1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/AsmParser/Parser.h"
29 #include "llvm/AsmParser/SlotMapping.h"
30 #include "llvm/CodeGen/MIRPrinter.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueSymbolTable.h"
57 #include "llvm/MC/LaneBitmask.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCDwarf.h"
60 #include "llvm/MC/MCInstrDesc.h"
61 #include "llvm/MC/MCRegisterInfo.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/SMLoc.h"
69 #include "llvm/Support/SourceMgr.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetIntrinsicInfo.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cctype>
76 #include <cstddef>
77 #include <cstdint>
78 #include <limits>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
85     SourceMgr &SM, const SlotMapping &IRSlots,
86     const Name2RegClassMap &Names2RegClasses,
87     const Name2RegBankMap &Names2RegBanks)
88   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
89     Names2RegBanks(Names2RegBanks) {
90 }
91 
92 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
93   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
94   if (I.second) {
95     MachineRegisterInfo &MRI = MF.getRegInfo();
96     VRegInfo *Info = new (Allocator) VRegInfo;
97     Info->VReg = MRI.createIncompleteVirtualRegister();
98     I.first->second = Info;
99   }
100   return *I.first->second;
101 }
102 
103 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
104   assert(RegName != "" && "Expected named reg.");
105 
106   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
107   if (I.second) {
108     VRegInfo *Info = new (Allocator) VRegInfo;
109     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
110     I.first->second = Info;
111   }
112   return *I.first->second;
113 }
114 
115 namespace {
116 
117 /// A wrapper struct around the 'MachineOperand' struct that includes a source
118 /// range and other attributes.
119 struct ParsedMachineOperand {
120   MachineOperand Operand;
121   StringRef::iterator Begin;
122   StringRef::iterator End;
123   Optional<unsigned> TiedDefIdx;
124 
125   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
126                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
127       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
128     if (TiedDefIdx)
129       assert(Operand.isReg() && Operand.isUse() &&
130              "Only used register operands can be tied");
131   }
132 };
133 
134 class MIParser {
135   MachineFunction &MF;
136   SMDiagnostic &Error;
137   StringRef Source, CurrentSource;
138   MIToken Token;
139   PerFunctionMIParsingState &PFS;
140   /// Maps from instruction names to op codes.
141   StringMap<unsigned> Names2InstrOpCodes;
142   /// Maps from register names to registers.
143   StringMap<unsigned> Names2Regs;
144   /// Maps from register mask names to register masks.
145   StringMap<const uint32_t *> Names2RegMasks;
146   /// Maps from subregister names to subregister indices.
147   StringMap<unsigned> Names2SubRegIndices;
148   /// Maps from slot numbers to function's unnamed basic blocks.
149   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
150   /// Maps from slot numbers to function's unnamed values.
151   DenseMap<unsigned, const Value *> Slots2Values;
152   /// Maps from target index names to target indices.
153   StringMap<int> Names2TargetIndices;
154   /// Maps from direct target flag names to the direct target flag values.
155   StringMap<unsigned> Names2DirectTargetFlags;
156   /// Maps from direct target flag names to the bitmask target flag values.
157   StringMap<unsigned> Names2BitmaskTargetFlags;
158   /// Maps from MMO target flag names to MMO target flag values.
159   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
160 
161 public:
162   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
163            StringRef Source);
164 
165   /// \p SkipChar gives the number of characters to skip before looking
166   /// for the next token.
167   void lex(unsigned SkipChar = 0);
168 
169   /// Report an error at the current location with the given message.
170   ///
171   /// This function always return true.
172   bool error(const Twine &Msg);
173 
174   /// Report an error at the given location with the given message.
175   ///
176   /// This function always return true.
177   bool error(StringRef::iterator Loc, const Twine &Msg);
178 
179   bool
180   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
181   bool parseBasicBlocks();
182   bool parse(MachineInstr *&MI);
183   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
184   bool parseStandaloneNamedRegister(unsigned &Reg);
185   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
186   bool parseStandaloneRegister(unsigned &Reg);
187   bool parseStandaloneStackObject(int &FI);
188   bool parseStandaloneMDNode(MDNode *&Node);
189 
190   bool
191   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
192   bool parseBasicBlock(MachineBasicBlock &MBB,
193                        MachineBasicBlock *&AddFalthroughFrom);
194   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
195   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
196 
197   bool parseNamedRegister(unsigned &Reg);
198   bool parseVirtualRegister(VRegInfo *&Info);
199   bool parseNamedVirtualRegister(VRegInfo *&Info);
200   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
201   bool parseRegisterFlag(unsigned &Flags);
202   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
203   bool parseSubRegisterIndex(unsigned &SubReg);
204   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
205   bool parseRegisterOperand(MachineOperand &Dest,
206                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
207   bool parseImmediateOperand(MachineOperand &Dest);
208   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
209                        const Constant *&C);
210   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
211   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
212   bool parseTypedImmediateOperand(MachineOperand &Dest);
213   bool parseFPImmediateOperand(MachineOperand &Dest);
214   bool parseMBBReference(MachineBasicBlock *&MBB);
215   bool parseMBBOperand(MachineOperand &Dest);
216   bool parseStackFrameIndex(int &FI);
217   bool parseStackObjectOperand(MachineOperand &Dest);
218   bool parseFixedStackFrameIndex(int &FI);
219   bool parseFixedStackObjectOperand(MachineOperand &Dest);
220   bool parseGlobalValue(GlobalValue *&GV);
221   bool parseGlobalAddressOperand(MachineOperand &Dest);
222   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
223   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
224   bool parseJumpTableIndexOperand(MachineOperand &Dest);
225   bool parseExternalSymbolOperand(MachineOperand &Dest);
226   bool parseMCSymbolOperand(MachineOperand &Dest);
227   bool parseMDNode(MDNode *&Node);
228   bool parseDIExpression(MDNode *&Expr);
229   bool parseMetadataOperand(MachineOperand &Dest);
230   bool parseCFIOffset(int &Offset);
231   bool parseCFIRegister(unsigned &Reg);
232   bool parseCFIEscapeValues(std::string& Values);
233   bool parseCFIOperand(MachineOperand &Dest);
234   bool parseIRBlock(BasicBlock *&BB, const Function &F);
235   bool parseBlockAddressOperand(MachineOperand &Dest);
236   bool parseIntrinsicOperand(MachineOperand &Dest);
237   bool parsePredicateOperand(MachineOperand &Dest);
238   bool parseTargetIndexOperand(MachineOperand &Dest);
239   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
240   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
241   bool parseMachineOperand(MachineOperand &Dest,
242                            Optional<unsigned> &TiedDefIdx);
243   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
244                                          Optional<unsigned> &TiedDefIdx);
245   bool parseOffset(int64_t &Offset);
246   bool parseAlignment(unsigned &Alignment);
247   bool parseAddrspace(unsigned &Addrspace);
248   bool parseOperandsOffset(MachineOperand &Op);
249   bool parseIRValue(const Value *&V);
250   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
251   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
252   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
253   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
254   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
255   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
256   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
257 
258 private:
259   /// Convert the integer literal in the current token into an unsigned integer.
260   ///
261   /// Return true if an error occurred.
262   bool getUnsigned(unsigned &Result);
263 
264   /// Convert the integer literal in the current token into an uint64.
265   ///
266   /// Return true if an error occurred.
267   bool getUint64(uint64_t &Result);
268 
269   /// Convert the hexadecimal literal in the current token into an unsigned
270   ///  APInt with a minimum bitwidth required to represent the value.
271   ///
272   /// Return true if the literal does not represent an integer value.
273   bool getHexUint(APInt &Result);
274 
275   /// If the current token is of the given kind, consume it and return false.
276   /// Otherwise report an error and return true.
277   bool expectAndConsume(MIToken::TokenKind TokenKind);
278 
279   /// If the current token is of the given kind, consume it and return true.
280   /// Otherwise return false.
281   bool consumeIfPresent(MIToken::TokenKind TokenKind);
282 
283   void initNames2InstrOpCodes();
284 
285   /// Try to convert an instruction name to an opcode. Return true if the
286   /// instruction name is invalid.
287   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
288 
289   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
290 
291   bool assignRegisterTies(MachineInstr &MI,
292                           ArrayRef<ParsedMachineOperand> Operands);
293 
294   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
295                               const MCInstrDesc &MCID);
296 
297   void initNames2Regs();
298 
299   /// Try to convert a register name to a register number. Return true if the
300   /// register name is invalid.
301   bool getRegisterByName(StringRef RegName, unsigned &Reg);
302 
303   void initNames2RegMasks();
304 
305   /// Check if the given identifier is a name of a register mask.
306   ///
307   /// Return null if the identifier isn't a register mask.
308   const uint32_t *getRegMask(StringRef Identifier);
309 
310   void initNames2SubRegIndices();
311 
312   /// Check if the given identifier is a name of a subregister index.
313   ///
314   /// Return 0 if the name isn't a subregister index class.
315   unsigned getSubRegIndex(StringRef Name);
316 
317   const BasicBlock *getIRBlock(unsigned Slot);
318   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
319 
320   const Value *getIRValue(unsigned Slot);
321 
322   void initNames2TargetIndices();
323 
324   /// Try to convert a name of target index to the corresponding target index.
325   ///
326   /// Return true if the name isn't a name of a target index.
327   bool getTargetIndex(StringRef Name, int &Index);
328 
329   void initNames2DirectTargetFlags();
330 
331   /// Try to convert a name of a direct target flag to the corresponding
332   /// target flag.
333   ///
334   /// Return true if the name isn't a name of a direct flag.
335   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
336 
337   void initNames2BitmaskTargetFlags();
338 
339   /// Try to convert a name of a bitmask target flag to the corresponding
340   /// target flag.
341   ///
342   /// Return true if the name isn't a name of a bitmask target flag.
343   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
344 
345   void initNames2MMOTargetFlags();
346 
347   /// Try to convert a name of a MachineMemOperand target flag to the
348   /// corresponding target flag.
349   ///
350   /// Return true if the name isn't a name of a target MMO flag.
351   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
352 
353   /// Get or create an MCSymbol for a given name.
354   MCSymbol *getOrCreateMCSymbol(StringRef Name);
355 
356   /// parseStringConstant
357   ///   ::= StringConstant
358   bool parseStringConstant(std::string &Result);
359 };
360 
361 } // end anonymous namespace
362 
363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
364                    StringRef Source)
365     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
366 {}
367 
368 void MIParser::lex(unsigned SkipChar) {
369   CurrentSource = lexMIToken(
370       CurrentSource.data() + SkipChar, Token,
371       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
372 }
373 
374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
375 
376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
377   const SourceMgr &SM = *PFS.SM;
378   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
379   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
380   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
381     // Create an ordinary diagnostic when the source manager's buffer is the
382     // source string.
383     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
384     return true;
385   }
386   // Create a diagnostic for a YAML string literal.
