1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCDwarf.h" 59 #include "llvm/MC/MCInstrDesc.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/SMLoc.h" 68 #include "llvm/Support/SourceMgr.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cctype> 75 #include <cstddef> 76 #include <cstdint> 77 #include <limits> 78 #include <string> 79 #include <utility> 80 81 using namespace llvm; 82 83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 84 SourceMgr &SM, const SlotMapping &IRSlots, 85 const Name2RegClassMap &Names2RegClasses, 86 const Name2RegBankMap &Names2RegBanks) 87 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 88 Names2RegBanks(Names2RegBanks) { 89 } 90 91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 92 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 93 if (I.second) { 94 MachineRegisterInfo &MRI = MF.getRegInfo(); 95 VRegInfo *Info = new (Allocator) VRegInfo; 96 Info->VReg = MRI.createIncompleteVirtualRegister(); 97 I.first->second = Info; 98 } 99 return *I.first->second; 100 } 101 102 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 103 assert(RegName != "" && "Expected named reg."); 104 105 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 106 if (I.second) { 107 VRegInfo *Info = new (Allocator) VRegInfo; 108 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 109 I.first->second = Info; 110 } 111 return *I.first->second; 112 } 113 114 namespace { 115 116 /// A wrapper struct around the 'MachineOperand' struct that includes a source 117 /// range and other attributes. 118 struct ParsedMachineOperand { 119 MachineOperand Operand; 120 StringRef::iterator Begin; 121 StringRef::iterator End; 122 Optional<unsigned> TiedDefIdx; 123 124 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 125 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 126 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 127 if (TiedDefIdx) 128 assert(Operand.isReg() && Operand.isUse() && 129 "Only used register operands can be tied"); 130 } 131 }; 132 133 class MIParser { 134 MachineFunction &MF; 135 SMDiagnostic &Error; 136 StringRef Source, CurrentSource; 137 MIToken Token; 138 PerFunctionMIParsingState &PFS; 139 /// Maps from instruction names to op codes. 140 StringMap<unsigned> Names2InstrOpCodes; 141 /// Maps from register names to registers. 142 StringMap<unsigned> Names2Regs; 143 /// Maps from register mask names to register masks. 144 StringMap<const uint32_t *> Names2RegMasks; 145 /// Maps from subregister names to subregister indices. 146 StringMap<unsigned> Names2SubRegIndices; 147 /// Maps from slot numbers to function's unnamed basic blocks. 148 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 149 /// Maps from slot numbers to function's unnamed values. 150 DenseMap<unsigned, const Value *> Slots2Values; 151 /// Maps from target index names to target indices. 152 StringMap<int> Names2TargetIndices; 153 /// Maps from direct target flag names to the direct target flag values. 154 StringMap<unsigned> Names2DirectTargetFlags; 155 /// Maps from direct target flag names to the bitmask target flag values. 156 StringMap<unsigned> Names2BitmaskTargetFlags; 157 /// Maps from MMO target flag names to MMO target flag values. 158 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 159 160 public: 161 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 162 StringRef Source); 163 164 /// \p SkipChar gives the number of characters to skip before looking 165 /// for the next token. 166 void lex(unsigned SkipChar = 0); 167 168 /// Report an error at the current location with the given message. 169 /// 170 /// This function always return true. 171 bool error(const Twine &Msg); 172 173 /// Report an error at the given location with the given message. 174 /// 175 /// This function always return true. 176 bool error(StringRef::iterator Loc, const Twine &Msg); 177 178 bool 179 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 180 bool parseBasicBlocks(); 181 bool parse(MachineInstr *&MI); 182 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 183 bool parseStandaloneNamedRegister(unsigned &Reg); 184 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 185 bool parseStandaloneRegister(unsigned &Reg); 186 bool parseStandaloneStackObject(int &FI); 187 bool parseStandaloneMDNode(MDNode *&Node); 188 189 bool 190 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 191 bool parseBasicBlock(MachineBasicBlock &MBB, 192 MachineBasicBlock *&AddFalthroughFrom); 193 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 194 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 195 196 bool parseNamedRegister(unsigned &Reg); 197 bool parseVirtualRegister(VRegInfo *&Info); 198 bool parseNamedVirtualRegister(VRegInfo *&Info); 199 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 200 bool parseRegisterFlag(unsigned &Flags); 201 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 202 bool parseSubRegisterIndex(unsigned &SubReg); 203 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 204 bool parseRegisterOperand(MachineOperand &Dest, 205 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 206 bool parseImmediateOperand(MachineOperand &Dest); 207 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 208 const Constant *&C); 209 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 210 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 211 bool parseTypedImmediateOperand(MachineOperand &Dest); 212 bool parseFPImmediateOperand(MachineOperand &Dest); 213 bool parseMBBReference(MachineBasicBlock *&MBB); 214 bool parseMBBOperand(MachineOperand &Dest); 215 bool parseStackFrameIndex(int &FI); 216 bool parseStackObjectOperand(MachineOperand &Dest); 217 bool parseFixedStackFrameIndex(int &FI); 218 bool parseFixedStackObjectOperand(MachineOperand &Dest); 219 bool parseGlobalValue(GlobalValue *&GV); 220 bool parseGlobalAddressOperand(MachineOperand &Dest); 221 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 222 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 223 bool parseJumpTableIndexOperand(MachineOperand &Dest); 224 bool parseExternalSymbolOperand(MachineOperand &Dest); 225 bool parseMCSymbolOperand(MachineOperand &Dest); 226 bool parseMDNode(MDNode *&Node); 227 bool parseDIExpression(MDNode *&Expr); 228 bool parseDILocation(MDNode *&Expr); 229 bool parseMetadataOperand(MachineOperand &Dest); 230 bool parseCFIOffset(int &Offset); 231 bool parseCFIRegister(unsigned &Reg); 232 bool parseCFIEscapeValues(std::string& Values); 233 bool parseCFIOperand(MachineOperand &Dest); 234 bool parseIRBlock(BasicBlock *&BB, const Function &F); 235 bool parseBlockAddressOperand(MachineOperand &Dest); 236 bool parseIntrinsicOperand(MachineOperand &Dest); 237 bool parsePredicateOperand(MachineOperand &Dest); 238 bool parseTargetIndexOperand(MachineOperand &Dest); 239 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 240 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 241 bool parseMachineOperand(MachineOperand &Dest, 242 Optional<unsigned> &TiedDefIdx); 243 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 244 Optional<unsigned> &TiedDefIdx); 245 bool parseOffset(int64_t &Offset); 246 bool parseAlignment(unsigned &Alignment); 247 bool parseAddrspace(unsigned &Addrspace); 248 bool parseOperandsOffset(MachineOperand &Op); 249 bool parseIRValue(const Value *&V); 250 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 251 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 252 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 253 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 254 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 255 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 256 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 257 258 private: 259 /// Convert the integer literal in the current token into an unsigned integer. 260 /// 261 /// Return true if an error occurred. 262 bool getUnsigned(unsigned &Result); 263 264 /// Convert the integer literal in the current token into an uint64. 265 /// 266 /// Return true if an error occurred. 267 bool getUint64(uint64_t &Result); 268 269 /// Convert the hexadecimal literal in the current token into an unsigned 270 /// APInt with a minimum bitwidth required to represent the value. 271 /// 272 /// Return true if the literal does not represent an integer value. 273 bool getHexUint(APInt &Result); 274 275 /// If the current token is of the given kind, consume it and return false. 276 /// Otherwise report an error and return true. 277 bool expectAndConsume(MIToken::TokenKind TokenKind); 278 279 /// If the current token is of the given kind, consume it and return true. 280 /// Otherwise return false. 281 bool consumeIfPresent(MIToken::TokenKind TokenKind); 282 283 void initNames2InstrOpCodes(); 284 285 /// Try to convert an instruction name to an opcode. Return true if the 286 /// instruction name is invalid. 287 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 288 289 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 290 291 bool assignRegisterTies(MachineInstr &MI, 292 ArrayRef<ParsedMachineOperand> Operands); 293 294 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 295 const MCInstrDesc &MCID); 296 297 void initNames2Regs(); 298 299 /// Try to convert a register name to a register number. Return true if the 300 /// register name is invalid. 301 bool getRegisterByName(StringRef RegName, unsigned &Reg); 302 303 void initNames2RegMasks(); 304 305 /// Check if the given identifier is a name of a register mask. 306 /// 307 /// Return null if the identifier isn't a register mask. 308 const uint32_t *getRegMask(StringRef Identifier); 309 310 void initNames2SubRegIndices(); 311 312 /// Check if the given identifier is a name of a subregister index. 313 /// 314 /// Return 0 if the name isn't a subregister index class. 