { 1536 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1537 lex(); 1538 Elements.push_back(Op); 1539 continue; 1540 } 1541 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1542 } 1543 1544 if (Token.isNot(MIToken::IntegerLiteral) || 1545 Token.integerValue().isSigned()) 1546 return error("expected unsigned integer"); 1547 1548 auto &U = Token.integerValue(); 1549 if (U.ugt(UINT64_MAX)) 1550 return error("element too large, limit is " + Twine(UINT64_MAX)); 1551 Elements.push_back(U.getZExtValue()); 1552 lex(); 1553 1554 } while (consumeIfPresent(MIToken::comma)); 1555 } 1556 1557 if (expectAndConsume(MIToken::rparen)) 1558 return true; 1559 1560 Expr = DIExpression::get(MF.getFunction()->getContext(), Elements); 1561 return false; 1562 } 1563 1564 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1565 MDNode *Node = nullptr; 1566 if (Token.is(MIToken::exclaim)) { 1567 if (parseMDNode(Node)) 1568 return true; 1569 } else if (Token.is(MIToken::md_diexpr)) { 1570 if (parseDIExpression(Node)) 1571 return true; 1572 } 1573 Dest = MachineOperand::CreateMetadata(Node); 1574 return false; 1575 } 1576 1577 bool MIParser::parseCFIOffset(int &Offset) { 1578 if (Token.isNot(MIToken::IntegerLiteral)) 1579 return error("expected a cfi offset"); 1580 if (Token.integerValue().getMinSignedBits() > 32) 1581 return error("expected a 32 bit integer (the cfi offset is too large)"); 1582 Offset = (int)Token.integerValue().getExtValue(); 1583 lex(); 1584 return false; 1585 } 1586 1587 bool MIParser::parseCFIRegister(unsigned &Reg) { 1588 if (Token.isNot(MIToken::NamedRegister)) 1589 return error("expected a cfi register"); 1590 unsigned LLVMReg; 1591 if (parseNamedRegister(LLVMReg)) 1592 return true; 1593 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1594 assert(TRI && "Expected target register info"); 1595 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1596 if (DwarfReg < 0) 1597 return error("invalid DWARF register"); 1598 Reg = (unsigned)DwarfReg; 1599 lex(); 1600 return false; 1601 } 1602 1603 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1604 auto Kind = Token.kind(); 1605 lex(); 1606 int Offset; 1607 unsigned Reg; 1608 unsigned CFIIndex; 1609 switch (Kind) { 1610 case MIToken::kw_cfi_same_value: 1611 if (parseCFIRegister(Reg)) 1612 return true; 1613 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1614 break; 1615 case MIToken::kw_cfi_offset: 1616 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1617 parseCFIOffset(Offset)) 1618 return true; 1619 CFIIndex = 1620 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1621 break; 1622 case MIToken::kw_cfi_def_cfa_register: 1623 if (parseCFIRegister(Reg)) 1624 return true; 1625 CFIIndex = 1626 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1627 break; 1628 case MIToken::kw_cfi_def_cfa_offset: 1629 if (parseCFIOffset(Offset)) 1630 return true; 1631 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1632 CFIIndex = MF.addFrameInst( 1633 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1634 break; 1635 case MIToken::kw_cfi_def_cfa: 1636 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1637 parseCFIOffset(Offset)) 1638 return true; 1639 // NB: MCCFIInstruction::createDefCfa negates the offset. 1640 CFIIndex = 1641 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1642 break; 1643 case MIToken::kw_cfi_restore: 1644 if (parseCFIRegister(Reg)) 1645 return true; 1646 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1647 break; 1648 1649 default: 1650 // TODO: Parse the other CFI operands. 1651 llvm_unreachable("The current token should be a cfi operand"); 1652 } 1653 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1654 return false; 1655 } 1656 1657 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1658 switch (Token.kind()) { 1659 case MIToken::NamedIRBlock: { 1660 BB = dyn_cast_or_null<BasicBlock>( 1661 F.getValueSymbolTable()->lookup(Token.stringValue())); 1662 if (!BB) 1663 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1664 break; 1665 } 1666 case MIToken::IRBlock: { 1667 unsigned SlotNumber = 0; 1668 if (getUnsigned(SlotNumber)) 1669 return true; 1670 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1671 if (!BB) 1672 return error(Twine("use of undefined IR block '%ir-block.") + 1673 Twine(SlotNumber) + "'"); 1674 break; 1675 } 1676 default: 1677 llvm_unreachable("The current token should be an IR block reference"); 1678 } 1679 return false; 1680 } 1681 1682 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1683 