1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cctype> 40 41 using namespace llvm; 42 43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 44 SourceMgr &SM, const SlotMapping &IRSlots, 45 const Name2RegClassMap &Names2RegClasses, 46 const Name2RegBankMap &Names2RegBanks) 47 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 48 Names2RegBanks(Names2RegBanks) { 49 } 50 51 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 52 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 53 if (I.second) { 54 MachineRegisterInfo &MRI = MF.getRegInfo(); 55 VRegInfo *Info = new (Allocator) VRegInfo; 56 Info->VReg = MRI.createIncompleteVirtualRegister(); 57 I.first->second = Info; 58 } 59 return *I.first->second; 60 } 61 62 namespace { 63 64 /// A wrapper struct around the 'MachineOperand' struct that includes a source 65 /// range and other attributes. 66 struct ParsedMachineOperand { 67 MachineOperand Operand; 68 StringRef::iterator Begin; 69 StringRef::iterator End; 70 Optional<unsigned> TiedDefIdx; 71 72 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 73 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 74 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 75 if (TiedDefIdx) 76 assert(Operand.isReg() && Operand.isUse() && 77 "Only used register operands can be tied"); 78 } 79 }; 80 81 class MIParser { 82 MachineFunction &MF; 83 SMDiagnostic &Error; 84 StringRef Source, CurrentSource; 85 MIToken Token; 86 PerFunctionMIParsingState &PFS; 87 /// Maps from instruction names to op codes. 88 StringMap<unsigned> Names2InstrOpCodes; 89 /// Maps from register names to registers. 90 StringMap<unsigned> Names2Regs; 91 /// Maps from register mask names to register masks. 92 StringMap<const uint32_t *> Names2RegMasks; 93 /// Maps from subregister names to subregister indices. 94 StringMap<unsigned> Names2SubRegIndices; 95 /// Maps from slot numbers to function's unnamed basic blocks. 96 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 97 /// Maps from slot numbers to function's unnamed values. 98 DenseMap<unsigned, const Value *> Slots2Values; 99 /// Maps from target index names to target indices. 100 StringMap<int> Names2TargetIndices; 101 /// Maps from direct target flag names to the direct target flag values. 102 StringMap<unsigned> Names2DirectTargetFlags; 103 /// Maps from direct target flag names to the bitmask target flag values. 104 StringMap<unsigned> Names2BitmaskTargetFlags; 105 106 public: 107 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 108 StringRef Source); 109 110 /// \p SkipChar gives the number of characters to skip before looking 111 /// for the next token. 112 void lex(unsigned SkipChar = 0); 113 114 /// Report an error at the current location with the given message. 115 /// 116 /// This function always return true. 117 bool error(const Twine &Msg); 118 119 /// Report an error at the given location with the given message. 120 /// 121 /// This function always return true. 122 bool error(StringRef::iterator Loc, const Twine &Msg); 123 124 bool 125 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 126 bool parseBasicBlocks(); 127 bool parse(MachineInstr *&MI); 128 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 129 bool parseStandaloneNamedRegister(unsigned &Reg); 130 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 131 bool parseStandaloneRegister(unsigned &Reg); 132 bool parseStandaloneStackObject(int &FI); 133 bool parseStandaloneMDNode(MDNode *&Node); 134 135 bool 136 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 137 bool parseBasicBlock(MachineBasicBlock &MBB); 138 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 139 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 140 141 bool parseNamedRegister(unsigned &Reg); 142 bool parseVirtualRegister(VRegInfo *&Info); 143 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 144 bool parseRegisterFlag(unsigned &Flags); 145 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 146 bool parseSubRegisterIndex(unsigned &SubReg); 147 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 148 bool parseRegisterOperand(MachineOperand &Dest, 149 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 150 bool parseImmediateOperand(MachineOperand &Dest); 151 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 152 const Constant *&C); 153 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 154 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 155 bool parseTypedImmediateOperand(MachineOperand &Dest); 156 bool parseFPImmediateOperand(MachineOperand &Dest); 157 bool parseMBBReference(MachineBasicBlock *&MBB); 158 bool parseMBBOperand(MachineOperand &Dest); 159 bool parseStackFrameIndex(int &FI); 160 bool parseStackObjectOperand(MachineOperand &Dest); 161 bool parseFixedStackFrameIndex(int &FI); 162 bool parseFixedStackObjectOperand(MachineOperand &Dest); 163 bool parseGlobalValue(GlobalValue *&GV); 164 bool parseGlobalAddressOperand(MachineOperand &Dest); 165 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 166 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 167 bool parseJumpTableIndexOperand(MachineOperand &Dest); 168 bool parseExternalSymbolOperand(MachineOperand &Dest); 169 bool parseMDNode(MDNode *&Node); 170 bool parseMetadataOperand(MachineOperand &Dest); 171 bool parseCFIOffset(int &Offset); 172 bool parseCFIRegister(unsigned &Reg); 173 bool parseCFIOperand(MachineOperand &Dest); 174 bool parseIRBlock(BasicBlock *&BB, const Function &F); 175 bool parseBlockAddressOperand(MachineOperand &Dest); 176 bool parseIntrinsicOperand(MachineOperand &Dest); 177 bool parsePredicateOperand(MachineOperand &Dest); 178 bool parseTargetIndexOperand(MachineOperand &Dest); 179 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 180 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 181 bool parseMachineOperand(MachineOperand &Dest, 182 Optional<unsigned> &TiedDefIdx); 183 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 184 Optional<unsigned> &TiedDefIdx); 185 bool parseOffset(int64_t &Offset); 186 bool parseAlignment(unsigned &Alignment); 187 bool parseOperandsOffset(MachineOperand &Op); 188 bool parseIRValue(const Value *&V); 189 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 190 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 191 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 192 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 193 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 194 195 private: 196 /// Convert the integer literal in the current token into an unsigned integer. 197 /// 198 /// Return true if an error occurred. 199 bool getUnsigned(unsigned &Result); 200 201 /// Convert the integer literal in the current token into an uint64. 202 /// 203 /// Return true if an error occurred. 204 bool getUint64(uint64_t &Result); 205 206 /// Convert the hexadecimal literal in the current token into an unsigned 207 /// APInt with a minimum bitwidth required to represent the value. 208 /// 209 /// Return true if the literal does not represent an integer value. 210 bool getHexUint(APInt &Result); 211 212 /// If the current token is of the given kind, consume it and return false. 213 /// Otherwise report an error and return true. 214 bool expectAndConsume(MIToken::TokenKind TokenKind); 215 216 /// If the current token is of the given kind, consume it and return true. 217 /// Otherwise return false. 218 bool consumeIfPresent(MIToken::TokenKind TokenKind); 219 220 void initNames2InstrOpCodes(); 221 222 /// Try to convert an instruction name to an opcode. Return true if the 223 /// instruction name is invalid. 224 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 225 226 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 227 228 bool assignRegisterTies(MachineInstr &MI, 229 ArrayRef<ParsedMachineOperand> Operands); 230 231 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 232 const MCInstrDesc &MCID); 233 234 void initNames2Regs(); 235 236 /// Try to convert a register name to a register number. Return true if the 237 /// register name is invalid. 238 bool getRegisterByName(StringRef RegName, unsigned &Reg); 239 240 void initNames2RegMasks(); 241 242 /// Check if the given identifier is a name of a register mask. 243 /// 244 /// Return null if the identifier isn't a register mask. 245 const uint32_t *getRegMask(StringRef Identifier); 246 247 void initNames2SubRegIndices(); 248 249 /// Check if the given identifier is a name of a subregister index. 250 /// 251 /// Return 0 if the name isn't a subregister index class. 252 unsigned getSubRegIndex(StringRef Name); 253 254 const BasicBlock *getIRBlock(unsigned Slot); 255 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 256 257 const Value *getIRValue(unsigned Slot); 258 259 void initNames2TargetIndices(); 260 261 /// Try to convert a name of target index to the corresponding target index. 262 /// 263 /// Return true if the name isn't a name of a target index. 264 bool getTargetIndex(StringRef Name, int &Index); 265 266 void initNames2DirectTargetFlags(); 267 268 /// Try to convert a name of a direct target flag to the corresponding 269 /// target flag. 270 /// 271 /// Return true if the name isn't a name of a direct flag. 272 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 273 274 void initNames2BitmaskTargetFlags(); 275 276 /// Try to convert a name of a bitmask target flag to the corresponding 277 /// target flag. 278 /// 279 /// Return true if the name isn't a name of a bitmask target flag. 280 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 281 }; 282 283 } // end anonymous namespace 284 285 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 286 StringRef Source) 287 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 288 {} 289 290 void MIParser::lex(unsigned SkipChar) { 291 CurrentSource = lexMIToken( 292 CurrentSource.data() + SkipChar, Token, 293 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 294 } 295 296 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 297 298 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 299 const SourceMgr &SM = *PFS.SM; 300 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 301 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 302 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 303 // Create an ordinary diagnostic when the source manager's buffer is the 304 // source string. 