315 unsigned getSubRegIndex(StringRef Name); 316 317 const BasicBlock *getIRBlock(unsigned Slot); 318 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 319 320 const Value *getIRValue(unsigned Slot); 321 322 void initNames2TargetIndices(); 323 324 /// Try to convert a name of target index to the corresponding target index. 325 /// 326 /// Return true if the name isn't a name of a target index. 327 bool getTargetIndex(StringRef Name, int &Index); 328 329 void initNames2DirectTargetFlags(); 330 331 /// Try to convert a name of a direct target flag to the corresponding 332 /// target flag. 333 /// 334 /// Return true if the name isn't a name of a direct flag. 335 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 336 337 void initNames2BitmaskTargetFlags(); 338 339 /// Try to convert a name of a bitmask target flag to the corresponding 340 /// target flag. 341 /// 342 /// Return true if the name isn't a name of a bitmask target flag. 343 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 344 345 void initNames2MMOTargetFlags(); 346 347 /// Try to convert a name of a MachineMemOperand target flag to the 348 /// corresponding target flag. 349 /// 350 /// Return true if the name isn't a name of a target MMO flag. 351 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 352 353 /// Get or create an MCSymbol for a given name. 354 MCSymbol *getOrCreateMCSymbol(StringRef Name); 355 356 /// parseStringConstant 357 /// ::= StringConstant 358 bool parseStringConstant(std::string &Result); 359 }; 360 361 } // end anonymous namespace 362 363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 364 StringRef Source) 365 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 366 {} 367 368 void MIParser::lex(unsigned SkipChar) { 369 CurrentSource = lexMIToken( 370 CurrentSource.data() + SkipChar, Token, 371 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 372 } 373 374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 375 376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 377 const SourceMgr &SM = *PFS.SM; 378 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 379 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 380 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 381 // Create an ordinary diagnostic when the source manager's buffer is the 382 // source string. 383 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 384 return true; 385 } 386 // Create a diagnostic for a YAML string literal. 387 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 388 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 389 Source, None, None); 390 return true; 391 } 392 393 static const char *toString(MIToken::TokenKind TokenKind) { 394 switch (TokenKind) { 395 case MIToken::comma: 396 return "','"; 397 case MIToken::equal: 398 return "'='"; 399 case MIToken::colon: 400 return "':'"; 401 case MIToken::lparen: 402 return "'('"; 403 case MIToken::rparen: 404 return "')'"; 405 default: 406 return "<unknown token>"; 407 } 408 } 409 410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return error(Twine("expected ") + toString(TokenKind)); 413 lex(); 414 return false; 415 } 416 417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 418 if (Token.isNot(TokenKind)) 419 return false; 420 lex(); 421 return true; 422 } 423 424 bool MIParser::parseBasicBlockDefinition( 425 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 426 assert(Token.is(MIToken::MachineBasicBlockLabel)); 427 unsigned ID = 0; 428 if (getUnsigned(ID)) 429 return true; 430 auto Loc = Token.location(); 431 auto Name = Token.stringValue(); 432 lex(); 433 bool HasAddressTaken = false; 434 bool IsLandingPad = false; 435 unsigned Alignment = 0; 436 BasicBlock *BB = nullptr; 437 if (consumeIfPresent(MIToken::lparen)) { 438 do { 439 // TODO: Report an error when multiple same attributes are specified. 440 switch (Token.kind()) { 441 case MIToken::kw_address_taken: 442 HasAddressTaken = true; 443 lex(); 444 break; 445 case MIToken::kw_landing_pad: 446 IsLandingPad = true; 447 lex(); 448 break; 449 case MIToken::kw_align: 450 if (parseAlignment(Alignment)) 451 return true; 452 break; 453 case MIToken::IRBlock: 454 // TODO: Report an error when both name and ir block are specified. 455 if (parseIRBlock(BB, MF.getFunction())) 456 return true; 457 lex(); 458 break; 459 default: 460 break; 461 } 462 } while (consumeIfPresent(MIToken::comma)); 463 if (expectAndConsume(MIToken::rparen)) 464 return true; 465 } 466 if (expectAndConsume(MIToken::colon)) 467 return true; 468 469 if (!Name.empty()) { 470 BB = dyn_cast_or_null<BasicBlock>( 471 MF.getFunction().getValueSymbolTable()->lookup(Name)); 472 if (!BB) 473 return error(Loc, Twine("basic block '") + Name + 474 "' is not defined in the function '" + 475 MF.getName() + "'"); 476 } 477 auto *MBB = MF.CreateMachineBasicBlock(BB); 478 MF.insert(MF.end(), MBB); 479 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 480 if (!WasInserted) 481 return error(Loc, Twine("redefinition of machine basic block with id #") + 482 Twine(ID)); 483 if (Alignment) 484 MBB->setAlignment(Alignment); 485 if (HasAddressTaken) 486 MBB->setHasAddressTaken(); 487 MBB->setIsEHPad(IsLandingPad); 488 return false; 489 } 490 491 bool MIParser::parseBasicBlockDefinitions( 492 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 493 lex(); 494 // Skip until the first machine basic block. 495 while (Token.is(MIToken::Newline)) 496 lex(); 497 if (Token.isErrorOrEOF()) 498 return Token.isError(); 499 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 500 return error("expected a basic block definition before instructions"); 501 unsigned BraceDepth = 0; 502 do { 503 if (parseBasicBlockDefinition(MBBSlots)) 504 return true; 505 bool IsAfterNewline = false; 506 // Skip until the next machine basic block. 507 while (true) { 508 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 509 Token.isErrorOrEOF()) 510 break; 511 else if (Token.is(MIToken::MachineBasicBlockLabel)) 512 return error("basic block definition should be located at the start of " 513 "the line"); 514 else if (consumeIfPresent(MIToken::Newline)) { 515 IsAfterNewline = true; 516 continue; 517 } 518 IsAfterNewline = false; 519 if (Token.is(MIToken::lbrace)) 520 ++BraceDepth; 521 if (Token.is(MIToken::rbrace)) { 522 if (!BraceDepth) 523 return error("extraneous closing brace ('}')"); 524 --BraceDepth; 525 } 526 lex(); 527 } 528 // Verify that we closed all of the '{' at the end of a file or a block. 529 if (!Token.isError() && BraceDepth) 530 return error("expected '}'"); // FIXME: Report a note that shows '{'. 531 } while (!Token.isErrorOrEOF()); 532 return Token.isError(); 533 } 534 535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 536 assert(Token.is(MIToken::kw_liveins)); 537 lex(); 538 if (expectAndConsume(MIToken::colon)) 539 return true; 540 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 541 return false; 542 do { 543 if (Token.isNot(MIToken::NamedRegister)) 544 return error("expected a named register"); 545 unsigned Reg = 0; 546 if (parseNamedRegister(Reg)) 547 return true; 548 lex(); 549 LaneBitmask Mask = LaneBitmask::getAll(); 550 if (consumeIfPresent(MIToken::colon)) { 551 // Parse lane mask. 552 if (Token.isNot(MIToken::IntegerLiteral) && 553 Token.isNot(MIToken::HexLiteral)) 554 return error("expected a lane mask"); 555 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 556 "Use correct get-function for lane mask"); 557 LaneBitmask::Type V; 558 if (getUnsigned(V)) 559 return error("invalid lane mask value"); 560 Mask = LaneBitmask(V); 561 lex(); 562 } 563 MBB.addLiveIn(Reg, Mask); 564 } while (consumeIfPresent(MIToken::comma)); 565 return false; 566 } 567 568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 569 assert(Token.is(MIToken::kw_successors)); 570 lex(); 571 if (expectAndConsume(MIToken::colon)) 572 return true; 573 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 574 return false; 575 do { 576 if (Token.isNot(MIToken::MachineBasicBlock)) 577 return error("expected a machine basic block reference"); 578 MachineBasicBlock *SuccMBB = nullptr; 579 if (parseMBBReference(SuccMBB)) 580 return true; 581 lex(); 582 unsigned Weight = 0; 583 if (consumeIfPresent(MIToken::lparen)) { 584 if (Token.isNot(MIToken::IntegerLiteral) && 585 Token.isNot(MIToken::HexLiteral)) 586 return error("expected an integer literal after '('"); 587 if (getUnsigned(Weight)) 588 return true; 589 lex(); 590 if (expectAndConsume(MIToken::rparen)) 591 return true; 592 } 593 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 594 } while (consumeIfPresent(MIToken::comma)); 595 MBB.normalizeSuccProbs(); 596 return false; 597 } 598 599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 600 MachineBasicBlock *&AddFalthroughFrom) { 601 // Skip the definition. 602 assert(Token.is(MIToken::MachineBasicBlockLabel)); 603 lex(); 604 if (consumeIfPresent(MIToken::lparen)) { 605 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 606 lex(); 607 consumeIfPresent(MIToken::rparen); 608 } 609 consumeIfPresent(MIToken::colon); 610 611 // Parse the liveins and successors. 612 // N.B: Multiple lists of successors and liveins are allowed and they're 613 // merged into one. 614 // Example: 615 // liveins: %edi 616 // liveins: %esi 617 // 618 // is equivalent to 619 // liveins: %edi, %esi 620 bool ExplicitSuccessors = false; 621 while (true) { 622 if (Token.is(MIToken::kw_successors)) { 623 if (parseBasicBlockSuccessors(MBB)) 624 return true; 625 ExplicitSuccessors = true; 626 } else if (Token.is(MIToken::kw_liveins)) { 627 if (parseBasicBlockLiveins(MBB)) 628 return true; 629 } else if (consumeIfPresent(MIToken::Newline)) { 630 continue; 631 } else 632 break; 633 if (!Token.isNewlineOrEOF()) 634 return error("expected line break at the end of a list"); 635 lex(); 636 } 637 638 // Parse the instructions. 