387   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
388                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
389                        Source, None, None);
390   return true;
391 }
392 
393 static const char *toString(MIToken::TokenKind TokenKind) {
394   switch (TokenKind) {
395   case MIToken::comma:
396     return "','";
397   case MIToken::equal:
398     return "'='";
399   case MIToken::colon:
400     return "':'";
401   case MIToken::lparen:
402     return "'('";
403   case MIToken::rparen:
404     return "')'";
405   default:
406     return "<unknown token>";
407   }
408 }
409 
410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
411   if (Token.isNot(TokenKind))
412     return error(Twine("expected ") + toString(TokenKind));
413   lex();
414   return false;
415 }
416 
417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
418   if (Token.isNot(TokenKind))
419     return false;
420   lex();
421   return true;
422 }
423 
424 bool MIParser::parseBasicBlockDefinition(
425     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
426   assert(Token.is(MIToken::MachineBasicBlockLabel));
427   unsigned ID = 0;
428   if (getUnsigned(ID))
429     return true;
430   auto Loc = Token.location();
431   auto Name = Token.stringValue();
432   lex();
433   bool HasAddressTaken = false;
434   bool IsLandingPad = false;
435   unsigned Alignment = 0;
436   BasicBlock *BB = nullptr;
437   if (consumeIfPresent(MIToken::lparen)) {
438     do {
439       // TODO: Report an error when multiple same attributes are specified.
440       switch (Token.kind()) {
441       case MIToken::kw_address_taken:
442         HasAddressTaken = true;
443         lex();
444         break;
445       case MIToken::kw_landing_pad:
446         IsLandingPad = true;
447         lex();
448         break;
449       case MIToken::kw_align:
450         if (parseAlignment(Alignment))
451           return true;
452         break;
453       case MIToken::IRBlock:
454         // TODO: Report an error when both name and ir block are specified.
455         if (parseIRBlock(BB, MF.getFunction()))
456           return true;
457         lex();
458         break;
459       default:
460         break;
461       }
462     } while (consumeIfPresent(MIToken::comma));
463     if (expectAndConsume(MIToken::rparen))
464       return true;
465   }
466   if (expectAndConsume(MIToken::colon))
467     return true;
468 
469   if (!Name.empty()) {
470     BB = dyn_cast_or_null<BasicBlock>(
471         MF.getFunction().getValueSymbolTable()->lookup(Name));
472     if (!BB)
473       return error(Loc, Twine("basic block '") + Name +
474                             "' is not defined in the function '" +
475                             MF.getName() + "'");
476   }
477   auto *MBB = MF.CreateMachineBasicBlock(BB);
478   MF.insert(MF.end(), MBB);
479   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
480   if (!WasInserted)
481     return error(Loc, Twine("redefinition of machine basic block with id #") +
482                           Twine(ID));
483   if (Alignment)
484     MBB->setAlignment(Alignment);
485   if (HasAddressTaken)
486     MBB->setHasAddressTaken();
487   MBB->setIsEHPad(IsLandingPad);
488   return false;
489 }
490 
491 bool MIParser::parseBasicBlockDefinitions(
492     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
493   lex();
494   // Skip until the first machine basic block.
495   while (Token.is(MIToken::Newline))
496     lex();
497   if (Token.isErrorOrEOF())
498     return Token.isError();
499   if (Token.isNot(MIToken::MachineBasicBlockLabel))
500     return error("expected a basic block definition before instructions");
501   unsigned BraceDepth = 0;
502   do {
503     if (parseBasicBlockDefinition(MBBSlots))
504       return true;
505     bool IsAfterNewline = false;
506     // Skip until the next machine basic block.
507     while (true) {
508       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
509           Token.isErrorOrEOF())
510         break;
511       else if (Token.is(MIToken::MachineBasicBlockLabel))
512         return error("basic block definition should be located at the start of "
513                      "the line");
514       else if (consumeIfPresent(MIToken::Newline)) {
515         IsAfterNewline = true;
516         continue;
517       }
518       IsAfterNewline = false;
519       if (Token.is(MIToken::lbrace))
520         ++BraceDepth;
521       if (Token.is(MIToken::rbrace)) {
522         if (!BraceDepth)
523           return error("extraneous closing brace ('}')");
524         --BraceDepth;
525       }
526       lex();
527     }
528     // Verify that we closed all of the '{' at the end of a file or a block.
529     if (!Token.isError() && BraceDepth)
530       return error("expected '}'"); // FIXME: Report a note that shows '{'.
531   } while (!Token.isErrorOrEOF());
532   return Token.isError();
533 }
534 
535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
536   assert(Token.is(MIToken::kw_liveins));
537   lex();
538   if (expectAndConsume(MIToken::colon))
539     return true;
540   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
541     return false;
542   do {
543     if (Token.isNot(MIToken::NamedRegister))
544       return error("expected a named register");
545     unsigned Reg = 0;
546     if (parseNamedRegister(Reg))
547       return true;
548     lex();
549     LaneBitmask Mask = LaneBitmask::getAll();
550     if (consumeIfPresent(MIToken::colon)) {
551       // Parse lane mask.
552       if (Token.isNot(MIToken::IntegerLiteral) &&
553           Token.isNot(MIToken::HexLiteral))
554         return error("expected a lane mask");
555       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
556                     "Use correct get-function for lane mask");
557       LaneBitmask::Type V;
558       if (getUnsigned(V))
559         return error("invalid lane mask value");
560       Mask = LaneBitmask(V);
561       lex();
562     }
563     MBB.addLiveIn(Reg, Mask);
564   } while (consumeIfPresent(MIToken::comma));
565   return false;
566 }
567 
568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
569   assert(Token.is(MIToken::kw_successors));
570   lex();
571   if (expectAndConsume(MIToken::colon))
572     return true;
573   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
574     return false;
575   do {
576     if (Token.isNot(MIToken::MachineBasicBlock))
577       return error("expected a machine basic block reference");
578     MachineBasicBlock *SuccMBB = nullptr;
579     if (parseMBBReference(SuccMBB))
580       return true;
581     lex();
582     unsigned Weight = 0;
583     if (consumeIfPresent(MIToken::lparen)) {
584       if (Token.isNot(MIToken::IntegerLiteral) &&
585           Token.isNot(MIToken::HexLiteral))
586         return error("expected an integer literal after '('");
587       if (getUnsigned(Weight))
588         return true;
589       lex();
590       if (expectAndConsume(MIToken::rparen))
591         return true;
592     }
593     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
594   } while (consumeIfPresent(MIToken::comma));
595   MBB.normalizeSuccProbs();
596   return false;
597 }
598 
599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
600                                MachineBasicBlock *&AddFalthroughFrom) {
601   // Skip the definition.
602   assert(Token.is(MIToken::MachineBasicBlockLabel));
603   lex();
604   if (consumeIfPresent(MIToken::lparen)) {
605     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
606       lex();
607     consumeIfPresent(MIToken::rparen);
608   }
609   consumeIfPresent(MIToken::colon);
610 
611   // Parse the liveins and successors.
612   // N.B: Multiple lists of successors and liveins are allowed and they're
613   // merged into one.
614   // Example:
615   //   liveins: %edi
616   //   liveins: %esi
617   //
618   // is equivalent to
619   //   liveins: %edi, %esi
620   bool ExplicitSuccessors = false;
621   while (true) {
622     if (Token.is(MIToken::kw_successors)) {
623       if (parseBasicBlockSuccessors(MBB))
624         return true;
625       ExplicitSuccessors = true;
626     } else if (Token.is(MIToken::kw_liveins)) {
627       if (parseBasicBlockLiveins(MBB))
628         return true;
629     } else if (consumeIfPresent(MIToken::Newline)) {
630       continue;
631     } else
632       break;
633     if (!Token.isNewlineOrEOF())
634       return error("expected line break at the end of a list");
635     lex();
636   }
637 
638   // Parse the instructions.
639   bool IsInBundle = false;
640   MachineInstr *PrevMI = nullptr;
641   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
642          !Token.is(MIToken::Eof)) {
643     if (consumeIfPresent(MIToken::Newline))
644       continue;
645     if (consumeIfPresent(MIToken::rbrace)) {
646       // The first parsing pass should verify that all closing '}' have an
647       // opening '{'.
648       assert(IsInBundle);
649       IsInBundle = false;
650       continue;
651     }
652     MachineInstr *MI = nullptr;
653     if (parse(MI))
654       return true;
655     MBB.insert(MBB.end(), MI);
656     if (IsInBundle) {
657       PrevMI->setFlag(MachineInstr::BundledSucc);
658       MI->setFlag(MachineInstr::BundledPred);
659     }
660     PrevMI = MI;
661     if (Token.is(MIToken::lbrace)) {
662       if (IsInBundle)
663         return error("nested instruction bundles are not allowed");
664       lex();
665       // This instruction is the start of the bundle.
666       MI->setFlag(MachineInstr::BundledSucc);
667       IsInBundle = true;
668       if (!Token.is(MIToken::Newline))
669         // The next instruction can be on the same line.
670         continue;
671     }
672     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
673     lex();
674   }
675 
676   // Construct successor list by searching for basic block machine operands.
677   if (!ExplicitSuccessors) {
678     SmallVector<MachineBasicBlock*,4> Successors;
679     bool IsFallthrough;
680     guessSuccessors(MBB, Successors, IsFallthrough);
681     for (MachineBasicBlock *Succ : Successors)
682       MBB.addSuccessor(Succ);
683 
684     if (IsFallthrough) {
685       AddFalthroughFrom = &MBB;
686     } else {
687       MBB.normalizeSuccProbs();
688     }
689   }
690 
691   return false;
692 }
693 
694 bool MIParser::parseBasicBlocks() {
695   lex();
696   // Skip until the first machine basic block.
697   while (Token.is(MIToken::Newline))
698     lex();
699   if (Token.isErrorOrEOF())
700     return Token.isError();
701   // The first parsing pass should have verified that this token is a MBB label
702   // in the 'parseBasicBlockDefinitions' method.
703   assert(Token.is(MIToken::MachineBasicBlockLabel));
704   MachineBasicBlock *AddFalthroughFrom = nullptr;
705   do {
706     MachineBasicBlock *MBB = nullptr;
707     if (parseMBBReference(MBB))
708       return true;
709     if (AddFalthroughFrom) {
710       if (!AddFalthroughFrom->isSuccessor(MBB))
711         AddFalthroughFrom->addSuccessor(MBB);
712       AddFalthroughFrom->normalizeSuccProbs();
713       AddFalthroughFrom = nullptr;
714     }
715     if (parseBasicBlock(*MBB, AddFalthroughFrom))
716       return true;
717     // The method 'parseBasicBlock' should parse the whole block until the next
718     // block or the end of file.
719     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
720   } while (Token.isNot(MIToken::Eof));
721   return false;
722 }
723 
724 bool MIParser::parse(MachineInstr *&MI) {
725   // Parse any register operands before '='
726   MachineOperand MO = MachineOperand::CreateImm(0);
727   SmallVector<ParsedMachineOperand, 8> Operands;
728   while (Token.isRegister() || Token.isRegisterFlag()) {
729     auto Loc = Token.location();
730     Optional<unsigned> TiedDefIdx;
731     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
732       return true;
733     Operands.push_back(
734         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
735     if (Token.isNot(MIToken::comma))
736       break;
737     lex();
738   }
739   if (!Operands.empty() && expectAndConsume(MIToken::equal))
740     return true;
741 
742   unsigned OpCode, Flags = 0;
743   if (Token.isError() || parseInstruction(OpCode, Flags))
744     return true;
745 
746   // Parse the remaining machine operands.