305 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 306 return true; 307 } 308 // Create a diagnostic for a YAML string literal. 309 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 310 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 311 Source, None, None); 312 return true; 313 } 314 315 static const char *toString(MIToken::TokenKind TokenKind) { 316 switch (TokenKind) { 317 case MIToken::comma: 318 return "','"; 319 case MIToken::equal: 320 return "'='"; 321 case MIToken::colon: 322 return "':'"; 323 case MIToken::lparen: 324 return "'('"; 325 case MIToken::rparen: 326 return "')'"; 327 default: 328 return "<unknown token>"; 329 } 330 } 331 332 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 333 if (Token.isNot(TokenKind)) 334 return error(Twine("expected ") + toString(TokenKind)); 335 lex(); 336 return false; 337 } 338 339 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 340 if (Token.isNot(TokenKind)) 341 return false; 342 lex(); 343 return true; 344 } 345 346 bool MIParser::parseBasicBlockDefinition( 347 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 348 assert(Token.is(MIToken::MachineBasicBlockLabel)); 349 unsigned ID = 0; 350 if (getUnsigned(ID)) 351 return true; 352 auto Loc = Token.location(); 353 auto Name = Token.stringValue(); 354 lex(); 355 bool HasAddressTaken = false; 356 bool IsLandingPad = false; 357 unsigned Alignment = 0; 358 BasicBlock *BB = nullptr; 359 if (consumeIfPresent(MIToken::lparen)) { 360 do { 361 // TODO: Report an error when multiple same attributes are specified. 362 switch (Token.kind()) { 363 case MIToken::kw_address_taken: 364 HasAddressTaken = true; 365 lex(); 366 break; 367 case MIToken::kw_landing_pad: 368 IsLandingPad = true; 369 lex(); 370 break; 371 case MIToken::kw_align: 372 if (parseAlignment(Alignment)) 373 return true; 374 break; 375 case MIToken::IRBlock: 376 // TODO: Report an error when both name and ir block are specified. 377 if (parseIRBlock(BB, *MF.getFunction())) 378 return true; 379 lex(); 380 break; 381 default: 382 break; 383 } 384 } while (consumeIfPresent(MIToken::comma)); 385 if (expectAndConsume(MIToken::rparen)) 386 return true; 387 } 388 if (expectAndConsume(MIToken::colon)) 389 return true; 390 391 if (!Name.empty()) { 392 BB = dyn_cast_or_null<BasicBlock>( 393 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 394 if (!BB) 395 return error(Loc, Twine("basic block '") + Name + 396 "' is not defined in the function '" + 397 MF.getName() + "'"); 398 } 399 auto *MBB = MF.CreateMachineBasicBlock(BB); 400 MF.insert(MF.end(), MBB); 401 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 402 if (!WasInserted) 403 return error(Loc, Twine("redefinition of machine basic block with id #") + 404 Twine(ID)); 405 if (Alignment) 406 MBB->setAlignment(Alignment); 407 if (HasAddressTaken) 408 MBB->setHasAddressTaken(); 409 MBB->setIsEHPad(IsLandingPad); 410 return false; 411 } 412 413 bool MIParser::parseBasicBlockDefinitions( 414 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 415 lex(); 416 // Skip until the first machine basic block. 417 while (Token.is(MIToken::Newline)) 418 lex(); 419 if (Token.isErrorOrEOF()) 420 return Token.isError(); 421 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 422 return error("expected a basic block definition before instructions"); 423 unsigned BraceDepth = 0; 424 do { 425 if (parseBasicBlockDefinition(MBBSlots)) 426 return true; 427 bool IsAfterNewline = false; 428 // Skip until the next machine basic block. 429 while (true) { 430 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 431 Token.isErrorOrEOF()) 432 break; 433 else if (Token.is(MIToken::MachineBasicBlockLabel)) 434 return error("basic block definition should be located at the start of " 435 "the line"); 436 else if (consumeIfPresent(MIToken::Newline)) { 437 IsAfterNewline = true; 438 continue; 439 } 440 IsAfterNewline = false; 441 if (Token.is(MIToken::lbrace)) 442 ++BraceDepth; 443 if (Token.is(MIToken::rbrace)) { 444 if (!BraceDepth) 445 return error("extraneous closing brace ('}')"); 446 --BraceDepth; 447 } 448 lex(); 449 } 450 // Verify that we closed all of the '{' at the end of a file or a block. 451 if (!Token.isError() && BraceDepth) 452 return error("expected '}'"); // FIXME: Report a note that shows '{'. 453 } while (!Token.isErrorOrEOF()); 454 return Token.isError(); 455 } 456 457 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 458 assert(Token.is(MIToken::kw_liveins)); 459 lex(); 460 if (expectAndConsume(MIToken::colon)) 461 return true; 462 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 463 return false; 464 do { 465 if (Token.isNot(MIToken::NamedRegister)) 466 return error("expected a named register"); 467 unsigned Reg = 0; 468 if (parseNamedRegister(Reg)) 469 return true; 470 lex(); 471 LaneBitmask Mask = LaneBitmask::getAll(); 472 if (consumeIfPresent(MIToken::colon)) { 473 // Parse lane mask. 474 if (Token.isNot(MIToken::IntegerLiteral) && 475 Token.isNot(MIToken::HexLiteral)) 476 return error("expected a lane mask"); 477 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 478 "Use correct get-function for lane mask"); 479 LaneBitmask::Type V; 480 if (getUnsigned(V)) 481 return error("invalid lane mask value"); 482 Mask = LaneBitmask(V); 483 lex(); 484 } 485 MBB.addLiveIn(Reg, Mask); 486 } while (consumeIfPresent(MIToken::comma)); 487 return false; 488 } 489 490 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 491 assert(Token.is(MIToken::kw_successors)); 492 lex(); 493 if (expectAndConsume(MIToken::colon)) 494 return true; 495 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 496 return false; 497 do { 498 if (Token.isNot(MIToken::MachineBasicBlock)) 499 return error("expected a machine basic block reference"); 500 MachineBasicBlock *SuccMBB = nullptr; 501 if (parseMBBReference(SuccMBB)) 502 return true; 503 lex(); 504 unsigned Weight = 0; 505 if (consumeIfPresent(MIToken::lparen)) { 506 if (Token.isNot(MIToken::IntegerLiteral) && 507 Token.isNot(MIToken::HexLiteral)) 508 return error("expected an integer literal after '('"); 509 if (getUnsigned(Weight)) 510 return true; 511 lex(); 512 if (expectAndConsume(MIToken::rparen)) 513 return true; 514 } 515 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 516 } while (consumeIfPresent(MIToken::comma)); 517 MBB.normalizeSuccProbs(); 518 return false; 519 } 520 521 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 522 // Skip the definition. 523 assert(Token.is(MIToken::MachineBasicBlockLabel)); 524 lex(); 525 if (consumeIfPresent(MIToken::lparen)) { 526 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 527 lex(); 528 consumeIfPresent(MIToken::rparen); 529 } 530 consumeIfPresent(MIToken::colon); 531 532 // Parse the liveins and successors. 533 // N.B: Multiple lists of successors and liveins are allowed and they're 534 // merged into one. 535 // Example: 536 // liveins: %edi 537 // liveins: %esi 538 // 539 // is equivalent to 540 // liveins: %edi, %esi 541 while (true) { 542 if (Token.is(MIToken::kw_successors)) { 543 if (parseBasicBlockSuccessors(MBB)) 544 return true; 545 } else if (Token.is(MIToken::kw_liveins)) { 546 if (parseBasicBlockLiveins(MBB)) 547 return true; 548 } else if (consumeIfPresent(MIToken::Newline)) { 549 continue; 550 } else 551 break; 552 if (!Token.isNewlineOrEOF()) 553 return error("expected line break at the end of a list"); 554 lex(); 555 } 556 557 // Parse the instructions. 558 bool IsInBundle = false; 559 MachineInstr *PrevMI = nullptr; 560 while (true) { 561 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 562 return false; 563 else if (consumeIfPresent(MIToken::Newline)) 564 continue; 565 if (consumeIfPresent(MIToken::rbrace)) { 566 // The first parsing pass should verify that all closing '}' have an 567 // opening '{'. 568 assert(IsInBundle); 569 IsInBundle = false; 570 continue; 571 } 572 MachineInstr *MI = nullptr; 573 if (parse(MI)) 574 return true; 575 MBB.insert(MBB.end(), MI); 576 if (IsInBundle) { 577 PrevMI->setFlag(MachineInstr::BundledSucc); 578 MI->setFlag(MachineInstr::BundledPred); 579 } 580 PrevMI = MI; 581 if (Token.is(MIToken::lbrace)) { 582 if (IsInBundle) 583 return error("nested instruction bundles are not allowed"); 584 lex(); 585 // This instruction is the start of the bundle. 586 MI->setFlag(MachineInstr::BundledSucc); 587 IsInBundle = true; 588 if (!Token.is(MIToken::Newline)) 589 // The next instruction can be on the same line. 590 continue; 591 } 592 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 593 lex(); 594 } 595 return false; 596 } 597 598 bool MIParser::parseBasicBlocks() { 599 lex(); 600 // Skip until the first machine basic block. 601 while (Token.is(MIToken::Newline)) 602 lex(); 603 if (Token.isErrorOrEOF()) 604 return Token.isError(); 605 // The first parsing pass should have verified that this token is a MBB label 606 // in the 'parseBasicBlockDefinitions' method. 