639 bool IsInBundle = false; 640 MachineInstr *PrevMI = nullptr; 641 while (!Token.is(MIToken::MachineBasicBlockLabel) && 642 !Token.is(MIToken::Eof)) { 643 if (consumeIfPresent(MIToken::Newline)) 644 continue; 645 if (consumeIfPresent(MIToken::rbrace)) { 646 // The first parsing pass should verify that all closing '}' have an 647 // opening '{'. 648 assert(IsInBundle); 649 IsInBundle = false; 650 continue; 651 } 652 MachineInstr *MI = nullptr; 653 if (parse(MI)) 654 return true; 655 MBB.insert(MBB.end(), MI); 656 if (IsInBundle) { 657 PrevMI->setFlag(MachineInstr::BundledSucc); 658 MI->setFlag(MachineInstr::BundledPred); 659 } 660 PrevMI = MI; 661 if (Token.is(MIToken::lbrace)) { 662 if (IsInBundle) 663 return error("nested instruction bundles are not allowed"); 664 lex(); 665 // This instruction is the start of the bundle. 666 MI->setFlag(MachineInstr::BundledSucc); 667 IsInBundle = true; 668 if (!Token.is(MIToken::Newline)) 669 // The next instruction can be on the same line. 670 continue; 671 } 672 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 673 lex(); 674 } 675 676 // Construct successor list by searching for basic block machine operands. 677 if (!ExplicitSuccessors) { 678 SmallVector<MachineBasicBlock*,4> Successors; 679 bool IsFallthrough; 680 guessSuccessors(MBB, Successors, IsFallthrough); 681 for (MachineBasicBlock *Succ : Successors) 682 MBB.addSuccessor(Succ); 683 684 if (IsFallthrough) { 685 AddFalthroughFrom = &MBB; 686 } else { 687 MBB.normalizeSuccProbs(); 688 } 689 } 690 691 return false; 692 } 693 694 bool MIParser::parseBasicBlocks() { 695 lex(); 696 // Skip until the first machine basic block. 697 while (Token.is(MIToken::Newline)) 698 lex(); 699 if (Token.isErrorOrEOF()) 700 return Token.isError(); 701 // The first parsing pass should have verified that this token is a MBB label 702 // in the 'parseBasicBlockDefinitions' method. 703 assert(Token.is(MIToken::MachineBasicBlockLabel)); 704 MachineBasicBlock *AddFalthroughFrom = nullptr; 705 do { 706 MachineBasicBlock *MBB = nullptr; 707 if (parseMBBReference(MBB)) 708 return true; 709 if (AddFalthroughFrom) { 710 if (!AddFalthroughFrom->isSuccessor(MBB)) 711 AddFalthroughFrom->addSuccessor(MBB); 712 AddFalthroughFrom->normalizeSuccProbs(); 713 AddFalthroughFrom = nullptr; 714 } 715 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 716 return true; 717 // The method 'parseBasicBlock' should parse the whole block until the next 718 // block or the end of file. 719 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 720 } while (Token.isNot(MIToken::Eof)); 721 return false; 722 } 723 724 bool MIParser::parse(MachineInstr *&MI) { 725 // Parse any register operands before '=' 726 MachineOperand MO = MachineOperand::CreateImm(0); 727 SmallVector<ParsedMachineOperand, 8> Operands; 728 while (Token.isRegister() || Token.isRegisterFlag()) { 729 auto Loc = Token.location(); 730 Optional<unsigned> TiedDefIdx; 731 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 732 return true; 733 Operands.push_back( 734 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 735 if (Token.isNot(MIToken::comma)) 736 break; 737 lex(); 738 } 739 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 740 return true; 741 742 unsigned OpCode, Flags = 0; 743 if (Token.isError() || parseInstruction(OpCode, Flags)) 744 return true; 745 746 // Parse the remaining machine operands. 747 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 748 Token.isNot(MIToken::kw_post_instr_symbol) && 749 Token.isNot(MIToken::kw_debug_location) && 750 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 751 auto Loc = Token.location(); 752 Optional<unsigned> TiedDefIdx; 753 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 754 return true; 755 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 756 MO.setIsDebug(); 757 Operands.push_back( 758 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 759 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 760 Token.is(MIToken::lbrace)) 761 break; 762 if (Token.isNot(MIToken::comma)) 763 return error("expected ',' before the next machine operand"); 764 lex(); 765 } 766 767 MCSymbol *PreInstrSymbol = nullptr; 768 if (Token.is(MIToken::kw_pre_instr_symbol)) 769 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 770 return true; 771 MCSymbol *PostInstrSymbol = nullptr; 772 if (Token.is(MIToken::kw_post_instr_symbol)) 773 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 774 return true; 775 776 DebugLoc DebugLocation; 777 if (Token.is(MIToken::kw_debug_location)) { 778 lex(); 779 MDNode *Node = nullptr; 780 if (Token.is(MIToken::exclaim)) { 781 if (parseMDNode(Node)) 782 return true; 783 } else if (Token.is(MIToken::md_dilocation)) { 784 if (parseDILocation(Node)) 785 return true; 786 } else 787 return error("expected a metadata node after 'debug-location'"); 788 if (!isa<DILocation>(Node)) 789 return error("referenced metadata is not a DILocation"); 790 DebugLocation = DebugLoc(Node); 791 } 792 793 // Parse the machine memory operands. 794 SmallVector<MachineMemOperand *, 2> MemOperands; 795 if (Token.is(MIToken::coloncolon)) { 796 lex(); 797 while (!Token.isNewlineOrEOF()) { 798 MachineMemOperand *MemOp = nullptr; 799 if (parseMachineMemoryOperand(MemOp)) 800 return true; 801 MemOperands.push_back(MemOp); 802 if (Token.isNewlineOrEOF()) 803 break; 804 if (Token.isNot(MIToken::comma)) 805 return error("expected ',' before the next machine memory operand"); 806 lex(); 807 } 808 } 809 810 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 811 if (!MCID.isVariadic()) { 812 // FIXME: Move the implicit operand verification to the machine verifier. 813 if (verifyImplicitOperands(Operands, MCID)) 814 return true; 815 } 816 817 // TODO: Check for extraneous machine operands. 818 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 819 MI->setFlags(Flags); 820 for (const auto &Operand : Operands) 821 MI->addOperand(MF, Operand.Operand); 822 if (assignRegisterTies(*MI, Operands)) 823 return true; 824 if (PreInstrSymbol) 825 MI->setPreInstrSymbol(MF, PreInstrSymbol); 826 if (PostInstrSymbol) 827 MI->setPostInstrSymbol(MF, PostInstrSymbol); 828 if (!MemOperands.empty()) 829 MI->setMemRefs(MF, MemOperands); 830 return false; 831 } 832 833 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 834 lex(); 835 if (Token.isNot(MIToken::MachineBasicBlock)) 836 return error("expected a machine basic block reference"); 837 if (parseMBBReference(MBB)) 838 return true; 839 lex(); 840 if (Token.isNot(MIToken::Eof)) 841 return error( 842 "expected end of string after the machine basic block reference"); 843 return false; 844 } 845 846 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 847 lex(); 848 if (Token.isNot(MIToken::NamedRegister)) 849 return error("expected a named register"); 850 if (parseNamedRegister(Reg)) 851 return true; 852 lex(); 853 if (Token.isNot(MIToken::Eof)) 854 return error("expected end of string after the register reference"); 855 return false; 856 } 857 858 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 859 lex(); 860 if (Token.isNot(MIToken::VirtualRegister)) 861 return error("expected a virtual register"); 862 if (parseVirtualRegister(Info)) 863 return true; 864 lex(); 865 if (Token.isNot(MIToken::Eof)) 866 return error("expected end of string after the register reference"); 867 return false; 868 } 869 870 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 871 lex(); 872 if (Token.isNot(MIToken::NamedRegister) && 873 Token.isNot(MIToken::VirtualRegister)) 874 return error("expected either a named or virtual register"); 875 876 VRegInfo *Info; 877 if (parseRegister(Reg, Info)) 878 return true; 879 880 lex(); 881 if (Token.isNot(MIToken::Eof)) 882 return error("expected end of string after the register reference"); 883 return false; 884 } 885 886 bool MIParser::parseStandaloneStackObject(int &FI) { 887 lex(); 888 if (Token.isNot(MIToken::StackObject)) 889 return error("expected a stack object"); 890 if (parseStackFrameIndex(FI)) 891 return true; 892 if (Token.isNot(MIToken::Eof)) 893 return error("expected end of string after the stack object reference"); 894 return false; 895 } 896 897 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 898 lex(); 899 if (Token.is(MIToken::exclaim)) { 900 if (parseMDNode(Node)) 901 return true; 902 } else if (Token.is(MIToken::md_diexpr)) { 903 if (parseDIExpression(Node)) 904 return true; 905 } else if (Token.is(MIToken::md_dilocation)) { 906 if (parseDILocation(Node)) 907 return true; 908 } else 909 return error("expected a metadata node"); 910 if (Token.isNot(MIToken::Eof)) 911 return error("expected end of string after the metadata node"); 912 return false; 913 } 914 915 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 916 assert(MO.isImplicit()); 917 return MO.isDef() ? "implicit-def" : "implicit"; 918 } 919 920 static std::string getRegisterName(const TargetRegisterInfo *TRI, 921 unsigned Reg) { 922 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 923 return StringRef(TRI->getName(Reg)).lower(); 924 } 925 926 /// Return true if the parsed machine operands contain a given machine operand. 927 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 928 ArrayRef<ParsedMachineOperand> Operands) { 929 for (const auto &I : Operands) { 930 if (ImplicitOperand.isIdenticalTo(I.Operand)) 931 return true; 932 } 933 return false; 934 } 935 936 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 937 const MCInstrDesc &MCID) { 938 if (MCID.isCall()) 939 // We can't verify call instructions as they can contain arbitrary implicit 940 // register and register mask operands. 941 return false; 942 943 // Gather all the expected implicit operands. 