747   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
748          Token.isNot(MIToken::kw_post_instr_symbol) &&
749          Token.isNot(MIToken::kw_debug_location) &&
750          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
751     auto Loc = Token.location();
752     Optional<unsigned> TiedDefIdx;
753     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
754       return true;
755     Operands.push_back(
756         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
757     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
758         Token.is(MIToken::lbrace))
759       break;
760     if (Token.isNot(MIToken::comma))
761       return error("expected ',' before the next machine operand");
762     lex();
763   }
764 
765   MCSymbol *PreInstrSymbol = nullptr;
766   if (Token.is(MIToken::kw_pre_instr_symbol))
767     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
768       return true;
769   MCSymbol *PostInstrSymbol = nullptr;
770   if (Token.is(MIToken::kw_post_instr_symbol))
771     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
772       return true;
773 
774   DebugLoc DebugLocation;
775   if (Token.is(MIToken::kw_debug_location)) {
776     lex();
777     if (Token.isNot(MIToken::exclaim))
778       return error("expected a metadata node after 'debug-location'");
779     MDNode *Node = nullptr;
780     if (parseMDNode(Node))
781       return true;
782     DebugLocation = DebugLoc(Node);
783   }
784 
785   // Parse the machine memory operands.
786   SmallVector<MachineMemOperand *, 2> MemOperands;
787   if (Token.is(MIToken::coloncolon)) {
788     lex();
789     while (!Token.isNewlineOrEOF()) {
790       MachineMemOperand *MemOp = nullptr;
791       if (parseMachineMemoryOperand(MemOp))
792         return true;
793       MemOperands.push_back(MemOp);
794       if (Token.isNewlineOrEOF())
795         break;
796       if (Token.isNot(MIToken::comma))
797         return error("expected ',' before the next machine memory operand");
798       lex();
799     }
800   }
801 
802   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
803   if (!MCID.isVariadic()) {
804     // FIXME: Move the implicit operand verification to the machine verifier.
805     if (verifyImplicitOperands(Operands, MCID))
806       return true;
807   }
808 
809   // TODO: Check for extraneous machine operands.
810   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
811   MI->setFlags(Flags);
812   for (const auto &Operand : Operands)
813     MI->addOperand(MF, Operand.Operand);
814   if (assignRegisterTies(*MI, Operands))
815     return true;
816   if (PreInstrSymbol)
817     MI->setPreInstrSymbol(MF, PreInstrSymbol);
818   if (PostInstrSymbol)
819     MI->setPostInstrSymbol(MF, PostInstrSymbol);
820   if (!MemOperands.empty())
821     MI->setMemRefs(MF, MemOperands);
822   return false;
823 }
824 
825 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
826   lex();
827   if (Token.isNot(MIToken::MachineBasicBlock))
828     return error("expected a machine basic block reference");
829   if (parseMBBReference(MBB))
830     return true;
831   lex();
832   if (Token.isNot(MIToken::Eof))
833     return error(
834         "expected end of string after the machine basic block reference");
835   return false;
836 }
837 
838 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
839   lex();
840   if (Token.isNot(MIToken::NamedRegister))
841     return error("expected a named register");
842   if (parseNamedRegister(Reg))
843     return true;
844   lex();
845   if (Token.isNot(MIToken::Eof))
846     return error("expected end of string after the register reference");
847   return false;
848 }
849 
850 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
851   lex();
852   if (Token.isNot(MIToken::VirtualRegister))
853     return error("expected a virtual register");
854   if (parseVirtualRegister(Info))
855     return true;
856   lex();
857   if (Token.isNot(MIToken::Eof))
858     return error("expected end of string after the register reference");
859   return false;
860 }
861 
862 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
863   lex();
864   if (Token.isNot(MIToken::NamedRegister) &&
865       Token.isNot(MIToken::VirtualRegister))
866     return error("expected either a named or virtual register");
867 
868   VRegInfo *Info;
869   if (parseRegister(Reg, Info))
870     return true;
871 
872   lex();
873   if (Token.isNot(MIToken::Eof))
874     return error("expected end of string after the register reference");
875   return false;
876 }
877 
878 bool MIParser::parseStandaloneStackObject(int &FI) {
879   lex();
880   if (Token.isNot(MIToken::StackObject))
881     return error("expected a stack object");
882   if (parseStackFrameIndex(FI))
883     return true;
884   if (Token.isNot(MIToken::Eof))
885     return error("expected end of string after the stack object reference");
886   return false;
887 }
888 
889 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
890   lex();
891   if (Token.is(MIToken::exclaim)) {
892     if (parseMDNode(Node))
893       return true;
894   } else if (Token.is(MIToken::md_diexpr)) {
895     if (parseDIExpression(Node))
896       return true;
897   } else
898     return error("expected a metadata node");
899   if (Token.isNot(MIToken::Eof))
900     return error("expected end of string after the metadata node");
901   return false;
902 }
903 
904 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
905   assert(MO.isImplicit());
906   return MO.isDef() ? "implicit-def" : "implicit";
907 }
908 
909 static std::string getRegisterName(const TargetRegisterInfo *TRI,
910                                    unsigned Reg) {
911   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
912   return StringRef(TRI->getName(Reg)).lower();
913 }
914 
915 /// Return true if the parsed machine operands contain a given machine operand.
916 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
917                                 ArrayRef<ParsedMachineOperand> Operands) {
918   for (const auto &I : Operands) {
919     if (ImplicitOperand.isIdenticalTo(I.Operand))
920       return true;
921   }
922   return false;
923 }
924 
925 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
926                                       const MCInstrDesc &MCID) {
927   if (MCID.isCall())
928     // We can't verify call instructions as they can contain arbitrary implicit
929     // register and register mask operands.
930     return false;
931 
932   // Gather all the expected implicit operands.
933   SmallVector<MachineOperand, 4> ImplicitOperands;
934   if (MCID.ImplicitDefs)
935     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
936       ImplicitOperands.push_back(
937           MachineOperand::CreateReg(*ImpDefs, true, true));
938   if (MCID.ImplicitUses)
939     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
940       ImplicitOperands.push_back(
941           MachineOperand::CreateReg(*ImpUses, false, true));
942 
943   const auto *TRI = MF.getSubtarget().getRegisterInfo();
944   assert(TRI && "Expected target register info");
945   for (const auto &I : ImplicitOperands) {
946     if (isImplicitOperandIn(I, Operands))
947       continue;
948     return error(Operands.empty() ? Token.location() : Operands.back().End,
949                  Twine("missing implicit register operand '") +
950                      printImplicitRegisterFlag(I) + " $" +
951                      getRegisterName(TRI, I.getReg()) + "'");
952   }
953   return false;
954 }
955 
956 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
957   // Allow frame and fast math flags for OPCODE
958   while (Token.is(MIToken::kw_frame_setup) ||
959          Token.is(MIToken::kw_frame_destroy) ||
960          Token.is(MIToken::kw_nnan) ||
961          Token.is(MIToken::kw_ninf) ||
962          Token.is(MIToken::kw_nsz) ||
963          Token.is(MIToken::kw_arcp) ||
964          Token.is(MIToken::kw_contract) ||
965          Token.is(MIToken::kw_afn) ||
966          Token.is(MIToken::kw_reassoc)) {
967     // Mine frame and fast math flags
968     if (Token.is(MIToken::kw_frame_setup))
969       Flags |= MachineInstr::FrameSetup;
970     if (Token.is(MIToken::kw_frame_destroy))
971       Flags |= MachineInstr::FrameDestroy;
972     if (Token.is(MIToken::kw_nnan))
973       Flags |= MachineInstr::FmNoNans;
974     if (Token.is(MIToken::kw_ninf))
975       Flags |= MachineInstr::FmNoInfs;
976     if (Token.is(MIToken::kw_nsz))
977       Flags |= MachineInstr::FmNsz;
978     if (Token.is(MIToken::kw_arcp))
979       Flags |= MachineInstr::FmArcp;
980     if (Token.is(MIToken::kw_contract))
981       Flags |= MachineInstr::FmContract;
982     if (Token.is(MIToken::kw_afn))
983       Flags |= MachineInstr::FmAfn;
984     if (Token.is(MIToken::kw_reassoc))
985       Flags |= MachineInstr::FmReassoc;
986 
987     lex();
988   }
989   if (Token.isNot(MIToken::Identifier))
990     return error("expected a machine instruction");
991   StringRef InstrName = Token.stringValue();
992   if (parseInstrName(InstrName, OpCode))
993     return error(Twine("unknown machine instruction name '") + InstrName + "'");
994   lex();
995   return false;
996 }
997 
998 bool MIParser::parseNamedRegister(unsigned &Reg) {
999   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1000   StringRef Name = Token.stringValue();
1001   if (getRegisterByName(Name, Reg))
1002     return error(Twine("unknown register name '") + Name + "'");
1003   return false;
1004 }
1005 
1006 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1007   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1008   StringRef Name = Token.stringValue();
1009   // TODO: Check that the VReg name is not the same as a physical register name.
1010   //       If it is, then print a warning (when warnings are implemented).
1011   Info = &PFS.getVRegInfoNamed(Name);
1012   return false;
1013 }
1014 
1015 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1016   if (Token.is(MIToken::NamedVirtualRegister))
1017     return parseNamedVirtualRegister(Info);
1018   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1019   unsigned ID;
1020   if (getUnsigned(ID))
1021     return true;
1022   Info = &PFS.getVRegInfo(ID);
1023   return false;
1024 }
1025 
1026 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1027   switch (Token.kind()) {
1028   case MIToken::underscore:
1029     Reg = 0;
1030     return false;
1031   case MIToken::NamedRegister:
1032     return parseNamedRegister(Reg);
1033   case MIToken::NamedVirtualRegister:
1034   case MIToken::VirtualRegister:
1035     if (parseVirtualRegister(Info))
1036       return true;
1037     Reg = Info->VReg;
1038     return false;
1039   // TODO: Parse other register kinds.
1040   default:
1041     llvm_unreachable("The current token should be a register");
1042   }
1043 }
1044 
1045 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1046   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1047     return error("expected '_', register class, or register bank name");
1048   StringRef::iterator Loc = Token.location();
1049   StringRef Name = Token.stringValue();
1050 
1051   // Was it a register class?
1052   auto RCNameI = PFS.Names2RegClasses.find(Name);
1053   if (RCNameI != PFS.Names2RegClasses.end()) {
1054     lex();
1055     const TargetRegisterClass &RC = *RCNameI->getValue();
1056 
1057     switch (RegInfo.Kind) {
1058     case VRegInfo::UNKNOWN:
1059     case VRegInfo::NORMAL:
1060       RegInfo.Kind = VRegInfo::NORMAL;
1061       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1062         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1063         return error(Loc, Twine("conflicting register classes, previously: ") +
1064                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1065       }
1066       RegInfo.D.RC = &RC;
1067       RegInfo.Explicit = true;
1068       return false;
1069 
1070     case VRegInfo::GENERIC:
1071     case VRegInfo::REGBANK:
1072       return error(Loc, "register class specification on generic register");
1073     }
1074     llvm_unreachable("Unexpected register kind");
1075   }
1076 
1077   // Should be a register bank or a generic register.