607 assert(Token.is(MIToken::MachineBasicBlockLabel)); 608 do { 609 MachineBasicBlock *MBB = nullptr; 610 if (parseMBBReference(MBB)) 611 return true; 612 if (parseBasicBlock(*MBB)) 613 return true; 614 // The method 'parseBasicBlock' should parse the whole block until the next 615 // block or the end of file. 616 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 617 } while (Token.isNot(MIToken::Eof)); 618 return false; 619 } 620 621 bool MIParser::parse(MachineInstr *&MI) { 622 // Parse any register operands before '=' 623 MachineOperand MO = MachineOperand::CreateImm(0); 624 SmallVector<ParsedMachineOperand, 8> Operands; 625 while (Token.isRegister() || Token.isRegisterFlag()) { 626 auto Loc = Token.location(); 627 Optional<unsigned> TiedDefIdx; 628 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 629 return true; 630 Operands.push_back( 631 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 632 if (Token.isNot(MIToken::comma)) 633 break; 634 lex(); 635 } 636 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 637 return true; 638 639 unsigned OpCode, Flags = 0; 640 if (Token.isError() || parseInstruction(OpCode, Flags)) 641 return true; 642 643 // Parse the remaining machine operands. 644 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 645 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 646 auto Loc = Token.location(); 647 Optional<unsigned> TiedDefIdx; 648 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 649 return true; 650 Operands.push_back( 651 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 652 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 653 Token.is(MIToken::lbrace)) 654 break; 655 if (Token.isNot(MIToken::comma)) 656 return error("expected ',' before the next machine operand"); 657 lex(); 658 } 659 660 DebugLoc DebugLocation; 661 if (Token.is(MIToken::kw_debug_location)) { 662 lex(); 663 if (Token.isNot(MIToken::exclaim)) 664 return error("expected a metadata node after 'debug-location'"); 665 MDNode *Node = nullptr; 666 if (parseMDNode(Node)) 667 return true; 668 DebugLocation = DebugLoc(Node); 669 } 670 671 // Parse the machine memory operands. 672 SmallVector<MachineMemOperand *, 2> MemOperands; 673 if (Token.is(MIToken::coloncolon)) { 674 lex(); 675 while (!Token.isNewlineOrEOF()) { 676 MachineMemOperand *MemOp = nullptr; 677 if (parseMachineMemoryOperand(MemOp)) 678 return true; 679 MemOperands.push_back(MemOp); 680 if (Token.isNewlineOrEOF()) 681 break; 682 if (Token.isNot(MIToken::comma)) 683 return error("expected ',' before the next machine memory operand"); 684 lex(); 685 } 686 } 687 688 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 689 if (!MCID.isVariadic()) { 690 // FIXME: Move the implicit operand verification to the machine verifier. 691 if (verifyImplicitOperands(Operands, MCID)) 692 return true; 693 } 694 695 // TODO: Check for extraneous machine operands. 696 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 697 MI->setFlags(Flags); 698 for (const auto &Operand : Operands) 699 MI->addOperand(MF, Operand.Operand); 700 if (assignRegisterTies(*MI, Operands)) 701 return true; 702 if (MemOperands.empty()) 703 return false; 704 MachineInstr::mmo_iterator MemRefs = 705 MF.allocateMemRefsArray(MemOperands.size()); 706 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 707 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 708 return false; 709 } 710 711 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 712 lex(); 713 if (Token.isNot(MIToken::MachineBasicBlock)) 714 return error("expected a machine basic block reference"); 715 if (parseMBBReference(MBB)) 716 return true; 717 lex(); 718 if (Token.isNot(MIToken::Eof)) 719 return error( 720 "expected end of string after the machine basic block reference"); 721 return false; 722 } 723 724 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 725 lex(); 726 if (Token.isNot(MIToken::NamedRegister)) 727 return error("expected a named register"); 728 if (parseNamedRegister(Reg)) 729 return true; 730 lex(); 731 if (Token.isNot(MIToken::Eof)) 732 return error("expected end of string after the register reference"); 733 return false; 734 } 735 736 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 737 lex(); 738 if (Token.isNot(MIToken::VirtualRegister)) 739 return error("expected a virtual register"); 740 if (parseVirtualRegister(Info)) 741 return true; 742 lex(); 743 if (Token.isNot(MIToken::Eof)) 744 return error("expected end of string after the register reference"); 745 return false; 746 } 747 748 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 749 lex(); 750 if (Token.isNot(MIToken::NamedRegister) && 751 Token.isNot(MIToken::VirtualRegister)) 752 return error("expected either a named or virtual register"); 753 754 VRegInfo *Info; 755 if (parseRegister(Reg, Info)) 756 return true; 757 758 lex(); 759 if (Token.isNot(MIToken::Eof)) 760 return error("expected end of string after the register reference"); 761 return false; 762 } 763 764 bool MIParser::parseStandaloneStackObject(int &FI) { 765 lex(); 766 if (Token.isNot(MIToken::StackObject)) 767 return error("expected a stack object"); 768 if (parseStackFrameIndex(FI)) 769 return true; 770 if (Token.isNot(MIToken::Eof)) 771 return error("expected end of string after the stack object reference"); 772 return false; 773 } 774 775 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 776 lex(); 777 if (Token.isNot(MIToken::exclaim)) 778 return error("expected a metadata node"); 779 if (parseMDNode(Node)) 780 return true; 781 if (Token.isNot(MIToken::Eof)) 782 return error("expected end of string after the metadata node"); 783 return false; 784 } 785 786 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 787 assert(MO.isImplicit()); 788 return MO.isDef() ? "implicit-def" : "implicit"; 789 } 790 791 static std::string getRegisterName(const TargetRegisterInfo *TRI, 792 unsigned Reg) { 793 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 794 return StringRef(TRI->getName(Reg)).lower(); 795 } 796 797 /// Return true if the parsed machine operands contain a given machine operand. 798 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 799 ArrayRef<ParsedMachineOperand> Operands) { 800 for (const auto &I : Operands) { 801 if (ImplicitOperand.isIdenticalTo(I.Operand)) 802 return true; 803 } 804 return false; 805 } 806 807 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 808 const MCInstrDesc &MCID) { 809 if (MCID.isCall()) 810 // We can't verify call instructions as they can contain arbitrary implicit 811 // register and register mask operands. 812 return false; 813 814 // Gather all the expected implicit operands. 815 SmallVector<MachineOperand, 4> ImplicitOperands; 816 if (MCID.ImplicitDefs) 817 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 818 ImplicitOperands.push_back( 819 MachineOperand::CreateReg(*ImpDefs, true, true)); 820 if (MCID.ImplicitUses) 821 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 822 ImplicitOperands.push_back( 823 MachineOperand::CreateReg(*ImpUses, false, true)); 824 825 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 826 assert(TRI && "Expected target register info"); 827 for (const auto &I : ImplicitOperands) { 828 if (isImplicitOperandIn(I, Operands)) 829 continue; 830 return error(Operands.empty() ? Token.location() : Operands.back().End, 831 Twine("missing implicit register operand '") + 832 printImplicitRegisterFlag(I) + " %" + 833 getRegisterName(TRI, I.getReg()) + "'"); 834 } 835 return false; 836 } 837 838 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 839 if (Token.is(MIToken::kw_frame_setup)) { 840 Flags |= MachineInstr::FrameSetup; 841 lex(); 842 } 843 if (Token.isNot(MIToken::Identifier)) 844 return error("expected a machine instruction"); 845 StringRef InstrName = Token.stringValue(); 846 if (parseInstrName(InstrName, OpCode)) 847 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 848 lex(); 849 return false; 850 } 851 852 bool MIParser::parseNamedRegister(unsigned &Reg) { 853 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 854 StringRef Name = Token.stringValue(); 855 if (getRegisterByName(Name, Reg)) 856 return error(Twine("unknown register name '") + Name + "'"); 857 return false; 858 } 859 860 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 861 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 862 unsigned ID; 863 if (getUnsigned(ID)) 864 return true; 865 Info = &PFS.getVRegInfo(ID); 866 return false; 867 } 868 869 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 870 switch (Token.kind()) { 871 case MIToken::underscore: 872 Reg = 0; 873 return false; 874 case MIToken::NamedRegister: 875 return parseNamedRegister(Reg); 876 case MIToken::VirtualRegister: 877 if (parseVirtualRegister(Info)) 878 return true; 879 Reg = Info->VReg; 880 return false; 881 // TODO: Parse other register kinds. 882 default: 883 llvm_unreachable("The current token should be a register"); 884 } 885 } 886 887 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 888 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 889 return error("expected '_', register class, or register bank name"); 890 StringRef::iterator Loc = Token.location(); 891 StringRef Name = Token.stringValue(); 892 893 // Was it a register class? 894 auto RCNameI = PFS.Names2RegClasses.find(Name); 895 if (RCNameI != PFS.Names2RegClasses.end()) { 896 lex(); 897 const TargetRegisterClass &RC = *RCNameI->getValue(); 898 899 switch (RegInfo.Kind) { 900 case VRegInfo::UNKNOWN: 901 case VRegInfo::NORMAL: 902 RegInfo.Kind = VRegInfo::NORMAL; 903 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 904 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 905 return error(Loc, Twine("conflicting register classes, previously: ") + 906 Twine(TRI.getRegClassName(RegInfo.D.RC))); 907 } 908 RegInfo.D.RC = &RC; 909 RegInfo.Explicit = true; 910 return false; 911 912 case VRegInfo::GENERIC: 913 case VRegInfo::REGBANK: 914 return error(Loc, "register class specification on generic register"); 915 } 916 llvm_unreachable("Unexpected register kind"); 917 } 918 919 // Should be a register bank or a generic register. 