944 SmallVector<MachineOperand, 4> ImplicitOperands; 945 if (MCID.ImplicitDefs) 946 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 947 ImplicitOperands.push_back( 948 MachineOperand::CreateReg(*ImpDefs, true, true)); 949 if (MCID.ImplicitUses) 950 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 951 ImplicitOperands.push_back( 952 MachineOperand::CreateReg(*ImpUses, false, true)); 953 954 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 955 assert(TRI && "Expected target register info"); 956 for (const auto &I : ImplicitOperands) { 957 if (isImplicitOperandIn(I, Operands)) 958 continue; 959 return error(Operands.empty() ? Token.location() : Operands.back().End, 960 Twine("missing implicit register operand '") + 961 printImplicitRegisterFlag(I) + " $" + 962 getRegisterName(TRI, I.getReg()) + "'"); 963 } 964 return false; 965 } 966 967 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 968 // Allow frame and fast math flags for OPCODE 969 while (Token.is(MIToken::kw_frame_setup) || 970 Token.is(MIToken::kw_frame_destroy) || 971 Token.is(MIToken::kw_nnan) || 972 Token.is(MIToken::kw_ninf) || 973 Token.is(MIToken::kw_nsz) || 974 Token.is(MIToken::kw_arcp) || 975 Token.is(MIToken::kw_contract) || 976 Token.is(MIToken::kw_afn) || 977 Token.is(MIToken::kw_reassoc) || 978 Token.is(MIToken::kw_nuw) || 979 Token.is(MIToken::kw_nsw) || 980 Token.is(MIToken::kw_exact)) { 981 // Mine frame and fast math flags 982 if (Token.is(MIToken::kw_frame_setup)) 983 Flags |= MachineInstr::FrameSetup; 984 if (Token.is(MIToken::kw_frame_destroy)) 985 Flags |= MachineInstr::FrameDestroy; 986 if (Token.is(MIToken::kw_nnan)) 987 Flags |= MachineInstr::FmNoNans; 988 if (Token.is(MIToken::kw_ninf)) 989 Flags |= MachineInstr::FmNoInfs; 990 if (Token.is(MIToken::kw_nsz)) 991 Flags |= MachineInstr::FmNsz; 992 if (Token.is(MIToken::kw_arcp)) 993 Flags |= MachineInstr::FmArcp; 994 if (Token.is(MIToken::kw_contract)) 995 Flags |= MachineInstr::FmContract; 996 if (Token.is(MIToken::kw_afn)) 997 Flags |= MachineInstr::FmAfn; 998 if (Token.is(MIToken::kw_reassoc)) 999 Flags |= MachineInstr::FmReassoc; 1000 if (Token.is(MIToken::kw_nuw)) 1001 Flags |= MachineInstr::NoUWrap; 1002 if (Token.is(MIToken::kw_nsw)) 1003 Flags |= MachineInstr::NoSWrap; 1004 if (Token.is(MIToken::kw_exact)) 1005 Flags |= MachineInstr::IsExact; 1006 1007 lex(); 1008 } 1009 if (Token.isNot(MIToken::Identifier)) 1010 return error("expected a machine instruction"); 1011 StringRef InstrName = Token.stringValue(); 1012 if (parseInstrName(InstrName, OpCode)) 1013 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1014 lex(); 1015 return false; 1016 } 1017 1018 bool MIParser::parseNamedRegister(unsigned &Reg) { 1019 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1020 StringRef Name = Token.stringValue(); 1021 if (getRegisterByName(Name, Reg)) 1022 return error(Twine("unknown register name '") + Name + "'"); 1023 return false; 1024 } 1025 1026 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1027 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1028 StringRef Name = Token.stringValue(); 1029 // TODO: Check that the VReg name is not the same as a physical register name. 1030 // If it is, then print a warning (when warnings are implemented). 1031 Info = &PFS.getVRegInfoNamed(Name); 1032 return false; 1033 } 1034 1035 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1036 if (Token.is(MIToken::NamedVirtualRegister)) 1037 return parseNamedVirtualRegister(Info); 1038 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1039 unsigned ID; 1040 if (getUnsigned(ID)) 1041 return true; 1042 Info = &PFS.getVRegInfo(ID); 1043 return false; 1044 } 1045 1046 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1047 switch (Token.kind()) { 1048 case MIToken::underscore: 1049 Reg = 0; 1050 return false; 1051 case MIToken::NamedRegister: 1052 return parseNamedRegister(Reg); 1053 case MIToken::NamedVirtualRegister: 1054 case MIToken::VirtualRegister: 1055 if (parseVirtualRegister(Info)) 1056 return true; 1057 Reg = Info->VReg; 1058 return false; 1059 // TODO: Parse other register kinds. 1060 default: 1061 llvm_unreachable("The current token should be a register"); 1062 } 1063 } 1064 1065 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1066 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1067 return error("expected '_', register class, or register bank name"); 1068 StringRef::iterator Loc = Token.location(); 1069 StringRef Name = Token.stringValue(); 1070 1071 // Was it a register class? 1072 auto RCNameI = PFS.Names2RegClasses.find(Name); 1073 if (RCNameI != PFS.Names2RegClasses.end()) { 1074 lex(); 1075 const TargetRegisterClass &RC = *RCNameI->getValue(); 1076 1077 switch (RegInfo.Kind) { 1078 case VRegInfo::UNKNOWN: 1079 case VRegInfo::NORMAL: 1080 RegInfo.Kind = VRegInfo::NORMAL; 1081 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1082 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1083 return error(Loc, Twine("conflicting register classes, previously: ") + 1084 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1085 } 1086 RegInfo.D.RC = &RC; 1087 RegInfo.Explicit = true; 1088 return false; 1089 1090 case VRegInfo::GENERIC: 1091 case VRegInfo::REGBANK: 1092 return error(Loc, "register class specification on generic register"); 1093 } 1094 llvm_unreachable("Unexpected register kind"); 1095 } 1096 1097 // Should be a register bank or a generic register. 1098 const RegisterBank *RegBank = nullptr; 1099 if (Name != "_") { 1100 auto RBNameI = PFS.Names2RegBanks.find(Name); 1101 if (RBNameI == PFS.Names2RegBanks.end()) 1102 return error(Loc, "expected '_', register class, or register bank name"); 1103 RegBank = RBNameI->getValue(); 1104 } 1105 1106 lex(); 1107 1108 switch (RegInfo.Kind) { 1109 case VRegInfo::UNKNOWN: 1110 case VRegInfo::GENERIC: 1111 case VRegInfo::REGBANK: 1112 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1113 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1114 return error(Loc, "conflicting generic register banks"); 1115 RegInfo.D.RegBank = RegBank; 1116 RegInfo.Explicit = true; 1117 return false; 1118 1119 case VRegInfo::NORMAL: 1120 return error(Loc, "register bank specification on normal register"); 1121 } 1122 llvm_unreachable("Unexpected register kind"); 1123 } 1124 1125 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1126 const unsigned OldFlags = Flags; 1127 switch (Token.kind()) { 1128 case MIToken::kw_implicit: 1129 Flags |= RegState::Implicit; 1130 break; 1131 case MIToken::kw_implicit_define: 1132 Flags |= RegState::ImplicitDefine; 1133 break; 1134 case MIToken::kw_def: 1135 Flags |= RegState::Define; 1136 break; 1137 case MIToken::kw_dead: 1138 Flags |= RegState::Dead; 1139 break; 1140 case MIToken::kw_killed: 1141 Flags |= RegState::Kill; 1142 break; 1143 case MIToken::kw_undef: 1144 Flags |= RegState::Undef; 1145 break; 1146 case MIToken::kw_internal: 1147 Flags |= RegState::InternalRead; 1148 break; 1149 case MIToken::kw_early_clobber: 1150 Flags |= RegState::EarlyClobber; 1151 break; 1152 case MIToken::kw_debug_use: 1153 Flags |= RegState::Debug; 1154 break; 1155 case MIToken::kw_renamable: 1156 Flags |= RegState::Renamable; 1157 break; 1158 default: 1159 llvm_unreachable("The current token should be a register flag"); 1160 } 1161 if (OldFlags == Flags) 1162 // We know that the same flag is specified more than once when the flags 1163 // weren't modified. 1164 return error("duplicate '" + Token.stringValue() + "' register flag"); 1165 lex(); 1166 return false; 1167 } 1168 1169 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1170 assert(Token.is(MIToken::dot)); 1171 lex(); 1172 if (Token.isNot(MIToken::Identifier)) 1173 return error("expected a subregister index after '.'"); 1174 auto Name = Token.stringValue(); 1175 SubReg = getSubRegIndex(Name); 1176 if (!SubReg) 1177 return error(Twine("use of unknown subregister index '") + Name + "'"); 1178 lex(); 1179 return false; 1180 } 1181 1182 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1183 if (!consumeIfPresent(MIToken::kw_tied_def)) 1184 return true; 1185 if (Token.isNot(MIToken::IntegerLiteral)) 1186 return error("expected an integer literal after 'tied-def'"); 1187 if (getUnsigned(TiedDefIdx)) 1188 return true; 1189 lex(); 1190 if (expectAndConsume(MIToken::rparen)) 1191 return true; 1192 return false; 1193 } 1194 1195 bool MIParser::assignRegisterTies(MachineInstr &MI, 1196 ArrayRef<ParsedMachineOperand> Operands) { 1197 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1198 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1199 if (!Operands[I].TiedDefIdx) 1200 continue; 1201 // The parser ensures that this operand is a register use, so we just have 1202 // to check the tied-def operand. 1203 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1204 if (DefIdx >= E) 1205 return error(Operands[I].Begin, 1206 Twine("use of invalid tied-def operand index '" + 1207 Twine(DefIdx) + "'; instruction has only ") + 1208 Twine(E) + " operands"); 1209 const auto &DefOperand = Operands[DefIdx].Operand; 1210 if (!DefOperand.isReg() || !DefOperand.isDef()) 1211 // FIXME: add note with the def operand. 1212 return error(Operands[I].Begin, 1213 Twine("use of invalid tied-def operand index '") + 1214 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1215 " isn't a defined register"); 1216 // Check that the tied-def operand wasn't tied elsewhere. 