1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 return Slots2Values.lookup(Slot); 373 } 374 375 namespace { 376 377 /// A wrapper struct around the 'MachineOperand' struct that includes a source 378 /// range and other attributes. 379 struct ParsedMachineOperand { 380 MachineOperand Operand; 381 StringRef::iterator Begin; 382 StringRef::iterator End; 383 Optional<unsigned> TiedDefIdx; 384 385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 388 if (TiedDefIdx) 389 assert(Operand.isReg() && Operand.isUse() && 390 "Only used register operands can be tied"); 391 } 392 }; 393 394 class MIParser { 395 MachineFunction &MF; 396 SMDiagnostic &Error; 397 StringRef Source, CurrentSource; 398 SMRange SourceRange; 399 MIToken Token; 400 PerFunctionMIParsingState &PFS; 401 /// Maps from slot numbers to function's unnamed basic blocks. 402 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 403 404 public: 405 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 406 StringRef Source); 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source, SMRange SourceRange); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(Register &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(Register &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 bool parseMachineMetadata(); 435 bool parseMDTuple(MDNode *&MD, bool IsDistinct); 436 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts); 437 bool parseMetadata(Metadata *&MD); 438 439 bool 440 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 441 bool parseBasicBlock(MachineBasicBlock &MBB, 442 MachineBasicBlock *&AddFalthroughFrom); 443 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 444 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 445 446 bool parseNamedRegister(Register &Reg); 447 bool parseVirtualRegister(VRegInfo *&Info); 448 bool parseNamedVirtualRegister(VRegInfo *&Info); 449 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 450 bool parseRegisterFlag(unsigned &Flags); 451 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 452 bool parseSubRegisterIndex(unsigned &SubReg); 453 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 454 bool parseRegisterOperand(MachineOperand &Dest, 455 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 456 bool parseImmediateOperand(MachineOperand &Dest); 457 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 458 const Constant *&C); 459 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 460 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 461 bool parseTypedImmediateOperand(MachineOperand &Dest); 462 bool parseFPImmediateOperand(MachineOperand &Dest); 463 bool parseMBBReference(MachineBasicBlock *&MBB); 464 bool parseMBBOperand(MachineOperand &Dest); 465 bool parseStackFrameIndex(int &FI); 466 bool parseStackObjectOperand(MachineOperand &Dest); 467 bool parseFixedStackFrameIndex(int &FI); 468 bool parseFixedStackObjectOperand(MachineOperand &Dest); 469 bool parseGlobalValue(GlobalValue *&GV); 470 bool parseGlobalAddressOperand(MachineOperand &Dest); 471 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 472 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 473 bool parseJumpTableIndexOperand(MachineOperand &Dest); 474 bool parseExternalSymbolOperand(MachineOperand &Dest); 475 bool parseMCSymbolOperand(MachineOperand &Dest); 476 bool parseMDNode(MDNode *&Node); 477 bool parseDIExpression(MDNode *&Expr); 478 bool parseDILocation(MDNode *&Expr); 479 bool parseMetadataOperand(MachineOperand &Dest); 480 bool parseCFIOffset(int &Offset); 481 bool parseCFIRegister(Register &Reg); 482 bool parseCFIAddressSpace(unsigned &AddressSpace); 483 bool parseCFIEscapeValues(std::string& Values); 484 bool parseCFIOperand(MachineOperand &Dest); 485 bool parseIRBlock(BasicBlock *&BB, const Function &F); 486 bool parseBlockAddressOperand(MachineOperand &Dest); 487 bool parseIntrinsicOperand(MachineOperand &Dest); 488 bool parsePredicateOperand(MachineOperand &Dest); 489 bool parseShuffleMaskOperand(MachineOperand &Dest); 490 bool parseTargetIndexOperand(MachineOperand &Dest); 491 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 492 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 493 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 494 MachineOperand &Dest, 495 Optional<unsigned> &TiedDefIdx); 496 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 497 const unsigned OpIdx, 498 MachineOperand &Dest, 499 Optional<unsigned> &TiedDefIdx); 500 bool parseOffset(int64_t &Offset); 501 bool parseAlignment(unsigned &Alignment); 502 bool parseAddrspace(unsigned &Addrspace); 503 bool parseSectionID(Optional<MBBSectionID> &SID); 504 bool parseOperandsOffset(MachineOperand &Op); 505 bool parseIRValue(const Value *&V); 506 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 507 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 508 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 509 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 510 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 511 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 512 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 513 bool parseHeapAllocMarker(MDNode *&Node); 514 515 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 516 MachineOperand &Dest, const MIRFormatter &MF); 517 518 private: 519 /// Convert the integer literal in the current token into an unsigned integer. 520 /// 521 /// Return true if an error occurred. 522 bool getUnsigned(unsigned &Result); 523 524 /// Convert the integer literal in the current token into an uint64. 525 /// 526 /// Return true if an error occurred. 527 bool getUint64(uint64_t &Result); 528 529 /// Convert the hexadecimal literal in the current token into an unsigned 530 /// APInt with a minimum bitwidth required to represent the value. 531 /// 532 /// Return true if the literal does not represent an integer value. 533 bool getHexUint(APInt &Result); 534 535 /// If the current token is of the given kind, consume it and return false. 536 /// Otherwise report an error and return true. 537 bool expectAndConsume(MIToken::TokenKind TokenKind); 538 539 /// If the current token is of the given kind, consume it and return true. 540 /// Otherwise return false. 541 bool consumeIfPresent(MIToken::TokenKind TokenKind); 542 543 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 544 545 bool assignRegisterTies(MachineInstr &MI, 546 ArrayRef<ParsedMachineOperand> Operands); 547 548 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 549 const MCInstrDesc &MCID); 550 551 const BasicBlock *getIRBlock(unsigned Slot); 552 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 553 554 /// Get or create an MCSymbol for a given name. 555 MCSymbol *getOrCreateMCSymbol(StringRef Name); 556 557 /// parseStringConstant 558 /// ::= StringConstant 559 bool parseStringConstant(std::string &Result); 560 561 /// Map the location in the MI string to the corresponding location specified 562 /// in `SourceRange`. 563 SMLoc mapSMLoc(StringRef::iterator Loc); 564 }; 565 566 } // end anonymous namespace 567 568 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 569 StringRef Source) 570 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 571 {} 572 573 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 574 StringRef Source, SMRange SourceRange) 575 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), 576 SourceRange(SourceRange), PFS(PFS) {} 577 578 void MIParser::lex(unsigned SkipChar) { 579 CurrentSource = lexMIToken( 580 CurrentSource.slice(SkipChar, StringRef::npos), Token, 581 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 582 } 583 584 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 585 586 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 587 const SourceMgr &SM = *PFS.SM; 588 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 589 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 590 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 591 // Create an ordinary diagnostic when the source manager's buffer is the 592 // source string. 593 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 594 return true; 595 } 596 // Create a diagnostic for a YAML string literal. 597 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 598 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 599 Source, None, None); 600 return true; 601 } 602 603 SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) { 604 assert(SourceRange.isValid() && "Invalid source range"); 605 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 606 return SMLoc::getFromPointer(SourceRange.Start.getPointer() + 607 (Loc - Source.data())); 608 } 609 610 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 611 ErrorCallbackType; 612 613 static const char *toString(MIToken::TokenKind TokenKind) { 614 switch (TokenKind) { 615 case MIToken::comma: 616 return "','"; 617 case MIToken::equal: 618 return "'='"; 619 case MIToken::colon: 620 return "':'"; 621 case MIToken::lparen: 622 return "'('"; 623 case MIToken::rparen: 624 return "')'"; 625 default: 626 return "<unknown token>"; 627 } 628 } 629 630 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 631 if (Token.isNot(TokenKind)) 632 return error(Twine("expected ") + toString(TokenKind)); 633 lex(); 634 return false; 635 } 636 637 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 638 if (Token.isNot(TokenKind)) 639 return false; 640 lex(); 641 return true; 642 } 643 644 // Parse Machine Basic Block Section ID. 645 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 646 assert(Token.is(MIToken::kw_bbsections)); 647 lex(); 648 if (Token.is(MIToken::IntegerLiteral)) { 649 unsigned Value = 0; 650 if (getUnsigned(Value)) 651 return error("Unknown Section ID"); 652 SID = MBBSectionID{Value}; 653 } else { 654 const StringRef &S = Token.stringValue(); 655 if (S == "Exception") 656 SID = MBBSectionID::ExceptionSectionID; 657 else if (S == "Cold") 658 SID = MBBSectionID::ColdSectionID; 659 else 660 return error("Unknown Section ID"); 661 } 662 lex(); 663 return false; 664 } 665 666 bool MIParser::parseBasicBlockDefinition( 667 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 668 assert(Token.is(MIToken::MachineBasicBlockLabel)); 669 unsigned ID = 0; 670 if (getUnsigned(ID)) 671 return true; 672 auto Loc = Token.location(); 673 auto Name = Token.stringValue(); 674 lex(); 675 bool HasAddressTaken = false; 676 bool IsLandingPad = false; 677 bool IsEHFuncletEntry = false; 678 Optional<MBBSectionID> SectionID; 679 unsigned Alignment = 0; 680 BasicBlock *BB = nullptr; 681 if (consumeIfPresent(MIToken::lparen)) { 682 do { 683 // TODO: Report an error when multiple same attributes are specified. 684 switch (Token.kind()) { 685 case MIToken::kw_address_taken: 686 HasAddressTaken = true; 687 lex(); 688 break; 689 case MIToken::kw_landing_pad: 690 IsLandingPad = true; 691 lex(); 692 break; 693 case MIToken::kw_ehfunclet_entry: 694 IsEHFuncletEntry = true; 695 lex(); 696 break; 697 case MIToken::kw_align: 698 if (parseAlignment(Alignment)) 699 return true; 700 break; 701 case MIToken::IRBlock: 702 // TODO: Report an error when both name and ir block are specified. 703 if (parseIRBlock(BB, MF.getFunction())) 704 return true; 705 lex(); 706 break; 707 case MIToken::kw_bbsections: 708 if (parseSectionID(SectionID)) 709 return true; 710 break; 711 default: 712 break; 713 } 714 } while (consumeIfPresent(MIToken::comma)); 715 if (expectAndConsume(MIToken::rparen)) 716 return true; 717 } 718 if (expectAndConsume(MIToken::colon)) 719 return true; 720 721 if (!Name.empty()) { 722 BB = dyn_cast_or_null<BasicBlock>( 723 MF.getFunction().getValueSymbolTable()->lookup(Name)); 724 if (!BB) 725 return error(Loc, Twine("basic block '") + Name + 726 "' is not defined in the function '" + 727 MF.getName() + "'"); 728 } 729 auto *MBB = MF.CreateMachineBasicBlock(BB); 730 MF.insert(MF.end(), MBB); 731 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 732 if (!WasInserted) 733 return error(Loc, Twine("redefinition of machine basic block with id #") + 734 Twine(ID)); 735 if (Alignment) 736 MBB->setAlignment(Align(Alignment)); 737 if (HasAddressTaken) 738 MBB->setHasAddressTaken(); 739 MBB->setIsEHPad(IsLandingPad); 740 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 741 if (SectionID.hasValue()) { 742 MBB->setSectionID(SectionID.getValue()); 743 MF.setBBSectionsType(BasicBlockSection::List); 744 } 745 return false; 746 } 747 748 bool MIParser::parseBasicBlockDefinitions( 749 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 750 lex(); 751 // Skip until the first machine basic block. 