920 const RegisterBank *RegBank = nullptr; 921 if (Name != "_") { 922 auto RBNameI = PFS.Names2RegBanks.find(Name); 923 if (RBNameI == PFS.Names2RegBanks.end()) 924 return error(Loc, "expected '_', register class, or register bank name"); 925 RegBank = RBNameI->getValue(); 926 } 927 928 lex(); 929 930 switch (RegInfo.Kind) { 931 case VRegInfo::UNKNOWN: 932 case VRegInfo::GENERIC: 933 case VRegInfo::REGBANK: 934 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 935 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 936 return error(Loc, "conflicting generic register banks"); 937 RegInfo.D.RegBank = RegBank; 938 RegInfo.Explicit = true; 939 return false; 940 941 case VRegInfo::NORMAL: 942 return error(Loc, "register bank specification on normal register"); 943 } 944 llvm_unreachable("Unexpected register kind"); 945 } 946 947 bool MIParser::parseRegisterFlag(unsigned &Flags) { 948 const unsigned OldFlags = Flags; 949 switch (Token.kind()) { 950 case MIToken::kw_implicit: 951 Flags |= RegState::Implicit; 952 break; 953 case MIToken::kw_implicit_define: 954 Flags |= RegState::ImplicitDefine; 955 break; 956 case MIToken::kw_def: 957 Flags |= RegState::Define; 958 break; 959 case MIToken::kw_dead: 960 Flags |= RegState::Dead; 961 break; 962 case MIToken::kw_killed: 963 Flags |= RegState::Kill; 964 break; 965 case MIToken::kw_undef: 966 Flags |= RegState::Undef; 967 break; 968 case MIToken::kw_internal: 969 Flags |= RegState::InternalRead; 970 break; 971 case MIToken::kw_early_clobber: 972 Flags |= RegState::EarlyClobber; 973 break; 974 case MIToken::kw_debug_use: 975 Flags |= RegState::Debug; 976 break; 977 default: 978 llvm_unreachable("The current token should be a register flag"); 979 } 980 if (OldFlags == Flags) 981 // We know that the same flag is specified more than once when the flags 982 // weren't modified. 983 return error("duplicate '" + Token.stringValue() + "' register flag"); 984 lex(); 985 return false; 986 } 987 988 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 989 assert(Token.is(MIToken::dot)); 990 lex(); 991 if (Token.isNot(MIToken::Identifier)) 992 return error("expected a subregister index after '.'"); 993 auto Name = Token.stringValue(); 994 SubReg = getSubRegIndex(Name); 995 if (!SubReg) 996 return error(Twine("use of unknown subregister index '") + Name + "'"); 997 lex(); 998 return false; 999 } 1000 1001 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1002 if (!consumeIfPresent(MIToken::kw_tied_def)) 1003 return true; 1004 if (Token.isNot(MIToken::IntegerLiteral)) 1005 return error("expected an integer literal after 'tied-def'"); 1006 if (getUnsigned(TiedDefIdx)) 1007 return true; 1008 lex(); 1009 if (expectAndConsume(MIToken::rparen)) 1010 return true; 1011 return false; 1012 } 1013 1014 bool MIParser::assignRegisterTies(MachineInstr &MI, 1015 ArrayRef<ParsedMachineOperand> Operands) { 1016 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1017 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1018 if (!Operands[I].TiedDefIdx) 1019 continue; 1020 // The parser ensures that this operand is a register use, so we just have 1021 // to check the tied-def operand. 1022 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1023 if (DefIdx >= E) 1024 return error(Operands[I].Begin, 1025 Twine("use of invalid tied-def operand index '" + 1026 Twine(DefIdx) + "'; instruction has only ") + 1027 Twine(E) + " operands"); 1028 const auto &DefOperand = Operands[DefIdx].Operand; 1029 if (!DefOperand.isReg() || !DefOperand.isDef()) 1030 // FIXME: add note with the def operand. 1031 return error(Operands[I].Begin, 1032 Twine("use of invalid tied-def operand index '") + 1033 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1034 " isn't a defined register"); 1035 // Check that the tied-def operand wasn't tied elsewhere. 1036 for (const auto &TiedPair : TiedRegisterPairs) { 1037 if (TiedPair.first == DefIdx) 1038 return error(Operands[I].Begin, 1039 Twine("the tied-def operand #") + Twine(DefIdx) + 1040 " is already tied with another register operand"); 1041 } 1042 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1043 } 1044 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1045 // indices must be less than tied max. 1046 for (const auto &TiedPair : TiedRegisterPairs) 1047 MI.tieOperands(TiedPair.first, TiedPair.second); 1048 return false; 1049 } 1050 1051 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1052 Optional<unsigned> &TiedDefIdx, 1053 bool IsDef) { 1054 unsigned Flags = IsDef ? RegState::Define : 0; 1055 while (Token.isRegisterFlag()) { 1056 if (parseRegisterFlag(Flags)) 1057 return true; 1058 } 1059 if (!Token.isRegister()) 1060 return error("expected a register after register flags"); 1061 unsigned Reg; 1062 VRegInfo *RegInfo; 1063 if (parseRegister(Reg, RegInfo)) 1064 return true; 1065 lex(); 1066 unsigned SubReg = 0; 1067 if (Token.is(MIToken::dot)) { 1068 if (parseSubRegisterIndex(SubReg)) 1069 return true; 1070 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1071 return error("subregister index expects a virtual register"); 1072 } 1073 if (Token.is(MIToken::colon)) { 1074 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1075 return error("register class specification expects a virtual register"); 1076 lex(); 1077 if (parseRegisterClassOrBank(*RegInfo)) 1078 return true; 1079 } 1080 MachineRegisterInfo &MRI = MF.getRegInfo(); 1081 if ((Flags & RegState::Define) == 0) { 1082 if (consumeIfPresent(MIToken::lparen)) { 1083 unsigned Idx; 1084 if (!parseRegisterTiedDefIndex(Idx)) 1085 TiedDefIdx = Idx; 1086 else { 1087 // Try a redundant low-level type. 1088 LLT Ty; 1089 if (parseLowLevelType(Token.location(), Ty)) 1090 return error("expected tied-def or low-level type after '('"); 1091 1092 if (expectAndConsume(MIToken::rparen)) 1093 return true; 1094 1095 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1096 return error("inconsistent type for generic virtual register"); 1097 1098 MRI.setType(Reg, Ty); 1099 } 1100 } 1101 } else if (consumeIfPresent(MIToken::lparen)) { 1102 // Virtual registers may have a tpe with GlobalISel. 1103 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1104 return error("unexpected type on physical register"); 1105 1106 LLT Ty; 1107 if (parseLowLevelType(Token.location(), Ty)) 1108 return true; 1109 1110 if (expectAndConsume(MIToken::rparen)) 1111 return true; 1112 1113 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1114 return error("inconsistent type for generic virtual register"); 1115 1116 MRI.setType(Reg, Ty); 1117 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1118 // Generic virtual registers must have a type. 1119 // If we end up here this means the type hasn't been specified and 1120 // this is bad! 1121 if (RegInfo->Kind == VRegInfo::GENERIC || 1122 RegInfo->Kind == VRegInfo::REGBANK) 1123 return error("generic virtual registers must have a type"); 1124 } 1125 Dest = MachineOperand::CreateReg( 1126 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1127 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1128 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1129 Flags & RegState::InternalRead); 1130 return false; 1131 } 1132 1133 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1134 assert(Token.is(MIToken::IntegerLiteral)); 1135 const APSInt &Int = Token.integerValue(); 1136 if (Int.getMinSignedBits() > 64) 1137 return error("integer literal is too large to be an immediate operand"); 1138 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1139 lex(); 1140 return false; 1141 } 1142 1143 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1144 const Constant *&C) { 1145 auto Source = StringValue.str(); // The source has to be null terminated. 1146 SMDiagnostic Err; 1147 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1148 &PFS.IRSlots); 1149 if (!C) 1150 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1151 return false; 1152 } 1153 1154 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1155 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1156 return true; 1157 lex(); 1158 return false; 1159 } 1160 1161 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1162 if (Token.is(MIToken::ScalarType)) { 1163 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1164 lex(); 1165 return false; 1166 } else if (Token.is(MIToken::PointerType)) { 1167 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1168 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1169 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1170 lex(); 1171 return false; 1172 } 1173 1174 // Now we're looking for a vector. 1175 if (Token.isNot(MIToken::less)) 1176 return error(Loc, 1177 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1178 1179 lex(); 1180 1181 if (Token.isNot(MIToken::IntegerLiteral)) 1182 return error(Loc, "expected <N x sM> for vctor type"); 1183 uint64_t NumElements = Token.integerValue().getZExtValue(); 1184 lex(); 1185 1186 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1187 return error(Loc, "expected '<N x sM>' for vector type"); 1188 lex(); 1189 1190 if (Token.isNot(MIToken::ScalarType)) 1191 return error(Loc, "expected '<N x sM>' for vector type"); 1192 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1193 lex(); 1194 1195 if (Token.isNot(MIToken::greater)) 1196 return error(Loc, "expected '<N x sM>' for vector type"); 1197 lex(); 1198 1199 Ty = LLT::vector(NumElements, ScalarSize); 1200 return false; 1201 } 1202 1203 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1204 assert(Token.is(MIToken::IntegerType)); 1205 auto Loc = Token.location(); 1206 lex(); 1207 if (Token.isNot(MIToken::IntegerLiteral)) 1208 return error("expected an integer literal"); 1209 const Constant *C = nullptr; 1210 if (parseIRConstant(Loc, C)) 1211 return true; 1212 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1213 return false; 1214 } 1215 1216 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1217 auto Loc = Token.location(); 1218 lex(); 1219 if (Token.isNot(MIToken::FloatingPointLiteral) && 1220 Token.isNot(MIToken::HexLiteral)) 1221 return error("expected