1078   const RegisterBank *RegBank = nullptr;
1079   if (Name != "_") {
1080     auto RBNameI = PFS.Names2RegBanks.find(Name);
1081     if (RBNameI == PFS.Names2RegBanks.end())
1082       return error(Loc, "expected '_', register class, or register bank name");
1083     RegBank = RBNameI->getValue();
1084   }
1085 
1086   lex();
1087 
1088   switch (RegInfo.Kind) {
1089   case VRegInfo::UNKNOWN:
1090   case VRegInfo::GENERIC:
1091   case VRegInfo::REGBANK:
1092     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1093     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1094       return error(Loc, "conflicting generic register banks");
1095     RegInfo.D.RegBank = RegBank;
1096     RegInfo.Explicit = true;
1097     return false;
1098 
1099   case VRegInfo::NORMAL:
1100     return error(Loc, "register bank specification on normal register");
1101   }
1102   llvm_unreachable("Unexpected register kind");
1103 }
1104 
1105 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1106   const unsigned OldFlags = Flags;
1107   switch (Token.kind()) {
1108   case MIToken::kw_implicit:
1109     Flags |= RegState::Implicit;
1110     break;
1111   case MIToken::kw_implicit_define:
1112     Flags |= RegState::ImplicitDefine;
1113     break;
1114   case MIToken::kw_def:
1115     Flags |= RegState::Define;
1116     break;
1117   case MIToken::kw_dead:
1118     Flags |= RegState::Dead;
1119     break;
1120   case MIToken::kw_killed:
1121     Flags |= RegState::Kill;
1122     break;
1123   case MIToken::kw_undef:
1124     Flags |= RegState::Undef;
1125     break;
1126   case MIToken::kw_internal:
1127     Flags |= RegState::InternalRead;
1128     break;
1129   case MIToken::kw_early_clobber:
1130     Flags |= RegState::EarlyClobber;
1131     break;
1132   case MIToken::kw_debug_use:
1133     Flags |= RegState::Debug;
1134     break;
1135   case MIToken::kw_renamable:
1136     Flags |= RegState::Renamable;
1137     break;
1138   default:
1139     llvm_unreachable("The current token should be a register flag");
1140   }
1141   if (OldFlags == Flags)
1142     // We know that the same flag is specified more than once when the flags
1143     // weren't modified.
1144     return error("duplicate '" + Token.stringValue() + "' register flag");
1145   lex();
1146   return false;
1147 }
1148 
1149 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1150   assert(Token.is(MIToken::dot));
1151   lex();
1152   if (Token.isNot(MIToken::Identifier))
1153     return error("expected a subregister index after '.'");
1154   auto Name = Token.stringValue();
1155   SubReg = getSubRegIndex(Name);
1156   if (!SubReg)
1157     return error(Twine("use of unknown subregister index '") + Name + "'");
1158   lex();
1159   return false;
1160 }
1161 
1162 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1163   if (!consumeIfPresent(MIToken::kw_tied_def))
1164     return true;
1165   if (Token.isNot(MIToken::IntegerLiteral))
1166     return error("expected an integer literal after 'tied-def'");
1167   if (getUnsigned(TiedDefIdx))
1168     return true;
1169   lex();
1170   if (expectAndConsume(MIToken::rparen))
1171     return true;
1172   return false;
1173 }
1174 
1175 bool MIParser::assignRegisterTies(MachineInstr &MI,
1176                                   ArrayRef<ParsedMachineOperand> Operands) {
1177   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1178   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1179     if (!Operands[I].TiedDefIdx)
1180       continue;
1181     // The parser ensures that this operand is a register use, so we just have
1182     // to check the tied-def operand.
1183     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1184     if (DefIdx >= E)
1185       return error(Operands[I].Begin,
1186                    Twine("use of invalid tied-def operand index '" +
1187                          Twine(DefIdx) + "'; instruction has only ") +
1188                        Twine(E) + " operands");
1189     const auto &DefOperand = Operands[DefIdx].Operand;
1190     if (!DefOperand.isReg() || !DefOperand.isDef())
1191       // FIXME: add note with the def operand.
1192       return error(Operands[I].Begin,
1193                    Twine("use of invalid tied-def operand index '") +
1194                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1195                        " isn't a defined register");
1196     // Check that the tied-def operand wasn't tied elsewhere.
1197     for (const auto &TiedPair : TiedRegisterPairs) {
1198       if (TiedPair.first == DefIdx)
1199         return error(Operands[I].Begin,
1200                      Twine("the tied-def operand #") + Twine(DefIdx) +
1201                          " is already tied with another register operand");
1202     }
1203     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1204   }
1205   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1206   // indices must be less than tied max.
1207   for (const auto &TiedPair : TiedRegisterPairs)
1208     MI.tieOperands(TiedPair.first, TiedPair.second);
1209   return false;
1210 }
1211 
1212 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1213                                     Optional<unsigned> &TiedDefIdx,
1214                                     bool IsDef) {
1215   unsigned Flags = IsDef ? RegState::Define : 0;
1216   while (Token.isRegisterFlag()) {
1217     if (parseRegisterFlag(Flags))
1218       return true;
1219   }
1220   if (!Token.isRegister())
1221     return error("expected a register after register flags");
1222   unsigned Reg;
1223   VRegInfo *RegInfo;
1224   if (parseRegister(Reg, RegInfo))
1225     return true;
1226   lex();
1227   unsigned SubReg = 0;
1228   if (Token.is(MIToken::dot)) {
1229     if (parseSubRegisterIndex(SubReg))
1230       return true;
1231     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1232       return error("subregister index expects a virtual register");
1233   }
1234   if (Token.is(MIToken::colon)) {
1235     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1236       return error("register class specification expects a virtual register");
1237     lex();
1238     if (parseRegisterClassOrBank(*RegInfo))
1239         return true;
1240   }
1241   MachineRegisterInfo &MRI = MF.getRegInfo();
1242   if ((Flags & RegState::Define) == 0) {
1243     if (consumeIfPresent(MIToken::lparen)) {
1244       unsigned Idx;
1245       if (!parseRegisterTiedDefIndex(Idx))
1246         TiedDefIdx = Idx;
1247       else {
1248         // Try a redundant low-level type.
1249         LLT Ty;
1250         if (parseLowLevelType(Token.location(), Ty))
1251           return error("expected tied-def or low-level type after '('");
1252 
1253         if (expectAndConsume(MIToken::rparen))
1254           return true;
1255 
1256         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1257           return error("inconsistent type for generic virtual register");
1258 
1259         MRI.setType(Reg, Ty);
1260       }
1261     }
1262   } else if (consumeIfPresent(MIToken::lparen)) {
1263     // Virtual registers may have a tpe with GlobalISel.
1264     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1265       return error("unexpected type on physical register");
1266 
1267     LLT Ty;
1268     if (parseLowLevelType(Token.location(), Ty))
1269       return true;
1270 
1271     if (expectAndConsume(MIToken::rparen))
1272       return true;
1273 
1274     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1275       return error("inconsistent type for generic virtual register");
1276 
1277     MRI.setType(Reg, Ty);
1278   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1279     // Generic virtual registers must have a type.
1280     // If we end up here this means the type hasn't been specified and
1281     // this is bad!
1282     if (RegInfo->Kind == VRegInfo::GENERIC ||
1283         RegInfo->Kind == VRegInfo::REGBANK)
1284       return error("generic virtual registers must have a type");
1285   }
1286   Dest = MachineOperand::CreateReg(
1287       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1288       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1289       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1290       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1291 
1292   return false;
1293 }
1294 
1295 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1296   assert(Token.is(MIToken::IntegerLiteral));
1297   const APSInt &Int = Token.integerValue();
1298   if (Int.getMinSignedBits() > 64)
1299     return error("integer literal is too large to be an immediate operand");
1300   Dest = MachineOperand::CreateImm(Int.getExtValue());
1301   lex();
1302   return false;
1303 }
1304 
1305 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1306                                const Constant *&C) {
1307   auto Source = StringValue.str(); // The source has to be null terminated.
1308   SMDiagnostic Err;
1309   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1310                          &PFS.IRSlots);
1311   if (!C)
1312     return error(Loc + Err.getColumnNo(), Err.getMessage());
1313   return false;
1314 }
1315 
1316 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1317   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1318     return true;
1319   lex();
1320   return false;
1321 }
1322 
1323 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1324   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1325     StringRef SizeStr = Token.range().drop_front();
1326     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1327       return error("expected integers after 's'/'p' type character");
1328   }
1329 
1330   if (Token.range().front() == 's') {
1331     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1332     lex();
1333     return false;
1334   } else if (Token.range().front() == 'p') {
1335     const DataLayout &DL = MF.getDataLayout();
1336     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1337     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1338     lex();
1339     return false;
1340   }
1341 
1342   // Now we're looking for a vector.
1343   if (Token.isNot(MIToken::less))
1344     return error(Loc,
1345                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1346   lex();
1347 
1348   if (Token.isNot(MIToken::IntegerLiteral))
1349     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1350   uint64_t NumElements = Token.integerValue().getZExtValue();
1351   lex();
1352 
1353   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1354     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1355   lex();
1356 
1357   if (Token.range().front() != 's' && Token.range().front() != 'p')
1358     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1359   StringRef SizeStr = Token.range().drop_front();
1360   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1361     return error("expected integers after 's'/'p' type character");
1362 
1363   if (Token.range().front() == 's')
1364     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1365   else if (Token.range().front() == 'p') {
1366     const DataLayout &DL = MF.getDataLayout();
1367     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1368     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1369   } else
1370     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1371   lex();
1372 
1373   if (Token.isNot(MIToken::greater))
1374     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1375   lex();
1376 
1377   Ty = LLT::vector(NumElements, Ty);
1378   return false;
1379 }
1380 
1381 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1382   assert(Token.is(MIToken::Identifier));
1383   StringRef TypeStr = Token.range();
1384   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1385       TypeStr.front() != 'p')
1386     return error(
1387         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1388   StringRef SizeStr = Token.range().drop_front();
1389   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1390     return error("expected integers after 'i'/'s'/'p' type character");
1391 
1392   auto Loc = Token.location();
1393   lex();
1394   if (Token.isNot(MIToken::IntegerLiteral)) {
1395     if (Token.isNot(MIToken::Identifier) ||
1396         !(Token.range() == "true" || Token.range() == "false"))
1397       return error("expected an integer literal");
1398   }
1399   const Constant *C = nullptr;
1400   if (parseIRConstant(Loc, C))
1401     return true;
1402   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1403   return false;
1404 }
1405 
1406 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1407   auto Loc = Token.location();
1408   lex();
1409   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1410       Token.isNot(MIToken::HexLiteral))
1411     return error("expected a floating point literal");
1412   const Constant *C = nullptr;
1413   if (parseIRConstant(Loc, C))
1414     return true;
1415   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1416   return false;
1417 }
1418 
1419 bool MIParser::getUnsigned(unsigned &Result) {
1420   if (Token.hasIntegerValue()) {
1421     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1422     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1423     if (Val64 == Limit)
1424       return error("expected 32-bit integer (too large)");
1425     Result = Val64;
1426     return false;
1427   }
1428   if (Token.is(MIToken::HexLiteral)) {
1429     APInt A;
1430     if (getHexUint(A))
1431       return true;
1432     if (A.getBitWidth() > 32)
1433       return error("expected 32-bit integer (too large)");
1434     Result = A.getZExtValue();
1435     return false;
1436   }
1437   return true;
1438 }
1439 
1440 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1441   assert(Token.is(MIToken::MachineBasicBlock) ||
1442          Token.is(MIToken::MachineBasicBlockLabel));
1443   unsigned Number;
1444   if (getUnsigned(Number))
1445     return true;
1446   auto MBBInfo = PFS.MBBSlots.find(Number);
1447   if (MBBInfo == PFS.MBBSlots.end())
1448     return error(Twine("use of undefined machine basic block #") +
1449                  Twine(Number));
1450   MBB = MBBInfo->second;
1451   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1452   // we drop the <irname> from the bb.<id>.<irname> format.