752 while (Token.is(MIToken::Newline)) 753 lex(); 754 if (Token.isErrorOrEOF()) 755 return Token.isError(); 756 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 757 return error("expected a basic block definition before instructions"); 758 unsigned BraceDepth = 0; 759 do { 760 if (parseBasicBlockDefinition(MBBSlots)) 761 return true; 762 bool IsAfterNewline = false; 763 // Skip until the next machine basic block. 764 while (true) { 765 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 766 Token.isErrorOrEOF()) 767 break; 768 else if (Token.is(MIToken::MachineBasicBlockLabel)) 769 return error("basic block definition should be located at the start of " 770 "the line"); 771 else if (consumeIfPresent(MIToken::Newline)) { 772 IsAfterNewline = true; 773 continue; 774 } 775 IsAfterNewline = false; 776 if (Token.is(MIToken::lbrace)) 777 ++BraceDepth; 778 if (Token.is(MIToken::rbrace)) { 779 if (!BraceDepth) 780 return error("extraneous closing brace ('}')"); 781 --BraceDepth; 782 } 783 lex(); 784 } 785 // Verify that we closed all of the '{' at the end of a file or a block. 786 if (!Token.isError() && BraceDepth) 787 return error("expected '}'"); // FIXME: Report a note that shows '{'. 788 } while (!Token.isErrorOrEOF()); 789 return Token.isError(); 790 } 791 792 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 793 assert(Token.is(MIToken::kw_liveins)); 794 lex(); 795 if (expectAndConsume(MIToken::colon)) 796 return true; 797 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 798 return false; 799 do { 800 if (Token.isNot(MIToken::NamedRegister)) 801 return error("expected a named register"); 802 Register Reg; 803 if (parseNamedRegister(Reg)) 804 return true; 805 lex(); 806 LaneBitmask Mask = LaneBitmask::getAll(); 807 if (consumeIfPresent(MIToken::colon)) { 808 // Parse lane mask. 809 if (Token.isNot(MIToken::IntegerLiteral) && 810 Token.isNot(MIToken::HexLiteral)) 811 return error("expected a lane mask"); 812 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 813 "Use correct get-function for lane mask"); 814 LaneBitmask::Type V; 815 if (getUint64(V)) 816 return error("invalid lane mask value"); 817 Mask = LaneBitmask(V); 818 lex(); 819 } 820 MBB.addLiveIn(Reg, Mask); 821 } while (consumeIfPresent(MIToken::comma)); 822 return false; 823 } 824 825 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 826 assert(Token.is(MIToken::kw_successors)); 827 lex(); 828 if (expectAndConsume(MIToken::colon)) 829 return true; 830 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 831 return false; 832 do { 833 if (Token.isNot(MIToken::MachineBasicBlock)) 834 return error("expected a machine basic block reference"); 835 MachineBasicBlock *SuccMBB = nullptr; 836 if (parseMBBReference(SuccMBB)) 837 return true; 838 lex(); 839 unsigned Weight = 0; 840 if (consumeIfPresent(MIToken::lparen)) { 841 if (Token.isNot(MIToken::IntegerLiteral) && 842 Token.isNot(MIToken::HexLiteral)) 843 return error("expected an integer literal after '('"); 844 if (getUnsigned(Weight)) 845 return true; 846 lex(); 847 if (expectAndConsume(MIToken::rparen)) 848 return true; 849 } 850 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 851 } while (consumeIfPresent(MIToken::comma)); 852 MBB.normalizeSuccProbs(); 853 return false; 854 } 855 856 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 857 MachineBasicBlock *&AddFalthroughFrom) { 858 // Skip the definition. 859 assert(Token.is(MIToken::MachineBasicBlockLabel)); 860 lex(); 861 if (consumeIfPresent(MIToken::lparen)) { 862 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 863 lex(); 864 consumeIfPresent(MIToken::rparen); 865 } 866 consumeIfPresent(MIToken::colon); 867 868 // Parse the liveins and successors. 869 // N.B: Multiple lists of successors and liveins are allowed and they're 870 // merged into one. 871 // Example: 872 // liveins: %edi 873 // liveins: %esi 874 // 875 // is equivalent to 876 // liveins: %edi, %esi 877 bool ExplicitSuccessors = false; 878 while (true) { 879 if (Token.is(MIToken::kw_successors)) { 880 if (parseBasicBlockSuccessors(MBB)) 881 return true; 882 ExplicitSuccessors = true; 883 } else if (Token.is(MIToken::kw_liveins)) { 884 if (parseBasicBlockLiveins(MBB)) 885 return true; 886 } else if (consumeIfPresent(MIToken::Newline)) { 887 continue; 888 } else 889 break; 890 if (!Token.isNewlineOrEOF()) 891 return error("expected line break at the end of a list"); 892 lex(); 893 } 894 895 // Parse the instructions. 896 bool IsInBundle = false; 897 MachineInstr *PrevMI = nullptr; 898 while (!Token.is(MIToken::MachineBasicBlockLabel) && 899 !Token.is(MIToken::Eof)) { 900 if (consumeIfPresent(MIToken::Newline)) 901 continue; 902 if (consumeIfPresent(MIToken::rbrace)) { 903 // The first parsing pass should verify that all closing '}' have an 904 // opening '{'. 905 assert(IsInBundle); 906 IsInBundle = false; 907 continue; 908 } 909 MachineInstr *MI = nullptr; 910 if (parse(MI)) 911 return true; 912 MBB.insert(MBB.end(), MI); 913 if (IsInBundle) { 914 PrevMI->setFlag(MachineInstr::BundledSucc); 915 MI->setFlag(MachineInstr::BundledPred); 916 } 917 PrevMI = MI; 918 if (Token.is(MIToken::lbrace)) { 919 if (IsInBundle) 920 return error("nested instruction bundles are not allowed"); 921 lex(); 922 // This instruction is the start of the bundle. 923 MI->setFlag(MachineInstr::BundledSucc); 924 IsInBundle = true; 925 if (!Token.is(MIToken::Newline)) 926 // The next instruction can be on the same line. 927 continue; 928 } 929 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 930 lex(); 931 } 932 933 // Construct successor list by searching for basic block machine operands. 934 if (!ExplicitSuccessors) { 935 SmallVector<MachineBasicBlock*,4> Successors; 936 bool IsFallthrough; 937 guessSuccessors(MBB, Successors, IsFallthrough); 938 for (MachineBasicBlock *Succ : Successors) 939 MBB.addSuccessor(Succ); 940 941 if (IsFallthrough) { 942 AddFalthroughFrom = &MBB; 943 } else { 944 MBB.normalizeSuccProbs(); 945 } 946 } 947 948 return false; 949 } 950 951 bool MIParser::parseBasicBlocks() { 952 lex(); 953 // Skip until the first machine basic block. 954 while (Token.is(MIToken::Newline)) 955 lex(); 956 if (Token.isErrorOrEOF()) 957 return Token.isError(); 958 // The first parsing pass should have verified that this token is a MBB label 959 // in the 'parseBasicBlockDefinitions' method. 960 assert(Token.is(MIToken::MachineBasicBlockLabel)); 961 MachineBasicBlock *AddFalthroughFrom = nullptr; 962 do { 963 MachineBasicBlock *MBB = nullptr; 964 if (parseMBBReference(MBB)) 965 return true; 966 if (AddFalthroughFrom) { 967 if (!AddFalthroughFrom->isSuccessor(MBB)) 968 AddFalthroughFrom->addSuccessor(MBB); 969 AddFalthroughFrom->normalizeSuccProbs(); 970 AddFalthroughFrom = nullptr; 971 } 972 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 973 return true; 974 // The method 'parseBasicBlock' should parse the whole block until the next 975 // block or the end of file. 976 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 977 } while (Token.isNot(MIToken::Eof)); 978 return false; 979 } 980 981 bool MIParser::parse(MachineInstr *&MI) { 982 // Parse any register operands before '=' 983 MachineOperand MO = MachineOperand::CreateImm(0); 984 SmallVector<ParsedMachineOperand, 8> Operands; 985 while (Token.isRegister() || Token.isRegisterFlag()) { 986 auto Loc = Token.location(); 987 Optional<unsigned> TiedDefIdx; 988 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 989 return true; 990 Operands.push_back( 991 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 992 if (Token.isNot(MIToken::comma)) 993 break; 994 lex(); 995 } 996 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 997 return true; 998 999 unsigned OpCode, Flags = 0; 1000 if (Token.isError() || parseInstruction(OpCode, Flags)) 1001 return true; 1002 1003 // Parse the remaining machine operands. 1004 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 1005 Token.isNot(MIToken::kw_post_instr_symbol) && 1006 Token.isNot(MIToken::kw_heap_alloc_marker) && 1007 Token.isNot(MIToken::kw_debug_location) && 1008 Token.isNot(MIToken::kw_debug_instr_number) && 1009 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 1010 auto Loc = Token.location(); 1011 Optional<unsigned> TiedDefIdx; 1012 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 1013 return true; 1014 if ((OpCode == TargetOpcode::DBG_VALUE || 1015 OpCode == TargetOpcode::DBG_VALUE_LIST) && 1016 MO.isReg()) 1017 MO.setIsDebug(); 1018 Operands.push_back( 1019 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 1020 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 1021 Token.is(MIToken::lbrace)) 1022 break; 1023 if (Token.isNot(MIToken::comma)) 1024 return error("expected ',' before the next machine operand"); 1025 lex(); 1026 } 1027 1028 MCSymbol *PreInstrSymbol = nullptr; 1029 if (Token.is(MIToken::kw_pre_instr_symbol)) 1030 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1031 return true; 1032 MCSymbol *PostInstrSymbol = nullptr; 1033 if (Token.is(MIToken::kw_post_instr_symbol)) 1034 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1035 return true; 1036 MDNode *HeapAllocMarker = nullptr; 1037 if (Token.is(MIToken::kw_heap_alloc_marker)) 1038 if (parseHeapAllocMarker(HeapAllocMarker)) 1039 return true; 1040 1041 unsigned InstrNum = 0; 1042 if (Token.is(MIToken::kw_debug_instr_number)) { 1043 lex(); 1044 if (Token.isNot(MIToken::IntegerLiteral)) 1045 return error("expected an integer literal after 'debug-instr-number'"); 1046 if (getUnsigned(InstrNum)) 1047 return true; 1048 lex(); 1049 // Lex past trailing comma if present. 1050 if (Token.is(MIToken::comma)) 1051 lex(); 1052 } 1053 1054 DebugLoc DebugLocation; 1055 if (Token.is(MIToken::kw_debug_location)) { 1056 lex(); 1057 MDNode *Node = nullptr; 1058 if (Token.is(MIToken::exclaim)) { 1059 if (parseMDNode(Node)) 1060 return true; 1061 } else if (Token.is(MIToken::md_dilocation)) { 1062 if (parseDILocation(Node)) 1063 return true; 1064 } else 1065 return error("expected a metadata node after 'debug-location'"); 1066 if (!isa<DILocation>(Node)) 1067 return error("referenced metadata is not a DILocation"); 1068 DebugLocation = DebugLoc(Node); 1069 } 1070 1071 // Parse the machine memory operands. 1072 SmallVector<MachineMemOperand *, 2> MemOperands; 1073 if (Token.is(MIToken::coloncolon)) { 1074 lex(); 1075 while (!Token.isNewlineOrEOF()) { 1076 MachineMemOperand *MemOp = nullptr; 1077 if (parseMachineMemoryOperand(MemOp)) 1078 return true; 1079 MemOperands.push_back(MemOp); 1080 if (Token.isNewlineOrEOF()) 1081 break; 1082 if (Token.isNot(MIToken::comma)) 1083 return error("expected ',' before the next machine memory operand"); 1084 lex(); 1085 } 1086 } 1087 1088 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1089 if (!MCID.isVariadic()) { 1090 // FIXME: Move the implicit operand verification to the machine verifier. 1091 if (verifyImplicitOperands(Operands, MCID)) 1092 return true; 1093 } 1094 1095 // TODO: Check for extraneous machine operands. 