a floating point literal"); 1222 const Constant *C = nullptr; 1223 if (parseIRConstant(Loc, C)) 1224 return true; 1225 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1226 return false; 1227 } 1228 1229 bool MIParser::getUnsigned(unsigned &Result) { 1230 if (Token.hasIntegerValue()) { 1231 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1232 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1233 if (Val64 == Limit) 1234 return error("expected 32-bit integer (too large)"); 1235 Result = Val64; 1236 return false; 1237 } 1238 if (Token.is(MIToken::HexLiteral)) { 1239 APInt A; 1240 if (getHexUint(A)) 1241 return true; 1242 if (A.getBitWidth() > 32) 1243 return error("expected 32-bit integer (too large)"); 1244 Result = A.getZExtValue(); 1245 return false; 1246 } 1247 return true; 1248 } 1249 1250 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1251 assert(Token.is(MIToken::MachineBasicBlock) || 1252 Token.is(MIToken::MachineBasicBlockLabel)); 1253 unsigned Number; 1254 if (getUnsigned(Number)) 1255 return true; 1256 auto MBBInfo = PFS.MBBSlots.find(Number); 1257 if (MBBInfo == PFS.MBBSlots.end()) 1258 return error(Twine("use of undefined machine basic block #") + 1259 Twine(Number)); 1260 MBB = MBBInfo->second; 1261 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1262 return error(Twine("the name of machine basic block #") + Twine(Number) + 1263 " isn't '" + Token.stringValue() + "'"); 1264 return false; 1265 } 1266 1267 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1268 MachineBasicBlock *MBB; 1269 if (parseMBBReference(MBB)) 1270 return true; 1271 Dest = MachineOperand::CreateMBB(MBB); 1272 lex(); 1273 return false; 1274 } 1275 1276 bool MIParser::parseStackFrameIndex(int &FI) { 1277 assert(Token.is(MIToken::StackObject)); 1278 unsigned ID; 1279 if (getUnsigned(ID)) 1280 return true; 1281 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1282 if (ObjectInfo == PFS.StackObjectSlots.end()) 1283 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1284 "'"); 1285 StringRef Name; 1286 if (const auto *Alloca = 1287 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1288 Name = Alloca->getName(); 1289 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1290 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1291 "' isn't '" + Token.stringValue() + "'"); 1292 lex(); 1293 FI = ObjectInfo->second; 1294 return false; 1295 } 1296 1297 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1298 int FI; 1299 if (parseStackFrameIndex(FI)) 1300 return true; 1301 Dest = MachineOperand::CreateFI(FI); 1302 return false; 1303 } 1304 1305 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1306 assert(Token.is(MIToken::FixedStackObject)); 1307 unsigned ID; 1308 if (getUnsigned(ID)) 1309 return true; 1310 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1311 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1312 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1313 Twine(ID) + "'"); 1314 lex(); 1315 FI = ObjectInfo->second; 1316 return false; 1317 } 1318 1319 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1320 int FI; 1321 if (parseFixedStackFrameIndex(FI)) 1322 return true; 1323 Dest = MachineOperand::CreateFI(FI); 1324 return false; 1325 } 1326 1327 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1328 switch (Token.kind()) { 1329 case MIToken::NamedGlobalValue: { 1330 const Module *M = MF.getFunction()->getParent(); 1331 GV = M->getNamedValue(Token.stringValue()); 1332 if (!GV) 1333 return error(Twine("use of undefined global value '") + Token.range() + 1334 "'"); 1335 break; 1336 } 1337 case MIToken::GlobalValue: { 1338 unsigned GVIdx; 1339 if (getUnsigned(GVIdx)) 1340 return true; 1341 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1342 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1343 "'"); 1344 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1345 break; 1346 } 1347 default: 1348 llvm_unreachable("The current token should be a global value"); 1349 } 1350 return false; 1351 } 1352 1353 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1354 GlobalValue *GV = nullptr; 1355 if (parseGlobalValue(GV)) 1356 return true; 1357 lex(); 1358 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1359 if (parseOperandsOffset(Dest)) 1360 return true; 1361 return false; 1362 } 1363 1364 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1365 assert(Token.is(MIToken::ConstantPoolItem)); 1366 unsigned ID; 1367 if (getUnsigned(ID)) 1368 return true; 1369 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1370 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1371 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1372 lex(); 1373 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1374 if (parseOperandsOffset(Dest)) 1375 return true; 1376 return false; 1377 } 1378 1379 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1380 assert(Token.is(MIToken::JumpTableIndex)); 1381 unsigned ID; 1382 if (getUnsigned(ID)) 1383 return true; 1384 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1385 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1386 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1387 lex(); 1388 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1389 return false; 1390 } 1391 1392 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1393 assert(Token.is(MIToken::ExternalSymbol)); 1394 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1395 lex(); 1396 Dest = MachineOperand::CreateES(Symbol); 1397 if (parseOperandsOffset(Dest)) 1398 return true; 1399 return false; 1400 } 1401 1402 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1403 assert(Token.is(MIToken::SubRegisterIndex)); 1404 StringRef Name = Token.stringValue(); 1405 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1406 if (SubRegIndex == 0) 1407 return error(Twine("unknown subregister index '") + Name + "'"); 1408 lex(); 1409 Dest = MachineOperand::CreateImm(SubRegIndex); 1410 return false; 1411 } 1412 1413 bool MIParser::parseMDNode(MDNode *&Node) { 1414 assert(Token.is(MIToken::exclaim)); 1415 auto Loc = Token.location(); 1416 lex(); 1417 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1418 return error("expected metadata id after '!'"); 1419 unsigned ID; 1420 if (getUnsigned(ID)) 1421 return true; 1422 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1423 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1424 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1425 lex(); 1426 Node = NodeInfo->second.get(); 1427 return false; 1428 } 1429 1430 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1431 MDNode *Node = nullptr; 1432 if (parseMDNode(Node)) 1433 return true; 1434 Dest = MachineOperand::CreateMetadata(Node); 1435 return false; 1436 } 1437 1438 bool MIParser::parseCFIOffset(int &Offset) { 1439 if (Token.isNot(MIToken::IntegerLiteral)) 1440 return error("expected a cfi offset"); 1441 if (Token.integerValue().getMinSignedBits() > 32) 1442 return error("expected a 32 bit integer (the cfi offset is too large)"); 1443 Offset = (int)Token.integerValue().getExtValue(); 1444 lex(); 1445 return false; 1446 } 1447 1448 bool MIParser::parseCFIRegister(unsigned &Reg) { 1449 if (Token.isNot(MIToken::NamedRegister)) 1450 return error("expected a cfi register"); 1451 unsigned LLVMReg; 1452 if (parseNamedRegister(LLVMReg)) 1453 return true; 1454 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1455 assert(TRI && "Expected target register info"); 1456 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1457 if (DwarfReg < 0) 1458 return error("invalid DWARF register"); 1459 Reg = (unsigned)DwarfReg; 1460 lex(); 1461 return false; 1462 } 1463 1464 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1465 auto Kind = Token.kind(); 1466 lex(); 1467 int Offset; 1468 unsigned Reg; 1469 unsigned CFIIndex; 1470 switch (Kind) { 1471 case MIToken::kw_cfi_same_value: 1472 if (parseCFIRegister(Reg)) 1473 return true; 1474 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1475 break; 1476 case MIToken::kw_cfi_offset: 1477 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1478 parseCFIOffset(Offset)) 1479 return true; 1480 CFIIndex = 1481 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1482 break; 1483 case MIToken::kw_cfi_def_cfa_register: 1484 if (parseCFIRegister(Reg)) 1485 return true; 1486 CFIIndex = 1487 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1488 break; 1489 case MIToken::kw_cfi_def_cfa_offset: 1490 if (parseCFIOffset(Offset)) 1491 return true; 1492 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1493 CFIIndex = MF.addFrameInst( 1494 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1495 break; 1496 case MIToken::kw_cfi_def_cfa: 1497 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1498 parseCFIOffset(Offset)) 1499 return true; 1500 // NB: MCCFIInstruction::createDefCfa negates the offset. 1501 CFIIndex = 1502 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1503 break; 1504 default: 1505 // TODO: Parse the other CFI operands. 