1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/AsmParser/Parser.h" 29 #include "llvm/AsmParser/SlotMapping.h" 30 #include "llvm/CodeGen/MIRPrinter.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueSymbolTable.h" 57 #include "llvm/MC/LaneBitmask.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCDwarf.h" 60 #include "llvm/MC/MCInstrDesc.h" 61 #include "llvm/MC/MCRegisterInfo.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/SMLoc.h" 69 #include "llvm/Support/SourceMgr.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cctype> 76 #include <cstddef> 77 #include <cstdint> 78 #include <limits> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 85 SourceMgr &SM, const SlotMapping &IRSlots, 86 const Name2RegClassMap &Names2RegClasses, 87 const Name2RegBankMap &Names2RegBanks) 88 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 89 Names2RegBanks(Names2RegBanks) { 90 } 91 92 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 93 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 94 if (I.second) { 95 MachineRegisterInfo &MRI = MF.getRegInfo(); 96 VRegInfo *Info = new (Allocator) VRegInfo; 97 Info->VReg = MRI.createIncompleteVirtualRegister(); 98 I.first->second = Info; 99 } 100 return *I.first->second; 101 } 102 103 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 104 assert(RegName != "" && "Expected named reg."); 105 106 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 107 if (I.second) { 108 VRegInfo *Info = new (Allocator) VRegInfo; 109 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 110 I.first->second = Info; 111 } 112 return *I.first->second; 113 } 114 115 namespace { 116 117 /// A wrapper struct around the 'MachineOperand' struct that includes a source 118 /// range and other attributes. 119 struct ParsedMachineOperand { 120 MachineOperand Operand; 121 StringRef::iterator Begin; 122 StringRef::iterator End; 123 Optional<unsigned> TiedDefIdx; 124 125 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 126 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 127 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 128 if (TiedDefIdx) 129 assert(Operand.isReg() && Operand.isUse() && 130 "Only used register operands can be tied"); 131 } 132 }; 133 134 class MIParser { 135 MachineFunction &MF; 136 SMDiagnostic &Error; 137 StringRef Source, CurrentSource; 138 MIToken Token; 139 PerFunctionMIParsingState &PFS; 140 /// Maps from instruction names to op codes. 141 StringMap<unsigned> Names2InstrOpCodes; 142 /// Maps from register names to registers. 143 StringMap<unsigned> Names2Regs; 144 /// Maps from register mask names to register masks. 145 StringMap<const uint32_t *> Names2RegMasks; 146 /// Maps from subregister names to subregister indices. 147 StringMap<unsigned> Names2SubRegIndices; 148 /// Maps from slot numbers to function's unnamed basic blocks. 149 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 150 /// Maps from slot numbers to function's unnamed values. 151 DenseMap<unsigned, const Value *> Slots2Values; 152 /// Maps from target index names to target indices. 153 StringMap<int> Names2TargetIndices; 154 /// Maps from direct target flag names to the direct target flag values. 155 StringMap<unsigned> Names2DirectTargetFlags; 156 /// Maps from direct target flag names to the bitmask target flag values. 157 StringMap<unsigned> Names2BitmaskTargetFlags; 158 /// Maps from MMO target flag names to MMO target flag values. 159 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 160 161 public: 162 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 163 StringRef Source); 164 165 /// \p SkipChar gives the number of characters to skip before looking 166 /// for the next token. 167 void lex(unsigned SkipChar = 0); 168 169 /// Report an error at the current location with the given message. 170 /// 171 /// This function always return true. 172 bool error(const Twine &Msg); 173 174 /// Report an error at the given location with the given message. 175 /// 176 /// This function always return true. 177 bool error(StringRef::iterator Loc, const Twine &Msg); 178 179 bool 180 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 181 bool parseBasicBlocks(); 182 bool parse(MachineInstr *&MI); 183 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 184 bool parseStandaloneNamedRegister(unsigned &Reg); 185 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 186 bool parseStandaloneRegister(unsigned &Reg); 187 bool parseStandaloneStackObject(int &FI); 188 bool parseStandaloneMDNode(MDNode *&Node); 189 190 bool 191 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 192 bool parseBasicBlock(MachineBasicBlock &MBB, 193 MachineBasicBlock *&AddFalthroughFrom); 194 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 195 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 196 197 bool parseNamedRegister(unsigned &Reg); 198 bool parseVirtualRegister(VRegInfo *&Info); 199 bool parseNamedVirtualRegister(VRegInfo *&Info); 200 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 201 bool parseRegisterFlag(unsigned &Flags); 202 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 203 bool parseSubRegisterIndex(unsigned &SubReg); 204 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 205 bool parseRegisterOperand(MachineOperand &Dest, 206 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 207 bool parseImmediateOperand(MachineOperand &Dest); 208 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 209 const Constant *&C); 210 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 211 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 212 bool parseTypedImmediateOperand(MachineOperand &Dest); 213 bool parseFPImmediateOperand(MachineOperand &Dest); 214 bool parseMBBReference(MachineBasicBlock *&MBB); 215 bool parseMBBOperand(MachineOperand &Dest); 216 bool parseStackFrameIndex(int &FI); 217 bool parseStackObjectOperand(MachineOperand &Dest); 218 bool parseFixedStackFrameIndex(int &FI); 219 bool parseFixedStackObjectOperand(MachineOperand &Dest); 220 bool parseGlobalValue(GlobalValue *&GV); 221 bool parseGlobalAddressOperand(MachineOperand &Dest); 222 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 223 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 224 bool parseJumpTableIndexOperand(MachineOperand &Dest); 225 bool parseExternalSymbolOperand(MachineOperand &Dest); 226 bool parseMCSymbolOperand(MachineOperand &Dest); 227 bool parseMDNode(MDNode *&Node); 228 bool parseDIExpression(MDNode *&Expr); 229 bool parseMetadataOperand(MachineOperand &Dest); 230 bool parseCFIOffset(int &Offset); 231 bool parseCFIRegister(unsigned &Reg); 232 bool parseCFIEscapeValues(std::string& Values); 233 bool parseCFIOperand(MachineOperand &Dest); 234 bool parseIRBlock(BasicBlock *&BB, const Function &F); 235 bool parseBlockAddressOperand(MachineOperand &Dest); 236 bool parseIntrinsicOperand(MachineOperand &Dest); 237 bool parsePredicateOperand(MachineOperand &Dest); 238 bool parseTargetIndexOperand(MachineOperand &Dest); 239 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 240 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 241 bool parseMachineOperand(MachineOperand &Dest, 242 Optional<unsigned> &TiedDefIdx); 243 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 244 Optional<unsigned> &TiedDefIdx); 245 bool parseOffset(int64_t &Offset); 246 bool parseAlignment(unsigned &Alignment); 247 bool parseAddrspace(unsigned &Addrspace); 248 bool parseOperandsOffset(MachineOperand &Op); 249 bool parseIRValue(const Value *&V); 250 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 251 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 252 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 253 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 254 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 255 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 256 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 257 258 private: 259 /// Convert the integer literal in the current token into an unsigned integer. 260 /// 261 /// Return true if an error occurred. 262 bool getUnsigned(unsigned &Result); 263 264 /// Convert the integer literal in the current token into an uint64. 265 /// 266 /// Return true if an error occurred. 267 bool getUint64(uint64_t &Result); 268 269 /// Convert the hexadecimal literal in the current token into an unsigned 270 /// APInt with a minimum bitwidth required to represent the value. 271 /// 272 /// Return true if the literal does not represent an integer value. 273 bool getHexUint(APInt &Result); 274 275 /// If the current token is of the given kind, consume it and return false. 276 /// Otherwise report an error and return true. 277 bool expectAndConsume(MIToken::TokenKind TokenKind); 278 279 /// If the current token is of the given kind, consume it and return true. 280 /// Otherwise return false. 281 bool consumeIfPresent(MIToken::TokenKind TokenKind); 282 283 void initNames2InstrOpCodes(); 284 285 /// Try to convert an instruction name to an opcode. Return true if the 286 /// instruction name is invalid. 287 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 288 289 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 290 291 bool assignRegisterTies(MachineInstr &MI, 292 ArrayRef<ParsedMachineOperand> Operands); 293 294 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 295 const MCInstrDesc &MCID); 296 297 void initNames2Regs(); 298 299 /// Try to convert a register name to a register number. Return true if the 300 /// register name is invalid. 301 bool getRegisterByName(StringRef RegName, unsigned &Reg); 302 303 void initNames2RegMasks(); 304 305 /// Check if the given identifier is a name of a register mask. 306 /// 307 /// Return null if the identifier isn't a register mask. 308 const uint32_t *getRegMask(StringRef Identifier); 309 310 void initNames2SubRegIndices(); 311 312 /// Check if the given identifier is a name of a subregister index. 313 /// 314 /// Return 0 if the name isn't a subregister index class. 315 unsigned getSubRegIndex(StringRef Name); 316 317 const BasicBlock *getIRBlock(unsigned Slot); 318 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 319 320 const Value *getIRValue(unsigned Slot); 321 322 void initNames2TargetIndices(); 323 324 /// Try to convert a name of target index to the corresponding target index. 325 /// 326 /// Return true if the name isn't a name of a target index. 327 bool getTargetIndex(StringRef Name, int &Index); 328 329 void initNames2DirectTargetFlags(); 330 331 /// Try to convert a name of a direct target flag to the corresponding 332 /// target flag. 333 /// 334 /// Return true if the name isn't a name of a direct flag. 335 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 336 337 void initNames2BitmaskTargetFlags(); 338 339 /// Try to convert a name of a bitmask target flag to the corresponding 340 /// target flag. 341 /// 342 /// Return true if the name isn't a name of a bitmask target flag. 343 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 344 345 void initNames2MMOTargetFlags(); 346 347 /// Try to convert a name of a MachineMemOperand target flag to the 348 /// corresponding target flag. 349 /// 350 /// Return true if the name isn't a name of a target MMO flag. 351 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 352 353 /// Get or create an MCSymbol for a given name. 354 MCSymbol *getOrCreateMCSymbol(StringRef Name); 355 356 /// parseStringConstant 357 /// ::= StringConstant 358 bool parseStringConstant(std::string &Result); 359 }; 360 361 } // end anonymous namespace 362 363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 364 StringRef Source) 365 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 366 {} 367 368 void MIParser::lex(unsigned SkipChar) { 369 CurrentSource = lexMIToken( 370 CurrentSource.data() + SkipChar, Token, 371 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 372 } 373 374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 375 376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 377 const SourceMgr &SM = *PFS.SM; 378 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 379 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 380 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 381 // Create an ordinary diagnostic when the source manager's buffer is the 382 // source string. 