1096 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1097 MI->setFlags(Flags); 1098 for (const auto &Operand : Operands) 1099 MI->addOperand(MF, Operand.Operand); 1100 if (assignRegisterTies(*MI, Operands)) 1101 return true; 1102 if (PreInstrSymbol) 1103 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1104 if (PostInstrSymbol) 1105 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1106 if (HeapAllocMarker) 1107 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1108 if (!MemOperands.empty()) 1109 MI->setMemRefs(MF, MemOperands); 1110 if (InstrNum) 1111 MI->setDebugInstrNum(InstrNum); 1112 return false; 1113 } 1114 1115 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1116 lex(); 1117 if (Token.isNot(MIToken::MachineBasicBlock)) 1118 return error("expected a machine basic block reference"); 1119 if (parseMBBReference(MBB)) 1120 return true; 1121 lex(); 1122 if (Token.isNot(MIToken::Eof)) 1123 return error( 1124 "expected end of string after the machine basic block reference"); 1125 return false; 1126 } 1127 1128 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1129 lex(); 1130 if (Token.isNot(MIToken::NamedRegister)) 1131 return error("expected a named register"); 1132 if (parseNamedRegister(Reg)) 1133 return true; 1134 lex(); 1135 if (Token.isNot(MIToken::Eof)) 1136 return error("expected end of string after the register reference"); 1137 return false; 1138 } 1139 1140 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1141 lex(); 1142 if (Token.isNot(MIToken::VirtualRegister)) 1143 return error("expected a virtual register"); 1144 if (parseVirtualRegister(Info)) 1145 return true; 1146 lex(); 1147 if (Token.isNot(MIToken::Eof)) 1148 return error("expected end of string after the register reference"); 1149 return false; 1150 } 1151 1152 bool MIParser::parseStandaloneRegister(Register &Reg) { 1153 lex(); 1154 if (Token.isNot(MIToken::NamedRegister) && 1155 Token.isNot(MIToken::VirtualRegister)) 1156 return error("expected either a named or virtual register"); 1157 1158 VRegInfo *Info; 1159 if (parseRegister(Reg, Info)) 1160 return true; 1161 1162 lex(); 1163 if (Token.isNot(MIToken::Eof)) 1164 return error("expected end of string after the register reference"); 1165 return false; 1166 } 1167 1168 bool MIParser::parseStandaloneStackObject(int &FI) { 1169 lex(); 1170 if (Token.isNot(MIToken::StackObject)) 1171 return error("expected a stack object"); 1172 if (parseStackFrameIndex(FI)) 1173 return true; 1174 if (Token.isNot(MIToken::Eof)) 1175 return error("expected end of string after the stack object reference"); 1176 return false; 1177 } 1178 1179 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1180 lex(); 1181 if (Token.is(MIToken::exclaim)) { 1182 if (parseMDNode(Node)) 1183 return true; 1184 } else if (Token.is(MIToken::md_diexpr)) { 1185 // FIXME: This should be driven off of the UNIQUED property in Metadata.def 1186 if (parseDIExpression(Node)) 1187 return true; 1188 } else if (Token.is(MIToken::md_dilocation)) { 1189 if (parseDILocation(Node)) 1190 return true; 1191 } else 1192 return error("expected a metadata node"); 1193 if (Token.isNot(MIToken::Eof)) 1194 return error("expected end of string after the metadata node"); 1195 return false; 1196 } 1197 1198 bool MIParser::parseMachineMetadata() { 1199 lex(); 1200 if (Token.isNot(MIToken::exclaim)) 1201 return error("expected a metadata node"); 1202 1203 lex(); 1204 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1205 return error("expected metadata id after '!'"); 1206 unsigned ID = 0; 1207 if (getUnsigned(ID)) 1208 return true; 1209 lex(); 1210 if (expectAndConsume(MIToken::equal)) 1211 return true; 1212 bool IsDistinct = Token.is(MIToken::kw_distinct); 1213 if (IsDistinct) 1214 lex(); 1215 if (Token.isNot(MIToken::exclaim)) 1216 return error("expected a metadata node"); 1217 lex(); 1218 1219 MDNode *MD; 1220 if (parseMDTuple(MD, IsDistinct)) 1221 return true; 1222 1223 auto FI = PFS.MachineForwardRefMDNodes.find(ID); 1224 if (FI != PFS.MachineForwardRefMDNodes.end()) { 1225 FI->second.first->replaceAllUsesWith(MD); 1226 PFS.MachineForwardRefMDNodes.erase(FI); 1227 1228 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work"); 1229 } else { 1230 if (PFS.MachineMetadataNodes.count(ID)) 1231 return error("Metadata id is already used"); 1232 PFS.MachineMetadataNodes[ID].reset(MD); 1233 } 1234 1235 return false; 1236 } 1237 1238 bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 1239 SmallVector<Metadata *, 16> Elts; 1240 if (parseMDNodeVector(Elts)) 1241 return true; 1242 MD = (IsDistinct ? MDTuple::getDistinct 1243 : MDTuple::get)(MF.getFunction().getContext(), Elts); 1244 return false; 1245 } 1246 1247 bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 1248 if (Token.isNot(MIToken::lbrace)) 1249 return error("expected '{' here"); 1250 lex(); 1251 1252 if (Token.is(MIToken::rbrace)) { 1253 lex(); 1254 return false; 1255 } 1256 1257 do { 1258 Metadata *MD; 1259 if (parseMetadata(MD)) 1260 return true; 1261 1262 Elts.push_back(MD); 1263 1264 if (Token.isNot(MIToken::comma)) 1265 break; 1266 lex(); 1267 } while (true); 1268 1269 if (Token.isNot(MIToken::rbrace)) 1270 return error("expected end of metadata node"); 1271 lex(); 1272 1273 return false; 1274 } 1275 1276 // ::= !42 1277 // ::= !"string" 1278 bool MIParser::parseMetadata(Metadata *&MD) { 1279 if (Token.isNot(MIToken::exclaim)) 1280 return error("expected '!' here"); 1281 lex(); 1282 1283 if (Token.is(MIToken::StringConstant)) { 1284 std::string Str; 1285 if (parseStringConstant(Str)) 1286 return true; 1287 MD = MDString::get(MF.getFunction().getContext(), Str); 1288 return false; 1289 } 1290 1291 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1292 return error("expected metadata id after '!'"); 1293 1294 SMLoc Loc = mapSMLoc(Token.location()); 1295 1296 unsigned ID = 0; 1297 if (getUnsigned(ID)) 1298 return true; 1299 lex(); 1300 1301 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1302 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) { 1303 MD = NodeInfo->second.get(); 1304 return false; 1305 } 1306 // Check machine metadata. 1307 NodeInfo = PFS.MachineMetadataNodes.find(ID); 1308 if (NodeInfo != PFS.MachineMetadataNodes.end()) { 1309 MD = NodeInfo->second.get(); 1310 return false; 1311 } 1312 // Forward reference. 1313 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID]; 1314 FwdRef = std::make_pair( 1315 MDTuple::getTemporary(MF.getFunction().getContext(), None), Loc); 1316 PFS.MachineMetadataNodes[ID].reset(FwdRef.first.get()); 1317 MD = FwdRef.first.get(); 1318 1319 return false; 1320 } 1321 1322 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1323 assert(MO.isImplicit()); 1324 return MO.isDef() ? "implicit-def" : "implicit"; 1325 } 1326 1327 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1328 Register Reg) { 1329 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1330 return StringRef(TRI->getName(Reg)).lower(); 1331 } 1332 1333 /// Return true if the parsed machine operands contain a given machine operand. 1334 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1335 ArrayRef<ParsedMachineOperand> Operands) { 1336 for (const auto &I : Operands) { 1337 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1338 return true; 1339 } 1340 return false; 1341 } 1342 1343 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1344 const MCInstrDesc &MCID) { 1345 if (MCID.isCall()) 1346 // We can't verify call instructions as they can contain arbitrary implicit 1347 // register and register mask operands. 1348 return false; 1349 1350 // Gather all the expected implicit operands. 1351 SmallVector<MachineOperand, 4> ImplicitOperands; 1352 if (MCID.ImplicitDefs) 1353 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1354 ImplicitOperands.push_back( 1355 MachineOperand::CreateReg(*ImpDefs, true, true)); 1356 if (MCID.ImplicitUses) 1357 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1358 ImplicitOperands.push_back( 1359 MachineOperand::CreateReg(*ImpUses, false, true)); 1360 1361 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1362 assert(TRI && "Expected target register info"); 1363 for (const auto &I : ImplicitOperands) { 1364 if (isImplicitOperandIn(I, Operands)) 1365 continue; 1366 return error(Operands.empty() ? Token.location() : Operands.back().End, 1367 Twine("missing implicit register operand '") + 1368 printImplicitRegisterFlag(I) + " $" + 1369 getRegisterName(TRI, I.getReg()) + "'"); 1370 } 1371 return false; 1372 } 1373 1374 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1375 // Allow frame and fast math flags for OPCODE 1376 while (Token.is(MIToken::kw_frame_setup) || 1377 Token.is(MIToken::kw_frame_destroy) || 1378 Token.is(MIToken::kw_nnan) || 1379 Token.is(MIToken::kw_ninf) || 1380 Token.is(MIToken::kw_nsz) || 1381 Token.is(MIToken::kw_arcp) || 1382 Token.is(MIToken::kw_contract) || 1383 Token.is(MIToken::kw_afn) || 1384 Token.is(MIToken::kw_reassoc) || 1385 Token.is(MIToken::kw_nuw) || 1386 Token.is(MIToken::kw_nsw) || 1387 Token.is(MIToken::kw_exact) || 1388 Token.is(MIToken::kw_nofpexcept)) { 1389 // Mine frame and fast math flags 1390 if (Token.is(MIToken::kw_frame_setup)) 1391 Flags |= MachineInstr::FrameSetup; 1392 if (Token.is(MIToken::kw_frame_destroy)) 1393 Flags |= MachineInstr::FrameDestroy; 1394 if (Token.is(MIToken::kw_nnan)) 1395 Flags |= MachineInstr::FmNoNans; 1396 if (Token.is(MIToken::kw_ninf)) 1397 Flags |= MachineInstr::FmNoInfs; 1398 if (Token.is(MIToken::kw_nsz)) 1399 Flags |= MachineInstr::FmNsz; 1400 if (Token.is(MIToken::kw_arcp)) 1401 Flags |= MachineInstr::FmArcp; 1402 if (Token.is(MIToken::kw_contract)) 1403 Flags |= MachineInstr::FmContract; 1404 if (Token.is(MIToken::kw_afn)) 1405 Flags |= MachineInstr::FmAfn; 1406 if (Token.is(MIToken::kw_reassoc)) 1407 Flags |= MachineInstr::FmReassoc; 1408 if (Token.is(MIToken::kw_nuw)) 1409 Flags |= MachineInstr::NoUWrap; 1410 if (Token.is(MIToken::kw_nsw)) 1411 Flags |= MachineInstr::NoSWrap; 1412 if (Token.is(MIToken::kw_exact)) 1413 Flags |= MachineInstr::IsExact; 1414 if (Token.is(MIToken::kw_nofpexcept)) 1415 Flags |= MachineInstr::NoFPExcept; 1416 1417 lex(); 1418 } 1419 if (Token.isNot(MIToken::Identifier)) 1420 return error("expected a machine instruction"); 1421 StringRef InstrName = Token.stringValue(); 1422 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1423 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1424 lex(); 1425 return false; 1426 } 1427 1428 bool MIParser::parseNamedRegister(Register &Reg) { 1429 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1430 StringRef Name = Token.stringValue(); 1431 if (PFS.Target.getRegisterByName(Name, Reg)) 1432 return error(Twine("unknown register name '") + Name + "'"); 1433 return false; 1434 } 1435 1436 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1437 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1438 StringRef Name = Token.stringValue(); 1439 // TODO: Check that the VReg name is not the same as a physical register name. 1440 // If it is, then print a warning (when warnings are implemented). 1441 Info = &PFS.getVRegInfoNamed(Name); 1442 return false; 1443 } 1444 1445 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1446 if (Token.is(MIToken::NamedVirtualRegister)) 1447 return parseNamedVirtualRegister(Info); 1448 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1449 unsigned ID; 1450 if (getUnsigned(ID)) 1451 return true; 1452 Info = &PFS.getVRegInfo(ID); 1453 return false; 1454 } 1455 1456 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1457 switch (Token.kind()) { 1458 case MIToken::underscore: 1459 Reg = 0; 1460 return false; 1461 case MIToken::NamedRegister: 1462 return parseNamedRegister(Reg); 1463 case MIToken::NamedVirtualRegister: 1464 case MIToken::VirtualRegister: 1465 if (parseVirtualRegister(Info)) 1466 return true; 1467 Reg = Info->VReg; 1468 return false; 1469 // TODO: Parse other register kinds. 1470 default: 1471 llvm_unreachable("The current token should be a register"); 1472 } 1473 } 1474 1475 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1476 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1477 return error("expected '_', register class, or register bank name"); 1478 StringRef::iterator Loc = Token.location(); 1479 StringRef Name = Token.stringValue(); 1480 1481 // Was it a register class? 1482 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1483 if (RC) { 1484 lex(); 1485 1486 switch (RegInfo.Kind) { 1487 case VRegInfo::UNKNOWN: 1488 case VRegInfo::NORMAL: 1489 RegInfo.Kind = VRegInfo::NORMAL; 1490 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1491 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1492 return error(Loc, Twine("conflicting register classes, previously: ") + 1493 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1494 } 1495 RegInfo.D.RC = RC; 1496 RegInfo.Explicit = true; 1497 return false; 1498 1499 case VRegInfo::GENERIC: 1500 case VRegInfo::REGBANK: 1501 return error(Loc, "register class specification on generic register"); 1502 } 1503 llvm_unreachable("Unexpected register kind"); 1504 } 1505 1506 // Should be a register bank or a generic register. 