assert(Token.is(MIToken::kw_blockaddress)); 1684 lex(); 1685 if (expectAndConsume(MIToken::lparen)) 1686 return true; 1687 if (Token.isNot(MIToken::GlobalValue) && 1688 Token.isNot(MIToken::NamedGlobalValue)) 1689 return error("expected a global value"); 1690 GlobalValue *GV = nullptr; 1691 if (parseGlobalValue(GV)) 1692 return true; 1693 auto *F = dyn_cast<Function>(GV); 1694 if (!F) 1695 return error("expected an IR function reference"); 1696 lex(); 1697 if (expectAndConsume(MIToken::comma)) 1698 return true; 1699 BasicBlock *BB = nullptr; 1700 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1701 return error("expected an IR block reference"); 1702 if (parseIRBlock(BB, *F)) 1703 return true; 1704 lex(); 1705 if (expectAndConsume(MIToken::rparen)) 1706 return true; 1707 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1708 if (parseOperandsOffset(Dest)) 1709 return true; 1710 return false; 1711 } 1712 1713 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1714 assert(Token.is(MIToken::kw_intrinsic)); 1715 lex(); 1716 if (expectAndConsume(MIToken::lparen)) 1717 return error("expected syntax intrinsic(@llvm.whatever)"); 1718 1719 if (Token.isNot(MIToken::NamedGlobalValue)) 1720 return error("expected syntax intrinsic(@llvm.whatever)"); 1721 1722 std::string Name = Token.stringValue(); 1723 lex(); 1724 1725 if (expectAndConsume(MIToken::rparen)) 1726 return error("expected ')' to terminate intrinsic name"); 1727 1728 // Find out what intrinsic we're dealing with, first try the global namespace 1729 // and then the target's private intrinsics if that fails. 1730 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1731 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1732 if (ID == Intrinsic::not_intrinsic && TII) 1733 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1734 1735 if (ID == Intrinsic::not_intrinsic) 1736 return error("unknown intrinsic name"); 1737 Dest = MachineOperand::CreateIntrinsicID(ID); 1738 1739 return false; 1740 } 1741 1742 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1743 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1744 bool IsFloat = Token.is(MIToken::kw_floatpred); 1745 lex(); 1746 1747 if (expectAndConsume(MIToken::lparen)) 1748 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1749 1750 if (Token.isNot(MIToken::Identifier)) 1751 return error("whatever"); 1752 1753 CmpInst::Predicate Pred; 1754 if (IsFloat) { 1755 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1756 .Case("false", CmpInst::FCMP_FALSE) 1757 .Case("oeq", CmpInst::FCMP_OEQ) 1758 .Case("ogt", CmpInst::FCMP_OGT) 1759 .Case("oge", CmpInst::FCMP_OGE) 1760 .Case("olt", CmpInst::FCMP_OLT) 1761 .Case("ole", CmpInst::FCMP_OLE) 1762 .Case("one", CmpInst::FCMP_ONE) 1763 .Case("ord", CmpInst::FCMP_ORD) 1764 .Case("uno", CmpInst::FCMP_UNO) 1765 .Case("ueq", CmpInst::FCMP_UEQ) 1766 .Case("ugt", CmpInst::FCMP_UGT) 1767 .Case("uge", CmpInst::FCMP_UGE) 1768 .Case("ult", CmpInst::FCMP_ULT) 1769 .Case("ule", CmpInst::FCMP_ULE) 1770 .Case("une", CmpInst::FCMP_UNE) 1771 .Case("true", CmpInst::FCMP_TRUE) 1772 .Default(CmpInst::BAD_FCMP_PREDICATE); 1773 if (!CmpInst::isFPPredicate(Pred)) 1774 return error("invalid floating-point predicate"); 1775 } else { 1776 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1777 .Case("eq", CmpInst::ICMP_EQ) 1778 .Case("ne", CmpInst::ICMP_NE) 1779 .Case("sgt", CmpInst::ICMP_SGT) 1780 .Case("sge", CmpInst::ICMP_SGE) 1781 .Case("slt", CmpInst::ICMP_SLT) 1782 .Case("sle", CmpInst::ICMP_SLE) 1783 .Case("ugt", CmpInst::ICMP_UGT) 1784 .Case("uge", CmpInst::ICMP_UGE) 1785 .Case("ult", CmpInst::ICMP_ULT) 1786 .Case("ule", CmpInst::ICMP_ULE) 1787 .Default(CmpInst::BAD_ICMP_PREDICATE); 1788 if (!CmpInst::isIntPredicate(Pred)) 1789 return error("invalid integer predicate"); 1790 } 1791 1792 lex(); 1793 Dest = MachineOperand::CreatePredicate(Pred); 1794 if (expectAndConsume(MIToken::rparen)) 1795 return error("predicate should be terminated by ')'."); 1796 1797 return false; 1798 } 1799 1800 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1801 assert(Token.is(MIToken::kw_target_index)); 1802 lex(); 1803 if (expectAndConsume(MIToken::lparen)) 1804 return true; 1805 if (Token.isNot(MIToken::Identifier)) 1806 return error("expected the name of the target index"); 1807 int Index = 0; 1808 if (getTargetIndex(Token.stringValue(), Index)) 1809 return error("use of undefined target index '" + Token.stringValue() + "'"); 1810 lex(); 1811 if (expectAndConsume(MIToken::rparen)) 1812 return true; 1813 