383 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 384 return true; 385 } 386 // Create a diagnostic for a YAML string literal. 387 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 388 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 389 Source, None, None); 390 return true; 391 } 392 393 static const char *toString(MIToken::TokenKind TokenKind) { 394 switch (TokenKind) { 395 case MIToken::comma: 396 return "','"; 397 case MIToken::equal: 398 return "'='"; 399 case MIToken::colon: 400 return "':'"; 401 case MIToken::lparen: 402 return "'('"; 403 case MIToken::rparen: 404 return "')'"; 405 default: 406 return "<unknown token>"; 407 } 408 } 409 410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return error(Twine("expected ") + toString(TokenKind)); 413 lex(); 414 return false; 415 } 416 417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 418 if (Token.isNot(TokenKind)) 419 return false; 420 lex(); 421 return true; 422 } 423 424 bool MIParser::parseBasicBlockDefinition( 425 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 426 assert(Token.is(MIToken::MachineBasicBlockLabel)); 427 unsigned ID = 0; 428 if (getUnsigned(ID)) 429 return true; 430 auto Loc = Token.location(); 431 auto Name = Token.stringValue(); 432 lex(); 433 bool HasAddressTaken = false; 434 bool IsLandingPad = false; 435 unsigned Alignment = 0; 436 BasicBlock *BB = nullptr; 437 if (consumeIfPresent(MIToken::lparen)) { 438 do { 439 // TODO: Report an error when multiple same attributes are specified. 440 switch (Token.kind()) { 441 case MIToken::kw_address_taken: 442 HasAddressTaken = true; 443 lex(); 444 break; 445 case MIToken::kw_landing_pad: 446 IsLandingPad = true; 447 lex(); 448 break; 449 case MIToken::kw_align: 450 if (parseAlignment(Alignment)) 451 return true; 452 break; 453 case MIToken::IRBlock: 454 // TODO: Report an error when both name and ir block are specified. 455 if (parseIRBlock(BB, MF.getFunction())) 456 return true; 457 lex(); 458 break; 459 default: 460 break; 461 } 462 } while (consumeIfPresent(MIToken::comma)); 463 if (expectAndConsume(MIToken::rparen)) 464 return true; 465 } 466 if (expectAndConsume(MIToken::colon)) 467 return true; 468 469 if (!Name.empty()) { 470 BB = dyn_cast_or_null<BasicBlock>( 471 MF.getFunction().getValueSymbolTable()->lookup(Name)); 472 if (!BB) 473 return error(Loc, Twine("basic block '") + Name + 474 "' is not defined in the function '" + 475 MF.getName() + "'"); 476 } 477 auto *MBB = MF.CreateMachineBasicBlock(BB); 478 MF.insert(MF.end(), MBB); 479 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 480 if (!WasInserted) 481 return error(Loc, Twine("redefinition of machine basic block with id #") + 482 Twine(ID)); 483 if (Alignment) 484 MBB->setAlignment(Alignment); 485 if (HasAddressTaken) 486 MBB->setHasAddressTaken(); 487 MBB->setIsEHPad(IsLandingPad); 488 return false; 489 } 490 491 bool MIParser::parseBasicBlockDefinitions( 492 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 493 lex(); 494 // Skip until the first machine basic block. 495 while (Token.is(MIToken::Newline)) 496 lex(); 497 if (Token.isErrorOrEOF()) 498 return Token.isError(); 499 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 500 return error("expected a basic block definition before instructions"); 501 unsigned BraceDepth = 0; 502 do { 503 if (parseBasicBlockDefinition(MBBSlots)) 504 return true; 505 bool IsAfterNewline = false; 506 // Skip until the next machine basic block. 507 while (true) { 508 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 509 Token.isErrorOrEOF()) 510 break; 511 else if (Token.is(MIToken::MachineBasicBlockLabel)) 512 return error("basic block definition should be located at the start of " 513 "the line"); 514 else if (consumeIfPresent(MIToken::Newline)) { 515 IsAfterNewline = true; 516 continue; 517 } 518 IsAfterNewline = false; 519 if (Token.is(MIToken::lbrace)) 520 ++BraceDepth; 521 if (Token.is(MIToken::rbrace)) { 522 if (!BraceDepth) 523 return error("extraneous closing brace ('}')"); 524 --BraceDepth; 525 } 526 lex(); 527 } 528 // Verify that we closed all of the '{' at the end of a file or a block. 529 if (!Token.isError() && BraceDepth) 530 return error("expected '}'"); // FIXME: Report a note that shows '{'. 531 } while (!Token.isErrorOrEOF()); 532 return Token.isError(); 533 } 534 535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 536 assert(Token.is(MIToken::kw_liveins)); 537 lex(); 538 if (expectAndConsume(MIToken::colon)) 539 return true; 540 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 541 return false; 542 do { 543 if (Token.isNot(MIToken::NamedRegister)) 544 return error("expected a named register"); 545 unsigned Reg = 0; 546 if (parseNamedRegister(Reg)) 547 return true; 548 lex(); 549 LaneBitmask Mask = LaneBitmask::getAll(); 550 if (consumeIfPresent(MIToken::colon)) { 551 // Parse lane mask. 552 if (Token.isNot(MIToken::IntegerLiteral) && 553 Token.isNot(MIToken::HexLiteral)) 554 return error("expected a lane mask"); 555 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 556 "Use correct get-function for lane mask"); 557 LaneBitmask::Type V; 558 if (getUnsigned(V)) 559 return error("invalid lane mask value"); 560 Mask = LaneBitmask(V); 561 lex(); 562 } 563 MBB.addLiveIn(Reg, Mask); 564 } while (consumeIfPresent(MIToken::comma)); 565 return false; 566 } 567 568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 569 assert(Token.is(MIToken::kw_successors)); 570 lex(); 571 if (expectAndConsume(MIToken::colon)) 572 return true; 573 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 574 return false; 575 do { 576 if (Token.isNot(MIToken::MachineBasicBlock)) 577 return error("expected a machine basic block reference"); 578 MachineBasicBlock *SuccMBB = nullptr; 579 if (parseMBBReference(SuccMBB)) 580 return true; 581 lex(); 582 unsigned Weight = 0; 583 if (consumeIfPresent(MIToken::lparen)) { 584 if (Token.isNot(MIToken::IntegerLiteral) && 585 Token.isNot(MIToken::HexLiteral)) 586 return error("expected an integer literal after '('"); 587 if (getUnsigned(Weight)) 588 return true; 589 lex(); 590 if (expectAndConsume(MIToken::rparen)) 591 return true; 592 } 593 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 594 } while (consumeIfPresent(MIToken::comma)); 595 MBB.normalizeSuccProbs(); 596 return false; 597 } 598 599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 600 MachineBasicBlock *&AddFalthroughFrom) { 601 // Skip the definition. 602 assert(Token.is(MIToken::MachineBasicBlockLabel)); 603 lex(); 604 if (consumeIfPresent(MIToken::lparen)) { 605 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 606 lex(); 607 consumeIfPresent(MIToken::rparen); 608 } 609 consumeIfPresent(MIToken::colon); 610 611 // Parse the liveins and successors. 612 // N.B: Multiple lists of successors and liveins are allowed and they're 613 // merged into one. 614 // Example: 615 // liveins: %edi 616 // liveins: %esi 617 // 618 // is equivalent to 619 // liveins: %edi, %esi 620 bool ExplicitSuccessors = false; 621 while (true) { 622 if (Token.is(MIToken::kw_successors)) { 623 if (parseBasicBlockSuccessors(MBB)) 624 return true; 625 ExplicitSuccessors = true; 626 } else if (Token.is(MIToken::kw_liveins)) { 627 if (parseBasicBlockLiveins(MBB)) 628 return true; 629 } else if (consumeIfPresent(MIToken::Newline)) { 630 continue; 631 } else 632 break; 633 if (!Token.isNewlineOrEOF()) 634 return error("expected line break at the end of a list"); 635 lex(); 636 } 637 638 // Parse the instructions. 639 bool IsInBundle = false; 640 MachineInstr *PrevMI = nullptr; 641 while (!Token.is(MIToken::MachineBasicBlockLabel) && 642 !Token.is(MIToken::Eof)) { 643 if (consumeIfPresent(MIToken::Newline)) 644 continue; 645 if (consumeIfPresent(MIToken::rbrace)) { 646 // The first parsing pass should verify that all closing '}' have an 647 // opening '{'. 648 assert(IsInBundle); 649 IsInBundle = false; 650 continue; 651 } 652 MachineInstr *MI = nullptr; 653 if (parse(MI)) 654 return true; 655 MBB.insert(MBB.end(), MI); 656 if (IsInBundle) { 657 PrevMI->setFlag(MachineInstr::BundledSucc); 658 MI->setFlag(MachineInstr::BundledPred); 659 } 660 PrevMI = MI; 661 if (Token.is(MIToken::lbrace)) { 662 if (IsInBundle) 663 return error("nested instruction bundles are not allowed"); 664 lex(); 665 // This instruction is the start of the bundle. 666 MI->setFlag(MachineInstr::BundledSucc); 667 IsInBundle = true; 668 if (!Token.is(MIToken::Newline)) 669 // The next instruction can be on the same line. 670 continue; 671 } 672 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 673 lex(); 674 } 675 676 // Construct successor list by searching for basic block machine operands. 677 if (!ExplicitSuccessors) { 678 SmallVector<MachineBasicBlock*,4> Successors; 679 bool IsFallthrough; 680 guessSuccessors(MBB, Successors, IsFallthrough); 681 for (MachineBasicBlock *Succ : Successors) 682 MBB.addSuccessor(Succ); 683 684 if (IsFallthrough) { 685 AddFalthroughFrom = &MBB; 686 } else { 687 MBB.normalizeSuccProbs(); 688 } 689 } 690 691 return false; 692 } 693 694 bool MIParser::parseBasicBlocks() { 695 lex(); 696 // Skip until the first machine basic block. 697 while (Token.is(MIToken::Newline)) 698 lex(); 699 if (Token.isErrorOrEOF()) 700 return Token.isError(); 701 // The first parsing pass should have verified that this token is a MBB label 702 // in the 'parseBasicBlockDefinitions' method. 703 assert(Token.is(MIToken::MachineBasicBlockLabel)); 704 MachineBasicBlock *AddFalthroughFrom = nullptr; 705 do { 706 MachineBasicBlock *MBB = nullptr; 707 if (parseMBBReference(MBB)) 708 return true; 709 if (AddFalthroughFrom) { 710 if (!AddFalthroughFrom->isSuccessor(MBB)) 711 AddFalthroughFrom->addSuccessor(MBB); 712 AddFalthroughFrom->normalizeSuccProbs(); 713 AddFalthroughFrom = nullptr; 714 } 715 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 716 return true; 717 // The method 'parseBasicBlock' should parse the whole block until the next 718 // block or the end of file. 719 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 720 } while (Token.isNot(MIToken::Eof)); 721 return false; 722 } 723 724 bool MIParser::parse(MachineInstr *&MI) { 725 // Parse any register operands before '=' 726 MachineOperand MO = MachineOperand::CreateImm(0); 727 SmallVector<ParsedMachineOperand, 8> Operands; 728 while (Token.isRegister() || Token.isRegisterFlag()) { 729 auto Loc = Token.location(); 730 Optional<unsigned> TiedDefIdx; 731 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 732 return true; 733 Operands.push_back( 734 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 735 if (Token.isNot(MIToken::comma)) 736 break; 737 lex(); 738 } 739 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 740 return true; 741 742 unsigned OpCode, Flags = 0; 743 if (Token.isError() || parseInstruction(OpCode, Flags)) 744 return true; 745 746 // Parse the remaining machine operands. 