1507 const RegisterBank *RegBank = nullptr; 1508 if (Name != "_") { 1509 RegBank = PFS.Target.getRegBank(Name); 1510 if (!RegBank) 1511 return error(Loc, "expected '_', register class, or register bank name"); 1512 } 1513 1514 lex(); 1515 1516 switch (RegInfo.Kind) { 1517 case VRegInfo::UNKNOWN: 1518 case VRegInfo::GENERIC: 1519 case VRegInfo::REGBANK: 1520 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1521 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1522 return error(Loc, "conflicting generic register banks"); 1523 RegInfo.D.RegBank = RegBank; 1524 RegInfo.Explicit = true; 1525 return false; 1526 1527 case VRegInfo::NORMAL: 1528 return error(Loc, "register bank specification on normal register"); 1529 } 1530 llvm_unreachable("Unexpected register kind"); 1531 } 1532 1533 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1534 const unsigned OldFlags = Flags; 1535 switch (Token.kind()) { 1536 case MIToken::kw_implicit: 1537 Flags |= RegState::Implicit; 1538 break; 1539 case MIToken::kw_implicit_define: 1540 Flags |= RegState::ImplicitDefine; 1541 break; 1542 case MIToken::kw_def: 1543 Flags |= RegState::Define; 1544 break; 1545 case MIToken::kw_dead: 1546 Flags |= RegState::Dead; 1547 break; 1548 case MIToken::kw_killed: 1549 Flags |= RegState::Kill; 1550 break; 1551 case MIToken::kw_undef: 1552 Flags |= RegState::Undef; 1553 break; 1554 case MIToken::kw_internal: 1555 Flags |= RegState::InternalRead; 1556 break; 1557 case MIToken::kw_early_clobber: 1558 Flags |= RegState::EarlyClobber; 1559 break; 1560 case MIToken::kw_debug_use: 1561 Flags |= RegState::Debug; 1562 break; 1563 case MIToken::kw_renamable: 1564 Flags |= RegState::Renamable; 1565 break; 1566 default: 1567 llvm_unreachable("The current token should be a register flag"); 1568 } 1569 if (OldFlags == Flags) 1570 // We know that the same flag is specified more than once when the flags 1571 // weren't modified. 1572 return error("duplicate '" + Token.stringValue() + "' register flag"); 1573 lex(); 1574 return false; 1575 } 1576 1577 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1578 assert(Token.is(MIToken::dot)); 1579 lex(); 1580 if (Token.isNot(MIToken::Identifier)) 1581 return error("expected a subregister index after '.'"); 1582 auto Name = Token.stringValue(); 1583 SubReg = PFS.Target.getSubRegIndex(Name); 1584 if (!SubReg) 1585 return error(Twine("use of unknown subregister index '") + Name + "'"); 1586 lex(); 1587 return false; 1588 } 1589 1590 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1591 if (!consumeIfPresent(MIToken::kw_tied_def)) 1592 return true; 1593 if (Token.isNot(MIToken::IntegerLiteral)) 1594 return error("expected an integer literal after 'tied-def'"); 1595 if (getUnsigned(TiedDefIdx)) 1596 return true; 1597 lex(); 1598 if (expectAndConsume(MIToken::rparen)) 1599 return true; 1600 return false; 1601 } 1602 1603 bool MIParser::assignRegisterTies(MachineInstr &MI, 1604 ArrayRef<ParsedMachineOperand> Operands) { 1605 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1606 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1607 if (!Operands[I].TiedDefIdx) 1608 continue; 1609 // The parser ensures that this operand is a register use, so we just have 1610 // to check the tied-def operand. 1611 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1612 if (DefIdx >= E) 1613 return error(Operands[I].Begin, 1614 Twine("use of invalid tied-def operand index '" + 1615 Twine(DefIdx) + "'; instruction has only ") + 1616 Twine(E) + " operands"); 1617 const auto &DefOperand = Operands[DefIdx].Operand; 1618 if (!DefOperand.isReg() || !DefOperand.isDef()) 1619 // FIXME: add note with the def operand. 1620 return error(Operands[I].Begin, 1621 Twine("use of invalid tied-def operand index '") + 1622 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1623 " isn't a defined register"); 1624 // Check that the tied-def operand wasn't tied elsewhere. 1625 for (const auto &TiedPair : TiedRegisterPairs) { 1626 if (TiedPair.first == DefIdx) 1627 return error(Operands[I].Begin, 1628 Twine("the tied-def operand #") + Twine(DefIdx) + 1629 " is already tied with another register operand"); 1630 } 1631 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1632 } 1633 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1634 // indices must be less than tied max. 1635 for (const auto &TiedPair : TiedRegisterPairs) 1636 MI.tieOperands(TiedPair.first, TiedPair.second); 1637 return false; 1638 } 1639 1640 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1641 Optional<unsigned> &TiedDefIdx, 1642 bool IsDef) { 1643 unsigned Flags = IsDef ? RegState::Define : 0; 1644 while (Token.isRegisterFlag()) { 1645 if (parseRegisterFlag(Flags)) 1646 return true; 1647 } 1648 if (!Token.isRegister()) 1649 return error("expected a register after register flags"); 1650 Register Reg; 1651 VRegInfo *RegInfo; 1652 if (parseRegister(Reg, RegInfo)) 1653 return true; 1654 lex(); 1655 unsigned SubReg = 0; 1656 if (Token.is(MIToken::dot)) { 1657 if (parseSubRegisterIndex(SubReg)) 1658 return true; 1659 if (!Register::isVirtualRegister(Reg)) 1660 return error("subregister index expects a virtual register"); 1661 } 1662 if (Token.is(MIToken::colon)) { 1663 if (!Register::isVirtualRegister(Reg)) 1664 return error("register class specification expects a virtual register"); 1665 lex(); 1666 if (parseRegisterClassOrBank(*RegInfo)) 1667 return true; 1668 } 1669 MachineRegisterInfo &MRI = MF.getRegInfo(); 1670 if ((Flags & RegState::Define) == 0) { 1671 if (consumeIfPresent(MIToken::lparen)) { 1672 unsigned Idx; 1673 if (!parseRegisterTiedDefIndex(Idx)) 1674 TiedDefIdx = Idx; 1675 else { 1676 // Try a redundant low-level type. 1677 LLT Ty; 1678 if (parseLowLevelType(Token.location(), Ty)) 1679 return error("expected tied-def or low-level type after '('"); 1680 1681 if (expectAndConsume(MIToken::rparen)) 1682 return true; 1683 1684 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1685 return error("inconsistent type for generic virtual register"); 1686 1687 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1688 MRI.setType(Reg, Ty); 1689 } 1690 } 1691 } else if (consumeIfPresent(MIToken::lparen)) { 1692 // Virtual registers may have a tpe with GlobalISel. 1693 if (!Register::isVirtualRegister(Reg)) 1694 return error("unexpected type on physical register"); 1695 1696 LLT Ty; 1697 if (parseLowLevelType(Token.location(), Ty)) 1698 return true; 1699 1700 if (expectAndConsume(MIToken::rparen)) 1701 return true; 1702 1703 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1704 return error("inconsistent type for generic virtual register"); 1705 1706 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1707 MRI.setType(Reg, Ty); 1708 } else if (Register::isVirtualRegister(Reg)) { 1709 // Generic virtual registers must have a type. 1710 // If we end up here this means the type hasn't been specified and 1711 // this is bad! 1712 if (RegInfo->Kind == VRegInfo::GENERIC || 1713 RegInfo->Kind == VRegInfo::REGBANK) 1714 return error("generic virtual registers must have a type"); 1715 } 1716 Dest = MachineOperand::CreateReg( 1717 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1718 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1719 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1720 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1721 1722 return false; 1723 } 1724 1725 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1726 assert(Token.is(MIToken::IntegerLiteral)); 1727 const APSInt &Int = Token.integerValue(); 1728 if (Int.getMinSignedBits() > 64) 1729 return error("integer literal is too large to be an immediate operand"); 1730 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1731 lex(); 1732 return false; 1733 } 1734 1735 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1736 const unsigned OpIdx, 1737 MachineOperand &Dest, 1738 const MIRFormatter &MF) { 1739 assert(Token.is(MIToken::dot)); 1740 auto Loc = Token.location(); // record start position 1741 size_t Len = 1; // for "." 1742 lex(); 1743 1744 // Handle the case that mnemonic starts with number. 1745 if (Token.is(MIToken::IntegerLiteral)) { 1746 Len += Token.range().size(); 1747 lex(); 1748 } 1749 1750 StringRef Src; 1751 if (Token.is(MIToken::comma)) 1752 Src = StringRef(Loc, Len); 1753 else { 1754 assert(Token.is(MIToken::Identifier)); 1755 Src = StringRef(Loc, Len + Token.stringValue().size()); 1756 } 1757 int64_t Val; 1758 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1759 [this](StringRef::iterator Loc, const Twine &Msg) 1760 -> bool { return error(Loc, Msg); })) 1761 return true; 1762 1763 Dest = MachineOperand::CreateImm(Val); 1764 if (!Token.is(MIToken::comma)) 1765 lex(); 1766 return false; 1767 } 1768 1769 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1770 PerFunctionMIParsingState &PFS, const Constant *&C, 1771 ErrorCallbackType ErrCB) { 1772 auto Source = StringValue.str(); // The source has to be null terminated. 1773 SMDiagnostic Err; 1774 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1775 &PFS.IRSlots); 1776 if (!C) 1777 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1778 return false; 1779 } 1780 1781 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1782 const Constant *&C) { 1783 return ::parseIRConstant( 1784 Loc, StringValue, PFS, C, 1785 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1786 return error(Loc, Msg); 1787 }); 1788 } 1789 1790 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1791 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1792 return true; 1793 lex(); 1794 return false; 1795 } 1796 1797 // See LLT implemntation for bit size limits. 1798 static bool verifyScalarSize(uint64_t Size) { 1799 return Size != 0 && isUInt<16>(Size); 1800 } 1801 1802 static bool verifyVectorElementCount(uint64_t NumElts) { 1803 return NumElts != 0 && isUInt<16>(NumElts); 1804 } 1805 1806 static bool verifyAddrSpace(uint64_t AddrSpace) { 1807 return isUInt<24>(AddrSpace); 1808 } 1809 1810 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1811 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1812 StringRef SizeStr = Token.range().drop_front(); 1813 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1814 return error("expected integers after 's'/'p' type character"); 1815 } 1816 1817 if (Token.range().front() == 's') { 1818 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1819 if (!verifyScalarSize(ScalarSize)) 1820 return error("invalid size for scalar type"); 1821 1822 Ty = LLT::scalar(ScalarSize); 1823 lex(); 1824 return false; 1825 } else if (Token.range().front() == 'p') { 1826 const DataLayout &DL = MF.getDataLayout(); 1827 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1828 if (!verifyAddrSpace(AS)) 1829 return error("invalid address space number"); 1830 1831 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1832 lex(); 1833 return false; 1834 } 1835 1836 // Now we're looking for a vector. 1837 if (Token.isNot(MIToken::less)) 1838 return error(Loc, 1839 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1840 lex(); 1841 1842 if (Token.isNot(MIToken::IntegerLiteral)) 1843 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1844 uint64_t NumElements = Token.integerValue().getZExtValue(); 1845 if (!verifyVectorElementCount(NumElements)) 1846 return error("invalid number of vector elements"); 1847 1848 lex(); 1849 1850 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1851 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1852 lex(); 1853 1854 if (Token.range().front() != 's' && Token.range().front() != 'p') 1855 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1856 StringRef SizeStr = Token.range().drop_front(); 1857 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1858 return error("expected integers after 's'/'p' type character"); 1859 1860 if (Token.range().front() == 's') { 1861 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1862 if (!verifyScalarSize(ScalarSize)) 1863 return error("invalid size for scalar type"); 1864 Ty = LLT::scalar(ScalarSize); 1865 } else if (Token.range().front() == 'p') { 1866 const DataLayout &DL = MF.getDataLayout(); 1867 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1868 if (!verifyAddrSpace(AS)) 1869 return error("invalid address space number"); 1870 1871 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1872 } else 1873 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1874 lex(); 1875 1876 if (Token.isNot(MIToken::greater)) 1877 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1878 lex(); 1879 1880 Ty = LLT::fixed_vector(NumElements, Ty); 1881 return false; 1882 } 1883 1884 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1885 assert(Token.is(MIToken::Identifier)); 1886 StringRef TypeStr = Token.range(); 1887 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1888 TypeStr.front() != 'p') 1889 return error( 1890 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1891 StringRef SizeStr = Token.range().drop_front(); 1892 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1893 return error("expected integers after 'i'/'s'/'p' type character"); 1894 1895 auto Loc = Token.location(); 1896 lex(); 1897 if (Token.isNot(MIToken::IntegerLiteral)) { 1898 if (Token.isNot(MIToken::Identifier) || 1899 !