1217 for (const auto &TiedPair : TiedRegisterPairs) { 1218 if (TiedPair.first == DefIdx) 1219 return error(Operands[I].Begin, 1220 Twine("the tied-def operand #") + Twine(DefIdx) + 1221 " is already tied with another register operand"); 1222 } 1223 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1224 } 1225 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1226 // indices must be less than tied max. 1227 for (const auto &TiedPair : TiedRegisterPairs) 1228 MI.tieOperands(TiedPair.first, TiedPair.second); 1229 return false; 1230 } 1231 1232 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1233 Optional<unsigned> &TiedDefIdx, 1234 bool IsDef) { 1235 unsigned Flags = IsDef ? RegState::Define : 0; 1236 while (Token.isRegisterFlag()) { 1237 if (parseRegisterFlag(Flags)) 1238 return true; 1239 } 1240 if (!Token.isRegister()) 1241 return error("expected a register after register flags"); 1242 unsigned Reg; 1243 VRegInfo *RegInfo; 1244 if (parseRegister(Reg, RegInfo)) 1245 return true; 1246 lex(); 1247 unsigned SubReg = 0; 1248 if (Token.is(MIToken::dot)) { 1249 if (parseSubRegisterIndex(SubReg)) 1250 return true; 1251 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1252 return error("subregister index expects a virtual register"); 1253 } 1254 if (Token.is(MIToken::colon)) { 1255 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1256 return error("register class specification expects a virtual register"); 1257 lex(); 1258 if (parseRegisterClassOrBank(*RegInfo)) 1259 return true; 1260 } 1261 MachineRegisterInfo &MRI = MF.getRegInfo(); 1262 if ((Flags & RegState::Define) == 0) { 1263 if (consumeIfPresent(MIToken::lparen)) { 1264 unsigned Idx; 1265 if (!parseRegisterTiedDefIndex(Idx)) 1266 TiedDefIdx = Idx; 1267 else { 1268 // Try a redundant low-level type. 1269 LLT Ty; 1270 if (parseLowLevelType(Token.location(), Ty)) 1271 return error("expected tied-def or low-level type after '('"); 1272 1273 if (expectAndConsume(MIToken::rparen)) 1274 return true; 1275 1276 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1277 return error("inconsistent type for generic virtual register"); 1278 1279 MRI.setType(Reg, Ty); 1280 } 1281 } 1282 } else if (consumeIfPresent(MIToken::lparen)) { 1283 // Virtual registers may have a tpe with GlobalISel. 1284 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1285 return error("unexpected type on physical register"); 1286 1287 LLT Ty; 1288 if (parseLowLevelType(Token.location(), Ty)) 1289 return true; 1290 1291 if (expectAndConsume(MIToken::rparen)) 1292 return true; 1293 1294 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1295 return error("inconsistent type for generic virtual register"); 1296 1297 MRI.setType(Reg, Ty); 1298 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1299 // Generic virtual registers must have a type. 1300 // If we end up here this means the type hasn't been specified and 1301 // this is bad! 1302 if (RegInfo->Kind == VRegInfo::GENERIC || 1303 RegInfo->Kind == VRegInfo::REGBANK) 1304 return error("generic virtual registers must have a type"); 1305 } 1306 Dest = MachineOperand::CreateReg( 1307 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1308 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1309 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1310 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1311 1312 return false; 1313 } 1314 1315 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1316 assert(Token.is(MIToken::IntegerLiteral)); 1317 const APSInt &Int = Token.integerValue(); 1318 if (Int.getMinSignedBits() > 64) 1319 return error("integer literal is too large to be an immediate operand"); 1320 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1321 lex(); 1322 return false; 1323 } 1324 1325 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1326 const Constant *&C) { 1327 auto Source = StringValue.str(); // The source has to be null terminated. 1328 SMDiagnostic Err; 1329 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1330 &PFS.IRSlots); 1331 if (!C) 1332 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1333 return false; 1334 } 1335 1336 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1337 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1338 return true; 1339 lex(); 1340 return false; 1341 } 1342 1343 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1344 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1345 StringRef SizeStr = Token.range().drop_front(); 1346 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1347 return error("expected integers after 's'/'p' type character"); 1348 } 1349 1350 if (Token.range().front() == 's') { 1351 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1352 lex(); 1353 return false; 1354 } else if (Token.range().front() == 'p') { 1355 const DataLayout &DL = MF.getDataLayout(); 1356 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1357 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1358 lex(); 1359 return false; 1360 } 1361 1362 // Now we're looking for a vector. 1363 if (Token.isNot(MIToken::less)) 1364 return error(Loc, 1365 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1366 lex(); 1367 1368 if (Token.isNot(MIToken::IntegerLiteral)) 1369 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1370 uint64_t NumElements = Token.integerValue().getZExtValue(); 1371 lex(); 1372 1373 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1374 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1375 lex(); 1376 1377 if (Token.range().front() != 's' && Token.range().front() != 'p') 1378 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1379 StringRef SizeStr = Token.range().drop_front(); 1380 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1381 return error("expected integers after 's'/'p' type character"); 1382 1383 if (Token.range().front() == 's') 1384 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1385 else if (Token.range().front() == 'p') { 1386 const DataLayout &DL = MF.getDataLayout(); 1387 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1388 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1389 } else 1390 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1391 lex(); 1392 1393 if (Token.isNot(MIToken::greater)) 1394 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1395 lex(); 1396 1397 Ty = LLT::vector(NumElements, Ty); 1398 return false; 1399 } 1400 1401 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1402 assert(Token.is(MIToken::Identifier)); 1403 StringRef TypeStr = Token.range(); 1404 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1405 TypeStr.front() != 'p') 1406 return error( 1407 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1408 StringRef SizeStr = Token.range().drop_front(); 1409 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1410 return error("expected integers after 'i'/'s'/'p' type character"); 1411 1412 auto Loc = Token.location(); 1413 lex(); 1414 if (Token.isNot(MIToken::IntegerLiteral)) { 1415 if (Token.isNot(MIToken::Identifier) || 1416 !(Token.range() == "true" || Token.range() == "false")) 1417 return error("expected an integer literal"); 1418 } 1419 const Constant *C = nullptr; 1420 if (parseIRConstant(Loc, C)) 1421 return true; 1422 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1423 return false; 1424 } 1425 1426 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1427 auto Loc = Token.location(); 1428 lex(); 1429 if (Token.isNot(MIToken::FloatingPointLiteral) && 1430 Token.isNot(MIToken::HexLiteral)) 1431 return error("expected a floating point literal"); 1432 const Constant *C = nullptr; 1433 if (parseIRConstant(Loc, C)) 1434 return true; 1435 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1436 return false; 1437 } 1438 1439 bool MIParser::getUnsigned(unsigned &Result) { 1440 if (Token.hasIntegerValue()) { 1441 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1442 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1443 if (Val64 == Limit) 1444 return error("expected 32-bit integer (too large)"); 1445 Result = Val64; 1446 return false; 1447 } 1448 if (Token.is(MIToken::HexLiteral)) { 1449 APInt A; 1450 if (getHexUint(A)) 1451 return true; 1452 if (A.getBitWidth() > 32) 1453 return error("expected 32-bit integer (too large)"); 1454 Result = A.getZExtValue(); 1455 return false; 1456 } 1457 return true; 1458 } 1459 1460 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1461 assert(Token.is(MIToken::MachineBasicBlock) || 1462 Token.is(MIToken::MachineBasicBlockLabel)); 1463 unsigned Number; 1464 if (getUnsigned(Number)) 1465 return true; 1466 auto MBBInfo = PFS.MBBSlots.find(Number); 1467 if (MBBInfo == PFS.MBBSlots.end()) 1468 return error(Twine("use of undefined machine basic block #") + 1469 Twine(Number)); 1470 MBB = MBBInfo->second; 1471 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1472 // we drop the <irname> from the bb.<id>.<irname> format. 1473 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1474 return error(Twine("the name of machine basic block #") + Twine(Number) + 1475 " isn't '" + Token.stringValue() + "'"); 1476 return false; 1477 } 1478 1479 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1480 MachineBasicBlock *MBB; 1481 if (parseMBBReference(MBB)) 1482 return true; 1483 Dest = MachineOperand::CreateMBB(MBB); 1484 lex(); 1485 return false; 1486 } 1487 1488 bool MIParser::parseStackFrameIndex(int &FI) { 1489 assert(Token.is(MIToken::StackObject)); 1490 unsigned ID; 1491 if (getUnsigned(ID)) 1492 return true; 1493 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1494 if (ObjectInfo == PFS.StackObjectSlots.end()) 1495 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1496 "'"); 1497 StringRef Name; 1498 if (const auto *Alloca = 1499 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1500 Name = Alloca->getName(); 1501 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1502 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1503 "' isn't '" + Token.stringValue() + "'"); 1504 lex(); 1505 FI = ObjectInfo->second; 1506 return false; 1507 } 1508 1509 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1510 int FI; 1511 if (parseStackFrameIndex(FI)) 1512 return true; 1513 Dest = MachineOperand::CreateFI(FI); 1514 return false; 1515 } 1516 1517 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1518 assert(Token.is(MIToken::FixedStackObject)); 1519 unsigned ID; 1520 if (getUnsigned(ID)) 1521 return true; 1522 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1523 