747 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 748 Token.isNot(MIToken::kw_post_instr_symbol) && 749 Token.isNot(MIToken::kw_debug_location) && 750 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 751 auto Loc = Token.location(); 752 Optional<unsigned> TiedDefIdx; 753 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 754 return true; 755 Operands.push_back( 756 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 757 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 758 Token.is(MIToken::lbrace)) 759 break; 760 if (Token.isNot(MIToken::comma)) 761 return error("expected ',' before the next machine operand"); 762 lex(); 763 } 764 765 MCSymbol *PreInstrSymbol = nullptr; 766 if (Token.is(MIToken::kw_pre_instr_symbol)) 767 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 768 return true; 769 MCSymbol *PostInstrSymbol = nullptr; 770 if (Token.is(MIToken::kw_post_instr_symbol)) 771 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 772 return true; 773 774 DebugLoc DebugLocation; 775 if (Token.is(MIToken::kw_debug_location)) { 776 lex(); 777 if (Token.isNot(MIToken::exclaim)) 778 return error("expected a metadata node after 'debug-location'"); 779 MDNode *Node = nullptr; 780 if (parseMDNode(Node)) 781 return true; 782 DebugLocation = DebugLoc(Node); 783 } 784 785 // Parse the machine memory operands. 786 SmallVector<MachineMemOperand *, 2> MemOperands; 787 if (Token.is(MIToken::coloncolon)) { 788 lex(); 789 while (!Token.isNewlineOrEOF()) { 790 MachineMemOperand *MemOp = nullptr; 791 if (parseMachineMemoryOperand(MemOp)) 792 return true; 793 MemOperands.push_back(MemOp); 794 if (Token.isNewlineOrEOF()) 795 break; 796 if (Token.isNot(MIToken::comma)) 797 return error("expected ',' before the next machine memory operand"); 798 lex(); 799 } 800 } 801 802 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 803 if (!MCID.isVariadic()) { 804 // FIXME: Move the implicit operand verification to the machine verifier. 805 if (verifyImplicitOperands(Operands, MCID)) 806 return true; 807 } 808 809 // TODO: Check for extraneous machine operands. 810 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 811 MI->setFlags(Flags); 812 for (const auto &Operand : Operands) 813 MI->addOperand(MF, Operand.Operand); 814 if (assignRegisterTies(*MI, Operands)) 815 return true; 816 if (PreInstrSymbol) 817 MI->setPreInstrSymbol(MF, PreInstrSymbol); 818 if (PostInstrSymbol) 819 MI->setPostInstrSymbol(MF, PostInstrSymbol); 820 if (!MemOperands.empty()) 821 MI->setMemRefs(MF, MemOperands); 822 return false; 823 } 824 825 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 826 lex(); 827 if (Token.isNot(MIToken::MachineBasicBlock)) 828 return error("expected a machine basic block reference"); 829 if (parseMBBReference(MBB)) 830 return true; 831 lex(); 832 if (Token.isNot(MIToken::Eof)) 833 return error( 834 "expected end of string after the machine basic block reference"); 835 return false; 836 } 837 838 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 839 lex(); 840 if (Token.isNot(MIToken::NamedRegister)) 841 return error("expected a named register"); 842 if (parseNamedRegister(Reg)) 843 return true; 844 lex(); 845 if (Token.isNot(MIToken::Eof)) 846 return error("expected end of string after the register reference"); 847 return false; 848 } 849 850 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 851 lex(); 852 if (Token.isNot(MIToken::VirtualRegister)) 853 return error("expected a virtual register"); 854 if (parseVirtualRegister(Info)) 855 return true; 856 lex(); 857 if (Token.isNot(MIToken::Eof)) 858 return error("expected end of string after the register reference"); 859 return false; 860 } 861 862 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 863 lex(); 864 if (Token.isNot(MIToken::NamedRegister) && 865 Token.isNot(MIToken::VirtualRegister)) 866 return error("expected either a named or virtual register"); 867 868 VRegInfo *Info; 869 if (parseRegister(Reg, Info)) 870 return true; 871 872 lex(); 873 if (Token.isNot(MIToken::Eof)) 874 return error("expected end of string after the register reference"); 875 return false; 876 } 877 878 bool MIParser::parseStandaloneStackObject(int &FI) { 879 lex(); 880 if (Token.isNot(MIToken::StackObject)) 881 return error("expected a stack object"); 882 if (parseStackFrameIndex(FI)) 883 return true; 884 if (Token.isNot(MIToken::Eof)) 885 return error("expected end of string after the stack object reference"); 886 return false; 887 } 888 889 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 890 lex(); 891 if (Token.is(MIToken::exclaim)) { 892 if (parseMDNode(Node)) 893 return true; 894 } else if (Token.is(MIToken::md_diexpr)) { 895 if (parseDIExpression(Node)) 896 return true; 897 } else 898 return error("expected a metadata node"); 899 if (Token.isNot(MIToken::Eof)) 900 return error("expected end of string after the metadata node"); 901 return false; 902 } 903 904 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 905 assert(MO.isImplicit()); 906 return MO.isDef() ? "implicit-def" : "implicit"; 907 } 908 909 static std::string getRegisterName(const TargetRegisterInfo *TRI, 910 unsigned Reg) { 911 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 912 return StringRef(TRI->getName(Reg)).lower(); 913 } 914 915 /// Return true if the parsed machine operands contain a given machine operand. 916 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 917 ArrayRef<ParsedMachineOperand> Operands) { 918 for (const auto &I : Operands) { 919 if (ImplicitOperand.isIdenticalTo(I.Operand)) 920 return true; 921 } 922 return false; 923 } 924 925 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 926 const MCInstrDesc &MCID) { 927 if (MCID.isCall()) 928 // We can't verify call instructions as they can contain arbitrary implicit 929 // register and register mask operands. 930 return false; 931 932 // Gather all the expected implicit operands. 933 SmallVector<MachineOperand, 4> ImplicitOperands; 934 if (MCID.ImplicitDefs) 935 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 936 ImplicitOperands.push_back( 937 MachineOperand::CreateReg(*ImpDefs, true, true)); 938 if (MCID.ImplicitUses) 939 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 940 ImplicitOperands.push_back( 941 MachineOperand::CreateReg(*ImpUses, false, true)); 942 943 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 944 assert(TRI && "Expected target register info"); 945 for (const auto &I : ImplicitOperands) { 946 if (isImplicitOperandIn(I, Operands)) 947 continue; 948 return error(Operands.empty() ? Token.location() : Operands.back().End, 949 Twine("missing implicit register operand '") + 950 printImplicitRegisterFlag(I) + " $" + 951 getRegisterName(TRI, I.getReg()) + "'"); 952 } 953 return false; 954 } 955 956 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 957 // Allow frame and fast math flags for OPCODE 958 while (Token.is(MIToken::kw_frame_setup) || 959 Token.is(MIToken::kw_frame_destroy) || 960 Token.is(MIToken::kw_nnan) || 961 Token.is(MIToken::kw_ninf) || 962 Token.is(MIToken::kw_nsz) || 963 Token.is(MIToken::kw_arcp) || 964 Token.is(MIToken::kw_contract) || 965 Token.is(MIToken::kw_afn) || 966 Token.is(MIToken::kw_reassoc)) { 967 // Mine frame and fast math flags 968 if (Token.is(MIToken::kw_frame_setup)) 969 Flags |= MachineInstr::FrameSetup; 970 if (Token.is(MIToken::kw_frame_destroy)) 971 Flags |= MachineInstr::FrameDestroy; 972 if (Token.is(MIToken::kw_nnan)) 973 Flags |= MachineInstr::FmNoNans; 974 if (Token.is(MIToken::kw_ninf)) 975 Flags |= MachineInstr::FmNoInfs; 976 if (Token.is(MIToken::kw_nsz)) 977 Flags |= MachineInstr::FmNsz; 978 if (Token.is(MIToken::kw_arcp)) 979 Flags |= MachineInstr::FmArcp; 980 if (Token.is(MIToken::kw_contract)) 981 Flags |= MachineInstr::FmContract; 982 if (Token.is(MIToken::kw_afn)) 983 Flags |= MachineInstr::FmAfn; 984 if (Token.is(MIToken::kw_reassoc)) 985 Flags |= MachineInstr::FmReassoc; 986 987 lex(); 988 } 989 if (Token.isNot(MIToken::Identifier)) 990 return error("expected a machine instruction"); 991 StringRef InstrName = Token.stringValue(); 992 if (parseInstrName(InstrName, OpCode)) 993 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 994 lex(); 995 return false; 996 } 997 998 bool MIParser::parseNamedRegister(unsigned &Reg) { 999 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1000 StringRef Name = Token.stringValue(); 1001 if (getRegisterByName(Name, Reg)) 1002 return error(Twine("unknown register name '") + Name + "'"); 1003 return false; 1004 } 1005 1006 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1007 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1008 StringRef Name = Token.stringValue(); 1009 // TODO: Check that the VReg name is not the same as a physical register name. 1010 // If it is, then print a warning (when warnings are implemented). 1011 Info = &PFS.getVRegInfoNamed(Name); 1012 return false; 1013 } 1014 1015 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1016 if (Token.is(MIToken::NamedVirtualRegister)) 1017 return parseNamedVirtualRegister(Info); 1018 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1019 unsigned ID; 1020 if (getUnsigned(ID)) 1021 return true; 1022 Info = &PFS.getVRegInfo(ID); 1023 return false; 1024 } 1025 1026 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1027 switch (Token.kind()) { 1028 case MIToken::underscore: 1029 Reg = 0; 1030 return false; 1031 case MIToken::NamedRegister: 1032 return parseNamedRegister(Reg); 1033 case MIToken::NamedVirtualRegister: 1034 case MIToken::VirtualRegister: 1035 if (parseVirtualRegister(Info)) 1036 return true; 1037 Reg = Info->VReg; 1038 return false; 1039 // TODO: Parse other register kinds. 1040 default: 1041 llvm_unreachable("The current token should be a register"); 1042 } 1043 } 1044 1045 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1046 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1047 return error("expected '_', register class, or register bank name"); 1048 StringRef::iterator Loc = Token.location(); 1049 StringRef Name = Token.stringValue(); 1050 1051 // Was it a register class? 1052 auto RCNameI = PFS.Names2RegClasses.find(Name); 1053 if (RCNameI != PFS.Names2RegClasses.end()) { 1054 lex(); 1055 const TargetRegisterClass &RC = *RCNameI->getValue(); 1056 1057 switch (RegInfo.Kind) { 1058 case VRegInfo::UNKNOWN: 1059 case VRegInfo::NORMAL: 1060 RegInfo.Kind = VRegInfo::NORMAL; 1061 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1062 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1063 return error(Loc, Twine("conflicting register classes, previously: ") + 1064 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1065 } 1066 RegInfo.D.RC = &RC; 1067 RegInfo.Explicit = true; 1068 return false; 1069 1070 case VRegInfo::GENERIC: 1071 case VRegInfo::REGBANK: 1072 return error(Loc, "register class specification on generic register"); 1073 } 1074 llvm_unreachable("Unexpected register kind"); 1075 } 1076 1077 // Should be a register bank or a generic register. 