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1814 if (parseOperandsOffset(Dest)) 1815 return true; 1816 return false; 1817 } 1818 1819 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1820 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1821 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1822 assert(TRI && "Expected target register info"); 1823 lex(); 1824 if (expectAndConsume(MIToken::lparen)) 1825 return true; 1826 1827 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1828 while (true) { 1829 if (Token.isNot(MIToken::NamedRegister)) 1830 return error("expected a named register"); 1831 unsigned Reg; 1832 if (parseNamedRegister(Reg)) 1833 return true; 1834 lex(); 1835 Mask[Reg / 32] |= 1U << (Reg % 32); 1836 // TODO: Report an error if the same register is used more than once. 1837 if (Token.isNot(MIToken::comma)) 1838 break; 1839 lex(); 1840 } 1841 1842 if (expectAndConsume(MIToken::rparen)) 1843 return true; 1844 Dest = MachineOperand::CreateRegMask(Mask); 1845 return false; 1846 } 1847 1848 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1849 assert(Token.is(MIToken::kw_liveout)); 1850 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1851 assert(TRI && "Expected target register info"); 1852 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1853 lex(); 1854 if (expectAndConsume(MIToken::lparen)) 1855 return true; 1856 while (true) { 1857 if (Token.isNot(MIToken::NamedRegister)) 1858 return error("expected a named register"); 1859 unsigned Reg; 1860 if (parseNamedRegister(Reg)) 1861 return true; 1862 lex(); 1863 Mask[Reg / 32] |= 1U << (Reg % 32); 1864 // TODO: Report an error if the same register is used more than once. 1865 if (Token.isNot(MIToken::comma)) 1866 break; 1867 lex(); 1868 } 1869 if (expectAndConsume(MIToken::rparen)) 1870 return true; 1871 Dest = MachineOperand::CreateRegLiveOut(Mask); 1872 return false; 1873 } 1874 1875 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1876 Optional<unsigned> &TiedDefIdx) { 1877 switch (Token.kind()) { 1878 case MIToken::kw_implicit: 1879 case MIToken::kw_implicit_define: 1880 case MIToken::kw_def: 1881 case MIToken::kw_dead: 1882 case MIToken::kw_killed: 1883 case MIToken::kw_undef: 1884 case MIToken::kw_internal: 1885 case MIToken::kw_early_clobber: 1886 case MIToken::kw_debug_use: 1887 case MIToken::kw_renamable: 1888 case MIToken::underscore: 1889 case MIToken::NamedRegister: 1890 case MIToken::VirtualRegister: 1891 return parseRegisterOperand(Dest, TiedDefIdx); 1892 case MIToken::IntegerLiteral: 1893 return parseImmediateOperand(Dest); 1894 case MIToken::IntegerType: 1895 return parseTypedImmediateOperand(Dest); 1896 case MIToken::kw_half: 1897 case MIToken::kw_float: 1898 case MIToken::kw_double: 1899 case MIToken::kw_x86_fp80: 1900 case MIToken::kw_fp128: 1901 case MIToken::kw_ppc_fp128: 1902 return parseFPImmediateOperand(Dest); 1903 case MIToken::MachineBasicBlock: 1904 return parseMBBOperand(Dest); 1905 case MIToken::StackObject: 1906 return parseStackObjectOperand(Dest); 1907 case MIToken::FixedStackObject: 1908 return parseFixedStackObjectOperand(Dest); 1909 case MIToken::GlobalValue: 1910 case MIToken::NamedGlobalValue: 1911 return parseGlobalAddressOperand(Dest); 1912 case MIToken::ConstantPoolItem: 1913 return parseConstantPoolIndexOperand(Dest); 1914 case MIToken::JumpTableIndex: 1915 return parseJumpTableIndexOperand(Dest); 1916 case MIToken::ExternalSymbol: 1917 return parseExternalSymbolOperand(Dest); 1918 case MIToken::SubRegisterIndex: 1919 return parseSubRegisterIndexOperand(Dest); 1920 case MIToken::md_diexpr: 1921 case MIToken::exclaim: 1922 return parseMetadataOperand(Dest); 1923 case MIToken::kw_cfi_same_value: 1924 case MIToken::kw_cfi_offset: 1925 case MIToken::kw_cfi_def_cfa_register: 1926 case MIToken::kw_cfi_def_cfa_offset: 1927 case MIToken::kw_cfi_def_cfa: 1928 case MIToken::kw_cfi_restore: 1929 return parseCFIOperand(Dest); 1930 case MIToken::kw_blockaddress: 1931 return parseBlockAddressOperand(Dest); 1932 case MIToken::kw_intrinsic: 1933 return parseIntrinsicOperand(Dest); 1934 case MIToken::kw_target_index: 1935 return parseTargetIndexOperand(Dest); 1936 case MIToken::kw_liveout: 1937 return parseLiveoutRegisterMaskOperand(Dest); 1938 case MIToken::kw_floatpred: 1939 case MIToken::kw_intpred: 1940 return parsePredicateOperand(Dest); 1941 case MIToken::Error: 1942 return true; 1943 case MIToken::Identifier: 1944 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1945 Dest = MachineOperand::CreateRegMask(RegMask); 1946 lex(); 1947 break; 1948 } else 1949 return parseCustomRegisterMaskOperand(Dest); 1950 default: 1951 // FIXME: Parse the MCSymbol machine operand. 