(Token.range() == "true" || Token.range() == "false")) 1900 return error("expected an integer literal"); 1901 } 1902 const Constant *C = nullptr; 1903 if (parseIRConstant(Loc, C)) 1904 return true; 1905 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1906 return false; 1907 } 1908 1909 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1910 auto Loc = Token.location(); 1911 lex(); 1912 if (Token.isNot(MIToken::FloatingPointLiteral) && 1913 Token.isNot(MIToken::HexLiteral)) 1914 return error("expected a floating point literal"); 1915 const Constant *C = nullptr; 1916 if (parseIRConstant(Loc, C)) 1917 return true; 1918 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1919 return false; 1920 } 1921 1922 static bool getHexUint(const MIToken &Token, APInt &Result) { 1923 assert(Token.is(MIToken::HexLiteral)); 1924 StringRef S = Token.range(); 1925 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1926 // This could be a floating point literal with a special prefix. 1927 if (!isxdigit(S[2])) 1928 return true; 1929 StringRef V = S.substr(2); 1930 APInt A(V.size()*4, V, 16); 1931 1932 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1933 // sure it isn't the case before constructing result. 1934 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1935 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1936 return false; 1937 } 1938 1939 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1940 ErrorCallbackType ErrCB) { 1941 if (Token.hasIntegerValue()) { 1942 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1943 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1944 if (Val64 == Limit) 1945 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1946 Result = Val64; 1947 return false; 1948 } 1949 if (Token.is(MIToken::HexLiteral)) { 1950 APInt A; 1951 if (getHexUint(Token, A)) 1952 return true; 1953 if (A.getBitWidth() > 32) 1954 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1955 Result = A.getZExtValue(); 1956 return false; 1957 } 1958 return true; 1959 } 1960 1961 bool MIParser::getUnsigned(unsigned &Result) { 1962 return ::getUnsigned( 1963 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1964 return error(Loc, Msg); 1965 }); 1966 } 1967 1968 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1969 assert(Token.is(MIToken::MachineBasicBlock) || 1970 Token.is(MIToken::MachineBasicBlockLabel)); 1971 unsigned Number; 1972 if (getUnsigned(Number)) 1973 return true; 1974 auto MBBInfo = PFS.MBBSlots.find(Number); 1975 if (MBBInfo == PFS.MBBSlots.end()) 1976 return error(Twine("use of undefined machine basic block #") + 1977 Twine(Number)); 1978 MBB = MBBInfo->second; 1979 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1980 // we drop the <irname> from the bb.<id>.<irname> format. 1981 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1982 return error(Twine("the name of machine basic block #") + Twine(Number) + 1983 " isn't '" + Token.stringValue() + "'"); 1984 return false; 1985 } 1986 1987 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1988 MachineBasicBlock *MBB; 1989 if (parseMBBReference(MBB)) 1990 return true; 1991 Dest = MachineOperand::CreateMBB(MBB); 1992 lex(); 1993 return false; 1994 } 1995 1996 bool MIParser::parseStackFrameIndex(int &FI) { 1997 assert(Token.is(MIToken::StackObject)); 1998 unsigned ID; 1999 if (getUnsigned(ID)) 2000 return true; 2001 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 2002 if (ObjectInfo == PFS.StackObjectSlots.end()) 2003 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 2004 "'"); 2005 StringRef Name; 2006 if (const auto *Alloca = 2007 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 2008 Name = Alloca->getName(); 2009 if (!Token.stringValue().empty() && Token.stringValue() != Name) 2010 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 2011 "' isn't '" + Token.stringValue() + "'"); 2012 lex(); 2013 FI = ObjectInfo->second; 2014 return false; 2015 } 2016 2017 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 2018 int FI; 2019 if (parseStackFrameIndex(FI)) 2020 return true; 2021 Dest = MachineOperand::CreateFI(FI); 2022 return false; 2023 } 2024 2025 bool MIParser::parseFixedStackFrameIndex(int &FI) { 2026 assert(Token.is(MIToken::FixedStackObject)); 2027 unsigned ID; 2028 if (getUnsigned(ID)) 2029 return true; 2030 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 2031 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 2032 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 2033 Twine(ID) + "'"); 2034 lex(); 2035 FI = ObjectInfo->second; 2036 return false; 2037 } 2038 2039 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 2040 int FI; 2041 if (parseFixedStackFrameIndex(FI)) 2042 return true; 2043 Dest = MachineOperand::CreateFI(FI); 2044 return false; 2045 } 2046 2047 static bool parseGlobalValue(const MIToken &Token, 2048 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 2049 ErrorCallbackType ErrCB) { 2050 switch (Token.kind()) { 2051 case MIToken::NamedGlobalValue: { 2052 const Module *M = PFS.MF.getFunction().getParent(); 2053 GV = M->getNamedValue(Token.stringValue()); 2054 if (!GV) 2055 return ErrCB(Token.location(), Twine("use of undefined global value '") + 2056 Token.range() + "'"); 2057 break; 2058 } 2059 case MIToken::GlobalValue: { 2060 unsigned GVIdx; 2061 if (getUnsigned(Token, GVIdx, ErrCB)) 2062 return true; 2063 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 2064 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 2065 Twine(GVIdx) + "'"); 2066 GV = PFS.IRSlots.GlobalValues[GVIdx]; 2067 break; 2068 } 2069 default: 2070 llvm_unreachable("The current token should be a global value"); 2071 } 2072 return false; 2073 } 2074 2075 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 2076 return ::parseGlobalValue( 2077 Token, PFS, GV, 2078 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2079 return error(Loc, Msg); 2080 }); 2081 } 2082 2083 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 2084 GlobalValue *GV = nullptr; 2085 if (parseGlobalValue(GV)) 2086 return true; 2087 lex(); 2088 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 2089 if (parseOperandsOffset(Dest)) 2090 return true; 2091 return false; 2092 } 2093 2094 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 2095 assert(Token.is(MIToken::ConstantPoolItem)); 2096 unsigned ID; 2097 if (getUnsigned(ID)) 2098 return true; 2099 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 2100 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 2101 return error("use of undefined constant '%const." + Twine(ID) + "'"); 2102 lex(); 2103 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 2104 if (parseOperandsOffset(Dest)) 2105 return true; 2106 return false; 2107 } 2108 2109 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 2110 assert(Token.is(MIToken::JumpTableIndex)); 2111 unsigned ID; 2112 if (getUnsigned(ID)) 2113 return true; 2114 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 2115 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 2116 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 2117 lex(); 2118 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 2119 return false; 2120 } 2121 2122 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 2123 assert(Token.is(MIToken::ExternalSymbol)); 2124 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 2125 lex(); 2126 Dest = MachineOperand::CreateES(Symbol); 2127 if (parseOperandsOffset(Dest)) 2128 return true; 2129 return false; 2130 } 2131 2132 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 2133 assert(Token.is(MIToken::MCSymbol)); 2134 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 2135 lex(); 2136 Dest = MachineOperand::CreateMCSymbol(Symbol); 2137 if (parseOperandsOffset(Dest)) 2138 return true; 2139 return false; 2140 } 2141 2142 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 2143 assert(Token.is(MIToken::SubRegisterIndex)); 2144 StringRef Name = Token.stringValue(); 2145 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 2146 if (SubRegIndex == 0) 2147 return error(Twine("unknown subregister index '") + Name + "'"); 2148 lex(); 2149 Dest = MachineOperand::CreateImm(SubRegIndex); 2150 return false; 2151 } 2152 2153 bool MIParser::parseMDNode(MDNode *&Node) { 2154 assert(Token.is(MIToken::exclaim)); 2155 2156 auto Loc = Token.location(); 2157 lex(); 2158 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2159 return error("expected metadata id after '!'"); 2160 unsigned ID; 2161 if (getUnsigned(ID)) 2162 return true; 2163 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2164 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) { 2165 NodeInfo = PFS.MachineMetadataNodes.find(ID); 2166 if (NodeInfo == PFS.MachineMetadataNodes.end()) 2167 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2168 } 2169 lex(); 2170 Node = NodeInfo->second.get(); 2171 return false; 2172 } 2173 2174 bool MIParser::parseDIExpression(MDNode *&Expr) { 2175 assert(Token.is(MIToken::md_diexpr)); 2176 lex(); 2177 2178 // FIXME: Share this parsing with the IL parser. 2179 SmallVector<uint64_t, 8> Elements; 2180 2181 if (expectAndConsume(MIToken::lparen)) 2182 return true; 2183 2184 if (Token.isNot(MIToken::rparen)) { 2185 do { 2186 if (Token.is(MIToken::Identifier)) { 2187 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2188 lex(); 2189 Elements.push_back(Op); 2190 continue; 2191 } 2192 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2193 lex(); 2194 Elements.push_back(Enc); 2195 continue; 2196 } 2197 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2198 } 2199 2200 if (Token.isNot(MIToken::IntegerLiteral) || 2201 Token.integerValue().isSigned()) 2202 return error("expected unsigned integer"); 2203 2204 auto &U = Token.integerValue(); 2205 if (U.ugt(UINT64_MAX)) 2206 return error("element too large, limit is " + Twine(UINT64_MAX)); 2207 Elements.push_back(U.getZExtValue()); 2208 lex(); 2209 2210 } while (consumeIfPresent(MIToken::comma)); 2211 } 2212 2213 if (expectAndConsume(MIToken::rparen)) 2214 return true; 2215 2216 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2217 return false; 2218 } 2219 2220 bool MIParser::parseDILocation(MDNode *&Loc) { 2221 assert(Token.is(MIToken::md_dilocation)); 2222 lex(); 2223 2224 bool HaveLine = false; 2225 unsigned Line = 0; 2226 unsigned Column = 0; 2227 MDNode *Scope = nullptr; 2228 MDNode *InlinedAt = nullptr; 2229 bool ImplicitCode = false; 2230 2231 if (expectAndConsume(MIToken::lparen)) 2232 return true; 2233 2234 if (Token.isNot(MIToken::rparen)) { 2235 do { 2236 if (Token.is(MIToken::Identifier)) { 2237 if (Token.stringValue() == "line") { 2238 lex(); 2239 if (expectAndConsume(MIToken::colon)) 2240 return true; 2241 if (Token.isNot(MIToken::IntegerLiteral) || 2242 Token.integerValue().isSigned()) 2243 return error("expected unsigned integer"); 2244 Line = Token.integerValue().getZExtValue(); 2245 HaveLine = true; 2246 lex(); 2247 continue; 2248 } 2249 if (Token.stringValue() == "column") { 2250 lex(); 2251 if (expectAndConsume(MIToken::colon)) 2252 return true; 2253 if (Token.isNot(MIToken::IntegerLiteral) || 2254 Token.integerValue().isSigned()) 2255 return error("expected unsigned integer"); 2256 Column = Token.integerValue().getZExtValue(); 2257 lex(); 2258 continue; 2259 } 2260 if (Token.stringValue() == "scope") { 2261 lex(); 2262 if (expectAndConsume(MIToken::colon)) 2263 return true; 2264 if (parseMDNode(Scope)) 2265 return error("expected metadata node"); 2266 if (!isa<DIScope>(Scope)) 2267 return error("expected DIScope node"); 2268 continue; 2269 } 2270 if (Token.stringValue() == "inlinedAt") { 2271 lex(); 2272 if (expectAndConsume(MIToken::colon)) 2273 return true; 2274 if (Token.is(MIToken::exclaim)) { 2275 if (parseMDNode(InlinedAt)) 2276 return true; 2277 } else if (Token.is(MIToken::md_dilocation)) { 2278 if (parseDILocation(InlinedAt)) 2279 return true; 2280 } else 2281 return error("expected metadata node"); 2282 if (!isa<DILocation>(InlinedAt)) 2283 return error("expected DILocation node"); 2284 continue; 2285 } 2286 if (Token.stringValue() == "isImplicitCode") { 2287 lex(); 2288 if (expectAndConsume(MIToken::colon)) 2289 return true; 2290 if (!Token.is(MIToken::Identifier)) 2291 return error("expected true/false"); 2292 // As far as I can see, we don't have any existing need for parsing 2293 // true/false in MIR yet. Do it ad-hoc until there's something else 2294 // that needs it. 2295 if (Token.stringValue() == "true") 2296 ImplicitCode = true; 2297 else if (Token.stringValue() == "false") 2298 ImplicitCode = false; 2299 else 2300 return error("expected true/false"); 2301 lex(); 2302 continue; 2303 } 2304 } 2305 return error(Twine("invalid DILocation