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1524 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1525 Twine(ID) + "'"); 1526 lex(); 1527 FI = ObjectInfo->second; 1528 return false; 1529 } 1530 1531 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1532 int FI; 1533 if (parseFixedStackFrameIndex(FI)) 1534 return true; 1535 Dest = MachineOperand::CreateFI(FI); 1536 return false; 1537 } 1538 1539 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1540 switch (Token.kind()) { 1541 case MIToken::NamedGlobalValue: { 1542 const Module *M = MF.getFunction().getParent(); 1543 GV = M->getNamedValue(Token.stringValue()); 1544 if (!GV) 1545 return error(Twine("use of undefined global value '") + Token.range() + 1546 "'"); 1547 break; 1548 } 1549 case MIToken::GlobalValue: { 1550 unsigned GVIdx; 1551 if (getUnsigned(GVIdx)) 1552 return true; 1553 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1554 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1555 "'"); 1556 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1557 break; 1558 } 1559 default: 1560 llvm_unreachable("The current token should be a global value"); 1561 } 1562 return false; 1563 } 1564 1565 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1566 GlobalValue *GV = nullptr; 1567 if (parseGlobalValue(GV)) 1568 return true; 1569 lex(); 1570 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1571 if (parseOperandsOffset(Dest)) 1572 return true; 1573 return false; 1574 } 1575 1576 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1577 assert(Token.is(MIToken::ConstantPoolItem)); 1578 unsigned ID; 1579 if (getUnsigned(ID)) 1580 return true; 1581 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1582 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1583 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1584 lex(); 1585 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1586 if (parseOperandsOffset(Dest)) 1587 return true; 1588 return false; 1589 } 1590 1591 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1592 assert(Token.is(MIToken::JumpTableIndex)); 1593 unsigned ID; 1594 if (getUnsigned(ID)) 1595 return true; 1596 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1597 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1598 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1599 lex(); 1600 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1601 return false; 1602 } 1603 1604 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1605 assert(Token.is(MIToken::ExternalSymbol)); 1606 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1607 lex(); 1608 Dest = MachineOperand::CreateES(Symbol); 1609 if (parseOperandsOffset(Dest)) 1610 return true; 1611 return false; 1612 } 1613 1614 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1615 assert(Token.is(MIToken::MCSymbol)); 1616 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1617 lex(); 1618 Dest = MachineOperand::CreateMCSymbol(Symbol); 1619 if (parseOperandsOffset(Dest)) 1620 return true; 1621 return false; 1622 } 1623 1624 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1625 assert(Token.is(MIToken::SubRegisterIndex)); 1626 StringRef Name = Token.stringValue(); 1627 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1628 if (SubRegIndex == 0) 1629 return error(Twine("unknown subregister index '") + Name + "'"); 1630 lex(); 1631 Dest = MachineOperand::CreateImm(SubRegIndex); 1632 return false; 1633 } 1634 1635 bool MIParser::parseMDNode(MDNode *&Node) { 1636 assert(Token.is(MIToken::exclaim)); 1637 1638 auto Loc = Token.location(); 1639 lex(); 1640 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1641 return error("expected metadata id after '!'"); 1642 unsigned ID; 1643 if (getUnsigned(ID)) 1644 return true; 1645 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1646 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1647 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1648 lex(); 1649 Node = NodeInfo->second.get(); 1650 return false; 1651 } 1652 1653 bool MIParser::parseDIExpression(MDNode *&Expr) { 1654 assert(Token.is(MIToken::md_diexpr)); 1655 lex(); 1656 1657 // FIXME: Share this parsing with the IL parser. 1658 SmallVector<uint64_t, 8> Elements; 1659 1660 if (expectAndConsume(MIToken::lparen)) 1661 return true; 1662 1663 if (Token.isNot(MIToken::rparen)) { 1664 do { 1665 if (Token.is(MIToken::Identifier)) { 1666 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1667 lex(); 1668 Elements.push_back(Op); 1669 continue; 1670 } 1671 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1672 } 1673 1674 if (Token.isNot(MIToken::IntegerLiteral) || 1675 Token.integerValue().isSigned()) 1676 return error("expected unsigned integer"); 1677 1678 auto &U = Token.integerValue(); 1679 if (U.ugt(UINT64_MAX)) 1680 return error("element too large, limit is " + Twine(UINT64_MAX)); 1681 Elements.push_back(U.getZExtValue()); 1682 lex(); 1683 1684 } while (consumeIfPresent(MIToken::comma)); 1685 } 1686 1687 if (expectAndConsume(MIToken::rparen)) 1688 return true; 1689 1690 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1691 return false; 1692 } 1693 1694 bool MIParser::parseDILocation(MDNode *&Loc) { 1695 assert(Token.is(MIToken::md_dilocation)); 1696 lex(); 1697 1698 bool HaveLine = false; 1699 unsigned Line = 0; 1700 unsigned Column = 0; 1701 MDNode *Scope = nullptr; 1702 MDNode *InlinedAt = nullptr; 1703 bool ImplicitCode = false; 1704 1705 if (expectAndConsume(MIToken::lparen)) 1706 return true; 1707 1708 if (Token.isNot(MIToken::rparen)) { 1709 do { 1710 if (Token.is(MIToken::Identifier)) { 1711 if (Token.stringValue() == "line") { 1712 lex(); 1713 if (expectAndConsume(MIToken::colon)) 1714 return true; 1715 if (Token.isNot(MIToken::IntegerLiteral) || 1716 Token.integerValue().isSigned()) 1717 return error("expected unsigned integer"); 1718 Line = Token.integerValue().getZExtValue(); 1719 HaveLine = true; 1720 lex(); 1721 continue; 1722 } 1723 if (Token.stringValue() == "column") { 1724 lex(); 1725 if (expectAndConsume(MIToken::colon)) 1726 return true; 1727 if (Token.isNot(MIToken::IntegerLiteral) || 1728 Token.integerValue().isSigned()) 1729 return error("expected unsigned integer"); 1730 Column = Token.integerValue().getZExtValue(); 1731 lex(); 1732 continue; 1733 } 1734 if (Token.stringValue() == "scope") { 1735 lex(); 1736 if (expectAndConsume(MIToken::colon)) 1737 return true; 1738 if (parseMDNode(Scope)) 1739 return error("expected metadata node"); 1740 if (!isa<DIScope>(Scope)) 1741 return error("expected DIScope node"); 1742 continue; 1743 } 1744 if (Token.stringValue() == "inlinedAt") { 1745 lex(); 1746 if (expectAndConsume(MIToken::colon)) 1747 return true; 1748 if (Token.is(MIToken::exclaim)) { 1749 if (parseMDNode(InlinedAt)) 1750 return true; 1751 } else if (Token.is(MIToken::md_dilocation)) { 1752 if (parseDILocation(InlinedAt)) 1753 return true; 1754 } else 1755 return error("expected metadata node"); 1756 if (!isa<DILocation>(InlinedAt)) 1757 return error("expected DILocation node"); 1758 continue; 1759 } 1760 if (Token.stringValue() == "isImplicitCode") { 1761 lex(); 1762 if (expectAndConsume(MIToken::colon)) 1763 return true; 1764 if (!Token.is(MIToken::Identifier)) 1765 return error("expected true/false"); 1766 // As far as I can see, we don't have any existing need for parsing 1767 // true/false in MIR yet. Do it ad-hoc until there's something else 1768 // that needs it. 1769 if (Token.stringValue() == "true") 1770 ImplicitCode = true; 1771 else if (Token.stringValue() == "false") 1772 ImplicitCode = false; 1773 else 1774 return error("expected true/false"); 1775 lex(); 1776 continue; 1777 } 1778 } 1779 return error(Twine("invalid DILocation argument '") + 1780 Token.stringValue() + "'"); 1781 } while (consumeIfPresent(MIToken::comma)); 1782 } 1783 1784 if (expectAndConsume(MIToken::rparen)) 1785 return true; 1786 1787 if (!HaveLine) 1788 return error("DILocation requires line number"); 1789 if (!Scope) 1790 return error("DILocation requires a scope"); 1791 1792 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1793 InlinedAt, ImplicitCode); 1794 return false; 1795 } 1796 1797 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1798 MDNode *Node = nullptr; 1799 if (Token.is(MIToken::exclaim)) { 1800 if (parseMDNode(Node)) 1801 return true; 1802 } else if (Token.is(MIToken::md_diexpr)) { 1803 if (parseDIExpression(Node)) 1804 return true; 1805 } 1806 Dest = MachineOperand::CreateMetadata(Node); 1807 return false; 1808 } 1809 1810 bool MIParser::parseCFIOffset(int &Offset) { 1811 if (Token.isNot(MIToken::IntegerLiteral)) 1812 return error("expected a cfi offset"); 1813 if (Token.integerValue().getMinSignedBits() > 32) 1814 return error("expected a 32 bit integer (the cfi offset is too large)"); 1815 Offset = (int)Token.integerValue().getExtValue(); 1816 lex(); 1817 return false; 1818 } 1819 1820 bool MIParser::parseCFIRegister(unsigned &Reg) { 1821 if (Token.isNot(MIToken::NamedRegister)) 1822 return error("expected a cfi register"); 1823 unsigned LLVMReg; 1824 if (parseNamedRegister(LLVMReg)) 1825 return true; 1826 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1827 assert(TRI && "Expected target register info"); 1828 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1829 if (DwarfReg < 0) 1830 return error("invalid DWARF register"); 1831 Reg = (unsigned)DwarfReg; 1832 lex(); 1833 return false; 1834 } 1835 1836 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1837 do { 1838 if (Token.isNot(MIToken::HexLiteral)) 1839 return error("expected a hexadecimal literal"); 1840 unsigned Value; 1841 if (getUnsigned(Value)) 1842 return true; 1843 if (Value > UINT8_MAX) 1844 return error("expected a 8-bit integer (too large)"); 1845 Values.push_back(static_cast<uint8_t>(Value)); 1846 lex(); 1847 } while (consumeIfPresent(MIToken::comma)); 1848 return false; 