1952 return error("expected a machine operand"); 1953 } 1954 return false; 1955 } 1956 1957 bool MIParser::parseMachineOperandAndTargetFlags( 1958 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1959 unsigned TF = 0; 1960 bool HasTargetFlags = false; 1961 if (Token.is(MIToken::kw_target_flags)) { 1962 HasTargetFlags = true; 1963 lex(); 1964 if (expectAndConsume(MIToken::lparen)) 1965 return true; 1966 if (Token.isNot(MIToken::Identifier)) 1967 return error("expected the name of the target flag"); 1968 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1969 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1970 return error("use of undefined target flag '" + Token.stringValue() + 1971 "'"); 1972 } 1973 lex(); 1974 while (Token.is(MIToken::comma)) { 1975 lex(); 1976 if (Token.isNot(MIToken::Identifier)) 1977 return error("expected the name of the target flag"); 1978 unsigned BitFlag = 0; 1979 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1980 return error("use of undefined target flag '" + Token.stringValue() + 1981 "'"); 1982 // TODO: Report an error when using a duplicate bit target flag. 1983 TF |= BitFlag; 1984 lex(); 1985 } 1986 if (expectAndConsume(MIToken::rparen)) 1987 return true; 1988 } 1989 auto Loc = Token.location(); 1990 if (parseMachineOperand(Dest, TiedDefIdx)) 1991 return true; 1992 if (!HasTargetFlags) 1993 return false; 1994 if (Dest.isReg()) 1995 return error(Loc, "register operands can't have target flags"); 1996 Dest.setTargetFlags(TF); 1997 return false; 1998 } 1999 2000 bool MIParser::parseOffset(int64_t &Offset) { 2001 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2002 return false; 2003 StringRef Sign = Token.range(); 2004 bool IsNegative = Token.is(MIToken::minus); 2005 lex(); 2006 if (Token.isNot(MIToken::IntegerLiteral)) 2007 return error("expected an integer literal after '" + Sign + "'"); 2008 if (Token.integerValue().getMinSignedBits() > 64) 2009 return error("expected 64-bit integer (too large)"); 2010 Offset = Token.integerValue().getExtValue(); 2011 if (IsNegative) 2012 Offset = -Offset; 2013 lex(); 2014 return false; 2015 } 2016 2017 bool MIParser::parseAlignment(unsigned &Alignment) { 2018 assert(Token.is(MIToken::kw_align)); 2019 lex(); 2020 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2021 return error("expected an integer literal after 'align'"); 2022 if (getUnsigned(Alignment)) 2023 return true; 2024 lex(); 2025 return false; 2026 } 2027 2028 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2029 int64_t Offset = 0; 2030 if (parseOffset(Offset)) 2031 return true; 2032 Op.setOffset(Offset); 2033 return false; 2034 } 2035 2036 bool MIParser::parseIRValue(const Value *&V) { 2037 switch (Token.kind()) { 2038 case MIToken::NamedIRValue: { 2039 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 2040 break; 2041 } 2042 case MIToken::IRValue: { 2043 unsigned SlotNumber = 0; 2044 if (getUnsigned(SlotNumber)) 2045 return true; 2046 V = getIRValue(SlotNumber); 2047 break; 2048 } 2049 case MIToken::NamedGlobalValue: 2050 case MIToken::GlobalValue: { 2051 GlobalValue *GV = nullptr; 2052 if (parseGlobalValue(GV)) 2053 return true; 2054 V = GV; 2055 break; 2056 } 2057 case MIToken::QuotedIRValue: { 2058 const Constant *C = nullptr; 2059 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2060 return true; 2061 V = C; 2062 break; 2063 } 2064 default: 2065 llvm_unreachable("The current token should be an IR block reference"); 2066 } 2067 if (!V) 2068 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2069 return false; 2070 } 2071 2072 bool MIParser::getUint64(uint64_t &Result) { 2073 if (Token.hasIntegerValue()) { 2074 if (Token.integerValue().getActiveBits() > 64) 2075 return error("expected 64-bit integer (too large)"); 2076 Result = Token.integerValue().getZExtValue(); 2077 return false; 2078 } 2079 if (Token.is(MIToken::HexLiteral)) { 2080 APInt A; 2081 if (getHexUint(A)) 2082 return true; 2083 if (A.getBitWidth() > 64) 2084 return error("expected 64-bit integer (too large)"); 2085 Result = A.getZExtValue(); 2086 return false; 2087 } 2088 return true; 2089 } 2090 2091 bool MIParser::getHexUint(APInt &Result) { 2092 assert(Token.is(MIToken::HexLiteral)); 2093 StringRef S = Token.range(); 2094 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2095 // This could be a floating point literal with a special prefix. 