argument '") + 2306 Token.stringValue() + "'"); 2307 } while (consumeIfPresent(MIToken::comma)); 2308 } 2309 2310 if (expectAndConsume(MIToken::rparen)) 2311 return true; 2312 2313 if (!HaveLine) 2314 return error("DILocation requires line number"); 2315 if (!Scope) 2316 return error("DILocation requires a scope"); 2317 2318 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2319 InlinedAt, ImplicitCode); 2320 return false; 2321 } 2322 2323 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2324 MDNode *Node = nullptr; 2325 if (Token.is(MIToken::exclaim)) { 2326 if (parseMDNode(Node)) 2327 return true; 2328 } else if (Token.is(MIToken::md_diexpr)) { 2329 // FIXME: This should be driven off of the UNIQUED property in Metadata.def 2330 if (parseDIExpression(Node)) 2331 return true; 2332 } 2333 Dest = MachineOperand::CreateMetadata(Node); 2334 return false; 2335 } 2336 2337 bool MIParser::parseCFIOffset(int &Offset) { 2338 if (Token.isNot(MIToken::IntegerLiteral)) 2339 return error("expected a cfi offset"); 2340 if (Token.integerValue().getMinSignedBits() > 32) 2341 return error("expected a 32 bit integer (the cfi offset is too large)"); 2342 Offset = (int)Token.integerValue().getExtValue(); 2343 lex(); 2344 return false; 2345 } 2346 2347 bool MIParser::parseCFIRegister(Register &Reg) { 2348 if (Token.isNot(MIToken::NamedRegister)) 2349 return error("expected a cfi register"); 2350 Register LLVMReg; 2351 if (parseNamedRegister(LLVMReg)) 2352 return true; 2353 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2354 assert(TRI && "Expected target register info"); 2355 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2356 if (DwarfReg < 0) 2357 return error("invalid DWARF register"); 2358 Reg = (unsigned)DwarfReg; 2359 lex(); 2360 return false; 2361 } 2362 2363 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2364 if (Token.isNot(MIToken::IntegerLiteral)) 2365 return error("expected a cfi address space literal"); 2366 if (Token.integerValue().isSigned()) 2367 return error("expected an unsigned integer (cfi address space)"); 2368 AddressSpace = Token.integerValue().getZExtValue(); 2369 lex(); 2370 return false; 2371 } 2372 2373 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2374 do { 2375 if (Token.isNot(MIToken::HexLiteral)) 2376 return error("expected a hexadecimal literal"); 2377 unsigned Value; 2378 if (getUnsigned(Value)) 2379 return true; 2380 if (Value > UINT8_MAX) 2381 return error("expected a 8-bit integer (too large)"); 2382 Values.push_back(static_cast<uint8_t>(Value)); 2383 lex(); 2384 } while (consumeIfPresent(MIToken::comma)); 2385 return false; 2386 } 2387 2388 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2389 auto Kind = Token.kind(); 2390 lex(); 2391 int Offset; 2392 Register Reg; 2393 unsigned AddressSpace; 2394 unsigned CFIIndex; 2395 switch (Kind) { 2396 case MIToken::kw_cfi_same_value: 2397 if (parseCFIRegister(Reg)) 2398 return true; 2399 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2400 break; 2401 case MIToken::kw_cfi_offset: 2402 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2403 parseCFIOffset(Offset)) 2404 return true; 2405 CFIIndex = 2406 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2407 break; 2408 case MIToken::kw_cfi_rel_offset: 2409 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2410 parseCFIOffset(Offset)) 2411 return true; 2412 CFIIndex = MF.addFrameInst( 2413 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2414 break; 2415 case MIToken::kw_cfi_def_cfa_register: 2416 if (parseCFIRegister(Reg)) 2417 return true; 2418 CFIIndex = 2419 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2420 break; 2421 case MIToken::kw_cfi_def_cfa_offset: 2422 if (parseCFIOffset(Offset)) 2423 return true; 2424 CFIIndex = 2425 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2426 break; 2427 case MIToken::kw_cfi_adjust_cfa_offset: 2428 if (parseCFIOffset(Offset)) 2429 return true; 2430 CFIIndex = MF.addFrameInst( 2431 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2432 break; 2433 case MIToken::kw_cfi_def_cfa: 2434 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2435 parseCFIOffset(Offset)) 2436 return true; 2437 CFIIndex = 2438 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2439 break; 2440 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2441 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2442 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2443 parseCFIAddressSpace(AddressSpace)) 2444 return true; 2445 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2446 nullptr, Reg, Offset, AddressSpace)); 2447 break; 2448 case MIToken::kw_cfi_remember_state: 2449 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2450 break; 2451 case MIToken::kw_cfi_restore: 2452 if (parseCFIRegister(Reg)) 2453 return true; 2454 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2455 break; 2456 case MIToken::kw_cfi_restore_state: 2457 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2458 break; 2459 case MIToken::kw_cfi_undefined: 2460 if (parseCFIRegister(Reg)) 2461 return true; 2462 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2463 break; 2464 case MIToken::kw_cfi_register: { 2465 Register Reg2; 2466 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2467 parseCFIRegister(Reg2)) 2468 return true; 2469 2470 CFIIndex = 2471 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2472 break; 2473 } 2474 case MIToken::kw_cfi_window_save: 2475 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2476 break; 2477 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2478 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2479 break; 2480 case MIToken::kw_cfi_escape: { 2481 std::string Values; 2482 if (parseCFIEscapeValues(Values)) 2483 return true; 2484 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2485 break; 2486 } 2487 default: 2488 // TODO: Parse the other CFI operands. 2489 llvm_unreachable("The current token should be a cfi operand"); 2490 } 2491 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2492 return false; 2493 } 2494 2495 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2496 switch (Token.kind()) { 2497 case MIToken::NamedIRBlock: { 2498 BB = dyn_cast_or_null<BasicBlock>( 2499 F.getValueSymbolTable()->lookup(Token.stringValue())); 2500 if (!BB) 2501 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2502 break; 2503 } 2504 case MIToken::IRBlock: { 2505 unsigned SlotNumber = 0; 2506 if (getUnsigned(SlotNumber)) 2507 return true; 2508 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2509 if (!BB) 2510 return error(Twine("use of undefined IR block '%ir-block.") + 2511 Twine(SlotNumber) + "'"); 2512 break; 2513 } 2514 default: 2515 llvm_unreachable("The current token should be an IR block reference"); 2516 } 2517 return false; 2518 } 2519 2520 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2521 assert(Token.is(MIToken::kw_blockaddress)); 2522 lex(); 2523 if (expectAndConsume(MIToken::lparen)) 2524 return true; 2525 if (Token.isNot(MIToken::GlobalValue) && 2526 Token.isNot(MIToken::NamedGlobalValue)) 2527 return error("expected a global value"); 2528 GlobalValue *GV = nullptr; 2529 if (parseGlobalValue(GV)) 2530 return true; 2531 auto *F = dyn_cast<Function>(GV); 2532 if (!F) 2533 return error("expected an IR function reference"); 2534 lex(); 2535 if (expectAndConsume(MIToken::comma)) 2536 return true; 2537 BasicBlock *BB = nullptr; 2538 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2539 return error("expected an IR block reference"); 2540 if (parseIRBlock(BB, *F)) 2541 return true; 2542 lex(); 2543 if (expectAndConsume(MIToken::rparen)) 2544 return true; 2545 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2546 if (parseOperandsOffset(Dest)) 2547 return true; 2548 return false; 2549 } 2550 2551 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2552 assert(Token.is(MIToken::kw_intrinsic)); 2553 lex(); 2554 if (expectAndConsume(MIToken::lparen)) 2555 return error("expected syntax intrinsic(@llvm.whatever)"); 2556 2557 if (Token.isNot(MIToken::NamedGlobalValue)) 2558 return error("expected syntax intrinsic(@llvm.whatever)"); 2559 2560 std::string Name = std::string(Token.stringValue()); 2561 lex(); 2562 2563 if (expectAndConsume(MIToken::rparen)) 2564 return error("expected ')' to terminate intrinsic name"); 2565 2566 // Find out what intrinsic we're dealing with, first try the global namespace 2567 // and then the target's private intrinsics if that fails. 2568 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2569 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2570 if (ID == Intrinsic::not_intrinsic && TII) 2571 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2572 2573 if (ID == Intrinsic::not_intrinsic) 2574 return error("unknown intrinsic name"); 2575 Dest = MachineOperand::CreateIntrinsicID(ID); 2576 2577 return false; 2578 } 2579 2580 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2581 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2582 bool IsFloat = Token.is(MIToken::kw_floatpred); 2583 lex(); 2584 2585 if (expectAndConsume(MIToken::lparen)) 2586 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2587 2588 if (Token.isNot(MIToken::Identifier)) 2589 return error("whatever"); 2590 2591 CmpInst::Predicate Pred; 2592 if (IsFloat) { 2593 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2594 .Case("false", CmpInst::FCMP_FALSE) 2595 .Case("oeq", CmpInst::FCMP_OEQ) 2596 .Case("ogt", CmpInst::FCMP_OGT) 2597 .Case("oge", CmpInst::FCMP_OGE) 2598 .Case("olt", CmpInst::FCMP_OLT) 2599 .Case("ole", CmpInst::FCMP_OLE) 2600 .Case("one", CmpInst::FCMP_ONE) 2601 .Case("ord", CmpInst::FCMP_ORD) 2602 .Case("uno", CmpInst::FCMP_UNO) 2603 .Case("ueq", CmpInst::FCMP_UEQ) 2604 .Case("ugt", CmpInst::FCMP_UGT) 2605 .Case("uge", CmpInst::FCMP_UGE) 2606 .Case("ult", CmpInst::FCMP_ULT) 2607 .Case("ule", CmpInst::FCMP_ULE) 2608 .Case("une", CmpInst::FCMP_UNE) 2609 .Case("true", CmpInst::FCMP_TRUE) 2610 .Default(CmpInst::BAD_FCMP_PREDICATE); 2611 if (!CmpInst::isFPPredicate(Pred)) 2612 return error("invalid floating-point predicate"); 2613 } else { 2614 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2615 .Case("eq", CmpInst::ICMP_EQ) 2616 .Case("ne", CmpInst::ICMP_NE) 2617 .Case("sgt", CmpInst::ICMP_SGT) 2618 .Case("sge", CmpInst::ICMP_SGE) 2619 .Case("slt", CmpInst::ICMP_SLT) 2620 .Case("sle", CmpInst::ICMP_SLE) 2621 .Case("ugt", CmpInst::ICMP_UGT) 2622 .Case("uge", CmpInst::ICMP_UGE) 2623 .Case("ult", CmpInst::ICMP_ULT) 2624 .Case("ule", CmpInst::ICMP_ULE) 2625 .Default(CmpInst::BAD_ICMP_PREDICATE); 2626 if (!CmpInst::isIntPredicate(Pred)) 2627 return error("invalid integer predicate"); 2628 } 2629 2630 lex(); 2631 Dest = MachineOperand::CreatePredicate(Pred); 2632 if (expectAndConsume(MIToken::rparen)) 2633 return error("predicate should be terminated by ')'."); 2634 2635 return false; 2636 } 2637 2638 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2639 assert(Token.is(MIToken::kw_shufflemask)); 2640 2641 lex(); 2642 if (expectAndConsume(MIToken::lparen)) 2643 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2644 2645 SmallVector<int, 32> ShufMask; 2646 do { 2647 if (Token.is(MIToken::kw_undef)) { 2648 ShufMask.push_back(-1); 2649 } else if (Token.is(MIToken::IntegerLiteral)) { 2650 const APSInt &Int = Token.integerValue(); 2651 ShufMask.push_back(Int.getExtValue()); 2652 } else 2653 return error("expected integer constant"); 2654 2655 lex(); 2656 } while (consumeIfPresent(MIToken::comma)); 2657 2658 if (expectAndConsume(MIToken::rparen)) 2659 return error("shufflemask should be terminated by ')'."); 2660 2661 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2662 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2663 return false; 2664 } 2665 2666 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2667 assert(Token.is(MIToken::kw_target_index)); 2668 lex(); 2669 if (expectAndConsume(MIToken::lparen)) 2670 return true; 2671 if (Token.isNot(MIToken::Identifier)) 2672 return error("expected the name of the target index"); 2673 int Index = 0; 2674 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2675 return error("use of undefined target index '" + Token.stringValue() + "'"); 2676 lex(); 2677 if (expectAndConsume(MIToken::rparen)) 2678 return true; 2679 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2680 if (parseOperandsOffset(Dest)) 2681 return true; 2682 return false; 2683 } 2684 2685 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2686 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2687 lex(); 