1506 llvm_unreachable("The current token should be a cfi operand"); 1507 } 1508 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1509 return false; 1510 } 1511 1512 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1513 switch (Token.kind()) { 1514 case MIToken::NamedIRBlock: { 1515 BB = dyn_cast_or_null<BasicBlock>( 1516 F.getValueSymbolTable()->lookup(Token.stringValue())); 1517 if (!BB) 1518 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1519 break; 1520 } 1521 case MIToken::IRBlock: { 1522 unsigned SlotNumber = 0; 1523 if (getUnsigned(SlotNumber)) 1524 return true; 1525 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1526 if (!BB) 1527 return error(Twine("use of undefined IR block '%ir-block.") + 1528 Twine(SlotNumber) + "'"); 1529 break; 1530 } 1531 default: 1532 llvm_unreachable("The current token should be an IR block reference"); 1533 } 1534 return false; 1535 } 1536 1537 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1538 assert(Token.is(MIToken::kw_blockaddress)); 1539 lex(); 1540 if (expectAndConsume(MIToken::lparen)) 1541 return true; 1542 if (Token.isNot(MIToken::GlobalValue) && 1543 Token.isNot(MIToken::NamedGlobalValue)) 1544 return error("expected a global value"); 1545 GlobalValue *GV = nullptr; 1546 if (parseGlobalValue(GV)) 1547 return true; 1548 auto *F = dyn_cast<Function>(GV); 1549 if (!F) 1550 return error("expected an IR function reference"); 1551 lex(); 1552 if (expectAndConsume(MIToken::comma)) 1553 return true; 1554 BasicBlock *BB = nullptr; 1555 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1556 return error("expected an IR block reference"); 1557 if (parseIRBlock(BB, *F)) 1558 return true; 1559 lex(); 1560 if (expectAndConsume(MIToken::rparen)) 1561 return true; 1562 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1563 if (parseOperandsOffset(Dest)) 1564 return true; 1565 return false; 1566 } 1567 1568 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1569 assert(Token.is(MIToken::kw_intrinsic)); 1570 lex(); 1571 if (expectAndConsume(MIToken::lparen)) 1572 return error("expected syntax intrinsic(@llvm.whatever)"); 1573 1574 if (Token.isNot(MIToken::NamedGlobalValue)) 1575 return error("expected syntax intrinsic(@llvm.whatever)"); 1576 1577 std::string Name = Token.stringValue(); 1578 lex(); 1579 1580 if (expectAndConsume(MIToken::rparen)) 1581 return error("expected ')' to terminate intrinsic name"); 1582 1583 // Find out what intrinsic we're dealing with, first try the global namespace 1584 // and then the target's private intrinsics if that fails. 1585 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1586 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1587 if (ID == Intrinsic::not_intrinsic && TII) 1588 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1589 1590 if (ID == Intrinsic::not_intrinsic) 1591 return error("unknown intrinsic name"); 1592 Dest = MachineOperand::CreateIntrinsicID(ID); 1593 1594 return false; 1595 } 1596 1597 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1598 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1599 bool IsFloat = Token.is(MIToken::kw_floatpred); 1600 lex(); 1601 1602 if (expectAndConsume(MIToken::lparen)) 1603 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1604 1605 if (Token.isNot(MIToken::Identifier)) 1606 return error("whatever"); 1607 1608 CmpInst::Predicate Pred; 1609 if (IsFloat) { 1610 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1611 .Case("false", CmpInst::FCMP_FALSE) 1612 .Case("oeq", CmpInst::FCMP_OEQ) 1613 .Case("ogt", CmpInst::FCMP_OGT) 1614 .Case("oge", CmpInst::FCMP_OGE) 1615 .Case("olt", CmpInst::FCMP_OLT) 1616 .Case("ole", CmpInst::FCMP_OLE) 1617 .Case("one", CmpInst::FCMP_ONE) 1618 .Case("ord", CmpInst::FCMP_ORD) 1619 .Case("uno", CmpInst::FCMP_UNO) 1620 .Case("ueq", CmpInst::FCMP_UEQ) 1621 .Case("ugt", CmpInst::FCMP_UGT) 1622 .Case("uge", CmpInst::FCMP_UGE) 1623 .Case("ult", CmpInst::FCMP_ULT) 1624 .Case("ule", CmpInst::FCMP_ULE) 1625 .Case("une", CmpInst::FCMP_UNE) 1626 .Case("true", CmpInst::FCMP_TRUE) 1627 .Default(CmpInst::BAD_FCMP_PREDICATE); 1628 if (!CmpInst::isFPPredicate(Pred)) 1629 return error("invalid floating-point predicate"); 1630 } else { 1631 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1632 .Case("eq", CmpInst::ICMP_EQ) 1633 .Case("ne", CmpInst::ICMP_NE) 1634 .Case("sgt", CmpInst::ICMP_SGT) 1635 .Case("sge", CmpInst::ICMP_SGE) 1636 .Case("slt", CmpInst::ICMP_SLT) 1637 .Case("sle", CmpInst::ICMP_SLE) 1638 .Case("ugt", CmpInst::ICMP_UGT) 1639 .Case("uge", CmpInst::ICMP_UGE) 1640 .Case("ult", CmpInst::ICMP_ULT) 1641 .Case("ule", CmpInst::ICMP_ULE) 1642 .Default(CmpInst::BAD_ICMP_PREDICATE); 1643 if (!CmpInst::isIntPredicate(Pred)) 1644 return error("invalid integer predicate"); 1645 } 1646 1647 lex(); 1648 Dest = MachineOperand::CreatePredicate(Pred); 1649 if (expectAndConsume(MIToken::rparen)) 1650 return error("predicate should be terminated by ')'."); 1651 1652 return false; 1653 } 1654 1655 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1656 assert(Token.is(MIToken::kw_target_index)); 1657 lex(); 1658 if (expectAndConsume(MIToken::lparen)) 1659 return true; 1660 if (Token.isNot(MIToken::Identifier)) 1661 return error("expected the name of the target index"); 1662 int Index = 0; 1663 if (getTargetIndex(Token.stringValue(), Index)) 1664 return error("use of undefined target index '" + Token.stringValue() + "'"); 1665 lex(); 1666 if (expectAndConsume(MIToken::rparen)) 1667 return true; 1668 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1669 if (parseOperandsOffset(Dest)) 1670 return true; 1671 return false; 1672 } 1673 1674 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1675 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1676 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1677 assert(TRI && "Expected target register info"); 1678 lex(); 1679 if (expectAndConsume(MIToken::lparen)) 1680 return true; 1681 1682 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1683 while (true) { 1684 if (Token.isNot(MIToken::NamedRegister)) 1685 return error("expected a named register"); 1686 unsigned Reg; 1687 if (parseNamedRegister(Reg)) 1688 return true; 1689 lex(); 1690 Mask[Reg / 32] |= 1U << (Reg % 32); 1691 // TODO: Report an error if the same register is used more than once. 1692 if (Token.isNot(MIToken::comma)) 1693 break; 1694 lex(); 1695 } 1696 1697 if (expectAndConsume(MIToken::rparen)) 1698 return true; 1699 Dest = MachineOperand::CreateRegMask(Mask); 1700 return false; 1701 } 1702 1703 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1704 assert(Token.is(MIToken::kw_liveout)); 1705 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1706 assert(TRI && "Expected target register info"); 1707 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1708 lex(); 1709 if (expectAndConsume(MIToken::lparen)) 1710 return true; 1711 while (true) { 1712 if (Token.isNot(MIToken::NamedRegister)) 1713 return error("expected a named register"); 1714 unsigned Reg; 1715 if (parseNamedRegister(Reg)) 1716 return true; 1717 lex(); 1718 Mask[Reg / 32] |= 1U << (Reg % 32); 1719 // TODO: Report an error if the same register is used more than once. 1720 if (Token.isNot(MIToken::comma)) 1721 break; 1722 lex(); 1723 } 1724 if (expectAndConsume(MIToken::rparen)) 1725 return true; 1726 Dest = MachineOperand::CreateRegLiveOut(Mask); 1727 return false; 1728 } 1729 1730 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1731 Optional<unsigned> &TiedDefIdx) { 1732 switch (Token.kind()) { 1733 case MIToken::kw_implicit: 1734 case MIToken::kw_implicit_define: 1735 case MIToken::kw_def: 1736 case MIToken::kw_dead: 1737 case MIToken::kw_killed: 1738 case MIToken::kw_undef: 1739 case MIToken::kw_internal: 1740 case MIToken::kw_early_clobber: 1741 case MIToken::kw_debug_use: 1742 case MIToken::underscore: 1743 case MIToken::NamedRegister: 1744 case MIToken::VirtualRegister: 1745 return parseRegisterOperand(Dest, TiedDefIdx); 1746 case MIToken::IntegerLiteral: 1747 return parseImmediateOperand(Dest); 1748 case MIToken::IntegerType: 1749 return parseTypedImmediateOperand(Dest); 1750 case MIToken::kw_half: 1751 case MIToken::kw_float: 1752 case MIToken::kw_double: 1753 case MIToken::kw_x86_fp80: 1754 case MIToken::kw_fp128: 1755 case MIToken::kw_ppc_fp128: 1756 return parseFPImmediateOperand(Dest); 1757 case MIToken::MachineBasicBlock: 1758 return parseMBBOperand(Dest); 1759 case MIToken::StackObject: 1760 return parseStackObjectOperand(Dest); 1761 case MIToken::FixedStackObject: 1762 return parseFixedStackObjectOperand(Dest); 1763 case MIToken::GlobalValue: 1764 case MIToken::NamedGlobalValue: 1765 return parseGlobalAddressOperand(Dest); 1766 case MIToken::ConstantPoolItem: 1767 return parseConstantPoolIndexOperand(Dest); 1768 case MIToken::JumpTableIndex: 1769 return parseJumpTableIndexOperand(Dest); 1770 case MIToken::ExternalSymbol: 1771 return parseExternalSymbolOperand(Dest); 1772 case MIToken::SubRegisterIndex: 1773 return parseSubRegisterIndexOperand(Dest); 1774 case MIToken::exclaim: 1775 return parseMetadataOperand(Dest); 1776 case MIToken::kw_cfi_same_value: 1777 case MIToken::kw_cfi_offset: 1778 case MIToken::kw_cfi_def_cfa_register: 1779 case MIToken::kw_cfi_def_cfa_offset: 1780 case MIToken::kw_cfi_def_cfa: 1781 return parseCFIOperand(Dest); 1782 case MIToken::kw_blockaddress: 1783 return parseBlockAddressOperand(Dest); 1784 case MIToken::kw_intrinsic: 1785 return parseIntrinsicOperand(Dest); 1786 case MIToken::kw_target_index: 1787 return parseTargetIndexOperand(Dest); 1788 case MIToken::kw_liveout: 1789 return parseLiveoutRegisterMaskOperand(Dest); 1790 case MIToken::kw_floatpred: 1791 case MIToken::kw_intpred: 1792 return parsePredicateOperand(Dest); 1793 case MIToken::Error: 1794 return true; 1795 case MIToken::Identifier: 1796 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1797 Dest = MachineOperand::CreateRegMask(RegMask); 1798 lex(); 1799 break; 1800 } else 1801 return parseCustomRegisterMaskOperand(Dest); 1802 default: 1803 // FIXME: Parse the MCSymbol machine operand. 