2096 if (!isxdigit(S[2])) 2097 return true; 2098 StringRef V = S.substr(2); 2099 APInt A(V.size()*4, V, 16); 2100 2101 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2102 // sure it isn't the case before constructing result. 2103 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2104 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2105 return false; 2106 } 2107 2108 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2109 const auto OldFlags = Flags; 2110 switch (Token.kind()) { 2111 case MIToken::kw_volatile: 2112 Flags |= MachineMemOperand::MOVolatile; 2113 break; 2114 case MIToken::kw_non_temporal: 2115 Flags |= MachineMemOperand::MONonTemporal; 2116 break; 2117 case MIToken::kw_dereferenceable: 2118 Flags |= MachineMemOperand::MODereferenceable; 2119 break; 2120 case MIToken::kw_invariant: 2121 Flags |= MachineMemOperand::MOInvariant; 2122 break; 2123 case MIToken::StringConstant: { 2124 MachineMemOperand::Flags TF; 2125 if (getMMOTargetFlag(Token.stringValue(), TF)) 2126 return error("use of undefined target MMO flag '" + Token.stringValue() + 2127 "'"); 2128 Flags |= TF; 2129 break; 2130 } 2131 default: 2132 llvm_unreachable("The current token should be a memory operand flag"); 2133 } 2134 if (OldFlags == Flags) 2135 // We know that the same flag is specified more than once when the flags 2136 // weren't modified. 2137 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2138 lex(); 2139 return false; 2140 } 2141 2142 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2143 switch (Token.kind()) { 2144 case MIToken::kw_stack: 2145 PSV = MF.getPSVManager().getStack(); 2146 break; 2147 case MIToken::kw_got: 2148 PSV = MF.getPSVManager().getGOT(); 2149 break; 2150 case MIToken::kw_jump_table: 2151 PSV = MF.getPSVManager().getJumpTable(); 2152 break; 2153 case MIToken::kw_constant_pool: 2154 PSV = MF.getPSVManager().getConstantPool(); 2155 break; 2156 case MIToken::FixedStackObject: { 2157 int FI; 2158 if (parseFixedStackFrameIndex(FI)) 2159 return true; 2160 PSV = MF.getPSVManager().getFixedStack(FI); 2161 // The token was already consumed, so use return here instead of break. 2162 return false; 2163 } 2164 case MIToken::StackObject: { 2165 int FI; 2166 if (parseStackFrameIndex(FI)) 2167 return true; 2168 PSV = MF.getPSVManager().getFixedStack(FI); 2169 // The token was already consumed, so use return here instead of break. 2170 return false; 2171 } 2172 case MIToken::kw_call_entry: 2173 lex(); 2174 switch (Token.kind()) { 2175 case MIToken::GlobalValue: 2176 case MIToken::NamedGlobalValue: { 2177 GlobalValue *GV = nullptr; 2178 if (parseGlobalValue(GV)) 2179 return true; 2180 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2181 break; 2182 } 2183 case MIToken::ExternalSymbol: 2184 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2185 MF.createExternalSymbolName(Token.stringValue())); 2186 break; 2187 default: 2188 return error( 2189 "expected a global value or an external symbol after 'call-entry'"); 2190 } 2191 break; 2192 default: 2193 llvm_unreachable("The current token should be pseudo source value"); 2194 } 2195 lex(); 2196 return false; 2197 } 2198 2199 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2200 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2201 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2202 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2203 Token.is(MIToken::kw_call_entry)) { 2204 const PseudoSourceValue *PSV = nullptr; 2205 if (parseMemoryPseudoSourceValue(PSV)) 2206 return true; 2207 int64_t Offset = 0; 2208 if (parseOffset(Offset)) 2209 return true; 2210 Dest = MachinePointerInfo(PSV, Offset); 2211 return false; 2212 } 2213 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2214 Token.isNot(MIToken::GlobalValue) && 2215 Token.isNot(MIToken::NamedGlobalValue) && 2216 Token.isNot(MIToken::QuotedIRValue)) 2217 return error("expected an IR value reference"); 2218 const Value *V = nullptr; 2219 if (parseIRValue(V)) 2220 return true; 2221 if (!V->getType()->isPointerTy()) 2222 return error("expected a pointer IR value"); 2223 lex(); 2224 int64_t Offset = 0; 2225 if (parseOffset(Offset)) 2226 return true; 2227 Dest = MachinePointerInfo(V, Offset); 2228 return false; 2229 } 2230 2231 bool MIParser::parseOptionalScope(LLVMContext &Context, 2232 SyncScope::ID &SSID) { 2233 SSID = SyncScope::System; 2234 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2235 lex(); 2236 if (expectAndConsume(MIToken::lparen)) 2237 return error("expected '(' in syncscope"); 2238 