1453   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1454     return error(Twine("the name of machine basic block #") + Twine(Number) +
1455                  " isn't '" + Token.stringValue() + "'");
1456   return false;
1457 }
1458 
1459 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1460   MachineBasicBlock *MBB;
1461   if (parseMBBReference(MBB))
1462     return true;
1463   Dest = MachineOperand::CreateMBB(MBB);
1464   lex();
1465   return false;
1466 }
1467 
1468 bool MIParser::parseStackFrameIndex(int &FI) {
1469   assert(Token.is(MIToken::StackObject));
1470   unsigned ID;
1471   if (getUnsigned(ID))
1472     return true;
1473   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1474   if (ObjectInfo == PFS.StackObjectSlots.end())
1475     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1476                  "'");
1477   StringRef Name;
1478   if (const auto *Alloca =
1479           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1480     Name = Alloca->getName();
1481   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1482     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1483                  "' isn't '" + Token.stringValue() + "'");
1484   lex();
1485   FI = ObjectInfo->second;
1486   return false;
1487 }
1488 
1489 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1490   int FI;
1491   if (parseStackFrameIndex(FI))
1492     return true;
1493   Dest = MachineOperand::CreateFI(FI);
1494   return false;
1495 }
1496 
1497 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1498   assert(Token.is(MIToken::FixedStackObject));
1499   unsigned ID;
1500   if (getUnsigned(ID))
1501     return true;
1502   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1503   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1504     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1505                  Twine(ID) + "'");
1506   lex();
1507   FI = ObjectInfo->second;
1508   return false;
1509 }
1510 
1511 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1512   int FI;
1513   if (parseFixedStackFrameIndex(FI))
1514     return true;
1515   Dest = MachineOperand::CreateFI(FI);
1516   return false;
1517 }
1518 
1519 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1520   switch (Token.kind()) {
1521   case MIToken::NamedGlobalValue: {
1522     const Module *M = MF.getFunction().getParent();
1523     GV = M->getNamedValue(Token.stringValue());
1524     if (!GV)
1525       return error(Twine("use of undefined global value '") + Token.range() +
1526                    "'");
1527     break;
1528   }
1529   case MIToken::GlobalValue: {
1530     unsigned GVIdx;
1531     if (getUnsigned(GVIdx))
1532       return true;
1533     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1534       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1535                    "'");
1536     GV = PFS.IRSlots.GlobalValues[GVIdx];
1537     break;
1538   }
1539   default:
1540     llvm_unreachable("The current token should be a global value");
1541   }
1542   return false;
1543 }
1544 
1545 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1546   GlobalValue *GV = nullptr;
1547   if (parseGlobalValue(GV))
1548     return true;
1549   lex();
1550   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1551   if (parseOperandsOffset(Dest))
1552     return true;
1553   return false;
1554 }
1555 
1556 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1557   assert(Token.is(MIToken::ConstantPoolItem));
1558   unsigned ID;
1559   if (getUnsigned(ID))
1560     return true;
1561   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1562   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1563     return error("use of undefined constant '%const." + Twine(ID) + "'");
1564   lex();
1565   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1566   if (parseOperandsOffset(Dest))
1567     return true;
1568   return false;
1569 }
1570 
1571 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1572   assert(Token.is(MIToken::JumpTableIndex));
1573   unsigned ID;
1574   if (getUnsigned(ID))
1575     return true;
1576   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1577   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1578     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1579   lex();
1580   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1581   return false;
1582 }
1583 
1584 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1585   assert(Token.is(MIToken::ExternalSymbol));
1586   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1587   lex();
1588   Dest = MachineOperand::CreateES(Symbol);
1589   if (parseOperandsOffset(Dest))
1590     return true;
1591   return false;
1592 }
1593 
1594 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1595   assert(Token.is(MIToken::MCSymbol));
1596   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1597   lex();
1598   Dest = MachineOperand::CreateMCSymbol(Symbol);
1599   if (parseOperandsOffset(Dest))
1600     return true;
1601   return false;
1602 }
1603 
1604 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1605   assert(Token.is(MIToken::SubRegisterIndex));
1606   StringRef Name = Token.stringValue();
1607   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1608   if (SubRegIndex == 0)
1609     return error(Twine("unknown subregister index '") + Name + "'");
1610   lex();
1611   Dest = MachineOperand::CreateImm(SubRegIndex);
1612   return false;
1613 }
1614 
1615 bool MIParser::parseMDNode(MDNode *&Node) {
1616   assert(Token.is(MIToken::exclaim));
1617 
1618   auto Loc = Token.location();
1619   lex();
1620   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1621     return error("expected metadata id after '!'");
1622   unsigned ID;
1623   if (getUnsigned(ID))
1624     return true;
1625   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1626   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1627     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1628   lex();
1629   Node = NodeInfo->second.get();
1630   return false;
1631 }
1632 
1633 bool MIParser::parseDIExpression(MDNode *&Expr) {
1634   assert(Token.is(MIToken::md_diexpr));
1635   lex();
1636 
1637   // FIXME: Share this parsing with the IL parser.
1638   SmallVector<uint64_t, 8> Elements;
1639 
1640   if (expectAndConsume(MIToken::lparen))
1641     return true;
1642 
1643   if (Token.isNot(MIToken::rparen)) {
1644     do {
1645       if (Token.is(MIToken::Identifier)) {
1646         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1647           lex();
1648           Elements.push_back(Op);
1649           continue;
1650         }
1651         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1652       }
1653 
1654       if (Token.isNot(MIToken::IntegerLiteral) ||
1655           Token.integerValue().isSigned())
1656         return error("expected unsigned integer");
1657 
1658       auto &U = Token.integerValue();
1659       if (U.ugt(UINT64_MAX))
1660         return error("element too large, limit is " + Twine(UINT64_MAX));
1661       Elements.push_back(U.getZExtValue());
1662       lex();
1663 
1664     } while (consumeIfPresent(MIToken::comma));
1665   }
1666 
1667   if (expectAndConsume(MIToken::rparen))
1668     return true;
1669 
1670   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1671   return false;
1672 }
1673 
1674 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1675   MDNode *Node = nullptr;
1676   if (Token.is(MIToken::exclaim)) {
1677     if (parseMDNode(Node))
1678       return true;
1679   } else if (Token.is(MIToken::md_diexpr)) {
1680     if (parseDIExpression(Node))
1681       return true;
1682   }
1683   Dest = MachineOperand::CreateMetadata(Node);
1684   return false;
1685 }
1686 
1687 bool MIParser::parseCFIOffset(int &Offset) {
1688   if (Token.isNot(MIToken::IntegerLiteral))
1689     return error("expected a cfi offset");
1690   if (Token.integerValue().getMinSignedBits() > 32)
1691     return error("expected a 32 bit integer (the cfi offset is too large)");
1692   Offset = (int)Token.integerValue().getExtValue();
1693   lex();
1694   return false;
1695 }
1696 
1697 bool MIParser::parseCFIRegister(unsigned &Reg) {
1698   if (Token.isNot(MIToken::NamedRegister))
1699     return error("expected a cfi register");
1700   unsigned LLVMReg;
1701   if (parseNamedRegister(LLVMReg))
1702     return true;
1703   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1704   assert(TRI && "Expected target register info");
1705   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1706   if (DwarfReg < 0)
1707     return error("invalid DWARF register");
1708   Reg = (unsigned)DwarfReg;
1709   lex();
1710   return false;
1711 }
1712 
1713 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1714   do {
1715     if (Token.isNot(MIToken::HexLiteral))
1716       return error("expected a hexadecimal literal");
1717     unsigned Value;
1718     if (getUnsigned(Value))
1719       return true;
1720     if (Value > UINT8_MAX)
1721       return error("expected a 8-bit integer (too large)");
1722     Values.push_back(static_cast<uint8_t>(Value));
1723     lex();
1724   } while (consumeIfPresent(MIToken::comma));
1725   return false;
1726 }
1727 
1728 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1729   auto Kind = Token.kind();
1730   lex();
1731   int Offset;
1732   unsigned Reg;
1733   unsigned CFIIndex;
1734   switch (Kind) {
1735   case MIToken::kw_cfi_same_value:
1736     if (parseCFIRegister(Reg))
1737       return true;
1738     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1739     break;
1740   case MIToken::kw_cfi_offset:
1741     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1742         parseCFIOffset(Offset))
1743       return true;
1744     CFIIndex =
1745         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1746     break;
1747   case MIToken::kw_cfi_rel_offset:
1748     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1749         parseCFIOffset(Offset))
1750       return true;
1751     CFIIndex = MF.addFrameInst(
1752         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1753     break;
1754   case MIToken::kw_cfi_def_cfa_register:
1755     if (parseCFIRegister(Reg))
1756       return true;
1757     CFIIndex =
1758         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1759     break;
1760   case MIToken::kw_cfi_def_cfa_offset:
1761     if (parseCFIOffset(Offset))
1762       return true;
1763     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1764     CFIIndex = MF.addFrameInst(
1765         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1766     break;
1767   case MIToken::kw_cfi_adjust_cfa_offset:
1768     if (parseCFIOffset(Offset))
1769       return true;
1770     CFIIndex = MF.addFrameInst(
1771         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1772     break;
1773   case MIToken::kw_cfi_def_cfa:
1774     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1775         parseCFIOffset(Offset))
1776       return true;
1777     // NB: MCCFIInstruction::createDefCfa negates the offset.
1778     CFIIndex =
1779         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1780     break;
1781   case MIToken::kw_cfi_remember_state:
1782     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1783     break;
1784   case MIToken::kw_cfi_restore:
1785     if (parseCFIRegister(Reg))
1786       return true;
1787     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1788     break;
1789   case MIToken::kw_cfi_restore_state:
1790     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1791     break;
1792   case MIToken::kw_cfi_undefined:
1793     if (parseCFIRegister(Reg))
1794       return true;
1795     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1796     break;
1797   case MIToken::kw_cfi_register: {
1798     unsigned Reg2;
1799     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1800         parseCFIRegister(Reg2))
1801       return true;
1802 
1803     CFIIndex =
1804         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1805     break;
1806   }
1807   case MIToken::kw_cfi_window_save:
1808     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1809     break;
1810   case MIToken::kw_cfi_escape: {
1811     std::string Values;
1812     if (parseCFIEscapeValues(Values))
1813       return true;
1814     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1815     break;
1816   }
1817   default:
1818     // TODO: Parse the other CFI operands.