2688 if (expectAndConsume(MIToken::lparen)) 2689 return true; 2690 2691 uint32_t *Mask = MF.allocateRegMask(); 2692 while (true) { 2693 if (Token.isNot(MIToken::NamedRegister)) 2694 return error("expected a named register"); 2695 Register Reg; 2696 if (parseNamedRegister(Reg)) 2697 return true; 2698 lex(); 2699 Mask[Reg / 32] |= 1U << (Reg % 32); 2700 // TODO: Report an error if the same register is used more than once. 2701 if (Token.isNot(MIToken::comma)) 2702 break; 2703 lex(); 2704 } 2705 2706 if (expectAndConsume(MIToken::rparen)) 2707 return true; 2708 Dest = MachineOperand::CreateRegMask(Mask); 2709 return false; 2710 } 2711 2712 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2713 assert(Token.is(MIToken::kw_liveout)); 2714 uint32_t *Mask = MF.allocateRegMask(); 2715 lex(); 2716 if (expectAndConsume(MIToken::lparen)) 2717 return true; 2718 while (true) { 2719 if (Token.isNot(MIToken::NamedRegister)) 2720 return error("expected a named register"); 2721 Register Reg; 2722 if (parseNamedRegister(Reg)) 2723 return true; 2724 lex(); 2725 Mask[Reg / 32] |= 1U << (Reg % 32); 2726 // TODO: Report an error if the same register is used more than once. 2727 if (Token.isNot(MIToken::comma)) 2728 break; 2729 lex(); 2730 } 2731 if (expectAndConsume(MIToken::rparen)) 2732 return true; 2733 Dest = MachineOperand::CreateRegLiveOut(Mask); 2734 return false; 2735 } 2736 2737 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2738 MachineOperand &Dest, 2739 Optional<unsigned> &TiedDefIdx) { 2740 switch (Token.kind()) { 2741 case MIToken::kw_implicit: 2742 case MIToken::kw_implicit_define: 2743 case MIToken::kw_def: 2744 case MIToken::kw_dead: 2745 case MIToken::kw_killed: 2746 case MIToken::kw_undef: 2747 case MIToken::kw_internal: 2748 case MIToken::kw_early_clobber: 2749 case MIToken::kw_debug_use: 2750 case MIToken::kw_renamable: 2751 case MIToken::underscore: 2752 case MIToken::NamedRegister: 2753 case MIToken::VirtualRegister: 2754 case MIToken::NamedVirtualRegister: 2755 return parseRegisterOperand(Dest, TiedDefIdx); 2756 case MIToken::IntegerLiteral: 2757 return parseImmediateOperand(Dest); 2758 case MIToken::kw_half: 2759 case MIToken::kw_float: 2760 case MIToken::kw_double: 2761 case MIToken::kw_x86_fp80: 2762 case MIToken::kw_fp128: 2763 case MIToken::kw_ppc_fp128: 2764 return parseFPImmediateOperand(Dest); 2765 case MIToken::MachineBasicBlock: 2766 return parseMBBOperand(Dest); 2767 case MIToken::StackObject: 2768 return parseStackObjectOperand(Dest); 2769 case MIToken::FixedStackObject: 2770 return parseFixedStackObjectOperand(Dest); 2771 case MIToken::GlobalValue: 2772 case MIToken::NamedGlobalValue: 2773 return parseGlobalAddressOperand(Dest); 2774 case MIToken::ConstantPoolItem: 2775 return parseConstantPoolIndexOperand(Dest); 2776 case MIToken::JumpTableIndex: 2777 return parseJumpTableIndexOperand(Dest); 2778 case MIToken::ExternalSymbol: 2779 return parseExternalSymbolOperand(Dest); 2780 case MIToken::MCSymbol: 2781 return parseMCSymbolOperand(Dest); 2782 case MIToken::SubRegisterIndex: 2783 return parseSubRegisterIndexOperand(Dest); 2784 case MIToken::md_diexpr: 2785 case MIToken::exclaim: 2786 return parseMetadataOperand(Dest); 2787 case MIToken::kw_cfi_same_value: 2788 case MIToken::kw_cfi_offset: 2789 case MIToken::kw_cfi_rel_offset: 2790 case MIToken::kw_cfi_def_cfa_register: 2791 case MIToken::kw_cfi_def_cfa_offset: 2792 case MIToken::kw_cfi_adjust_cfa_offset: 2793 case MIToken::kw_cfi_escape: 2794 case MIToken::kw_cfi_def_cfa: 2795 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2796 case MIToken::kw_cfi_register: 2797 case MIToken::kw_cfi_remember_state: 2798 case MIToken::kw_cfi_restore: 2799 case MIToken::kw_cfi_restore_state: 2800 case MIToken::kw_cfi_undefined: 2801 case MIToken::kw_cfi_window_save: 2802 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2803 return parseCFIOperand(Dest); 2804 case MIToken::kw_blockaddress: 2805 return parseBlockAddressOperand(Dest); 2806 case MIToken::kw_intrinsic: 2807 return parseIntrinsicOperand(Dest); 2808 case MIToken::kw_target_index: 2809 return parseTargetIndexOperand(Dest); 2810 case MIToken::kw_liveout: 2811 return parseLiveoutRegisterMaskOperand(Dest); 2812 case MIToken::kw_floatpred: 2813 case MIToken::kw_intpred: 2814 return parsePredicateOperand(Dest); 2815 case MIToken::kw_shufflemask: 2816 return parseShuffleMaskOperand(Dest); 2817 case MIToken::Error: 2818 return true; 2819 case MIToken::Identifier: 2820 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2821 Dest = MachineOperand::CreateRegMask(RegMask); 2822 lex(); 2823 break; 2824 } else if (Token.stringValue() == "CustomRegMask") { 2825 return parseCustomRegisterMaskOperand(Dest); 2826 } else 2827 return parseTypedImmediateOperand(Dest); 2828 case MIToken::dot: { 2829 const auto *TII = MF.getSubtarget().getInstrInfo(); 2830 if (const auto *Formatter = TII->getMIRFormatter()) { 2831 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2832 } 2833 LLVM_FALLTHROUGH; 2834 } 2835 default: 2836 // FIXME: Parse the MCSymbol machine operand. 2837 return error("expected a machine operand"); 2838 } 2839 return false; 2840 } 2841 2842 bool MIParser::parseMachineOperandAndTargetFlags( 2843 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2844 Optional<unsigned> &TiedDefIdx) { 2845 unsigned TF = 0; 2846 bool HasTargetFlags = false; 2847 if (Token.is(MIToken::kw_target_flags)) { 2848 HasTargetFlags = true; 2849 lex(); 2850 if (expectAndConsume(MIToken::lparen)) 2851 return true; 2852 if (Token.isNot(MIToken::Identifier)) 2853 return error("expected the name of the target flag"); 2854 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2855 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2856 return error("use of undefined target flag '" + Token.stringValue() + 2857 "'"); 2858 } 2859 lex(); 2860 while (Token.is(MIToken::comma)) { 2861 lex(); 2862 if (Token.isNot(MIToken::Identifier)) 2863 return error("expected the name of the target flag"); 2864 unsigned BitFlag = 0; 2865 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2866 return error("use of undefined target flag '" + Token.stringValue() + 2867 "'"); 2868 // TODO: Report an error when using a duplicate bit target flag. 2869 TF |= BitFlag; 2870 lex(); 2871 } 2872 if (expectAndConsume(MIToken::rparen)) 2873 return true; 2874 } 2875 auto Loc = Token.location(); 2876 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2877 return true; 2878 if (!HasTargetFlags) 2879 return false; 2880 if (Dest.isReg()) 2881 return error(Loc, "register operands can't have target flags"); 2882 Dest.setTargetFlags(TF); 2883 return false; 2884 } 2885 2886 bool MIParser::parseOffset(int64_t &Offset) { 2887 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2888 return false; 2889 StringRef Sign = Token.range(); 2890 bool IsNegative = Token.is(MIToken::minus); 2891 lex(); 2892 if (Token.isNot(MIToken::IntegerLiteral)) 2893 return error("expected an integer literal after '" + Sign + "'"); 2894 if (Token.integerValue().getMinSignedBits() > 64) 2895 return error("expected 64-bit integer (too large)"); 2896 Offset = Token.integerValue().getExtValue(); 2897 if (IsNegative) 2898 Offset = -Offset; 2899 lex(); 2900 return false; 2901 } 2902 2903 bool MIParser::parseAlignment(unsigned &Alignment) { 2904 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2905 lex(); 2906 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2907 return error("expected an integer literal after 'align'"); 2908 if (getUnsigned(Alignment)) 2909 return true; 2910 lex(); 2911 2912 if (!isPowerOf2_32(Alignment)) 2913 return error("expected a power-of-2 literal after 'align'"); 2914 2915 return false; 2916 } 2917 2918 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2919 assert(Token.is(MIToken::kw_addrspace)); 2920 lex(); 2921 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2922 return error("expected an integer literal after 'addrspace'"); 2923 if (getUnsigned(Addrspace)) 2924 return true; 2925 lex(); 2926 return false; 2927 } 2928 2929 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2930 int64_t Offset = 0; 2931 if (parseOffset(Offset)) 2932 return true; 2933 Op.setOffset(Offset); 2934 return false; 2935 } 2936 2937 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2938 const Value *&V, ErrorCallbackType ErrCB) { 2939 switch (Token.kind()) { 2940 case MIToken::NamedIRValue: { 2941 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2942 break; 2943 } 2944 case MIToken::IRValue: { 2945 unsigned SlotNumber = 0; 2946 if (getUnsigned(Token, SlotNumber, ErrCB)) 2947 return true; 2948 V = PFS.getIRValue(SlotNumber); 2949 break; 2950 } 2951 case MIToken::NamedGlobalValue: 2952 case MIToken::GlobalValue: { 2953 GlobalValue *GV = nullptr; 2954 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2955 return true; 2956 V = GV; 2957 break; 2958 } 2959 case MIToken::QuotedIRValue: { 2960 const Constant *C = nullptr; 2961 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2962 return true; 2963 V = C; 2964 break; 2965 } 2966 case MIToken::kw_unknown_address: 2967 V = nullptr; 2968 return false; 2969 default: 2970 llvm_unreachable("The current token should be an IR block reference"); 2971 } 2972 if (!V) 2973 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2974 return false; 2975 } 2976 2977 bool MIParser::parseIRValue(const Value *&V) { 2978 return ::parseIRValue( 2979 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2980 return error(Loc, Msg); 2981 }); 2982 } 2983 2984 bool MIParser::getUint64(uint64_t &Result) { 2985 if (Token.hasIntegerValue()) { 2986 if (Token.integerValue().getActiveBits() > 64) 2987 return error("expected 64-bit integer (too large)"); 2988 Result = Token.integerValue().getZExtValue(); 2989 return false; 2990 } 2991 if (Token.is(MIToken::HexLiteral)) { 2992 APInt A; 2993 if (getHexUint(A)) 2994 return true; 2995 if (A.getBitWidth() > 64) 2996 return error("expected 64-bit integer (too large)"); 2997 Result = A.getZExtValue(); 2998 return false; 2999 } 3000 return true; 3001 } 3002 3003 bool MIParser::getHexUint(APInt &Result) { 3004 return ::getHexUint(Token, Result); 3005 } 3006 3007 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 3008 const auto OldFlags = Flags; 3009 switch (Token.kind()) { 3010 case MIToken::kw_volatile: 3011 Flags |= MachineMemOperand::MOVolatile; 3012 break; 3013 case MIToken::kw_non_temporal: 3014 Flags |= MachineMemOperand::MONonTemporal; 3015 break; 3016 case MIToken::kw_dereferenceable: 3017 Flags |= MachineMemOperand::MODereferenceable; 3018 break; 3019 case MIToken::kw_invariant: 3020 Flags |= MachineMemOperand::MOInvariant; 3021 break; 3022 case MIToken::StringConstant: { 3023 MachineMemOperand::Flags TF; 3024 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 3025 return error("use of undefined target MMO flag '" + Token.stringValue() + 3026 "'"); 3027 Flags |= TF; 3028 break; 3029 } 3030 default: 3031 llvm_unreachable("The current token should be a memory operand flag"); 3032 } 3033 if (OldFlags == Flags) 3034 // We know that the same flag is specified more than once when the flags 3035 // weren't modified. 3036 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 3037 lex(); 3038 return false; 3039 } 3040 3041 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 3042 switch (Token.kind()) { 3043 case MIToken::kw_stack: 3044 PSV = MF.getPSVManager().getStack(); 3045 break; 3046 case MIToken::kw_got: 3047 PSV = MF.getPSVManager().getGOT(); 3048 break; 3049 case MIToken::kw_jump_table: 3050 PSV = MF.getPSVManager().getJumpTable(); 3051 break; 3052 case MIToken::kw_constant_pool: 3053 PSV = MF.getPSVManager().getConstantPool(); 3054 break; 3055 case MIToken::FixedStackObject: { 3056 int FI; 3057 if (parseFixedStackFrameIndex(FI)) 3058 return true; 3059 PSV = MF.getPSVManager().getFixedStack(FI); 3060 // The token was already consumed, so use return here instead of break. 3061 return false; 3062 } 3063 case MIToken::StackObject: { 3064 int FI; 3065 if (parseStackFrameIndex(FI)) 3066 return true; 3067 PSV = MF.getPSVManager().getFixedStack(FI); 3068 // The token was already consumed, so use return here instead of break. 