1078 const RegisterBank *RegBank = nullptr; 1079 if (Name != "_") { 1080 auto RBNameI = PFS.Names2RegBanks.find(Name); 1081 if (RBNameI == PFS.Names2RegBanks.end()) 1082 return error(Loc, "expected '_', register class, or register bank name"); 1083 RegBank = RBNameI->getValue(); 1084 } 1085 1086 lex(); 1087 1088 switch (RegInfo.Kind) { 1089 case VRegInfo::UNKNOWN: 1090 case VRegInfo::GENERIC: 1091 case VRegInfo::REGBANK: 1092 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1093 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1094 return error(Loc, "conflicting generic register banks"); 1095 RegInfo.D.RegBank = RegBank; 1096 RegInfo.Explicit = true; 1097 return false; 1098 1099 case VRegInfo::NORMAL: 1100 return error(Loc, "register bank specification on normal register"); 1101 } 1102 llvm_unreachable("Unexpected register kind"); 1103 } 1104 1105 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1106 const unsigned OldFlags = Flags; 1107 switch (Token.kind()) { 1108 case MIToken::kw_implicit: 1109 Flags |= RegState::Implicit; 1110 break; 1111 case MIToken::kw_implicit_define: 1112 Flags |= RegState::ImplicitDefine; 1113 break; 1114 case MIToken::kw_def: 1115 Flags |= RegState::Define; 1116 break; 1117 case MIToken::kw_dead: 1118 Flags |= RegState::Dead; 1119 break; 1120 case MIToken::kw_killed: 1121 Flags |= RegState::Kill; 1122 break; 1123 case MIToken::kw_undef: 1124 Flags |= RegState::Undef; 1125 break; 1126 case MIToken::kw_internal: 1127 Flags |= RegState::InternalRead; 1128 break; 1129 case MIToken::kw_early_clobber: 1130 Flags |= RegState::EarlyClobber; 1131 break; 1132 case MIToken::kw_debug_use: 1133 Flags |= RegState::Debug; 1134 break; 1135 case MIToken::kw_renamable: 1136 Flags |= RegState::Renamable; 1137 break; 1138 default: 1139 llvm_unreachable("The current token should be a register flag"); 1140 } 1141 if (OldFlags == Flags) 1142 // We know that the same flag is specified more than once when the flags 1143 // weren't modified. 1144 return error("duplicate '" + Token.stringValue() + "' register flag"); 1145 lex(); 1146 return false; 1147 } 1148 1149 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1150 assert(Token.is(MIToken::dot)); 1151 lex(); 1152 if (Token.isNot(MIToken::Identifier)) 1153 return error("expected a subregister index after '.'"); 1154 auto Name = Token.stringValue(); 1155 SubReg = getSubRegIndex(Name); 1156 if (!SubReg) 1157 return error(Twine("use of unknown subregister index '") + Name + "'"); 1158 lex(); 1159 return false; 1160 } 1161 1162 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1163 if (!consumeIfPresent(MIToken::kw_tied_def)) 1164 return true; 1165 if (Token.isNot(MIToken::IntegerLiteral)) 1166 return error("expected an integer literal after 'tied-def'"); 1167 if (getUnsigned(TiedDefIdx)) 1168 return true; 1169 lex(); 1170 if (expectAndConsume(MIToken::rparen)) 1171 return true; 1172 return false; 1173 } 1174 1175 bool MIParser::assignRegisterTies(MachineInstr &MI, 1176 ArrayRef<ParsedMachineOperand> Operands) { 1177 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1178 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1179 if (!Operands[I].TiedDefIdx) 1180 continue; 1181 // The parser ensures that this operand is a register use, so we just have 1182 // to check the tied-def operand. 1183 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1184 if (DefIdx >= E) 1185 return error(Operands[I].Begin, 1186 Twine("use of invalid tied-def operand index '" + 1187 Twine(DefIdx) + "'; instruction has only ") + 1188 Twine(E) + " operands"); 1189 const auto &DefOperand = Operands[DefIdx].Operand; 1190 if (!DefOperand.isReg() || !DefOperand.isDef()) 1191 // FIXME: add note with the def operand. 1192 return error(Operands[I].Begin, 1193 Twine("use of invalid tied-def operand index '") + 1194 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1195 " isn't a defined register"); 1196 // Check that the tied-def operand wasn't tied elsewhere. 1197 for (const auto &TiedPair : TiedRegisterPairs) { 1198 if (TiedPair.first == DefIdx) 1199 return error(Operands[I].Begin, 1200 Twine("the tied-def operand #") + Twine(DefIdx) + 1201 " is already tied with another register operand"); 1202 } 1203 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1204 } 1205 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1206 // indices must be less than tied max. 1207 for (const auto &TiedPair : TiedRegisterPairs) 1208 MI.tieOperands(TiedPair.first, TiedPair.second); 1209 return false; 1210 } 1211 1212 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1213 Optional<unsigned> &TiedDefIdx, 1214 bool IsDef) { 1215 unsigned Flags = IsDef ? RegState::Define : 0; 1216 while (Token.isRegisterFlag()) { 1217 if (parseRegisterFlag(Flags)) 1218 return true; 1219 } 1220 if (!Token.isRegister()) 1221 return error("expected a register after register flags"); 1222 unsigned Reg; 1223 VRegInfo *RegInfo; 1224 if (parseRegister(Reg, RegInfo)) 1225 return true; 1226 lex(); 1227 unsigned SubReg = 0; 1228 if (Token.is(MIToken::dot)) { 1229 if (parseSubRegisterIndex(SubReg)) 1230 return true; 1231 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1232 return error("subregister index expects a virtual register"); 1233 } 1234 if (Token.is(MIToken::colon)) { 1235 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1236 return error("register class specification expects a virtual register"); 1237 lex(); 1238 if (parseRegisterClassOrBank(*RegInfo)) 1239 return true; 1240 } 1241 MachineRegisterInfo &MRI = MF.getRegInfo(); 1242 if ((Flags & RegState::Define) == 0) { 1243 if (consumeIfPresent(MIToken::lparen)) { 1244 unsigned Idx; 1245 if (!parseRegisterTiedDefIndex(Idx)) 1246 TiedDefIdx = Idx; 1247 else { 1248 // Try a redundant low-level type. 1249 LLT Ty; 1250 if (parseLowLevelType(Token.location(), Ty)) 1251 return error("expected tied-def or low-level type after '('"); 1252 1253 if (expectAndConsume(MIToken::rparen)) 1254 return true; 1255 1256 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1257 return error("inconsistent type for generic virtual register"); 1258 1259 MRI.setType(Reg, Ty); 1260 } 1261 } 1262 } else if (consumeIfPresent(MIToken::lparen)) { 1263 // Virtual registers may have a tpe with GlobalISel. 1264 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1265 return error("unexpected type on physical register"); 1266 1267 LLT Ty; 1268 if (parseLowLevelType(Token.location(), Ty)) 1269 return true; 1270 1271 if (expectAndConsume(MIToken::rparen)) 1272 return true; 1273 1274 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1275 return error("inconsistent type for generic virtual register"); 1276 1277 MRI.setType(Reg, Ty); 1278 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1279 // Generic virtual registers must have a type. 1280 // If we end up here this means the type hasn't been specified and 1281 // this is bad! 1282 if (RegInfo->Kind == VRegInfo::GENERIC || 1283 RegInfo->Kind == VRegInfo::REGBANK) 1284 return error("generic virtual registers must have a type"); 1285 } 1286 Dest = MachineOperand::CreateReg( 1287 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1288 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1289 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1290 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1291 1292 return false; 1293 } 1294 1295 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1296 assert(Token.is(MIToken::IntegerLiteral)); 1297 const APSInt &Int = Token.integerValue(); 1298 if (Int.getMinSignedBits() > 64) 1299 return error("integer literal is too large to be an immediate operand"); 1300 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1301 lex(); 1302 return false; 1303 } 1304 1305 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1306 const Constant *&C) { 1307 auto Source = StringValue.str(); // The source has to be null terminated. 1308 SMDiagnostic Err; 1309 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1310 &PFS.IRSlots); 1311 if (!C) 1312 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1313 return false; 1314 } 1315 1316 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1317 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1318 return true; 1319 lex(); 1320 return false; 1321 } 1322 1323 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1324 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1325 StringRef SizeStr = Token.range().drop_front(); 1326 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1327 return error("expected integers after 's'/'p' type character"); 1328 } 1329 1330 if (Token.range().front() == 's') { 1331 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1332 lex(); 1333 return false; 1334 } else if (Token.range().front() == 'p') { 1335 const DataLayout &DL = MF.getDataLayout(); 1336 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1337 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1338 lex(); 1339 return false; 1340 } 1341 1342 // Now we're looking for a vector. 1343 if (Token.isNot(MIToken::less)) 1344 return error(Loc, 1345 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1346 lex(); 1347 1348 if (Token.isNot(MIToken::IntegerLiteral)) 1349 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1350 uint64_t NumElements = Token.integerValue().getZExtValue(); 1351 lex(); 1352 1353 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1354 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1355 lex(); 1356 1357 if (Token.range().front() != 's' && Token.range().front() != 'p') 1358 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1359 StringRef SizeStr = Token.range().drop_front(); 1360 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1361 return error("expected integers after 's'/'p' type character"); 1362 1363 if (Token.range().front() == 's') 1364 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1365 else if (Token.range().front() == 'p') { 1366 const DataLayout &DL = MF.getDataLayout(); 1367 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1368 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1369 } else 1370 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1371 lex(); 1372 1373 if (Token.isNot(MIToken::greater)) 1374 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1375 lex(); 1376 1377 Ty = LLT::vector(NumElements, Ty); 1378 return false; 1379 } 1380 1381 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1382 assert(Token.is(MIToken::Identifier)); 1383 StringRef TypeStr = Token.range(); 1384 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1385 TypeStr.front() != 'p') 1386 return error( 1387 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1388 StringRef SizeStr = Token.range().drop_front(); 1389 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1390 return error("expected integers after 'i'/'s'/'p' type character"); 1391 1392 auto Loc = Token.location(); 1393 lex(); 1394 if (Token.isNot(MIToken::IntegerLiteral)) { 1395 if (Token.isNot(MIToken::Identifier) || 1396 !(Token.range() == "true" || Token.range() == "false")) 1397 return error("expected an integer literal"); 1398 } 1399 const Constant *C = nullptr; 1400 if (parseIRConstant(Loc, C)) 1401 return true; 1402 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1403 return false; 1404 } 1405 1406 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1407 auto Loc = Token.location(); 1408 lex(); 1409 if (Token.isNot(MIToken::FloatingPointLiteral) && 1410 Token.isNot(MIToken::HexLiteral)) 1411 return error("expected a floating point literal"); 1412 const Constant *C = nullptr; 1413 if (parseIRConstant(Loc, C)) 1414 return true; 1415 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1416 return false; 1417 } 1418 1419 bool MIParser::getUnsigned(unsigned &Result) { 1420 if (Token.hasIntegerValue()) { 1421 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1422 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1423 if (Val64 == Limit) 1424 return error("expected 32-bit integer (too large)"); 1425 Result = Val64; 1426 return false; 1427 } 1428 if (Token.is(MIToken::HexLiteral)) { 1429 APInt A; 1430 if (getHexUint(A)) 1431 return true; 1432 if (A.getBitWidth() > 32) 1433 return error("expected 32-bit integer (too large)"); 1434 Result = A.getZExtValue(); 1435 return false; 1436 } 1437 return true; 1438 } 1439 1440 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1441 assert(Token.is(MIToken::MachineBasicBlock) || 1442 Token.is(MIToken::MachineBasicBlockLabel)); 1443 unsigned Number; 1444 if (getUnsigned(Number)) 1445 return true; 1446 auto MBBInfo = PFS.MBBSlots.find(Number); 1447 if (MBBInfo == PFS.MBBSlots.end()) 1448 return error(Twine("use of undefined machine basic block #") + 1449 Twine(Number)); 1450 MBB = MBBInfo->second; 1451 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1452 // we drop the <irname> from the bb.