1819     llvm_unreachable("The current token should be a cfi operand");
1820   }
1821   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1822   return false;
1823 }
1824 
1825 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1826   switch (Token.kind()) {
1827   case MIToken::NamedIRBlock: {
1828     BB = dyn_cast_or_null<BasicBlock>(
1829         F.getValueSymbolTable()->lookup(Token.stringValue()));
1830     if (!BB)
1831       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1832     break;
1833   }
1834   case MIToken::IRBlock: {
1835     unsigned SlotNumber = 0;
1836     if (getUnsigned(SlotNumber))
1837       return true;
1838     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1839     if (!BB)
1840       return error(Twine("use of undefined IR block '%ir-block.") +
1841                    Twine(SlotNumber) + "'");
1842     break;
1843   }
1844   default:
1845     llvm_unreachable("The current token should be an IR block reference");
1846   }
1847   return false;
1848 }
1849 
1850 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1851   assert(Token.is(MIToken::kw_blockaddress));
1852   lex();
1853   if (expectAndConsume(MIToken::lparen))
1854     return true;
1855   if (Token.isNot(MIToken::GlobalValue) &&
1856       Token.isNot(MIToken::NamedGlobalValue))
1857     return error("expected a global value");
1858   GlobalValue *GV = nullptr;
1859   if (parseGlobalValue(GV))
1860     return true;
1861   auto *F = dyn_cast<Function>(GV);
1862   if (!F)
1863     return error("expected an IR function reference");
1864   lex();
1865   if (expectAndConsume(MIToken::comma))
1866     return true;
1867   BasicBlock *BB = nullptr;
1868   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1869     return error("expected an IR block reference");
1870   if (parseIRBlock(BB, *F))
1871     return true;
1872   lex();
1873   if (expectAndConsume(MIToken::rparen))
1874     return true;
1875   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1876   if (parseOperandsOffset(Dest))
1877     return true;
1878   return false;
1879 }
1880 
1881 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1882   assert(Token.is(MIToken::kw_intrinsic));
1883   lex();
1884   if (expectAndConsume(MIToken::lparen))
1885     return error("expected syntax intrinsic(@llvm.whatever)");
1886 
1887   if (Token.isNot(MIToken::NamedGlobalValue))
1888     return error("expected syntax intrinsic(@llvm.whatever)");
1889 
1890   std::string Name = Token.stringValue();
1891   lex();
1892 
1893   if (expectAndConsume(MIToken::rparen))
1894     return error("expected ')' to terminate intrinsic name");
1895 
1896   // Find out what intrinsic we're dealing with, first try the global namespace
1897   // and then the target's private intrinsics if that fails.
1898   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1899   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1900   if (ID == Intrinsic::not_intrinsic && TII)
1901     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1902 
1903   if (ID == Intrinsic::not_intrinsic)
1904     return error("unknown intrinsic name");
1905   Dest = MachineOperand::CreateIntrinsicID(ID);
1906 
1907   return false;
1908 }
1909 
1910 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1911   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1912   bool IsFloat = Token.is(MIToken::kw_floatpred);
1913   lex();
1914 
1915   if (expectAndConsume(MIToken::lparen))
1916     return error("expected syntax intpred(whatever) or floatpred(whatever");
1917 
1918   if (Token.isNot(MIToken::Identifier))
1919     return error("whatever");
1920 
1921   CmpInst::Predicate Pred;
1922   if (IsFloat) {
1923     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1924                .Case("false", CmpInst::FCMP_FALSE)
1925                .Case("oeq", CmpInst::FCMP_OEQ)
1926                .Case("ogt", CmpInst::FCMP_OGT)
1927                .Case("oge", CmpInst::FCMP_OGE)
1928                .Case("olt", CmpInst::FCMP_OLT)
1929                .Case("ole", CmpInst::FCMP_OLE)
1930                .Case("one", CmpInst::FCMP_ONE)
1931                .Case("ord", CmpInst::FCMP_ORD)
1932                .Case("uno", CmpInst::FCMP_UNO)
1933                .Case("ueq", CmpInst::FCMP_UEQ)
1934                .Case("ugt", CmpInst::FCMP_UGT)
1935                .Case("uge", CmpInst::FCMP_UGE)
1936                .Case("ult", CmpInst::FCMP_ULT)
1937                .Case("ule", CmpInst::FCMP_ULE)
1938                .Case("une", CmpInst::FCMP_UNE)
1939                .Case("true", CmpInst::FCMP_TRUE)
1940                .Default(CmpInst::BAD_FCMP_PREDICATE);
1941     if (!CmpInst::isFPPredicate(Pred))
1942       return error("invalid floating-point predicate");
1943   } else {
1944     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1945                .Case("eq", CmpInst::ICMP_EQ)
1946                .Case("ne", CmpInst::ICMP_NE)
1947                .Case("sgt", CmpInst::ICMP_SGT)
1948                .Case("sge", CmpInst::ICMP_SGE)
1949                .Case("slt", CmpInst::ICMP_SLT)
1950                .Case("sle", CmpInst::ICMP_SLE)
1951                .Case("ugt", CmpInst::ICMP_UGT)
1952                .Case("uge", CmpInst::ICMP_UGE)
1953                .Case("ult", CmpInst::ICMP_ULT)
1954                .Case("ule", CmpInst::ICMP_ULE)
1955                .Default(CmpInst::BAD_ICMP_PREDICATE);
1956     if (!CmpInst::isIntPredicate(Pred))
1957       return error("invalid integer predicate");
1958   }
1959 
1960   lex();
1961   Dest = MachineOperand::CreatePredicate(Pred);
1962   if (expectAndConsume(MIToken::rparen))
1963     return error("predicate should be terminated by ')'.");
1964 
1965   return false;
1966 }
1967 
1968 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1969   assert(Token.is(MIToken::kw_target_index));
1970   lex();
1971   if (expectAndConsume(MIToken::lparen))
1972     return true;
1973   if (Token.isNot(MIToken::Identifier))
1974     return error("expected the name of the target index");
1975   int Index = 0;
1976   if (getTargetIndex(Token.stringValue(), Index))
1977     return error("use of undefined target index '" + Token.stringValue() + "'");
1978   lex();
1979   if (expectAndConsume(MIToken::rparen))
1980     return true;
1981   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1982   if (parseOperandsOffset(Dest))
1983     return true;
1984   return false;
1985 }
1986 
1987 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1988   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1989   lex();
1990   if (expectAndConsume(MIToken::lparen))
1991     return true;
1992 
1993   uint32_t *Mask = MF.allocateRegMask();
1994   while (true) {
1995     if (Token.isNot(MIToken::NamedRegister))
1996       return error("expected a named register");
1997     unsigned Reg;
1998     if (parseNamedRegister(Reg))
1999       return true;
2000     lex();
2001     Mask[Reg / 32] |= 1U << (Reg % 32);
2002     // TODO: Report an error if the same register is used more than once.
2003     if (Token.isNot(MIToken::comma))
2004       break;
2005     lex();
2006   }
2007 
2008   if (expectAndConsume(MIToken::rparen))
2009     return true;
2010   Dest = MachineOperand::CreateRegMask(Mask);
2011   return false;
2012 }
2013 
2014 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2015   assert(Token.is(MIToken::kw_liveout));
2016   uint32_t *Mask = MF.allocateRegMask();
2017   lex();
2018   if (expectAndConsume(MIToken::lparen))
2019     return true;
2020   while (true) {
2021     if (Token.isNot(MIToken::NamedRegister))
2022       return error("expected a named register");
2023     unsigned Reg;
2024     if (parseNamedRegister(Reg))
2025       return true;
2026     lex();
2027     Mask[Reg / 32] |= 1U << (Reg % 32);
2028     // TODO: Report an error if the same register is used more than once.
2029     if (Token.isNot(MIToken::comma))
2030       break;
2031     lex();
2032   }
2033   if (expectAndConsume(MIToken::rparen))
2034     return true;
2035   Dest = MachineOperand::CreateRegLiveOut(Mask);
2036   return false;
2037 }
2038 
2039 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2040                                    Optional<unsigned> &TiedDefIdx) {
2041   switch (Token.kind()) {
2042   case MIToken::kw_implicit:
2043   case MIToken::kw_implicit_define:
2044   case MIToken::kw_def:
2045   case MIToken::kw_dead:
2046   case MIToken::kw_killed:
2047   case MIToken::kw_undef:
2048   case MIToken::kw_internal:
2049   case MIToken::kw_early_clobber:
2050   case MIToken::kw_debug_use:
2051   case MIToken::kw_renamable:
2052   case MIToken::underscore:
2053   case MIToken::NamedRegister:
2054   case MIToken::VirtualRegister:
2055   case MIToken::NamedVirtualRegister:
2056     return parseRegisterOperand(Dest, TiedDefIdx);
2057   case MIToken::IntegerLiteral:
2058     return parseImmediateOperand(Dest);
2059   case MIToken::kw_half:
2060   case MIToken::kw_float:
2061   case MIToken::kw_double:
2062   case MIToken::kw_x86_fp80:
2063   case MIToken::kw_fp128:
2064   case MIToken::kw_ppc_fp128:
2065     return parseFPImmediateOperand(Dest);
2066   case MIToken::MachineBasicBlock:
2067     return parseMBBOperand(Dest);
2068   case MIToken::StackObject:
2069     return parseStackObjectOperand(Dest);
2070   case MIToken::FixedStackObject:
2071     return parseFixedStackObjectOperand(Dest);
2072   case MIToken::GlobalValue:
2073   case MIToken::NamedGlobalValue:
2074     return parseGlobalAddressOperand(Dest);
2075   case MIToken::ConstantPoolItem:
2076     return parseConstantPoolIndexOperand(Dest);
2077   case MIToken::JumpTableIndex:
2078     return parseJumpTableIndexOperand(Dest);
2079   case MIToken::ExternalSymbol:
2080     return parseExternalSymbolOperand(Dest);
2081   case MIToken::MCSymbol:
2082     return parseMCSymbolOperand(Dest);
2083   case MIToken::SubRegisterIndex:
2084     return parseSubRegisterIndexOperand(Dest);
2085   case MIToken::md_diexpr:
2086   case MIToken::exclaim:
2087     return parseMetadataOperand(Dest);
2088   case MIToken::kw_cfi_same_value:
2089   case MIToken::kw_cfi_offset:
2090   case MIToken::kw_cfi_rel_offset:
2091   case MIToken::kw_cfi_def_cfa_register:
2092   case MIToken::kw_cfi_def_cfa_offset:
2093   case MIToken::kw_cfi_adjust_cfa_offset:
2094   case MIToken::kw_cfi_escape:
2095   case MIToken::kw_cfi_def_cfa:
2096   case MIToken::kw_cfi_register:
2097   case MIToken::kw_cfi_remember_state:
2098   case MIToken::kw_cfi_restore:
2099   case MIToken::kw_cfi_restore_state:
2100   case MIToken::kw_cfi_undefined:
2101   case MIToken::kw_cfi_window_save:
2102     return parseCFIOperand(Dest);
2103   case MIToken::kw_blockaddress:
2104     return parseBlockAddressOperand(Dest);
2105   case MIToken::kw_intrinsic:
2106     return parseIntrinsicOperand(Dest);
2107   case MIToken::kw_target_index:
2108     return parseTargetIndexOperand(Dest);
2109   case MIToken::kw_liveout:
2110     return parseLiveoutRegisterMaskOperand(Dest);
2111   case MIToken::kw_floatpred:
2112   case MIToken::kw_intpred:
2113     return parsePredicateOperand(Dest);
2114   case MIToken::Error:
2115     return true;
2116   case MIToken::Identifier:
2117     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2118       Dest = MachineOperand::CreateRegMask(RegMask);
2119       lex();
2120       break;
2121     } else if (Token.stringValue() == "CustomRegMask") {
2122       return parseCustomRegisterMaskOperand(Dest);
2123     } else
2124       return parseTypedImmediateOperand(Dest);
2125   default:
2126     // FIXME: Parse the MCSymbol machine operand.
2127     return error("expected a machine operand");
2128   }
2129   return false;
2130 }
2131 
2132 bool MIParser::parseMachineOperandAndTargetFlags(
2133     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2134   unsigned TF = 0;
2135   bool HasTargetFlags = false;
2136   if (Token.is(MIToken::kw_target_flags)) {
2137     HasTargetFlags = true;
2138     lex();
2139     if (expectAndConsume(MIToken::lparen))
2140       return true;
2141     if (Token.isNot(MIToken::Identifier))
2142       return error("expected the name of the target flag");
2143     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2144       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2145         return error("use of undefined target flag '" + Token.stringValue() +
2146                      "'");
2147     }
2148     lex();
2149     while (Token.is(MIToken::comma)) {
2150       lex();
2151       if (Token.isNot(MIToken::Identifier))
2152         return error("expected the name of the target flag");
2153       unsigned BitFlag = 0;
2154       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2155         return error("use of undefined target flag '" + Token.stringValue() +
2156                      "'");
2157       // TODO: Report an error when using a duplicate bit target flag.