1804 return error("expected a machine operand"); 1805 } 1806 return false; 1807 } 1808 1809 bool MIParser::parseMachineOperandAndTargetFlags( 1810 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1811 unsigned TF = 0; 1812 bool HasTargetFlags = false; 1813 if (Token.is(MIToken::kw_target_flags)) { 1814 HasTargetFlags = true; 1815 lex(); 1816 if (expectAndConsume(MIToken::lparen)) 1817 return true; 1818 if (Token.isNot(MIToken::Identifier)) 1819 return error("expected the name of the target flag"); 1820 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1821 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1822 return error("use of undefined target flag '" + Token.stringValue() + 1823 "'"); 1824 } 1825 lex(); 1826 while (Token.is(MIToken::comma)) { 1827 lex(); 1828 if (Token.isNot(MIToken::Identifier)) 1829 return error("expected the name of the target flag"); 1830 unsigned BitFlag = 0; 1831 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1832 return error("use of undefined target flag '" + Token.stringValue() + 1833 "'"); 1834 // TODO: Report an error when using a duplicate bit target flag. 1835 TF |= BitFlag; 1836 lex(); 1837 } 1838 if (expectAndConsume(MIToken::rparen)) 1839 return true; 1840 } 1841 auto Loc = Token.location(); 1842 if (parseMachineOperand(Dest, TiedDefIdx)) 1843 return true; 1844 if (!HasTargetFlags) 1845 return false; 1846 if (Dest.isReg()) 1847 return error(Loc, "register operands can't have target flags"); 1848 Dest.setTargetFlags(TF); 1849 return false; 1850 } 1851 1852 bool MIParser::parseOffset(int64_t &Offset) { 1853 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1854 return false; 1855 StringRef Sign = Token.range(); 1856 bool IsNegative = Token.is(MIToken::minus); 1857 lex(); 1858 if (Token.isNot(MIToken::IntegerLiteral)) 1859 return error("expected an integer literal after '" + Sign + "'"); 1860 if (Token.integerValue().getMinSignedBits() > 64) 1861 return error("expected 64-bit integer (too large)"); 1862 Offset = Token.integerValue().getExtValue(); 1863 if (IsNegative) 1864 Offset = -Offset; 1865 lex(); 1866 return false; 1867 } 1868 1869 bool MIParser::parseAlignment(unsigned &Alignment) { 1870 assert(Token.is(MIToken::kw_align)); 1871 lex(); 1872 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1873 return error("expected an integer literal after 'align'"); 1874 if (getUnsigned(Alignment)) 1875 return true; 1876 lex(); 1877 return false; 1878 } 1879 1880 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1881 int64_t Offset = 0; 1882 if (parseOffset(Offset)) 1883 return true; 1884 Op.setOffset(Offset); 1885 return false; 1886 } 1887 1888 bool MIParser::parseIRValue(const Value *&V) { 1889 switch (Token.kind()) { 1890 case MIToken::NamedIRValue: { 1891 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1892 break; 1893 } 1894 case MIToken::IRValue: { 1895 unsigned SlotNumber = 0; 1896 if (getUnsigned(SlotNumber)) 1897 return true; 1898 V = getIRValue(SlotNumber); 1899 break; 1900 } 1901 case MIToken::NamedGlobalValue: 1902 case MIToken::GlobalValue: { 1903 GlobalValue *GV = nullptr; 1904 if (parseGlobalValue(GV)) 1905 return true; 1906 V = GV; 1907 break; 1908 } 1909 case MIToken::QuotedIRValue: { 1910 const Constant *C = nullptr; 1911 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1912 return true; 1913 V = C; 1914 break; 1915 } 1916 default: 1917 llvm_unreachable("The current token should be an IR block reference"); 1918 } 1919 if (!V) 1920 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1921 return false; 1922 } 1923 1924 bool MIParser::getUint64(uint64_t &Result) { 1925 if (Token.hasIntegerValue()) { 1926 if (Token.integerValue().getActiveBits() > 64) 1927 return error("expected 64-bit integer (too large)"); 1928 Result = Token.integerValue().getZExtValue(); 1929 return false; 1930 } 1931 if (Token.is(MIToken::HexLiteral)) { 1932 APInt A; 1933 if (getHexUint(A)) 1934 return true; 1935 if (A.getBitWidth() > 64) 1936 return error("expected 64-bit integer (too large)"); 1937 Result = A.getZExtValue(); 1938 return false; 1939 } 1940 return true; 1941 } 1942 1943 bool MIParser::getHexUint(APInt &Result) { 1944 assert(Token.is(MIToken::HexLiteral)); 1945 StringRef S = Token.range(); 1946 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1947 // This could be a floating point literal with a special prefix. 1948 if (!isxdigit(S[2])) 1949 return true; 1950 StringRef V = S.substr(2); 1951 APInt A(V.size()*4, V, 16); 1952 Result = APInt(A.getActiveBits(), 1953 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1954 return false; 1955 } 1956 1957 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1958 const auto OldFlags = Flags; 1959 switch (Token.kind()) { 1960 case MIToken::kw_volatile: 1961 Flags |= MachineMemOperand::MOVolatile; 1962 break; 1963 case MIToken::kw_non_temporal: 1964 Flags |= MachineMemOperand::MONonTemporal; 1965 break; 1966 case MIToken::kw_dereferenceable: 1967 Flags |= MachineMemOperand::MODereferenceable; 1968 break; 1969 case MIToken::kw_invariant: 1970 Flags |= MachineMemOperand::MOInvariant; 1971 break; 1972 // TODO: parse the target specific memory operand flags. 1973 default: 1974 llvm_unreachable("The current token should be a memory operand flag"); 1975 } 1976 if (OldFlags == Flags) 1977 // We know that the same flag is specified more than once when the flags 1978 // weren't modified. 1979 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1980 lex(); 1981 return false; 1982 } 1983 1984 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1985 switch (Token.kind()) { 1986 case MIToken::kw_stack: 1987 PSV = MF.getPSVManager().getStack(); 1988 break; 1989 case MIToken::kw_got: 1990 PSV = MF.getPSVManager().getGOT(); 1991 break; 1992 case MIToken::kw_jump_table: 1993 PSV = MF.getPSVManager().getJumpTable(); 1994 break; 1995 case MIToken::kw_constant_pool: 1996 PSV = MF.getPSVManager().getConstantPool(); 1997 break; 1998 case MIToken::FixedStackObject: { 1999 int FI; 2000 if (parseFixedStackFrameIndex(FI)) 2001 return true; 2002 PSV = MF.getPSVManager().getFixedStack(FI); 2003 // The token was already consumed, so use return here instead of break. 2004 return false; 2005 } 2006 case MIToken::StackObject: { 2007 int FI; 2008 if (parseStackFrameIndex(FI)) 2009 return true; 2010 PSV = MF.getPSVManager().getFixedStack(FI); 2011 // The token was already consumed, so use return here instead of break. 2012 return false; 2013 } 2014 case MIToken::kw_call_entry: { 2015 lex(); 2016 switch (Token.kind()) { 2017 case MIToken::GlobalValue: 2018 case MIToken::NamedGlobalValue: { 2019 GlobalValue *GV = nullptr; 2020 if (parseGlobalValue(GV)) 2021 return true; 2022 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2023 break; 2024 } 2025 case MIToken::ExternalSymbol: 2026 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2027 MF.createExternalSymbolName(Token.stringValue())); 2028 break; 2029 default: 2030 return error( 2031 "expected a global value or an external symbol after 'call-entry'"); 2032 } 2033 break; 2034 } 2035 default: 2036 llvm_unreachable("The current token should be pseudo source value"); 2037 } 2038 lex(); 2039 return false; 2040 } 2041 2042 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2043 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2044 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2045 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2046 Token.is(MIToken::kw_call_entry)) { 2047 const PseudoSourceValue *PSV = nullptr; 2048 if (parseMemoryPseudoSourceValue(PSV)) 2049 return true; 2050 int64_t Offset = 0; 2051 if (parseOffset(Offset)) 2052 return true; 2053 Dest = MachinePointerInfo(PSV, Offset); 2054 return false; 2055 } 2056 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2057 Token.isNot(MIToken::GlobalValue) && 2058 Token.isNot(MIToken::NamedGlobalValue) && 2059 Token.isNot(MIToken::QuotedIRValue)) 2060 return error("expected an IR value reference"); 2061 const Value *V = nullptr; 2062 if (parseIRValue(V)) 2063 return true; 2064 if (!V->getType()->isPointerTy()) 2065 return error("expected a pointer IR value"); 2066 lex(); 2067 int64_t Offset = 0; 2068 if (parseOffset(Offset)) 2069 return true; 2070 Dest = MachinePointerInfo(V, Offset); 2071 return false; 2072 } 2073 2074 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2075 Order = AtomicOrdering::NotAtomic; 2076 if (Token.isNot(MIToken::Identifier)) 2077 return false; 2078 2079 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2080 .Case("unordered", AtomicOrdering::Unordered) 2081 .Case("monotonic", AtomicOrdering::Monotonic) 2082 .Case("acquire", AtomicOrdering::Acquire) 2083 .Case("release", AtomicOrdering::Release) 2084 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2085 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2086 .Default(AtomicOrdering::NotAtomic); 2087 2088 if (Order != AtomicOrdering::NotAtomic) { 2089 lex(); 2090 return false; 2091 } 2092 2093 return error("expected an atomic scope, ordering or a size integer literal"); 2094 } 2095 2096 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2097 if (expectAndConsume(MIToken::lparen)) 2098 return true; 2099 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2100 while (Token.isMemoryOperandFlag()) { 2101 if (parseMemoryOperandFlag(Flags)) 2102 return true; 2103 } 2104 if (Token.isNot(MIToken::Identifier) || 2105 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2106 return error("expected 'load' or 'store' memory operation"); 2107 if (Token.stringValue() == "load") 2108 Flags |= MachineMemOperand::MOLoad; 2109 else 2110 Flags |= MachineMemOperand::MOStore; 2111 lex(); 2112 2113 // Optional "singlethread" scope. 