<id>.<irname> format. 1453 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1454 return error(Twine("the name of machine basic block #") + Twine(Number) + 1455 " isn't '" + Token.stringValue() + "'"); 1456 return false; 1457 } 1458 1459 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1460 MachineBasicBlock *MBB; 1461 if (parseMBBReference(MBB)) 1462 return true; 1463 Dest = MachineOperand::CreateMBB(MBB); 1464 lex(); 1465 return false; 1466 } 1467 1468 bool MIParser::parseStackFrameIndex(int &FI) { 1469 assert(Token.is(MIToken::StackObject)); 1470 unsigned ID; 1471 if (getUnsigned(ID)) 1472 return true; 1473 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1474 if (ObjectInfo == PFS.StackObjectSlots.end()) 1475 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1476 "'"); 1477 StringRef Name; 1478 if (const auto *Alloca = 1479 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1480 Name = Alloca->getName(); 1481 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1482 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1483 "' isn't '" + Token.stringValue() + "'"); 1484 lex(); 1485 FI = ObjectInfo->second; 1486 return false; 1487 } 1488 1489 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1490 int FI; 1491 if (parseStackFrameIndex(FI)) 1492 return true; 1493 Dest = MachineOperand::CreateFI(FI); 1494 return false; 1495 } 1496 1497 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1498 assert(Token.is(MIToken::FixedStackObject)); 1499 unsigned ID; 1500 if (getUnsigned(ID)) 1501 return true; 1502 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1503 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1504 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1505 Twine(ID) + "'"); 1506 lex(); 1507 FI = ObjectInfo->second; 1508 return false; 1509 } 1510 1511 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1512 int FI; 1513 if (parseFixedStackFrameIndex(FI)) 1514 return true; 1515 Dest = MachineOperand::CreateFI(FI); 1516 return false; 1517 } 1518 1519 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1520 switch (Token.kind()) { 1521 case MIToken::NamedGlobalValue: { 1522 const Module *M = MF.getFunction().getParent(); 1523 GV = M->getNamedValue(Token.stringValue()); 1524 if (!GV) 1525 return error(Twine("use of undefined global value '") + Token.range() + 1526 "'"); 1527 break; 1528 } 1529 case MIToken::GlobalValue: { 1530 unsigned GVIdx; 1531 if (getUnsigned(GVIdx)) 1532 return true; 1533 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1534 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1535 "'"); 1536 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1537 break; 1538 } 1539 default: 1540 llvm_unreachable("The current token should be a global value"); 1541 } 1542 return false; 1543 } 1544 1545 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1546 GlobalValue *GV = nullptr; 1547 if (parseGlobalValue(GV)) 1548 return true; 1549 lex(); 1550 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1551 if (parseOperandsOffset(Dest)) 1552 return true; 1553 return false; 1554 } 1555 1556 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1557 assert(Token.is(MIToken::ConstantPoolItem)); 1558 unsigned ID; 1559 if (getUnsigned(ID)) 1560 return true; 1561 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1562 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1563 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1564 lex(); 1565 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1566 if (parseOperandsOffset(Dest)) 1567 return true; 1568 return false; 1569 } 1570 1571 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1572 assert(Token.is(MIToken::JumpTableIndex)); 1573 unsigned ID; 1574 if (getUnsigned(ID)) 1575 return true; 1576 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1577 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1578 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1579 lex(); 1580 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1581 return false; 1582 } 1583 1584 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1585 assert(Token.is(MIToken::ExternalSymbol)); 1586 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1587 lex(); 1588 Dest = MachineOperand::CreateES(Symbol); 1589 if (parseOperandsOffset(Dest)) 1590 return true; 1591 return false; 1592 } 1593 1594 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1595 assert(Token.is(MIToken::MCSymbol)); 1596 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1597 lex(); 1598 Dest = MachineOperand::CreateMCSymbol(Symbol); 1599 if (parseOperandsOffset(Dest)) 1600 return true; 1601 return false; 1602 } 1603 1604 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1605 assert(Token.is(MIToken::SubRegisterIndex)); 1606 StringRef Name = Token.stringValue(); 1607 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1608 if (SubRegIndex == 0) 1609 return error(Twine("unknown subregister index '") + Name + "'"); 1610 lex(); 1611 Dest = MachineOperand::CreateImm(SubRegIndex); 1612 return false; 1613 } 1614 1615 bool MIParser::parseMDNode(MDNode *&Node) { 1616 assert(Token.is(MIToken::exclaim)); 1617 1618 auto Loc = Token.location(); 1619 lex(); 1620 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1621 return error("expected metadata id after '!'"); 1622 unsigned ID; 1623 if (getUnsigned(ID)) 1624 return true; 1625 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1626 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1627 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1628 lex(); 1629 Node = NodeInfo->second.get(); 1630 return false; 1631 } 1632 1633 bool MIParser::parseDIExpression(MDNode *&Expr) { 1634 assert(Token.is(MIToken::md_diexpr)); 1635 lex(); 1636 1637 // FIXME: Share this parsing with the IL parser. 1638 SmallVector<uint64_t, 8> Elements; 1639 1640 if (expectAndConsume(MIToken::lparen)) 1641 return true; 1642 1643 if (Token.isNot(MIToken::rparen)) { 1644 do { 1645 if (Token.is(MIToken::Identifier)) { 1646 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1647 lex(); 1648 Elements.push_back(Op); 1649 continue; 1650 } 1651 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1652 } 1653 1654 if (Token.isNot(MIToken::IntegerLiteral) || 1655 Token.integerValue().isSigned()) 1656 return error("expected unsigned integer"); 1657 1658 auto &U = Token.integerValue(); 1659 if (U.ugt(UINT64_MAX)) 1660 return error("element too large, limit is " + Twine(UINT64_MAX)); 1661 Elements.push_back(U.getZExtValue()); 1662 lex(); 1663 1664 } while (consumeIfPresent(MIToken::comma)); 1665 } 1666 1667 if (expectAndConsume(MIToken::rparen)) 1668 return true; 1669 1670 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1671 return false; 1672 } 1673 1674 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1675 MDNode *Node = nullptr; 1676 if (Token.is(MIToken::exclaim)) { 1677 if (parseMDNode(Node)) 1678 return true; 1679 } else if (Token.is(MIToken::md_diexpr)) { 1680 if (parseDIExpression(Node)) 1681 return true; 1682 } 1683 Dest = MachineOperand::CreateMetadata(Node); 1684 return false; 1685 } 1686 1687 bool MIParser::parseCFIOffset(int &Offset) { 1688 if (Token.isNot(MIToken::IntegerLiteral)) 1689 return error("expected a cfi offset"); 1690 if (Token.integerValue().getMinSignedBits() > 32) 1691 return error("expected a 32 bit integer (the cfi offset is too large)"); 1692 Offset = (int)Token.integerValue().getExtValue(); 1693 lex(); 1694 return false; 1695 } 1696 1697 bool MIParser::parseCFIRegister(unsigned &Reg) { 1698 if (Token.isNot(MIToken::NamedRegister)) 1699 return error("expected a cfi register"); 1700 unsigned LLVMReg; 1701 if (parseNamedRegister(LLVMReg)) 1702 return true; 1703 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1704 assert(TRI && "Expected target register info"); 1705 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1706 if (DwarfReg < 0) 1707 return error("invalid DWARF register"); 1708 Reg = (unsigned)DwarfReg; 1709 lex(); 1710 return false; 1711 } 1712 1713 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1714 do { 1715 if (Token.isNot(MIToken::HexLiteral)) 1716 return error("expected a hexadecimal literal"); 1717 unsigned Value; 1718 if (getUnsigned(Value)) 1719 return true; 1720 if (Value > UINT8_MAX) 1721 return error("expected a 8-bit integer (too large)"); 1722 Values.push_back(static_cast<uint8_t>(Value)); 1723 lex(); 1724 } while (consumeIfPresent(MIToken::comma)); 1725 return false; 1726 } 1727 1728 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1729 auto Kind = Token.kind(); 1730 lex(); 1731 int Offset; 1732 unsigned Reg; 1733 unsigned CFIIndex; 1734 switch (Kind) { 1735 case MIToken::kw_cfi_same_value: 1736 if (parseCFIRegister(Reg)) 1737 return true; 1738 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1739 break; 1740 case MIToken::kw_cfi_offset: 1741 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1742 parseCFIOffset(Offset)) 1743 return true; 1744 CFIIndex = 1745 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1746 break; 1747 case MIToken::kw_cfi_rel_offset: 1748 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1749 parseCFIOffset(Offset)) 1750 return true; 1751 CFIIndex = MF.addFrameInst( 1752 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1753 break; 1754 case MIToken::kw_cfi_def_cfa_register: 1755 if (parseCFIRegister(Reg)) 1756 return true; 1757 CFIIndex = 1758 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1759 break; 1760 case MIToken::kw_cfi_def_cfa_offset: 1761 if (parseCFIOffset(Offset)) 1762 return true; 1763 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1764 CFIIndex = MF.addFrameInst( 1765 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1766 break; 1767 case MIToken::kw_cfi_adjust_cfa_offset: 1768 if (parseCFIOffset(Offset)) 1769 return true; 1770 CFIIndex = MF.addFrameInst( 1771 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1772 break; 1773 case MIToken::kw_cfi_def_cfa: 1774 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1775 parseCFIOffset(Offset)) 1776 return true; 1777 // NB: MCCFIInstruction::createDefCfa negates the offset. 1778 CFIIndex = 1779 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1780 break; 1781 case MIToken::kw_cfi_remember_state: 1782 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1783 break; 1784 case MIToken::kw_cfi_restore: 1785 if (parseCFIRegister(Reg)) 1786 return true; 1787 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1788 break; 1789 case MIToken::kw_cfi_restore_state: 1790 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1791 break; 1792 case MIToken::kw_cfi_undefined: 1793 if (parseCFIRegister(Reg)) 1794 return true; 1795 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1796 break; 1797 case MIToken::kw_cfi_register: { 1798 unsigned Reg2; 1799 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1800 parseCFIRegister(Reg2)) 1801 return true; 1802 1803 CFIIndex = 1804 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1805 break; 1806 } 1807 case MIToken::kw_cfi_window_save: 1808 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1809 break; 1810 case MIToken::kw_cfi_escape: { 1811 std::string Values; 1812 if (parseCFIEscapeValues(Values)) 1813 return true; 1814 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1815 break; 1816 } 1817 default: 1818 // TODO: Parse the other CFI operands. 