2158       TF |= BitFlag;
2159       lex();
2160     }
2161     if (expectAndConsume(MIToken::rparen))
2162       return true;
2163   }
2164   auto Loc = Token.location();
2165   if (parseMachineOperand(Dest, TiedDefIdx))
2166     return true;
2167   if (!HasTargetFlags)
2168     return false;
2169   if (Dest.isReg())
2170     return error(Loc, "register operands can't have target flags");
2171   Dest.setTargetFlags(TF);
2172   return false;
2173 }
2174 
2175 bool MIParser::parseOffset(int64_t &Offset) {
2176   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2177     return false;
2178   StringRef Sign = Token.range();
2179   bool IsNegative = Token.is(MIToken::minus);
2180   lex();
2181   if (Token.isNot(MIToken::IntegerLiteral))
2182     return error("expected an integer literal after '" + Sign + "'");
2183   if (Token.integerValue().getMinSignedBits() > 64)
2184     return error("expected 64-bit integer (too large)");
2185   Offset = Token.integerValue().getExtValue();
2186   if (IsNegative)
2187     Offset = -Offset;
2188   lex();
2189   return false;
2190 }
2191 
2192 bool MIParser::parseAlignment(unsigned &Alignment) {
2193   assert(Token.is(MIToken::kw_align));
2194   lex();
2195   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2196     return error("expected an integer literal after 'align'");
2197   if (getUnsigned(Alignment))
2198     return true;
2199   lex();
2200   return false;
2201 }
2202 
2203 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2204   assert(Token.is(MIToken::kw_addrspace));
2205   lex();
2206   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2207     return error("expected an integer literal after 'addrspace'");
2208   if (getUnsigned(Addrspace))
2209     return true;
2210   lex();
2211   return false;
2212 }
2213 
2214 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2215   int64_t Offset = 0;
2216   if (parseOffset(Offset))
2217     return true;
2218   Op.setOffset(Offset);
2219   return false;
2220 }
2221 
2222 bool MIParser::parseIRValue(const Value *&V) {
2223   switch (Token.kind()) {
2224   case MIToken::NamedIRValue: {
2225     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2226     break;
2227   }
2228   case MIToken::IRValue: {
2229     unsigned SlotNumber = 0;
2230     if (getUnsigned(SlotNumber))
2231       return true;
2232     V = getIRValue(SlotNumber);
2233     break;
2234   }
2235   case MIToken::NamedGlobalValue:
2236   case MIToken::GlobalValue: {
2237     GlobalValue *GV = nullptr;
2238     if (parseGlobalValue(GV))
2239       return true;
2240     V = GV;
2241     break;
2242   }
2243   case MIToken::QuotedIRValue: {
2244     const Constant *C = nullptr;
2245     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2246       return true;
2247     V = C;
2248     break;
2249   }
2250   default:
2251     llvm_unreachable("The current token should be an IR block reference");
2252   }
2253   if (!V)
2254     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2255   return false;
2256 }
2257 
2258 bool MIParser::getUint64(uint64_t &Result) {
2259   if (Token.hasIntegerValue()) {
2260     if (Token.integerValue().getActiveBits() > 64)
2261       return error("expected 64-bit integer (too large)");
2262     Result = Token.integerValue().getZExtValue();
2263     return false;
2264   }
2265   if (Token.is(MIToken::HexLiteral)) {
2266     APInt A;
2267     if (getHexUint(A))
2268       return true;
2269     if (A.getBitWidth() > 64)
2270       return error("expected 64-bit integer (too large)");
2271     Result = A.getZExtValue();
2272     return false;
2273   }
2274   return true;
2275 }
2276 
2277 bool MIParser::getHexUint(APInt &Result) {
2278   assert(Token.is(MIToken::HexLiteral));
2279   StringRef S = Token.range();
2280   assert(S[0] == '0' && tolower(S[1]) == 'x');
2281   // This could be a floating point literal with a special prefix.
2282   if (!isxdigit(S[2]))
2283     return true;
2284   StringRef V = S.substr(2);
2285   APInt A(V.size()*4, V, 16);
2286 
2287   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2288   // sure it isn't the case before constructing result.
2289   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2290   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2291   return false;
2292 }
2293 
2294 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2295   const auto OldFlags = Flags;
2296   switch (Token.kind()) {
2297   case MIToken::kw_volatile:
2298     Flags |= MachineMemOperand::MOVolatile;
2299     break;
2300   case MIToken::kw_non_temporal:
2301     Flags |= MachineMemOperand::MONonTemporal;
2302     break;
2303   case MIToken::kw_dereferenceable:
2304     Flags |= MachineMemOperand::MODereferenceable;
2305     break;
2306   case MIToken::kw_invariant:
2307     Flags |= MachineMemOperand::MOInvariant;
2308     break;
2309   case MIToken::StringConstant: {
2310     MachineMemOperand::Flags TF;
2311     if (getMMOTargetFlag(Token.stringValue(), TF))
2312       return error("use of undefined target MMO flag '" + Token.stringValue() +
2313                    "'");
2314     Flags |= TF;
2315     break;
2316   }
2317   default:
2318     llvm_unreachable("The current token should be a memory operand flag");
2319   }
2320   if (OldFlags == Flags)
2321     // We know that the same flag is specified more than once when the flags
2322     // weren't modified.
2323     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2324   lex();
2325   return false;
2326 }
2327 
2328 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2329   switch (Token.kind()) {
2330   case MIToken::kw_stack:
2331     PSV = MF.getPSVManager().getStack();
2332     break;
2333   case MIToken::kw_got:
2334     PSV = MF.getPSVManager().getGOT();
2335     break;
2336   case MIToken::kw_jump_table:
2337     PSV = MF.getPSVManager().getJumpTable();
2338     break;
2339   case MIToken::kw_constant_pool:
2340     PSV = MF.getPSVManager().getConstantPool();
2341     break;
2342   case MIToken::FixedStackObject: {
2343     int FI;
2344     if (parseFixedStackFrameIndex(FI))
2345       return true;
2346     PSV = MF.getPSVManager().getFixedStack(FI);
2347     // The token was already consumed, so use return here instead of break.
2348     return false;
2349   }
2350   case MIToken::StackObject: {
2351     int FI;
2352     if (parseStackFrameIndex(FI))
2353       return true;
2354     PSV = MF.getPSVManager().getFixedStack(FI);
2355     // The token was already consumed, so use return here instead of break.
2356     return false;
2357   }
2358   case MIToken::kw_call_entry:
2359     lex();
2360     switch (Token.kind()) {
2361     case MIToken::GlobalValue:
2362     case MIToken::NamedGlobalValue: {
2363       GlobalValue *GV = nullptr;
2364       if (parseGlobalValue(GV))
2365         return true;
2366       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2367       break;
2368     }
2369     case MIToken::ExternalSymbol:
2370       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2371           MF.createExternalSymbolName(Token.stringValue()));
2372       break;
2373     default:
2374       return error(
2375           "expected a global value or an external symbol after 'call-entry'");
2376     }
2377     break;
2378   default:
2379     llvm_unreachable("The current token should be pseudo source value");
2380   }
2381   lex();
2382   return false;
2383 }
2384 
2385 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2386   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2387       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2388       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2389       Token.is(MIToken::kw_call_entry)) {
2390     const PseudoSourceValue *PSV = nullptr;
2391     if (parseMemoryPseudoSourceValue(PSV))
2392       return true;
2393     int64_t Offset = 0;
2394     if (parseOffset(Offset))
2395       return true;
2396     Dest = MachinePointerInfo(PSV, Offset);
2397     return false;
2398   }
2399   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2400       Token.isNot(MIToken::GlobalValue) &&
2401       Token.isNot(MIToken::NamedGlobalValue) &&
2402       Token.isNot(MIToken::QuotedIRValue))
2403     return error("expected an IR value reference");
2404   const Value *V = nullptr;
2405   if (parseIRValue(V))
2406     return true;
2407   if (!V->getType()->isPointerTy())
2408     return error("expected a pointer IR value");
2409   lex();
2410   int64_t Offset = 0;
2411   if (parseOffset(Offset))
2412     return true;
2413   Dest = MachinePointerInfo(V, Offset);
2414   return false;
2415 }
2416 
2417 bool MIParser::parseOptionalScope(LLVMContext &Context,
2418                                   SyncScope::ID &SSID) {
2419   SSID = SyncScope::System;
2420   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2421     lex();
2422     if (expectAndConsume(MIToken::lparen))
2423       return error("expected '(' in syncscope");
2424 
2425     std::string SSN;
2426     if (parseStringConstant(SSN))
2427       return true;
2428 
2429     SSID = Context.getOrInsertSyncScopeID(SSN);
2430     if (expectAndConsume(MIToken::rparen))
2431       return error("expected ')' in syncscope");
2432   }
2433 
2434   return false;
2435 }
2436 
2437 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2438   Order = AtomicOrdering::NotAtomic;
2439   if (Token.isNot(MIToken::Identifier))
2440     return false;
2441 
2442   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2443               .Case("unordered", AtomicOrdering::Unordered)
2444               .Case("monotonic", AtomicOrdering::Monotonic)
2445               .Case("acquire", AtomicOrdering::Acquire)
2446               .Case("release", AtomicOrdering::Release)
2447               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2448               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2449               .Default(AtomicOrdering::NotAtomic);
2450 
2451   if (Order != AtomicOrdering::NotAtomic) {
2452     lex();
2453     return false;
2454   }
2455 
2456   return error("expected an atomic scope, ordering or a size specification");
2457 }
2458 
2459 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2460   if (expectAndConsume(MIToken::lparen))
2461     return true;
2462   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2463   while (Token.isMemoryOperandFlag()) {
2464     if (parseMemoryOperandFlag(Flags))
2465       return true;
2466   }
2467   if (Token.isNot(MIToken::Identifier) ||
2468       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2469     return error("expected 'load' or 'store' memory operation");
2470   if (Token.stringValue() == "load")
2471     Flags |= MachineMemOperand::MOLoad;
2472   else
2473     Flags |= MachineMemOperand::MOStore;
2474   lex();
2475 
2476   // Optional 'store' for operands that both load and store.
2477   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2478     Flags |= MachineMemOperand::MOStore;
2479     lex();
2480   }
2481 
2482   // Optional synchronization scope.