2239 std::string SSN; 2240 if (parseStringConstant(SSN)) 2241 return true; 2242 2243 SSID = Context.getOrInsertSyncScopeID(SSN); 2244 if (expectAndConsume(MIToken::rparen)) 2245 return error("expected ')' in syncscope"); 2246 } 2247 2248 return false; 2249 } 2250 2251 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2252 Order = AtomicOrdering::NotAtomic; 2253 if (Token.isNot(MIToken::Identifier)) 2254 return false; 2255 2256 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2257 .Case("unordered", AtomicOrdering::Unordered) 2258 .Case("monotonic", AtomicOrdering::Monotonic) 2259 .Case("acquire", AtomicOrdering::Acquire) 2260 .Case("release", AtomicOrdering::Release) 2261 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2262 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2263 .Default(AtomicOrdering::NotAtomic); 2264 2265 if (Order != AtomicOrdering::NotAtomic) { 2266 lex(); 2267 return false; 2268 } 2269 2270 return error("expected an atomic scope, ordering or a size integer literal"); 2271 } 2272 2273 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2274 if (expectAndConsume(MIToken::lparen)) 2275 return true; 2276 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2277 while (Token.isMemoryOperandFlag()) { 2278 if (parseMemoryOperandFlag(Flags)) 2279 return true; 2280 } 2281 if (Token.isNot(MIToken::Identifier) || 2282 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2283 return error("expected 'load' or 'store' memory operation"); 2284 if (Token.stringValue() == "load") 2285 Flags |= MachineMemOperand::MOLoad; 2286 else 2287 Flags |= MachineMemOperand::MOStore; 2288 lex(); 2289 2290 // Optional 'store' for operands that both load and store. 2291 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2292 Flags |= MachineMemOperand::MOStore; 2293 lex(); 2294 } 2295 2296 // Optional synchronization scope. 2297 SyncScope::ID SSID; 2298 if (parseOptionalScope(MF.getFunction()->getContext(), SSID)) 2299 return true; 2300 2301 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2302 AtomicOrdering Order, FailureOrder; 2303 if (parseOptionalAtomicOrdering(Order)) 2304 return true; 2305 2306 if (parseOptionalAtomicOrdering(FailureOrder)) 2307 return true; 2308 2309 if (Token.isNot(MIToken::IntegerLiteral)) 2310 return error("expected the size integer literal after memory operation"); 2311 uint64_t Size; 2312 if (getUint64(Size)) 2313 return true; 2314 lex(); 2315 2316 MachinePointerInfo Ptr = MachinePointerInfo(); 2317 if (Token.is(MIToken::Identifier)) { 2318 const char *Word = 2319 ((Flags & MachineMemOperand::MOLoad) && 2320 (Flags & MachineMemOperand::MOStore)) 2321 ? "on" 2322 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2323 if (Token.stringValue() != Word) 2324 return error(Twine("expected '") + Word + "'"); 2325 lex(); 2326 2327 if (parseMachinePointerInfo(Ptr)) 2328 return true; 2329 } 2330 unsigned BaseAlignment = Size; 2331 AAMDNodes AAInfo; 2332 MDNode *Range = nullptr; 2333 while (consumeIfPresent(MIToken::comma)) { 2334 switch (Token.kind()) { 2335 case MIToken::kw_align: 2336 if (parseAlignment(BaseAlignment)) 2337 return true; 2338 break; 2339 case MIToken::md_tbaa: 2340 lex(); 2341 if (parseMDNode(AAInfo.TBAA)) 2342 return true; 2343 break; 2344 case MIToken::md_alias_scope: 2345 lex(); 2346 if (parseMDNode(AAInfo.Scope)) 2347 return true; 2348 break; 2349 case MIToken::md_noalias: 2350 lex(); 2351 if (parseMDNode(AAInfo.NoAlias)) 2352 return true; 2353 break; 2354 case MIToken::md_range: 2355 lex(); 2356 if (parseMDNode(Range)) 2357 return true; 2358 break; 2359 // TODO: Report an error on duplicate metadata nodes. 2360 default: 2361 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2362 "'!noalias' or '!range'"); 2363 } 2364 } 2365 if (expectAndConsume(MIToken::rparen)) 2366 return true; 2367 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2368 SSID, Order, FailureOrder); 2369 return false; 2370 } 2371 2372 void MIParser::initNames2InstrOpCodes() { 2373 if (!Names2InstrOpCodes.empty()) 2374 return; 2375 const auto *TII = MF.getSubtarget().getInstrInfo(); 2376 assert(TII && "Expected target instruction info"); 2377 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2378 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2379 } 2380 2381 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2382 initNames2InstrOpCodes(); 2383 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2384 if (InstrInfo == Names2InstrOpCodes.end()) 2385 return true; 2386 OpCode = InstrInfo->getValue(); 2387 return false; 2388 } 2389 2390 void MIParser::initNames2Regs() { 2391 if (!Names2Regs.empty()) 2392 return; 2393 // The '%noreg' register is the register 0. 