1819 llvm_unreachable("The current token should be a cfi operand"); 1820 } 1821 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1822 return false; 1823 } 1824 1825 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1826 switch (Token.kind()) { 1827 case MIToken::NamedIRBlock: { 1828 BB = dyn_cast_or_null<BasicBlock>( 1829 F.getValueSymbolTable()->lookup(Token.stringValue())); 1830 if (!BB) 1831 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1832 break; 1833 } 1834 case MIToken::IRBlock: { 1835 unsigned SlotNumber = 0; 1836 if (getUnsigned(SlotNumber)) 1837 return true; 1838 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1839 if (!BB) 1840 return error(Twine("use of undefined IR block '%ir-block.") + 1841 Twine(SlotNumber) + "'"); 1842 break; 1843 } 1844 default: 1845 llvm_unreachable("The current token should be an IR block reference"); 1846 } 1847 return false; 1848 } 1849 1850 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1851 assert(Token.is(MIToken::kw_blockaddress)); 1852 lex(); 1853 if (expectAndConsume(MIToken::lparen)) 1854 return true; 1855 if (Token.isNot(MIToken::GlobalValue) && 1856 Token.isNot(MIToken::NamedGlobalValue)) 1857 return error("expected a global value"); 1858 GlobalValue *GV = nullptr; 1859 if (parseGlobalValue(GV)) 1860 return true; 1861 auto *F = dyn_cast<Function>(GV); 1862 if (!F) 1863 return error("expected an IR function reference"); 1864 lex(); 1865 if (expectAndConsume(MIToken::comma)) 1866 return true; 1867 BasicBlock *BB = nullptr; 1868 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1869 return error("expected an IR block reference"); 1870 if (parseIRBlock(BB, *F)) 1871 return true; 1872 lex(); 1873 if (expectAndConsume(MIToken::rparen)) 1874 return true; 1875 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1876 if (parseOperandsOffset(Dest)) 1877 return true; 1878 return false; 1879 } 1880 1881 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1882 assert(Token.is(MIToken::kw_intrinsic)); 1883 lex(); 1884 if (expectAndConsume(MIToken::lparen)) 1885 return error("expected syntax intrinsic(@llvm.whatever)"); 1886 1887 if (Token.isNot(MIToken::NamedGlobalValue)) 1888 return error("expected syntax intrinsic(@llvm.whatever)"); 1889 1890 std::string Name = Token.stringValue(); 1891 lex(); 1892 1893 if (expectAndConsume(MIToken::rparen)) 1894 return error("expected ')' to terminate intrinsic name"); 1895 1896 // Find out what intrinsic we're dealing with, first try the global namespace 1897 // and then the target's private intrinsics if that fails. 1898 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1899 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1900 if (ID == Intrinsic::not_intrinsic && TII) 1901 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1902 1903 if (ID == Intrinsic::not_intrinsic) 1904 return error("unknown intrinsic name"); 1905 Dest = MachineOperand::CreateIntrinsicID(ID); 1906 1907 return false; 1908 } 1909 1910 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1911 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1912 bool IsFloat = Token.is(MIToken::kw_floatpred); 1913 lex(); 1914 1915 if (expectAndConsume(MIToken::lparen)) 1916 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1917 1918 if (Token.isNot(MIToken::Identifier)) 1919 return error("whatever"); 1920 1921 CmpInst::Predicate Pred; 1922 if (IsFloat) { 1923 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1924 .Case("false", CmpInst::FCMP_FALSE) 1925 .Case("oeq", CmpInst::FCMP_OEQ) 1926 .Case("ogt", CmpInst::FCMP_OGT) 1927 .Case("oge", CmpInst::FCMP_OGE) 1928 .Case("olt", CmpInst::FCMP_OLT) 1929 .Case("ole", CmpInst::FCMP_OLE) 1930 .Case("one", CmpInst::FCMP_ONE) 1931 .Case("ord", CmpInst::FCMP_ORD) 1932 .Case("uno", CmpInst::FCMP_UNO) 1933 .Case("ueq", CmpInst::FCMP_UEQ) 1934 .Case("ugt", CmpInst::FCMP_UGT) 1935 .Case("uge", CmpInst::FCMP_UGE) 1936 .Case("ult", CmpInst::FCMP_ULT) 1937 .Case("ule", CmpInst::FCMP_ULE) 1938 .Case("une", CmpInst::FCMP_UNE) 1939 .Case("true", CmpInst::FCMP_TRUE) 1940 .Default(CmpInst::BAD_FCMP_PREDICATE); 1941 if (!CmpInst::isFPPredicate(Pred)) 1942 return error("invalid floating-point predicate"); 1943 } else { 1944 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1945 .Case("eq", CmpInst::ICMP_EQ) 1946 .Case("ne", CmpInst::ICMP_NE) 1947 .Case("sgt", CmpInst::ICMP_SGT) 1948 .Case("sge", CmpInst::ICMP_SGE) 1949 .Case("slt", CmpInst::ICMP_SLT) 1950 .Case("sle", CmpInst::ICMP_SLE) 1951 .Case("ugt", CmpInst::ICMP_UGT) 1952 .Case("uge", CmpInst::ICMP_UGE) 1953 .Case("ult", CmpInst::ICMP_ULT) 1954 .Case("ule", CmpInst::ICMP_ULE) 1955 .Default(CmpInst::BAD_ICMP_PREDICATE); 1956 if (!CmpInst::isIntPredicate(Pred)) 1957 return error("invalid integer predicate"); 1958 } 1959 1960 lex(); 1961 Dest = MachineOperand::CreatePredicate(Pred); 1962 if (expectAndConsume(MIToken::rparen)) 1963 return error("predicate should be terminated by ')'."); 1964 1965 return false; 1966 } 1967 1968 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1969 assert(Token.is(MIToken::kw_target_index)); 1970 lex(); 1971 if (expectAndConsume(MIToken::lparen)) 1972 return true; 1973 if (Token.isNot(MIToken::Identifier)) 1974 return error("expected the name of the target index"); 1975 int Index = 0; 1976 if (getTargetIndex(Token.stringValue(), Index)) 1977 return error("use of undefined target index '" + Token.stringValue() + "'"); 1978 lex(); 1979 if (expectAndConsume(MIToken::rparen)) 1980 return true; 1981 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1982 if (parseOperandsOffset(Dest)) 1983 return true; 1984 return false; 1985 } 1986 1987 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1988 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1989 lex(); 1990 if (expectAndConsume(MIToken::lparen)) 1991 return true; 1992 1993 uint32_t *Mask = MF.allocateRegMask(); 1994 while (true) { 1995 if (Token.isNot(MIToken::NamedRegister)) 1996 return error("expected a named register"); 1997 unsigned Reg; 1998 if (parseNamedRegister(Reg)) 1999 return true; 2000 lex(); 2001 Mask[Reg / 32] |= 1U << (Reg % 32); 2002 // TODO: Report an error if the same register is used more than once. 2003 if (Token.isNot(MIToken::comma)) 2004 break; 2005 lex(); 2006 } 2007 2008 if (expectAndConsume(MIToken::rparen)) 2009 return true; 2010 Dest = MachineOperand::CreateRegMask(Mask); 2011 return false; 2012 } 2013 2014 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2015 assert(Token.is(MIToken::kw_liveout)); 2016 uint32_t *Mask = MF.allocateRegMask(); 2017 lex(); 2018 if (expectAndConsume(MIToken::lparen)) 2019 return true; 2020 while (true) { 2021 if (Token.isNot(MIToken::NamedRegister)) 2022 return error("expected a named register"); 2023 unsigned Reg; 2024 if (parseNamedRegister(Reg)) 2025 return true; 2026 lex(); 2027 Mask[Reg / 32] |= 1U << (Reg % 32); 2028 // TODO: Report an error if the same register is used more than once. 2029 if (Token.isNot(MIToken::comma)) 2030 break; 2031 lex(); 2032 } 2033 if (expectAndConsume(MIToken::rparen)) 2034 return true; 2035 Dest = MachineOperand::CreateRegLiveOut(Mask); 2036 return false; 2037 } 2038 2039 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2040 Optional<unsigned> &TiedDefIdx) { 2041 switch (Token.kind()) { 2042 case MIToken::kw_implicit: 2043 case MIToken::kw_implicit_define: 2044 case MIToken::kw_def: 2045 case MIToken::kw_dead: 2046 case MIToken::kw_killed: 2047 case MIToken::kw_undef: 2048 case MIToken::kw_internal: 2049 case MIToken::kw_early_clobber: 2050 case MIToken::kw_debug_use: 2051 case MIToken::kw_renamable: 2052 case MIToken::underscore: 2053 case MIToken::NamedRegister: 2054 case MIToken::VirtualRegister: 2055 case MIToken::NamedVirtualRegister: 2056 return parseRegisterOperand(Dest, TiedDefIdx); 2057 case MIToken::IntegerLiteral: 2058 return parseImmediateOperand(Dest); 2059 case MIToken::kw_half: 2060 case MIToken::kw_float: 2061 case MIToken::kw_double: 2062 case MIToken::kw_x86_fp80: 2063 case MIToken::kw_fp128: 2064 case MIToken::kw_ppc_fp128: 2065 return parseFPImmediateOperand(Dest); 2066 case MIToken::MachineBasicBlock: 2067 return parseMBBOperand(Dest); 2068 case MIToken::StackObject: 2069 return parseStackObjectOperand(Dest); 2070 case MIToken::FixedStackObject: 2071 return parseFixedStackObjectOperand(Dest); 2072 case MIToken::GlobalValue: 2073 case MIToken::NamedGlobalValue: 2074 return parseGlobalAddressOperand(Dest); 2075 case MIToken::ConstantPoolItem: 2076 return parseConstantPoolIndexOperand(Dest); 2077 case MIToken::JumpTableIndex: 2078 return parseJumpTableIndexOperand(Dest); 2079 case MIToken::ExternalSymbol: 2080 return parseExternalSymbolOperand(Dest); 2081 case MIToken::MCSymbol: 2082 return parseMCSymbolOperand(Dest); 2083 case MIToken::SubRegisterIndex: 2084 return parseSubRegisterIndexOperand(Dest); 2085 case MIToken::md_diexpr: 2086 case MIToken::exclaim: 2087 return parseMetadataOperand(Dest); 2088 case MIToken::kw_cfi_same_value: 2089 case MIToken::kw_cfi_offset: 2090 case MIToken::kw_cfi_rel_offset: 2091 case MIToken::kw_cfi_def_cfa_register: 2092 case MIToken::kw_cfi_def_cfa_offset: 2093 case MIToken::kw_cfi_adjust_cfa_offset: 2094 case MIToken::kw_cfi_escape: 2095 case MIToken::kw_cfi_def_cfa: 2096 case MIToken::kw_cfi_register: 2097 case MIToken::kw_cfi_remember_state: 2098 case MIToken::kw_cfi_restore: 2099 case MIToken::kw_cfi_restore_state: 2100 case MIToken::kw_cfi_undefined: 2101 case MIToken::kw_cfi_window_save: 2102 return parseCFIOperand(Dest); 2103 case MIToken::kw_blockaddress: 2104 return parseBlockAddressOperand(Dest); 2105 case MIToken::kw_intrinsic: 2106 return parseIntrinsicOperand(Dest); 2107 case MIToken::kw_target_index: 2108 return parseTargetIndexOperand(Dest); 2109 case MIToken::kw_liveout: 2110 return parseLiveoutRegisterMaskOperand(Dest); 2111 case MIToken::kw_floatpred: 2112 case MIToken::kw_intpred: 2113 return parsePredicateOperand(Dest); 2114 case MIToken::Error: 2115 return true; 2116 case MIToken::Identifier: 2117 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2118 Dest = MachineOperand::CreateRegMask(RegMask); 2119 lex(); 2120 break; 2121 } else if (Token.stringValue() == "CustomRegMask") { 2122 return parseCustomRegisterMaskOperand(Dest); 2123 } else 2124 return parseTypedImmediateOperand(Dest); 2125 default: 2126 // FIXME: Parse the MCSymbol machine operand. 