3069 return false; 3070 } 3071 case MIToken::kw_call_entry: 3072 lex(); 3073 switch (Token.kind()) { 3074 case MIToken::GlobalValue: 3075 case MIToken::NamedGlobalValue: { 3076 GlobalValue *GV = nullptr; 3077 if (parseGlobalValue(GV)) 3078 return true; 3079 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 3080 break; 3081 } 3082 case MIToken::ExternalSymbol: 3083 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 3084 MF.createExternalSymbolName(Token.stringValue())); 3085 break; 3086 default: 3087 return error( 3088 "expected a global value or an external symbol after 'call-entry'"); 3089 } 3090 break; 3091 case MIToken::kw_custom: { 3092 lex(); 3093 const auto *TII = MF.getSubtarget().getInstrInfo(); 3094 if (const auto *Formatter = TII->getMIRFormatter()) { 3095 if (Formatter->parseCustomPseudoSourceValue( 3096 Token.stringValue(), MF, PFS, PSV, 3097 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 3098 return error(Loc, Msg); 3099 })) 3100 return true; 3101 } else 3102 return error("unable to parse target custom pseudo source value"); 3103 break; 3104 } 3105 default: 3106 llvm_unreachable("The current token should be pseudo source value"); 3107 } 3108 lex(); 3109 return false; 3110 } 3111 3112 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 3113 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 3114 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 3115 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 3116 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 3117 const PseudoSourceValue *PSV = nullptr; 3118 if (parseMemoryPseudoSourceValue(PSV)) 3119 return true; 3120 int64_t Offset = 0; 3121 if (parseOffset(Offset)) 3122 return true; 3123 Dest = MachinePointerInfo(PSV, Offset); 3124 return false; 3125 } 3126 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 3127 Token.isNot(MIToken::GlobalValue) && 3128 Token.isNot(MIToken::NamedGlobalValue) && 3129 Token.isNot(MIToken::QuotedIRValue) && 3130 Token.isNot(MIToken::kw_unknown_address)) 3131 return error("expected an IR value reference"); 3132 const Value *V = nullptr; 3133 if (parseIRValue(V)) 3134 return true; 3135 if (V && !V->getType()->isPointerTy()) 3136 return error("expected a pointer IR value"); 3137 lex(); 3138 int64_t Offset = 0; 3139 if (parseOffset(Offset)) 3140 return true; 3141 Dest = MachinePointerInfo(V, Offset); 3142 return false; 3143 } 3144 3145 bool MIParser::parseOptionalScope(LLVMContext &Context, 3146 SyncScope::ID &SSID) { 3147 SSID = SyncScope::System; 3148 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 3149 lex(); 3150 if (expectAndConsume(MIToken::lparen)) 3151 return error("expected '(' in syncscope"); 3152 3153 std::string SSN; 3154 if (parseStringConstant(SSN)) 3155 return true; 3156 3157 SSID = Context.getOrInsertSyncScopeID(SSN); 3158 if (expectAndConsume(MIToken::rparen)) 3159 return error("expected ')' in syncscope"); 3160 } 3161 3162 return false; 3163 } 3164 3165 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3166 Order = AtomicOrdering::NotAtomic; 3167 if (Token.isNot(MIToken::Identifier)) 3168 return false; 3169 3170 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3171 .Case("unordered", AtomicOrdering::Unordered) 3172 .Case("monotonic", AtomicOrdering::Monotonic) 3173 .Case("acquire", AtomicOrdering::Acquire) 3174 .Case("release", AtomicOrdering::Release) 3175 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3176 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3177 .Default(AtomicOrdering::NotAtomic); 3178 3179 if (Order != AtomicOrdering::NotAtomic) { 3180 lex(); 3181 return false; 3182 } 3183 3184 return error("expected an atomic scope, ordering or a size specification"); 3185 } 3186 3187 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3188 if (expectAndConsume(MIToken::lparen)) 3189 return true; 3190 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3191 while (Token.isMemoryOperandFlag()) { 3192 if (parseMemoryOperandFlag(Flags)) 3193 return true; 3194 } 3195 if (Token.isNot(MIToken::Identifier) || 3196 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3197 return error("expected 'load' or 'store' memory operation"); 3198 if (Token.stringValue() == "load") 3199 Flags |= MachineMemOperand::MOLoad; 3200 else 3201 Flags |= MachineMemOperand::MOStore; 3202 lex(); 3203 3204 // Optional 'store' for operands that both load and store. 3205 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3206 Flags |= MachineMemOperand::MOStore; 3207 lex(); 3208 } 3209 3210 // Optional synchronization scope. 3211 SyncScope::ID SSID; 3212 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3213 return true; 3214 3215 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3216 AtomicOrdering Order, FailureOrder; 3217 if (parseOptionalAtomicOrdering(Order)) 3218 return true; 3219 3220 if (parseOptionalAtomicOrdering(FailureOrder)) 3221 return true; 3222 3223 LLT MemoryType; 3224 if (Token.isNot(MIToken::IntegerLiteral) && 3225 Token.isNot(MIToken::kw_unknown_size) && 3226 Token.isNot(MIToken::lparen)) 3227 return error("expected memory LLT, the size integer literal or 'unknown-size' after " 3228 "memory operation"); 3229 3230 uint64_t Size = MemoryLocation::UnknownSize; 3231 if (Token.is(MIToken::IntegerLiteral)) { 3232 if (getUint64(Size)) 3233 return true; 3234 3235 // Convert from bytes to bits for storage. 3236 MemoryType = LLT::scalar(8 * Size); 3237 lex(); 3238 } else if (Token.is(MIToken::kw_unknown_size)) { 3239 Size = MemoryLocation::UnknownSize; 3240 lex(); 3241 } else { 3242 if (expectAndConsume(MIToken::lparen)) 3243 return true; 3244 if (parseLowLevelType(Token.location(), MemoryType)) 3245 return true; 3246 if (expectAndConsume(MIToken::rparen)) 3247 return true; 3248 3249 Size = MemoryType.getSizeInBytes(); 3250 } 3251 3252 MachinePointerInfo Ptr = MachinePointerInfo(); 3253 if (Token.is(MIToken::Identifier)) { 3254 const char *Word = 3255 ((Flags & MachineMemOperand::MOLoad) && 3256 (Flags & MachineMemOperand::MOStore)) 3257 ? "on" 3258 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3259 if (Token.stringValue() != Word) 3260 return error(Twine("expected '") + Word + "'"); 3261 lex(); 3262 3263 if (parseMachinePointerInfo(Ptr)) 3264 return true; 3265 } 3266 unsigned BaseAlignment = 3267 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(Size) : 1); 3268 AAMDNodes AAInfo; 3269 MDNode *Range = nullptr; 3270 while (consumeIfPresent(MIToken::comma)) { 3271 switch (Token.kind()) { 3272 case MIToken::kw_align: 3273 // align is printed if it is different than size. 3274 if (parseAlignment(BaseAlignment)) 3275 return true; 3276 break; 3277 case MIToken::kw_basealign: 3278 // basealign is printed if it is different than align. 3279 if (parseAlignment(BaseAlignment)) 3280 return true; 3281 break; 3282 case MIToken::kw_addrspace: 3283 if (parseAddrspace(Ptr.AddrSpace)) 3284 return true; 3285 break; 3286 case MIToken::md_tbaa: 3287 lex(); 3288 if (parseMDNode(AAInfo.TBAA)) 3289 return true; 3290 break; 3291 case MIToken::md_alias_scope: 3292 lex(); 3293 if (parseMDNode(AAInfo.Scope)) 3294 return true; 3295 break; 3296 case MIToken::md_noalias: 3297 lex(); 3298 if (parseMDNode(AAInfo.NoAlias)) 3299 return true; 3300 break; 3301 case MIToken::md_range: 3302 lex(); 3303 if (parseMDNode(Range)) 3304 return true; 3305 break; 3306 // TODO: Report an error on duplicate metadata nodes. 3307 default: 3308 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3309 "'!noalias' or '!range'"); 3310 } 3311 } 3312 if (expectAndConsume(MIToken::rparen)) 3313 return true; 3314 Dest = MF.getMachineMemOperand(Ptr, Flags, MemoryType, Align(BaseAlignment), 3315 AAInfo, Range, SSID, Order, FailureOrder); 3316 return false; 3317 } 3318 3319 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3320 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3321 Token.is(MIToken::kw_post_instr_symbol)) && 3322 "Invalid token for a pre- post-instruction symbol!"); 3323 lex(); 3324 if (Token.isNot(MIToken::MCSymbol)) 3325 return error("expected a symbol after 'pre-instr-symbol'"); 3326 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3327 lex(); 3328 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3329 Token.is(MIToken::lbrace)) 3330 return false; 3331 if (Token.isNot(MIToken::comma)) 3332 return error("expected ',' before the next machine operand"); 3333 lex(); 3334 return false; 3335 } 3336 3337 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3338 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3339 "Invalid token for a heap alloc marker!"); 3340 lex(); 3341 parseMDNode(Node); 3342 if (!Node) 3343 return error("expected a MDNode after 'heap-alloc-marker'"); 3344 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3345 Token.is(MIToken::lbrace)) 3346 return false; 3347 if (Token.isNot(MIToken::comma)) 3348 return error("expected ',' before the next machine operand"); 3349 lex(); 3350 return false; 3351 } 3352 3353 static void initSlots2BasicBlocks( 3354 const Function &F, 3355 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3356 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3357 MST.incorporateFunction(F); 3358 for (auto &BB : F) { 3359 if (BB.hasName()) 3360 continue; 3361 int Slot = MST.getLocalSlot(&BB); 3362 if (Slot == -1) 3363 continue; 3364 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3365 } 3366 } 3367 3368 static const BasicBlock *getIRBlockFromSlot( 3369 unsigned Slot, 3370 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3371 return Slots2BasicBlocks.lookup(Slot); 3372 } 3373 3374 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3375 if (Slots2BasicBlocks.empty()) 3376 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3377 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3378 } 3379 3380 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3381 if (&F == &MF.getFunction()) 3382 return getIRBlock(Slot); 3383 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3384 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3385 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3386 } 3387 3388 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3389 // FIXME: Currently we can't recognize temporary or local symbols and call all 3390 // of the appropriate forms to create them. However, this handles basic cases 3391 // well as most of the special aspects are recognized by a prefix on their 3392 // name, and the input names should already be unique. For test cases, keeping 3393 // the symbol name out of the symbol table isn't terribly important. 3394 return MF.getContext().getOrCreateSymbol(Name); 3395 } 3396 3397 bool MIParser::parseStringConstant(std::string &Result) { 3398 if (Token.isNot(MIToken::StringConstant)) 3399 return error("expected string constant"); 3400 Result = std::string(Token.stringValue()); 3401 lex(); 3402 return false; 3403 } 3404 3405 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3406 StringRef Src, 3407 SMDiagnostic &Error) { 3408 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3409 } 3410 3411 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3412 StringRef Src, SMDiagnostic &Error) { 3413 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3414 } 3415 3416 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3417 MachineBasicBlock *&MBB, StringRef Src, 3418 SMDiagnostic &Error) { 3419 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3420 } 3421 3422 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3423 Register &Reg, StringRef Src, 3424 SMDiagnostic &Error) { 3425 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3426 } 3427 3428 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3429 Register &Reg, StringRef Src, 3430 SMDiagnostic &Error) { 3431 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3432 } 3433 3434 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3435 VRegInfo *&Info, StringRef Src, 3436 SMDiagnostic &Error) { 3437 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3438 } 3439 3440 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3441 int &FI, StringRef Src, 3442 SMDiagnostic &Error) { 3443 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3444 } 3445 3446 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3447 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3448 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3449 } 3450 3451 bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src, 3452 SMRange SrcRange, SMDiagnostic &Error) { 3453 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata(); 3454 } 3455 3456 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3457 PerFunctionMIParsingState &PFS, const Value *&V, 3458 ErrorCallbackType ErrorCallback) { 3459 MIToken Token; 3460 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3461 ErrorCallback(Loc, Msg); 3462 }); 3463 V = nullptr; 3464 3465 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3466 } 3467