1849 } 1850 1851 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1852 auto Kind = Token.kind(); 1853 lex(); 1854 int Offset; 1855 unsigned Reg; 1856 unsigned CFIIndex; 1857 switch (Kind) { 1858 case MIToken::kw_cfi_same_value: 1859 if (parseCFIRegister(Reg)) 1860 return true; 1861 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1862 break; 1863 case MIToken::kw_cfi_offset: 1864 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1865 parseCFIOffset(Offset)) 1866 return true; 1867 CFIIndex = 1868 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1869 break; 1870 case MIToken::kw_cfi_rel_offset: 1871 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1872 parseCFIOffset(Offset)) 1873 return true; 1874 CFIIndex = MF.addFrameInst( 1875 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1876 break; 1877 case MIToken::kw_cfi_def_cfa_register: 1878 if (parseCFIRegister(Reg)) 1879 return true; 1880 CFIIndex = 1881 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1882 break; 1883 case MIToken::kw_cfi_def_cfa_offset: 1884 if (parseCFIOffset(Offset)) 1885 return true; 1886 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1887 CFIIndex = MF.addFrameInst( 1888 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1889 break; 1890 case MIToken::kw_cfi_adjust_cfa_offset: 1891 if (parseCFIOffset(Offset)) 1892 return true; 1893 CFIIndex = MF.addFrameInst( 1894 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1895 break; 1896 case MIToken::kw_cfi_def_cfa: 1897 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1898 parseCFIOffset(Offset)) 1899 return true; 1900 // NB: MCCFIInstruction::createDefCfa negates the offset. 1901 CFIIndex = 1902 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1903 break; 1904 case MIToken::kw_cfi_remember_state: 1905 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1906 break; 1907 case MIToken::kw_cfi_restore: 1908 if (parseCFIRegister(Reg)) 1909 return true; 1910 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1911 break; 1912 case MIToken::kw_cfi_restore_state: 1913 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1914 break; 1915 case MIToken::kw_cfi_undefined: 1916 if (parseCFIRegister(Reg)) 1917 return true; 1918 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1919 break; 1920 case MIToken::kw_cfi_register: { 1921 unsigned Reg2; 1922 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1923 parseCFIRegister(Reg2)) 1924 return true; 1925 1926 CFIIndex = 1927 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1928 break; 1929 } 1930 case MIToken::kw_cfi_window_save: 1931 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1932 break; 1933 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 1934 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 1935 break; 1936 case MIToken::kw_cfi_escape: { 1937 std::string Values; 1938 if (parseCFIEscapeValues(Values)) 1939 return true; 1940 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1941 break; 1942 } 1943 default: 1944 // TODO: Parse the other CFI operands. 1945 llvm_unreachable("The current token should be a cfi operand"); 1946 } 1947 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1948 return false; 1949 } 1950 1951 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1952 switch (Token.kind()) { 1953 case MIToken::NamedIRBlock: { 1954 BB = dyn_cast_or_null<BasicBlock>( 1955 F.getValueSymbolTable()->lookup(Token.stringValue())); 1956 if (!BB) 1957 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1958 break; 1959 } 1960 case MIToken::IRBlock: { 1961 unsigned SlotNumber = 0; 1962 if (getUnsigned(SlotNumber)) 1963 return true; 1964 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1965 if (!BB) 1966 return error(Twine("use of undefined IR block '%ir-block.") + 1967 Twine(SlotNumber) + "'"); 1968 break; 1969 } 1970 default: 1971 llvm_unreachable("The current token should be an IR block reference"); 1972 } 1973 return false; 1974 } 1975 1976 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1977 assert(Token.is(MIToken::kw_blockaddress)); 1978 lex(); 1979 if (expectAndConsume(MIToken::lparen)) 1980 return true; 1981 if (Token.isNot(MIToken::GlobalValue) && 1982 Token.isNot(MIToken::NamedGlobalValue)) 1983 return error("expected a global value"); 1984 GlobalValue *GV = nullptr; 1985 if (parseGlobalValue(GV)) 1986 return true; 1987 auto *F = dyn_cast<Function>(GV); 1988 if (!F) 1989 return error("expected an IR function reference"); 1990 lex(); 1991 if (expectAndConsume(MIToken::comma)) 1992 return true; 1993 BasicBlock *BB = nullptr; 1994 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1995 return error("expected an IR block reference"); 1996 if (parseIRBlock(BB, *F)) 1997 return true; 1998 lex(); 1999 if (expectAndConsume(MIToken::rparen)) 2000 return true; 2001 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2002 if (parseOperandsOffset(Dest)) 2003 return true; 2004 return false; 2005 } 2006 2007 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2008 assert(Token.is(MIToken::kw_intrinsic)); 2009 lex(); 2010 if (expectAndConsume(MIToken::lparen)) 2011 return error("expected syntax intrinsic(@llvm.whatever)"); 2012 2013 if (Token.isNot(MIToken::NamedGlobalValue)) 2014 return error("expected syntax intrinsic(@llvm.whatever)"); 2015 2016 std::string Name = Token.stringValue(); 2017 lex(); 2018 2019 if (expectAndConsume(MIToken::rparen)) 2020 return error("expected ')' to terminate intrinsic name"); 2021 2022 // Find out what intrinsic we're dealing with, first try the global namespace 2023 // and then the target's private intrinsics if that fails. 2024 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2025 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2026 if (ID == Intrinsic::not_intrinsic && TII) 2027 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2028 2029 if (ID == Intrinsic::not_intrinsic) 2030 return error("unknown intrinsic name"); 2031 Dest = MachineOperand::CreateIntrinsicID(ID); 2032 2033 return false; 2034 } 2035 2036 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2037 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2038 bool IsFloat = Token.is(MIToken::kw_floatpred); 2039 lex(); 2040 2041 if (expectAndConsume(MIToken::lparen)) 2042 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2043 2044 if (Token.isNot(MIToken::Identifier)) 2045 return error("whatever"); 2046 2047 CmpInst::Predicate Pred; 2048 if (IsFloat) { 2049 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2050 .Case("false", CmpInst::FCMP_FALSE) 2051 .Case("oeq", CmpInst::FCMP_OEQ) 2052 .Case("ogt", CmpInst::FCMP_OGT) 2053 .Case("oge", CmpInst::FCMP_OGE) 2054 .Case("olt", CmpInst::FCMP_OLT) 2055 .Case("ole", CmpInst::FCMP_OLE) 2056 .Case("one", CmpInst::FCMP_ONE) 2057 .Case("ord", CmpInst::FCMP_ORD) 2058 .Case("uno", CmpInst::FCMP_UNO) 2059 .Case("ueq", CmpInst::FCMP_UEQ) 2060 .Case("ugt", CmpInst::FCMP_UGT) 2061 .Case("uge", CmpInst::FCMP_UGE) 2062 .Case("ult", CmpInst::FCMP_ULT) 2063 .Case("ule", CmpInst::FCMP_ULE) 2064 .Case("une", CmpInst::FCMP_UNE) 2065 .Case("true", CmpInst::FCMP_TRUE) 2066 .Default(CmpInst::BAD_FCMP_PREDICATE); 2067 if (!CmpInst::isFPPredicate(Pred)) 2068 return error("invalid floating-point predicate"); 2069 } else { 2070 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2071 .Case("eq", CmpInst::ICMP_EQ) 2072 .Case("ne", CmpInst::ICMP_NE) 2073 .Case("sgt", CmpInst::ICMP_SGT) 2074 .Case("sge", CmpInst::ICMP_SGE) 2075 .Case("slt", CmpInst::ICMP_SLT) 2076 .Case("sle", CmpInst::ICMP_SLE) 2077 .Case("ugt", CmpInst::ICMP_UGT) 2078 .Case("uge", CmpInst::ICMP_UGE) 2079 .Case("ult", CmpInst::ICMP_ULT) 2080 .Case("ule", CmpInst::ICMP_ULE) 2081 .Default(CmpInst::BAD_ICMP_PREDICATE); 2082 if (!CmpInst::isIntPredicate(Pred)) 2083 return error("invalid integer predicate"); 2084 } 2085 2086 lex(); 2087 Dest = MachineOperand::CreatePredicate(Pred); 2088 if (expectAndConsume(MIToken::rparen)) 2089 return error("predicate should be terminated by ')'."); 2090 2091 return false; 2092 } 2093 2094 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2095 assert(Token.is(MIToken::kw_target_index)); 2096 lex(); 2097 if (expectAndConsume(MIToken::lparen)) 2098 return true; 2099 if (Token.isNot(MIToken::Identifier)) 2100 return error("expected the name of the target index"); 2101 int Index = 0; 2102 if (getTargetIndex(Token.stringValue(), Index)) 2103 return error("use of undefined target index '" + Token.stringValue() + "'"); 2104 lex(); 2105 if (expectAndConsume(MIToken::rparen)) 2106 return true; 2107 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2108 if (parseOperandsOffset(Dest)) 2109 return true; 2110 return false; 2111 } 2112 2113 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2114 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2115 lex(); 2116 if (expectAndConsume(MIToken::lparen)) 2117 return true; 2118 2119 uint32_t *Mask = MF.allocateRegMask(); 2120 while (true) { 2121 if (Token.isNot(MIToken::NamedRegister)) 2122 return error("expected a named register"); 2123 unsigned Reg; 2124 if (parseNamedRegister(Reg)) 2125 return true; 2126 lex(); 2127 Mask[Reg / 32] |= 1U << (Reg % 32); 2128 // TODO: Report an error if the same register is used more than once. 2129 if (Token.isNot(MIToken::comma)) 2130 break; 2131 lex(); 2132 } 2133 2134 if (expectAndConsume(MIToken::rparen)) 2135 return true; 2136 Dest = MachineOperand::CreateRegMask(Mask); 2137 return false; 2138 } 2139 2140 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2141 assert(Token.is(MIToken::kw_liveout)); 2142 uint32_t *Mask = MF.allocateRegMask(); 2143 lex(); 2144 if (expectAndConsume(MIToken::lparen)) 2145 return true; 2146 while (true) { 2147 if (Token.isNot(MIToken::NamedRegister)) 2148 return error("expected a named register"); 2149 unsigned Reg; 2150 if (parseNamedRegister(Reg)) 2151 return true; 2152 lex(); 2153 