2127 return error("expected a machine operand"); 2128 } 2129 return false; 2130 } 2131 2132 bool MIParser::parseMachineOperandAndTargetFlags( 2133 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2134 unsigned TF = 0; 2135 bool HasTargetFlags = false; 2136 if (Token.is(MIToken::kw_target_flags)) { 2137 HasTargetFlags = true; 2138 lex(); 2139 if (expectAndConsume(MIToken::lparen)) 2140 return true; 2141 if (Token.isNot(MIToken::Identifier)) 2142 return error("expected the name of the target flag"); 2143 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2144 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2145 return error("use of undefined target flag '" + Token.stringValue() + 2146 "'"); 2147 } 2148 lex(); 2149 while (Token.is(MIToken::comma)) { 2150 lex(); 2151 if (Token.isNot(MIToken::Identifier)) 2152 return error("expected the name of the target flag"); 2153 unsigned BitFlag = 0; 2154 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2155 return error("use of undefined target flag '" + Token.stringValue() + 2156 "'"); 2157 // TODO: Report an error when using a duplicate bit target flag. 2158 TF |= BitFlag; 2159 lex(); 2160 } 2161 if (expectAndConsume(MIToken::rparen)) 2162 return true; 2163 } 2164 auto Loc = Token.location(); 2165 if (parseMachineOperand(Dest, TiedDefIdx)) 2166 return true; 2167 if (!HasTargetFlags) 2168 return false; 2169 if (Dest.isReg()) 2170 return error(Loc, "register operands can't have target flags"); 2171 Dest.setTargetFlags(TF); 2172 return false; 2173 } 2174 2175 bool MIParser::parseOffset(int64_t &Offset) { 2176 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2177 return false; 2178 StringRef Sign = Token.range(); 2179 bool IsNegative = Token.is(MIToken::minus); 2180 lex(); 2181 if (Token.isNot(MIToken::IntegerLiteral)) 2182 return error("expected an integer literal after '" + Sign + "'"); 2183 if (Token.integerValue().getMinSignedBits() > 64) 2184 return error("expected 64-bit integer (too large)"); 2185 Offset = Token.integerValue().getExtValue(); 2186 if (IsNegative) 2187 Offset = -Offset; 2188 lex(); 2189 return false; 2190 } 2191 2192 bool MIParser::parseAlignment(unsigned &Alignment) { 2193 assert(Token.is(MIToken::kw_align)); 2194 lex(); 2195 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2196 return error("expected an integer literal after 'align'"); 2197 if (getUnsigned(Alignment)) 2198 return true; 2199 lex(); 2200 return false; 2201 } 2202 2203 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2204 assert(Token.is(MIToken::kw_addrspace)); 2205 lex(); 2206 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2207 return error("expected an integer literal after 'addrspace'"); 2208 if (getUnsigned(Addrspace)) 2209 return true; 2210 lex(); 2211 return false; 2212 } 2213 2214 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2215 int64_t Offset = 0; 2216 if (parseOffset(Offset)) 2217 return true; 2218 Op.setOffset(Offset); 2219 return false; 2220 } 2221 2222 bool MIParser::parseIRValue(const Value *&V) { 2223 switch (Token.kind()) { 2224 case MIToken::NamedIRValue: { 2225 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2226 break; 2227 } 2228 case MIToken::IRValue: { 2229 unsigned SlotNumber = 0; 2230 if (getUnsigned(SlotNumber)) 2231 return true; 2232 V = getIRValue(SlotNumber); 2233 break; 2234 } 2235 case MIToken::NamedGlobalValue: 2236 case MIToken::GlobalValue: { 2237 GlobalValue *GV = nullptr; 2238 if (parseGlobalValue(GV)) 2239 return true; 2240 V = GV; 2241 break; 2242 } 2243 case MIToken::QuotedIRValue: { 2244 const Constant *C = nullptr; 2245 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2246 return true; 2247 V = C; 2248 break; 2249 } 2250 default: 2251 llvm_unreachable("The current token should be an IR block reference"); 2252 } 2253 if (!V) 2254 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2255 return false; 2256 } 2257 2258 bool MIParser::getUint64(uint64_t &Result) { 2259 if (Token.hasIntegerValue()) { 2260 if (Token.integerValue().getActiveBits() > 64) 2261 return error("expected 64-bit integer (too large)"); 2262 Result = Token.integerValue().getZExtValue(); 2263 return false; 2264 } 2265 if (Token.is(MIToken::HexLiteral)) { 2266 APInt A; 2267 if (getHexUint(A)) 2268 return true; 2269 if (A.getBitWidth() > 64) 2270 return error("expected 64-bit integer (too large)"); 2271 Result = A.getZExtValue(); 2272 return false; 2273 } 2274 return true; 2275 } 2276 2277 bool MIParser::getHexUint(APInt &Result) { 2278 assert(Token.is(MIToken::HexLiteral)); 2279 StringRef S = Token.range(); 2280 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2281 // This could be a floating point literal with a special prefix. 2282 if (!isxdigit(S[2])) 2283 return true; 2284 StringRef V = S.substr(2); 2285 APInt A(V.size()*4, V, 16); 2286 2287 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2288 // sure it isn't the case before constructing result. 2289 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2290 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2291 return false; 2292 } 2293 2294 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2295 const auto OldFlags = Flags; 2296 switch (Token.kind()) { 2297 case MIToken::kw_volatile: 2298 Flags |= MachineMemOperand::MOVolatile; 2299 break; 2300 case MIToken::kw_non_temporal: 2301 Flags |= MachineMemOperand::MONonTemporal; 2302 break; 2303 case MIToken::kw_dereferenceable: 2304 Flags |= MachineMemOperand::MODereferenceable; 2305 break; 2306 case MIToken::kw_invariant: 2307 Flags |= MachineMemOperand::MOInvariant; 2308 break; 2309 case MIToken::StringConstant: { 2310 MachineMemOperand::Flags TF; 2311 if (getMMOTargetFlag(Token.stringValue(), TF)) 2312 return error("use of undefined target MMO flag '" + Token.stringValue() + 2313 "'"); 2314 Flags |= TF; 2315 break; 2316 } 2317 default: 2318 llvm_unreachable("The current token should be a memory operand flag"); 2319 } 2320 if (OldFlags == Flags) 2321 // We know that the same flag is specified more than once when the flags 2322 // weren't modified. 2323 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2324 lex(); 2325 return false; 2326 } 2327 2328 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2329 switch (Token.kind()) { 2330 case MIToken::kw_stack: 2331 PSV = MF.getPSVManager().getStack(); 2332 break; 2333 case MIToken::kw_got: 2334 PSV = MF.getPSVManager().getGOT(); 2335 break; 2336 case MIToken::kw_jump_table: 2337 PSV = MF.getPSVManager().getJumpTable(); 2338 break; 2339 case MIToken::kw_constant_pool: 2340 PSV = MF.getPSVManager().getConstantPool(); 2341 break; 2342 case MIToken::FixedStackObject: { 2343 int FI; 2344 if (parseFixedStackFrameIndex(FI)) 2345 return true; 2346 PSV = MF.getPSVManager().getFixedStack(FI); 2347 // The token was already consumed, so use return here instead of break. 2348 return false; 2349 } 2350 case MIToken::StackObject: { 2351 int FI; 2352 if (parseStackFrameIndex(FI)) 2353 return true; 2354 PSV = MF.getPSVManager().getFixedStack(FI); 2355 // The token was already consumed, so use return here instead of break. 2356 return false; 2357 } 2358 case MIToken::kw_call_entry: 2359 lex(); 2360 switch (Token.kind()) { 2361 case MIToken::GlobalValue: 2362 case MIToken::NamedGlobalValue: { 2363 GlobalValue *GV = nullptr; 2364 if (parseGlobalValue(GV)) 2365 return true; 2366 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2367 break; 2368 } 2369 case MIToken::ExternalSymbol: 2370 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2371 MF.createExternalSymbolName(Token.stringValue())); 2372 break; 2373 default: 2374 return error( 2375 "expected a global value or an external symbol after 'call-entry'"); 2376 } 2377 break; 2378 default: 2379 llvm_unreachable("The current token should be pseudo source value"); 2380 } 2381 lex(); 2382 return false; 2383 } 2384 2385 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2386 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2387 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2388 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2389 Token.is(MIToken::kw_call_entry)) { 2390 const PseudoSourceValue *PSV = nullptr; 2391 if (parseMemoryPseudoSourceValue(PSV)) 2392 return true; 2393 int64_t Offset = 0; 2394 if (parseOffset(Offset)) 2395 return true; 2396 Dest = MachinePointerInfo(PSV, Offset); 2397 return false; 2398 } 2399 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2400 Token.isNot(MIToken::GlobalValue) && 2401 Token.isNot(MIToken::NamedGlobalValue) && 2402 Token.isNot(MIToken::QuotedIRValue)) 2403 return error("expected an IR value reference"); 2404 const Value *V = nullptr; 2405 if (parseIRValue(V)) 2406 return true; 2407 if (!V->getType()->isPointerTy()) 2408 return error("expected a pointer IR value"); 2409 lex(); 2410 int64_t Offset = 0; 2411 if (parseOffset(Offset)) 2412 return true; 2413 Dest = MachinePointerInfo(V, Offset); 2414 return false; 2415 } 2416 2417 bool MIParser::parseOptionalScope(LLVMContext &Context, 2418 SyncScope::ID &SSID) { 2419 SSID = SyncScope::System; 2420 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2421 lex(); 2422 if (expectAndConsume(MIToken::lparen)) 2423 return error("expected '(' in syncscope"); 2424 2425 std::string SSN; 2426 if (parseStringConstant(SSN)) 2427 return true; 2428 2429 SSID = Context.getOrInsertSyncScopeID(SSN); 2430 if (expectAndConsume(MIToken::rparen)) 2431 return error("expected ')' in syncscope"); 2432 } 2433 2434 return false; 2435 } 2436 2437 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2438 Order = AtomicOrdering::NotAtomic; 2439 if (Token.isNot(MIToken::Identifier)) 2440 return false; 2441 2442 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2443 .Case("unordered", AtomicOrdering::Unordered) 2444 .Case("monotonic", AtomicOrdering::Monotonic) 2445 .Case("acquire", AtomicOrdering::Acquire) 2446 .Case("release", AtomicOrdering::Release) 2447 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2448 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2449 .Default(AtomicOrdering::NotAtomic); 2450 2451 if (Order != AtomicOrdering::NotAtomic) { 2452 lex(); 2453 return false; 2454 } 2455 2456 return error("expected an atomic scope, ordering or a size specification"); 2457 } 2458 2459 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2460 if (expectAndConsume(MIToken::lparen)) 2461 return true; 2462 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2463 while (Token.isMemoryOperandFlag()) { 2464 if (parseMemoryOperandFlag(Flags)) 2465 return true; 2466 } 2467 if (Token.isNot(MIToken::Identifier) || 2468 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2469 return error("expected 'load' or 'store' memory operation"); 2470 if (Token.stringValue() == "load") 2471 Flags |= MachineMemOperand::MOLoad; 2472 else 2473 Flags |= MachineMemOperand::MOStore; 2474 lex(); 2475 2476 // Optional 'store' for operands that both load and store. 2477 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2478 Flags |= MachineMemOperand::MOStore; 2479 lex(); 2480 } 2481 2482 // Optional synchronization scope. 2483 SyncScope::ID SSID; 2484 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2485 return true; 2486 2487 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2488 AtomicOrdering Order, FailureOrder; 2489 if (parseOptionalAtomicOrdering(Order)) 2490 return true; 2491 2492 if (parseOptionalAtomicOrdering(FailureOrder)) 2493 return true; 2494 2495 if (Token.isNot(MIToken::IntegerLiteral) && 2496 Token.isNot(MIToken::kw_unknown_size)) 2497 return error("expected the size integer literal or 'unknown-size' after " 2498 "memory operation"); 2499 uint64_t Size; 2500 if (Token.is(MIToken::IntegerLiteral)) { 2501 if (getUint64(Size)) 2502 return true; 2503 } else if (Token.is(MIToken::kw_unknown_size)) { 2504 Size = MemoryLocation::UnknownSize; 2505 } 2506 lex(); 2507 2508 MachinePointerInfo Ptr = MachinePointerInfo(); 2509 if (Token.is(MIToken::Identifier)) { 2510 const char *Word = 2511 ((Flags & MachineMemOperand::MOLoad) && 2512 (Flags & MachineMemOperand::MOStore)) 2513 ? "on" 2514 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2515 if (Token.stringValue() != Word) 2516 return error(Twine("expected '") + Word + "'"); 2517 lex(); 2518 2519 if (parseMachinePointerInfo(Ptr)) 2520 return true; 2521 } 2522 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2523 AAMDNodes AAInfo; 2524 MDNode *Range = nullptr; 2525 while (consumeIfPresent(MIToken::comma)) { 2526 switch (Token.kind()) { 2527 case MIToken::kw_align: 2528 if (parseAlignment(BaseAlignment)) 2529 return true; 2530 break; 2531 case MIToken::kw_addrspace: 2532 if (parseAddrspace(Ptr.AddrSpace)) 2533 return true; 2534 break; 2535 case MIToken::md_tbaa: 2536 lex(); 2537 if (parseMDNode(AAInfo.TBAA)) 2538 return true; 2539 break; 2540 case MIToken::md_alias_scope: 2541 lex(); 2542 if (parseMDNode(AAInfo.Scope)) 2543 return true; 2544 break; 2545 case MIToken::md_noalias: 2546 lex(); 2547 if (parseMDNode(AAInfo.NoAlias)) 2548 return true; 2549 break; 2550 case MIToken::md_range: 2551 lex(); 2552 if (parseMDNode(Range)) 2553 return true; 2554 break; 2555 // TODO: Report an error on duplicate metadata nodes. 