2483   SyncScope::ID SSID;
2484   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2485     return true;
2486 
2487   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2488   AtomicOrdering Order, FailureOrder;
2489   if (parseOptionalAtomicOrdering(Order))
2490     return true;
2491 
2492   if (parseOptionalAtomicOrdering(FailureOrder))
2493     return true;
2494 
2495   if (Token.isNot(MIToken::IntegerLiteral) &&
2496       Token.isNot(MIToken::kw_unknown_size))
2497     return error("expected the size integer literal or 'unknown-size' after "
2498                  "memory operation");
2499   uint64_t Size;
2500   if (Token.is(MIToken::IntegerLiteral)) {
2501     if (getUint64(Size))
2502       return true;
2503   } else if (Token.is(MIToken::kw_unknown_size)) {
2504     Size = MemoryLocation::UnknownSize;
2505   }
2506   lex();
2507 
2508   MachinePointerInfo Ptr = MachinePointerInfo();
2509   if (Token.is(MIToken::Identifier)) {
2510     const char *Word =
2511         ((Flags & MachineMemOperand::MOLoad) &&
2512          (Flags & MachineMemOperand::MOStore))
2513             ? "on"
2514             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2515     if (Token.stringValue() != Word)
2516       return error(Twine("expected '") + Word + "'");
2517     lex();
2518 
2519     if (parseMachinePointerInfo(Ptr))
2520       return true;
2521   }
2522   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2523   AAMDNodes AAInfo;
2524   MDNode *Range = nullptr;
2525   while (consumeIfPresent(MIToken::comma)) {
2526     switch (Token.kind()) {
2527     case MIToken::kw_align:
2528       if (parseAlignment(BaseAlignment))
2529         return true;
2530       break;
2531     case MIToken::kw_addrspace:
2532       if (parseAddrspace(Ptr.AddrSpace))
2533         return true;
2534       break;
2535     case MIToken::md_tbaa:
2536       lex();
2537       if (parseMDNode(AAInfo.TBAA))
2538         return true;
2539       break;
2540     case MIToken::md_alias_scope:
2541       lex();
2542       if (parseMDNode(AAInfo.Scope))
2543         return true;
2544       break;
2545     case MIToken::md_noalias:
2546       lex();
2547       if (parseMDNode(AAInfo.NoAlias))
2548         return true;
2549       break;
2550     case MIToken::md_range:
2551       lex();
2552       if (parseMDNode(Range))
2553         return true;
2554       break;
2555     // TODO: Report an error on duplicate metadata nodes.
2556     default:
2557       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2558                    "'!noalias' or '!range'");
2559     }
2560   }
2561   if (expectAndConsume(MIToken::rparen))
2562     return true;
2563   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2564                                  SSID, Order, FailureOrder);
2565   return false;
2566 }
2567 
2568 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2569   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2570           Token.is(MIToken::kw_post_instr_symbol)) &&
2571          "Invalid token for a pre- post-instruction symbol!");
2572   lex();
2573   if (Token.isNot(MIToken::MCSymbol))
2574     return error("expected a symbol after 'pre-instr-symbol'");
2575   Symbol = getOrCreateMCSymbol(Token.stringValue());
2576   lex();
2577   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2578       Token.is(MIToken::lbrace))
2579     return false;
2580   if (Token.isNot(MIToken::comma))
2581     return error("expected ',' before the next machine operand");
2582   lex();
2583   return false;
2584 }
2585 
2586 void MIParser::initNames2InstrOpCodes() {
2587   if (!Names2InstrOpCodes.empty())
2588     return;
2589   const auto *TII = MF.getSubtarget().getInstrInfo();
2590   assert(TII && "Expected target instruction info");
2591   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2592     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2593 }
2594 
2595 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2596   initNames2InstrOpCodes();
2597   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2598   if (InstrInfo == Names2InstrOpCodes.end())
2599     return true;
2600   OpCode = InstrInfo->getValue();
2601   return false;
2602 }
2603 
2604 void MIParser::initNames2Regs() {
2605   if (!Names2Regs.empty())
2606     return;
2607   // The '%noreg' register is the register 0.
2608   Names2Regs.insert(std::make_pair("noreg", 0));
2609   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2610   assert(TRI && "Expected target register info");
2611   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2612     bool WasInserted =
2613         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2614             .second;
2615     (void)WasInserted;
2616     assert(WasInserted && "Expected registers to be unique case-insensitively");
2617   }
2618 }
2619 
2620 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2621   initNames2Regs();
2622   auto RegInfo = Names2Regs.find(RegName);
2623   if (RegInfo == Names2Regs.end())
2624     return true;
2625   Reg = RegInfo->getValue();
2626   return false;
2627 }
2628 
2629 void MIParser::initNames2RegMasks() {
2630   if (!Names2RegMasks.empty())
2631     return;
2632   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2633   assert(TRI && "Expected target register info");
2634   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2635   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2636   assert(RegMasks.size() == RegMaskNames.size());
2637   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2638     Names2RegMasks.insert(
2639         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2640 }
2641 
2642 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2643   initNames2RegMasks();
2644   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2645   if (RegMaskInfo == Names2RegMasks.end())
2646     return nullptr;
2647   return RegMaskInfo->getValue();
2648 }
2649 
2650 void MIParser::initNames2SubRegIndices() {
2651   if (!Names2SubRegIndices.empty())
2652     return;
2653   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2654   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2655     Names2SubRegIndices.insert(
2656         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2657 }
2658 
2659 unsigned MIParser::getSubRegIndex(StringRef Name) {
2660   initNames2SubRegIndices();
2661   auto SubRegInfo = Names2SubRegIndices.find(Name);
2662   if (SubRegInfo == Names2SubRegIndices.end())
2663     return 0;
2664   return SubRegInfo->getValue();
2665 }
2666 
2667 static void initSlots2BasicBlocks(
2668     const Function &F,
2669     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2670   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2671   MST.incorporateFunction(F);
2672   for (auto &BB : F) {
2673     if (BB.hasName())
2674       continue;
2675     int Slot = MST.getLocalSlot(&BB);
2676     if (Slot == -1)
2677       continue;
2678     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2679   }
2680 }
2681 
2682 static const BasicBlock *getIRBlockFromSlot(
2683     unsigned Slot,
2684     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2685   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2686   if (BlockInfo == Slots2BasicBlocks.end())
2687     return nullptr;
2688   return BlockInfo->second;
2689 }
2690 
2691 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2692   if (Slots2BasicBlocks.empty())
2693     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2694   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2695 }
2696 
2697 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2698   if (&F == &MF.getFunction())
2699     return getIRBlock(Slot);
2700   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2701   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2702   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2703 }
2704 
2705 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2706                            DenseMap<unsigned, const Value *> &Slots2Values) {
2707   int Slot = MST.getLocalSlot(V);
2708   if (Slot == -1)
2709     return;
2710   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2711 }
2712 
2713 /// Creates the mapping from slot numbers to function's unnamed IR values.
2714 static void initSlots2Values(const Function &F,
2715                              DenseMap<unsigned, const Value *> &Slots2Values) {
2716   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2717   MST.incorporateFunction(F);
2718   for (const auto &Arg : F.args())
2719     mapValueToSlot(&Arg, MST, Slots2Values);
2720   for (const auto &BB : F) {
2721     mapValueToSlot(&BB, MST, Slots2Values);
2722     for (const auto &I : BB)
2723       mapValueToSlot(&I, MST, Slots2Values);
2724   }
2725 }
2726 
2727 const Value *MIParser::getIRValue(unsigned Slot) {
2728   if (Slots2Values.empty())
2729     initSlots2Values(MF.getFunction(), Slots2Values);
2730   auto ValueInfo = Slots2Values.find(Slot);
2731   if (ValueInfo == Slots2Values.end())
2732     return nullptr;
2733   return ValueInfo->second;
2734 }
2735 
2736 void MIParser::initNames2TargetIndices() {
2737   if (!Names2TargetIndices.empty())
2738     return;
2739   const auto *TII = MF.getSubtarget().getInstrInfo();
2740   assert(TII && "Expected target instruction info");
2741   auto Indices = TII->getSerializableTargetIndices();
2742   for (const auto &I : Indices)
2743     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2744 }
2745 
2746 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2747   initNames2TargetIndices();
2748   auto IndexInfo = Names2TargetIndices.find(Name);
2749   if (IndexInfo == Names2TargetIndices.end())
2750     return true;
2751   Index = IndexInfo->second;
2752   return false;
2753 }
2754 
2755 void MIParser::initNames2DirectTargetFlags() {
2756   if (!Names2DirectTargetFlags.empty())
2757     return;
2758   const auto *TII = MF.getSubtarget().getInstrInfo();
2759   assert(TII && "Expected target instruction info");
2760   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2761   for (const auto &I : Flags)
2762     Names2DirectTargetFlags.insert(
2763         std::make_pair(StringRef(I.second), I.first));
2764 }
2765 
2766 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2767   initNames2DirectTargetFlags();
2768   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2769   if (FlagInfo == Names2DirectTargetFlags.end())
2770     return true;
2771   Flag = FlagInfo->second;
2772   return false;
2773 }
2774 
2775 void MIParser::initNames2BitmaskTargetFlags() {
2776   if (!Names2BitmaskTargetFlags.empty())
2777     return;
2778   const auto *TII = MF.getSubtarget().getInstrInfo();
2779   assert(TII && "Expected target instruction info");
2780   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2781   for (const auto &I : Flags)
2782     Names2BitmaskTargetFlags.insert(
2783         std::make_pair(StringRef(I.second), I.first));
2784 }
2785 
2786 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2787   initNames2BitmaskTargetFlags();
2788   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2789   if (FlagInfo == Names2BitmaskTargetFlags.end())
2790     return true;
2791   Flag = FlagInfo->second;
2792   return false;
2793 }
2794 
2795 void MIParser::initNames2MMOTargetFlags() {
2796   if (!Names2MMOTargetFlags.empty())
2797     return;
2798   const auto *TII = MF.getSubtarget().getInstrInfo();
2799   assert(TII && "Expected target instruction info");
2800   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2801   for (const auto &I : Flags)
2802     Names2MMOTargetFlags.insert(
2803         std::make_pair(StringRef(I.second), I.first));
2804 }
2805 
2806 bool MIParser::getMMOTargetFlag(StringRef Name,
2807                                 MachineMemOperand::Flags &Flag) {
2808   initNames2MMOTargetFlags();
2809   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2810   if (FlagInfo == Names2MMOTargetFlags.end())
2811     return true;
2812   Flag = FlagInfo->second;
2813   return false;
2814 }
2815 
2816 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
2817   // FIXME: Currently we can't recognize temporary or local symbols and call all
2818   // of the appropriate forms to create them. However, this handles basic cases
2819   // well as most of the special aspects are recognized by a prefix on their
2820   // name, and the input names should already be unique. For test cases, keeping
2821   // the symbol name out of the symbol table isn't terribly important.
2822   return MF.getContext().getOrCreateSymbol(Name);
2823 }
2824 
2825 bool MIParser::parseStringConstant(std::string &Result) {
2826   if (Token.isNot(MIToken::StringConstant))
2827     return error("expected string constant");
2828   Result = Token.stringValue();
2829   lex();
2830   return false;
2831 }
2832 
2833 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2834                                              StringRef Src,
2835                                              SMDiagnostic &Error) {
2836   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2837 }
2838 
2839 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2840                                     StringRef Src, SMDiagnostic &Error) {
2841   return MIParser(PFS, Error, Src).parseBasicBlocks();
2842 }
2843 
2844 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2845                              MachineBasicBlock *&MBB, StringRef Src,
2846                              SMDiagnostic &Error) {
2847   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2848 }
2849 
2850 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2851                                   unsigned &Reg, StringRef Src,
2852                                   SMDiagnostic &Error) {
2853   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2854 }
2855 
2856 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2857                                        unsigned &Reg, StringRef Src,
2858                                        SMDiagnostic &Error) {
2859   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2860 }
2861 
2862 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2863                                          VRegInfo *&Info, StringRef Src,
2864                                          SMDiagnostic &Error) {
2865   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2866 }
2867 
2868 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2869                                      int &FI, StringRef Src,
2870                                      SMDiagnostic &Error) {
2871   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2872 }
2873 
2874 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2875                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2876   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2877 }
2878