2114 SynchronizationScope Scope = SynchronizationScope::CrossThread; 2115 if (Token.is(MIToken::Identifier) && Token.stringValue() == "singlethread") { 2116 Scope = SynchronizationScope::SingleThread; 2117 lex(); 2118 } 2119 2120 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2121 AtomicOrdering Order, FailureOrder; 2122 if (parseOptionalAtomicOrdering(Order)) 2123 return true; 2124 2125 if (parseOptionalAtomicOrdering(FailureOrder)) 2126 return true; 2127 2128 if (Token.isNot(MIToken::IntegerLiteral)) 2129 return error("expected the size integer literal after memory operation"); 2130 uint64_t Size; 2131 if (getUint64(Size)) 2132 return true; 2133 lex(); 2134 2135 MachinePointerInfo Ptr = MachinePointerInfo(); 2136 if (Token.is(MIToken::Identifier)) { 2137 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2138 if (Token.stringValue() != Word) 2139 return error(Twine("expected '") + Word + "'"); 2140 lex(); 2141 2142 if (parseMachinePointerInfo(Ptr)) 2143 return true; 2144 } 2145 unsigned BaseAlignment = Size; 2146 AAMDNodes AAInfo; 2147 MDNode *Range = nullptr; 2148 while (consumeIfPresent(MIToken::comma)) { 2149 switch (Token.kind()) { 2150 case MIToken::kw_align: 2151 if (parseAlignment(BaseAlignment)) 2152 return true; 2153 break; 2154 case MIToken::md_tbaa: 2155 lex(); 2156 if (parseMDNode(AAInfo.TBAA)) 2157 return true; 2158 break; 2159 case MIToken::md_alias_scope: 2160 lex(); 2161 if (parseMDNode(AAInfo.Scope)) 2162 return true; 2163 break; 2164 case MIToken::md_noalias: 2165 lex(); 2166 if (parseMDNode(AAInfo.NoAlias)) 2167 return true; 2168 break; 2169 case MIToken::md_range: 2170 lex(); 2171 if (parseMDNode(Range)) 2172 return true; 2173 break; 2174 // TODO: Report an error on duplicate metadata nodes. 2175 default: 2176 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2177 "'!noalias' or '!range'"); 2178 } 2179 } 2180 if (expectAndConsume(MIToken::rparen)) 2181 return true; 2182 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2183 Scope, Order, FailureOrder); 2184 return false; 2185 } 2186 2187 void MIParser::initNames2InstrOpCodes() { 2188 if (!Names2InstrOpCodes.empty()) 2189 return; 2190 const auto *TII = MF.getSubtarget().getInstrInfo(); 2191 assert(TII && "Expected target instruction info"); 2192 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2193 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2194 } 2195 2196 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2197 initNames2InstrOpCodes(); 2198 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2199 if (InstrInfo == Names2InstrOpCodes.end()) 2200 return true; 2201 OpCode = InstrInfo->getValue(); 2202 return false; 2203 } 2204 2205 void MIParser::initNames2Regs() { 2206 if (!Names2Regs.empty()) 2207 return; 2208 // The '%noreg' register is the register 0. 2209 Names2Regs.insert(std::make_pair("noreg", 0)); 2210 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2211 assert(TRI && "Expected target register info"); 2212 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2213 bool WasInserted = 2214 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2215 .second; 2216 (void)WasInserted; 2217 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2218 } 2219 } 2220 2221 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2222 initNames2Regs(); 2223 auto RegInfo = Names2Regs.find(RegName); 2224 if (RegInfo == Names2Regs.end()) 2225 return true; 2226 Reg = RegInfo->getValue(); 2227 return false; 2228 } 2229 2230 void MIParser::initNames2RegMasks() { 2231 if (!Names2RegMasks.empty()) 2232 return; 2233 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2234 assert(TRI && "Expected target register info"); 2235 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2236 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2237 assert(RegMasks.size() == RegMaskNames.size()); 2238 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2239 Names2RegMasks.insert( 2240 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2241 } 2242 2243 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2244 initNames2RegMasks(); 2245 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2246 if (RegMaskInfo == Names2RegMasks.end()) 2247 return nullptr; 2248 return RegMaskInfo->getValue(); 2249 } 2250 2251 void MIParser::initNames2SubRegIndices() { 2252 if (!Names2SubRegIndices.empty()) 2253 return; 2254 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2255 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2256 Names2SubRegIndices.insert( 2257 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2258 } 2259 2260 unsigned MIParser::getSubRegIndex(StringRef Name) { 2261 initNames2SubRegIndices(); 2262 auto SubRegInfo = Names2SubRegIndices.find(Name); 2263 if (SubRegInfo == Names2SubRegIndices.end()) 2264 return 0; 2265 return SubRegInfo->getValue(); 2266 } 2267 2268 static void initSlots2BasicBlocks( 2269 const Function &F, 2270 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2271 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2272 MST.incorporateFunction(F); 2273 for (auto &BB : F) { 2274 if (BB.hasName()) 2275 continue; 2276 int Slot = MST.getLocalSlot(&BB); 2277 if (Slot == -1) 2278 continue; 2279 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2280 } 2281 } 2282 2283 static const BasicBlock *getIRBlockFromSlot( 2284 unsigned Slot, 2285 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2286 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2287 if (BlockInfo == Slots2BasicBlocks.end()) 2288 return nullptr; 2289 return BlockInfo->second; 2290 } 2291 2292 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2293 if (Slots2BasicBlocks.empty()) 2294 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2295 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2296 } 2297 2298 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2299 if (&F == MF.getFunction()) 2300 return getIRBlock(Slot); 2301 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2302 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2303 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2304 } 2305 2306 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2307 DenseMap<unsigned, const Value *> &Slots2Values) { 2308 int Slot = MST.getLocalSlot(V); 2309 if (Slot == -1) 2310 return; 2311 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2312 } 2313 2314 /// Creates the mapping from slot numbers to function's unnamed IR values. 2315 static void initSlots2Values(const Function &F, 2316 DenseMap<unsigned, const Value *> &Slots2Values) { 2317 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2318 MST.incorporateFunction(F); 2319 for (const auto &Arg : F.args()) 2320 mapValueToSlot(&Arg, MST, Slots2Values); 2321 for (const auto &BB : F) { 2322 mapValueToSlot(&BB, MST, Slots2Values); 2323 for (const auto &I : BB) 2324 mapValueToSlot(&I, MST, Slots2Values); 2325 } 2326 } 2327 2328 const Value *MIParser::getIRValue(unsigned Slot) { 2329 if (Slots2Values.empty()) 2330 initSlots2Values(*MF.getFunction(), Slots2Values); 2331 auto ValueInfo = Slots2Values.find(Slot); 2332 if (ValueInfo == Slots2Values.end()) 2333 return nullptr; 2334 return ValueInfo->second; 2335 } 2336 2337 void MIParser::initNames2TargetIndices() { 2338 if (!Names2TargetIndices.empty()) 2339 return; 2340 const auto *TII = MF.getSubtarget().getInstrInfo(); 2341 assert(TII && "Expected target instruction info"); 2342 auto Indices = TII->getSerializableTargetIndices(); 2343 for (const auto &I : Indices) 2344 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2345 } 2346 2347 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2348 initNames2TargetIndices(); 2349 auto IndexInfo = Names2TargetIndices.find(Name); 2350 if (IndexInfo == Names2TargetIndices.end()) 2351 return true; 2352 Index = IndexInfo->second; 2353 return false; 2354 } 2355 2356 void MIParser::initNames2DirectTargetFlags() { 2357 if (!Names2DirectTargetFlags.empty()) 2358 return; 2359 const auto *TII = MF.getSubtarget().getInstrInfo(); 2360 assert(TII && "Expected target instruction info"); 2361 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2362 for (const auto &I : Flags) 2363 Names2DirectTargetFlags.insert( 2364 std::make_pair(StringRef(I.second), I.first)); 2365 } 2366 2367 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2368 initNames2DirectTargetFlags(); 2369 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2370 if (FlagInfo == Names2DirectTargetFlags.end()) 2371 return true; 2372 Flag = FlagInfo->second; 2373 return false; 2374 } 2375 2376 void MIParser::initNames2BitmaskTargetFlags() { 2377 if (!Names2BitmaskTargetFlags.empty()) 2378 return; 2379 const auto *TII = MF.getSubtarget().getInstrInfo(); 2380 assert(TII && "Expected target instruction info"); 2381 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2382 for (const auto &I : Flags) 2383 Names2BitmaskTargetFlags.insert( 2384 std::make_pair(StringRef(I.second), I.first)); 2385 } 2386 2387 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2388 initNames2BitmaskTargetFlags(); 2389 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2390 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2391 return true; 2392 Flag = FlagInfo->second; 2393 return false; 2394 } 2395 2396 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2397 StringRef Src, 2398 SMDiagnostic &Error) { 2399 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2400 } 2401 2402 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2403 StringRef Src, SMDiagnostic &Error) { 2404 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2405 } 2406 2407 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2408 MachineBasicBlock *&MBB, StringRef Src, 2409 SMDiagnostic &Error) { 2410 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2411 } 2412 2413 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2414 unsigned &Reg, StringRef Src, 2415 SMDiagnostic &Error) { 2416 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2417 } 2418 2419 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2420 unsigned &Reg, StringRef Src, 2421 SMDiagnostic &Error) { 2422 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2423 } 2424 2425 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2426 VRegInfo *&Info, StringRef Src, 2427 SMDiagnostic &Error) { 2428 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2429 } 2430 2431 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2432 int &FI, StringRef Src, 2433 SMDiagnostic &Error) { 2434 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2435 } 2436 2437 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2438 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2439 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2440 } 2441