2394 Names2Regs.insert(std::make_pair("noreg", 0)); 2395 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2396 assert(TRI && "Expected target register info"); 2397 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2398 bool WasInserted = 2399 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2400 .second; 2401 (void)WasInserted; 2402 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2403 } 2404 } 2405 2406 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2407 initNames2Regs(); 2408 auto RegInfo = Names2Regs.find(RegName); 2409 if (RegInfo == Names2Regs.end()) 2410 return true; 2411 Reg = RegInfo->getValue(); 2412 return false; 2413 } 2414 2415 void MIParser::initNames2RegMasks() { 2416 if (!Names2RegMasks.empty()) 2417 return; 2418 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2419 assert(TRI && "Expected target register info"); 2420 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2421 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2422 assert(RegMasks.size() == RegMaskNames.size()); 2423 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2424 Names2RegMasks.insert( 2425 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2426 } 2427 2428 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2429 initNames2RegMasks(); 2430 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2431 if (RegMaskInfo == Names2RegMasks.end()) 2432 return nullptr; 2433 return RegMaskInfo->getValue(); 2434 } 2435 2436 void MIParser::initNames2SubRegIndices() { 2437 if (!Names2SubRegIndices.empty()) 2438 return; 2439 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2440 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2441 Names2SubRegIndices.insert( 2442 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2443 } 2444 2445 unsigned MIParser::getSubRegIndex(StringRef Name) { 2446 initNames2SubRegIndices(); 2447 auto SubRegInfo = Names2SubRegIndices.find(Name); 2448 if (SubRegInfo == Names2SubRegIndices.end()) 2449 return 0; 2450 return SubRegInfo->getValue(); 2451 } 2452 2453 static void initSlots2BasicBlocks( 2454 const Function &F, 2455 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2456 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2457 MST.incorporateFunction(F); 2458 for (auto &BB : F) { 2459 if (BB.hasName()) 2460 continue; 2461 int Slot = MST.getLocalSlot(&BB); 2462 if (Slot == -1) 2463 continue; 2464 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2465 } 2466 } 2467 2468 static const BasicBlock *getIRBlockFromSlot( 2469 unsigned Slot, 2470 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2471 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2472 if (BlockInfo == Slots2BasicBlocks.end()) 2473 return nullptr; 2474 return BlockInfo->second; 2475 } 2476 2477 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2478 if (Slots2BasicBlocks.empty()) 2479 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2480 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2481 } 2482 2483 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2484 if (&F == MF.getFunction()) 2485 return getIRBlock(Slot); 2486 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2487 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2488 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2489 } 2490 2491 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2492 DenseMap<unsigned, const Value *> &Slots2Values) { 2493 int Slot = MST.getLocalSlot(V); 2494 if (Slot == -1) 2495 return; 2496 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2497 } 2498 2499 /// Creates the mapping from slot numbers to function's unnamed IR values. 2500 static void initSlots2Values(const Function &F, 2501 DenseMap<unsigned, const Value *> &Slots2Values) { 2502 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2503 MST.incorporateFunction(F); 2504 for (const auto &Arg : F.args()) 2505 mapValueToSlot(&Arg, MST, Slots2Values); 2506 for (const auto &BB : F) { 2507 mapValueToSlot(&BB, MST, Slots2Values); 2508 for (const auto &I : BB) 2509 mapValueToSlot(&I, MST, Slots2Values); 2510 } 2511 } 2512 2513 const Value *MIParser::getIRValue(unsigned Slot) { 2514 if (Slots2Values.empty()) 2515 initSlots2Values(*MF.getFunction(), Slots2Values); 2516 auto ValueInfo = Slots2Values.find(Slot); 2517 if (ValueInfo == Slots2Values.end()) 2518 return nullptr; 2519 return ValueInfo->second; 