2556 default: 2557 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2558 "'!noalias' or '!range'"); 2559 } 2560 } 2561 if (expectAndConsume(MIToken::rparen)) 2562 return true; 2563 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2564 SSID, Order, FailureOrder); 2565 return false; 2566 } 2567 2568 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2569 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2570 Token.is(MIToken::kw_post_instr_symbol)) && 2571 "Invalid token for a pre- post-instruction symbol!"); 2572 lex(); 2573 if (Token.isNot(MIToken::MCSymbol)) 2574 return error("expected a symbol after 'pre-instr-symbol'"); 2575 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2576 lex(); 2577 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2578 Token.is(MIToken::lbrace)) 2579 return false; 2580 if (Token.isNot(MIToken::comma)) 2581 return error("expected ',' before the next machine operand"); 2582 lex(); 2583 return false; 2584 } 2585 2586 void MIParser::initNames2InstrOpCodes() { 2587 if (!Names2InstrOpCodes.empty()) 2588 return; 2589 const auto *TII = MF.getSubtarget().getInstrInfo(); 2590 assert(TII && "Expected target instruction info"); 2591 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2592 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2593 } 2594 2595 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2596 initNames2InstrOpCodes(); 2597 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2598 if (InstrInfo == Names2InstrOpCodes.end()) 2599 return true; 2600 OpCode = InstrInfo->getValue(); 2601 return false; 2602 } 2603 2604 void MIParser::initNames2Regs() { 2605 if (!Names2Regs.empty()) 2606 return; 2607 // The '%noreg' register is the register 0. 2608 Names2Regs.insert(std::make_pair("noreg", 0)); 2609 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2610 assert(TRI && "Expected target register info"); 2611 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2612 bool WasInserted = 2613 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2614 .second; 2615 (void)WasInserted; 2616 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2617 } 2618 } 2619 2620 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2621 initNames2Regs(); 2622 auto RegInfo = Names2Regs.find(RegName); 2623 if (RegInfo == Names2Regs.end()) 2624 return true; 2625 Reg = RegInfo->getValue(); 2626 return false; 2627 } 2628 2629 void MIParser::initNames2RegMasks() { 2630 if (!Names2RegMasks.empty()) 2631 return; 2632 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2633 assert(TRI && "Expected target register info"); 2634 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2635 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2636 assert(RegMasks.size() == RegMaskNames.size()); 2637 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2638 Names2RegMasks.insert( 2639 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2640 } 2641 2642 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2643 initNames2RegMasks(); 2644 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2645 if (RegMaskInfo == Names2RegMasks.end()) 2646 return nullptr; 2647 return RegMaskInfo->getValue(); 2648 } 2649 2650 void MIParser::initNames2SubRegIndices() { 2651 if (!Names2SubRegIndices.empty()) 2652 return; 2653 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2654 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2655 Names2SubRegIndices.insert( 2656 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2657 } 2658 2659 unsigned MIParser::getSubRegIndex(StringRef Name) { 2660 initNames2SubRegIndices(); 2661 auto SubRegInfo = Names2SubRegIndices.find(Name); 2662 if (SubRegInfo == Names2SubRegIndices.end()) 2663 return 0; 2664 return SubRegInfo->getValue(); 2665 } 2666 2667 static void initSlots2BasicBlocks( 2668 const Function &F, 2669 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2670 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2671 MST.incorporateFunction(F); 2672 for (auto &BB : F) { 2673 if (BB.hasName()) 2674 continue; 2675 int Slot = MST.getLocalSlot(&BB); 2676 if (Slot == -1) 2677 continue; 2678 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2679 } 2680 } 2681 2682 static const BasicBlock *getIRBlockFromSlot( 2683 unsigned Slot, 2684 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2685 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2686 if (BlockInfo == Slots2BasicBlocks.end()) 2687 return nullptr; 2688 return BlockInfo->second; 2689 } 2690 2691 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2692 if (Slots2BasicBlocks.empty()) 2693 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2694 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2695 } 2696 2697 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2698 if (&F == &MF.getFunction()) 2699 return getIRBlock(Slot); 2700 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2701 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2702 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2703 } 2704 2705 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2706 DenseMap<unsigned, const Value *> &Slots2Values) { 2707 int Slot = MST.getLocalSlot(V); 2708 if (Slot == -1) 2709 return; 2710 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2711 } 2712 2713 /// Creates the mapping from slot numbers to function's unnamed IR values. 2714 static void initSlots2Values(const Function &F, 2715 DenseMap<unsigned, const Value *> &Slots2Values) { 2716 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2717 MST.incorporateFunction(F); 2718 for (const auto &Arg : F.args()) 2719 mapValueToSlot(&Arg, MST, Slots2Values); 2720 for (const auto &BB : F) { 2721 mapValueToSlot(&BB, MST, Slots2Values); 2722 for (const auto &I : BB) 2723 mapValueToSlot(&I, MST, Slots2Values); 2724 } 2725 } 2726 2727 const Value *MIParser::getIRValue(unsigned Slot) { 2728 if (Slots2Values.empty()) 2729 initSlots2Values(MF.getFunction(), Slots2Values); 2730 auto ValueInfo = Slots2Values.find(Slot); 2731 if (ValueInfo == Slots2Values.end()) 2732 return nullptr; 2733 return ValueInfo->second; 2734 } 2735 2736 void MIParser::initNames2TargetIndices() { 2737 if (!Names2TargetIndices.empty()) 2738 return; 2739 const auto *TII = MF.getSubtarget().getInstrInfo(); 2740 assert(TII && "Expected target instruction info"); 2741 auto Indices = TII->getSerializableTargetIndices(); 2742 for (const auto &I : Indices) 2743 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2744 } 2745 2746 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2747 initNames2TargetIndices(); 2748 auto IndexInfo = Names2TargetIndices.find(Name); 2749 if (IndexInfo == Names2TargetIndices.end()) 2750 return true; 2751 Index = IndexInfo->second; 2752 return false; 2753 } 2754 2755 void MIParser::initNames2DirectTargetFlags() { 2756 if (!Names2DirectTargetFlags.empty()) 2757 return; 2758 const auto *TII = MF.getSubtarget().getInstrInfo(); 2759 assert(TII && "Expected target instruction info"); 2760 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2761 for (const auto &I : Flags) 2762 Names2DirectTargetFlags.insert( 2763 std::make_pair(StringRef(I.second), I.first)); 2764 } 2765 2766 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2767 initNames2DirectTargetFlags(); 2768 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2769 if (FlagInfo == Names2DirectTargetFlags.end()) 2770 return true; 2771 Flag = FlagInfo->second; 2772 return false; 2773 } 2774 2775 void MIParser::initNames2BitmaskTargetFlags() { 2776 if (!Names2BitmaskTargetFlags.empty()) 2777 return; 2778 const auto *TII = MF.getSubtarget().getInstrInfo(); 2779 assert(TII && "Expected target instruction info"); 2780 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2781 for (const auto &I : Flags) 2782 Names2BitmaskTargetFlags.insert( 2783 std::make_pair(StringRef(I.second), I.first)); 2784 } 2785 2786 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2787 initNames2BitmaskTargetFlags(); 2788 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2789 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2790 return true; 2791 Flag = FlagInfo->second; 2792 return false; 2793 } 2794 2795 void MIParser::initNames2MMOTargetFlags() { 2796 if (!Names2MMOTargetFlags.empty()) 2797 return; 2798 const auto *TII = MF.getSubtarget().getInstrInfo(); 2799 assert(TII && "Expected target instruction info"); 2800 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2801 for (const auto &I : Flags) 2802 Names2MMOTargetFlags.insert( 2803 std::make_pair(StringRef(I.second), I.first)); 2804 } 2805 2806 bool MIParser::getMMOTargetFlag(StringRef Name, 2807 MachineMemOperand::Flags &Flag) { 2808 initNames2MMOTargetFlags(); 2809 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2810 if (FlagInfo == Names2MMOTargetFlags.end()) 2811 return true; 2812 Flag = FlagInfo->second; 2813 return false; 2814 } 2815 2816 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2817 // FIXME: Currently we can't recognize temporary or local symbols and call all 2818 // of the appropriate forms to create them. However, this handles basic cases 2819 // well as most of the special aspects are recognized by a prefix on their 2820 // name, and the input names should already be unique. For test cases, keeping 2821 // the symbol name out of the symbol table isn't terribly important. 2822 return MF.getContext().getOrCreateSymbol(Name); 2823 } 2824 2825 bool MIParser::parseStringConstant(std::string &Result) { 2826 if (Token.isNot(MIToken::StringConstant)) 2827 return error("expected string constant"); 2828 Result = Token.stringValue(); 2829 lex(); 2830 return false; 2831 } 2832 2833 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2834 StringRef Src, 2835 SMDiagnostic &Error) { 2836 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2837 } 2838 2839 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2840 StringRef Src, SMDiagnostic &Error) { 2841 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2842 } 2843 2844 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2845 MachineBasicBlock *&MBB, StringRef Src, 2846 SMDiagnostic &Error) { 2847 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2848 } 2849 2850 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2851 unsigned &Reg, StringRef Src, 2852 SMDiagnostic &Error) { 2853 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2854 } 2855 2856 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2857 unsigned &Reg, StringRef Src, 2858 SMDiagnostic &Error) { 2859 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2860 } 2861 2862 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2863 VRegInfo *&Info, StringRef Src, 2864 SMDiagnostic &Error) { 2865 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2866 } 2867 2868 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2869 int &FI, StringRef Src, 2870 SMDiagnostic &Error) { 2871 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2872 } 2873 2874 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2875 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2876 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2877 } 2878