2520 } 2521 2522 void MIParser::initNames2TargetIndices() { 2523 if (!Names2TargetIndices.empty()) 2524 return; 2525 const auto *TII = MF.getSubtarget().getInstrInfo(); 2526 assert(TII && "Expected target instruction info"); 2527 auto Indices = TII->getSerializableTargetIndices(); 2528 for (const auto &I : Indices) 2529 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2530 } 2531 2532 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2533 initNames2TargetIndices(); 2534 auto IndexInfo = Names2TargetIndices.find(Name); 2535 if (IndexInfo == Names2TargetIndices.end()) 2536 return true; 2537 Index = IndexInfo->second; 2538 return false; 2539 } 2540 2541 void MIParser::initNames2DirectTargetFlags() { 2542 if (!Names2DirectTargetFlags.empty()) 2543 return; 2544 const auto *TII = MF.getSubtarget().getInstrInfo(); 2545 assert(TII && "Expected target instruction info"); 2546 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2547 for (const auto &I : Flags) 2548 Names2DirectTargetFlags.insert( 2549 std::make_pair(StringRef(I.second), I.first)); 2550 } 2551 2552 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2553 initNames2DirectTargetFlags(); 2554 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2555 if (FlagInfo == Names2DirectTargetFlags.end()) 2556 return true; 2557 Flag = FlagInfo->second; 2558 return false; 2559 } 2560 2561 void MIParser::initNames2BitmaskTargetFlags() { 2562 if (!Names2BitmaskTargetFlags.empty()) 2563 return; 2564 const auto *TII = MF.getSubtarget().getInstrInfo(); 2565 assert(TII && "Expected target instruction info"); 2566 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2567 for (const auto &I : Flags) 2568 Names2BitmaskTargetFlags.insert( 2569 std::make_pair(StringRef(I.second), I.first)); 2570 } 2571 2572 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2573 initNames2BitmaskTargetFlags(); 2574 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2575 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2576 return true; 2577 Flag = FlagInfo->second; 2578 return false; 2579 } 2580 2581 void MIParser::initNames2MMOTargetFlags() { 2582 if (!Names2MMOTargetFlags.empty()) 2583 return; 2584 const auto *TII = MF.getSubtarget().getInstrInfo(); 2585 assert(TII && "Expected target instruction info"); 2586 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2587 for (const auto &I : Flags) 2588 Names2MMOTargetFlags.insert( 2589 std::make_pair(StringRef(I.second), I.first)); 2590 } 2591 2592 bool MIParser::getMMOTargetFlag(StringRef Name, 2593 MachineMemOperand::Flags &Flag) { 2594 initNames2MMOTargetFlags(); 2595 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2596 if (FlagInfo == Names2MMOTargetFlags.end()) 2597 return true; 2598 Flag = FlagInfo->second; 2599 return false; 2600 } 2601 2602 bool MIParser::parseStringConstant(std::string &Result) { 2603 if (Token.isNot(MIToken::StringConstant)) 2604 return error("expected string constant"); 2605 Result = Token.stringValue(); 2606 lex(); 2607 return false; 2608 } 2609 2610 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2611 StringRef Src, 2612 SMDiagnostic &Error) { 2613 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2614 } 2615 2616 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2617 StringRef Src, SMDiagnostic &Error) { 2618 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2619 } 2620 2621 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2622 MachineBasicBlock *&MBB, StringRef Src, 2623 SMDiagnostic &Error) { 2624 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2625 } 2626 2627 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2628 unsigned &Reg, StringRef Src, 2629 SMDiagnostic &Error) { 2630 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2631 } 2632 2633 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2634 unsigned &Reg, StringRef Src, 2635 SMDiagnostic &Error) { 2636 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2637 } 2638 2639 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2640 VRegInfo *&Info, StringRef Src, 2641 SMDiagnostic &Error) { 2642 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2643 } 2644 2645 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2646 int &FI, StringRef Src, 2647 SMDiagnostic &Error) { 2648 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2649 } 2650 2651 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2652 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2653 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2654 } 2655