Mask[Reg / 32] |= 1U << (Reg % 32); 2154 // TODO: Report an error if the same register is used more than once. 2155 if (Token.isNot(MIToken::comma)) 2156 break; 2157 lex(); 2158 } 2159 if (expectAndConsume(MIToken::rparen)) 2160 return true; 2161 Dest = MachineOperand::CreateRegLiveOut(Mask); 2162 return false; 2163 } 2164 2165 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2166 Optional<unsigned> &TiedDefIdx) { 2167 switch (Token.kind()) { 2168 case MIToken::kw_implicit: 2169 case MIToken::kw_implicit_define: 2170 case MIToken::kw_def: 2171 case MIToken::kw_dead: 2172 case MIToken::kw_killed: 2173 case MIToken::kw_undef: 2174 case MIToken::kw_internal: 2175 case MIToken::kw_early_clobber: 2176 case MIToken::kw_debug_use: 2177 case MIToken::kw_renamable: 2178 case MIToken::underscore: 2179 case MIToken::NamedRegister: 2180 case MIToken::VirtualRegister: 2181 case MIToken::NamedVirtualRegister: 2182 return parseRegisterOperand(Dest, TiedDefIdx); 2183 case MIToken::IntegerLiteral: 2184 return parseImmediateOperand(Dest); 2185 case MIToken::kw_half: 2186 case MIToken::kw_float: 2187 case MIToken::kw_double: 2188 case MIToken::kw_x86_fp80: 2189 case MIToken::kw_fp128: 2190 case MIToken::kw_ppc_fp128: 2191 return parseFPImmediateOperand(Dest); 2192 case MIToken::MachineBasicBlock: 2193 return parseMBBOperand(Dest); 2194 case MIToken::StackObject: 2195 return parseStackObjectOperand(Dest); 2196 case MIToken::FixedStackObject: 2197 return parseFixedStackObjectOperand(Dest); 2198 case MIToken::GlobalValue: 2199 case MIToken::NamedGlobalValue: 2200 return parseGlobalAddressOperand(Dest); 2201 case MIToken::ConstantPoolItem: 2202 return parseConstantPoolIndexOperand(Dest); 2203 case MIToken::JumpTableIndex: 2204 return parseJumpTableIndexOperand(Dest); 2205 case MIToken::ExternalSymbol: 2206 return parseExternalSymbolOperand(Dest); 2207 case MIToken::MCSymbol: 2208 return parseMCSymbolOperand(Dest); 2209 case MIToken::SubRegisterIndex: 2210 return parseSubRegisterIndexOperand(Dest); 2211 case MIToken::md_diexpr: 2212 case MIToken::exclaim: 2213 return parseMetadataOperand(Dest); 2214 case MIToken::kw_cfi_same_value: 2215 case MIToken::kw_cfi_offset: 2216 case MIToken::kw_cfi_rel_offset: 2217 case MIToken::kw_cfi_def_cfa_register: 2218 case MIToken::kw_cfi_def_cfa_offset: 2219 case MIToken::kw_cfi_adjust_cfa_offset: 2220 case MIToken::kw_cfi_escape: 2221 case MIToken::kw_cfi_def_cfa: 2222 case MIToken::kw_cfi_register: 2223 case MIToken::kw_cfi_remember_state: 2224 case MIToken::kw_cfi_restore: 2225 case MIToken::kw_cfi_restore_state: 2226 case MIToken::kw_cfi_undefined: 2227 case MIToken::kw_cfi_window_save: 2228 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2229 return parseCFIOperand(Dest); 2230 case MIToken::kw_blockaddress: 2231 return parseBlockAddressOperand(Dest); 2232 case MIToken::kw_intrinsic: 2233 return parseIntrinsicOperand(Dest); 2234 case MIToken::kw_target_index: 2235 return parseTargetIndexOperand(Dest); 2236 case MIToken::kw_liveout: 2237 return parseLiveoutRegisterMaskOperand(Dest); 2238 case MIToken::kw_floatpred: 2239 case MIToken::kw_intpred: 2240 return parsePredicateOperand(Dest); 2241 case MIToken::Error: 2242 return true; 2243 case MIToken::Identifier: 2244 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2245 Dest = MachineOperand::CreateRegMask(RegMask); 2246 lex(); 2247 break; 2248 } else if (Token.stringValue() == "CustomRegMask") { 2249 return parseCustomRegisterMaskOperand(Dest); 2250 } else 2251 return parseTypedImmediateOperand(Dest); 2252 default: 2253 // FIXME: Parse the MCSymbol machine operand. 2254 return error("expected a machine operand"); 2255 } 2256 return false; 2257 } 2258 2259 bool MIParser::parseMachineOperandAndTargetFlags( 2260 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2261 unsigned TF = 0; 2262 bool HasTargetFlags = false; 2263 if (Token.is(MIToken::kw_target_flags)) { 2264 HasTargetFlags = true; 2265 lex(); 2266 if (expectAndConsume(MIToken::lparen)) 2267 return true; 2268 if (Token.isNot(MIToken::Identifier)) 2269 return error("expected the name of the target flag"); 2270 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2271 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2272 return error("use of undefined target flag '" + Token.stringValue() + 2273 "'"); 2274 } 2275 lex(); 2276 while (Token.is(MIToken::comma)) { 2277 lex(); 2278 if (Token.isNot(MIToken::Identifier)) 2279 return error("expected the name of the target flag"); 2280 unsigned BitFlag = 0; 2281 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2282 return error("use of undefined target flag '" + Token.stringValue() + 2283 "'"); 2284 // TODO: Report an error when using a duplicate bit target flag. 2285 TF |= BitFlag; 2286 lex(); 2287 } 2288 if (expectAndConsume(MIToken::rparen)) 2289 return true; 2290 } 2291 auto Loc = Token.location(); 2292 if (parseMachineOperand(Dest, TiedDefIdx)) 2293 return true; 2294 if (!HasTargetFlags) 2295 return false; 2296 if (Dest.isReg()) 2297 return error(Loc, "register operands can't have target flags"); 2298 Dest.setTargetFlags(TF); 2299 return false; 2300 } 2301 2302 bool MIParser::parseOffset(int64_t &Offset) { 2303 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2304 return false; 2305 StringRef Sign = Token.range(); 2306 bool IsNegative = Token.is(MIToken::minus); 2307 lex(); 2308 if (Token.isNot(MIToken::IntegerLiteral)) 2309 return error("expected an integer literal after '" + Sign + "'"); 2310 if (Token.integerValue().getMinSignedBits() > 64) 2311 return error("expected 64-bit integer (too large)"); 2312 Offset = Token.integerValue().getExtValue(); 2313 if (IsNegative) 2314 Offset = -Offset; 2315 lex(); 2316 return false; 2317 } 2318 2319 bool MIParser::parseAlignment(unsigned &Alignment) { 2320 assert(Token.is(MIToken::kw_align)); 2321 lex(); 2322 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2323 return error("expected an integer literal after 'align'"); 2324 if (getUnsigned(Alignment)) 2325 return true; 2326 lex(); 2327 2328 if (!isPowerOf2_32(Alignment)) 2329 return error("expected a power-of-2 literal after 'align'"); 2330 2331 return false; 2332 } 2333 2334 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2335 assert(Token.is(MIToken::kw_addrspace)); 2336 lex(); 2337 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2338 return error("expected an integer literal after 'addrspace'"); 2339 if (getUnsigned(Addrspace)) 2340 return true; 2341 lex(); 2342 return false; 2343 } 2344 2345 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2346 int64_t Offset = 0; 2347 if (parseOffset(Offset)) 2348 return true; 2349 Op.setOffset(Offset); 2350 return false; 2351 } 2352 2353 bool MIParser::parseIRValue(const Value *&V) { 2354 switch (Token.kind()) { 2355 case MIToken::NamedIRValue: { 2356 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2357 break; 2358 } 2359 case MIToken::IRValue: { 2360 unsigned SlotNumber = 0; 2361 if (getUnsigned(SlotNumber)) 2362 return true; 2363 V = getIRValue(SlotNumber); 2364 break; 2365 } 2366 case MIToken::NamedGlobalValue: 2367 case MIToken::GlobalValue: { 2368 GlobalValue *GV = nullptr; 2369 if (parseGlobalValue(GV)) 2370 return true; 2371 V = GV; 2372 break; 2373 } 2374 case MIToken::QuotedIRValue: { 2375 const Constant *C = nullptr; 2376 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2377 return true; 2378 V = C; 2379 break; 2380 } 2381 default: 2382 llvm_unreachable("The current token should be an IR block reference"); 2383 } 2384 if (!V) 2385 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2386 return false; 2387 } 2388 2389 bool MIParser::getUint64(uint64_t &Result) { 2390 if (Token.hasIntegerValue()) { 2391 if (Token.integerValue().getActiveBits() > 64) 2392 return error("expected 64-bit integer (too large)"); 2393 Result = Token.integerValue().getZExtValue(); 2394 return false; 2395 } 2396 if (Token.is(MIToken::HexLiteral)) { 2397 APInt A; 2398 if (getHexUint(A)) 2399 return true; 2400 if (A.getBitWidth() > 64) 2401 return error("expected 64-bit integer (too large)"); 2402 Result = A.getZExtValue(); 2403 return false; 2404 } 2405 return true; 2406 } 2407 2408 bool MIParser::getHexUint(APInt &Result) { 2409 assert(Token.is(MIToken::HexLiteral)); 2410 StringRef S = Token.range(); 2411 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2412 // This could be a floating point literal with a special prefix. 2413 if (!isxdigit(S[2])) 2414 return true; 2415 StringRef V = S.substr(2); 2416 APInt A(V.size()*4, V, 16); 2417 2418 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2419 // sure it isn't the case before constructing result. 2420 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2421 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2422 return false; 2423 } 2424 2425 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2426 const auto OldFlags = Flags; 2427 switch (Token.kind()) { 2428 case MIToken::kw_volatile: 2429 Flags |= MachineMemOperand::MOVolatile; 2430 break; 2431 case MIToken::kw_non_temporal: 2432 Flags |= MachineMemOperand::MONonTemporal; 2433 break; 2434 case MIToken::kw_dereferenceable: 2435 Flags |= MachineMemOperand::MODereferenceable; 2436 break; 2437 case MIToken::kw_invariant: 2438 Flags |= MachineMemOperand::MOInvariant; 2439 break; 2440 case MIToken::StringConstant: { 2441 MachineMemOperand::Flags TF; 2442 if (getMMOTargetFlag(Token.stringValue(), TF)) 2443 return error("use of undefined target MMO flag '" + Token.stringValue() + 2444 "'"); 2445 Flags |= TF; 2446 break; 2447 } 2448 default: 2449 llvm_unreachable("The current token should be a memory operand flag"); 2450 } 2451 if (OldFlags == Flags) 2452 // We know that the same flag is specified more than once when the flags 2453 // weren't modified. 2454 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2455 lex(); 2456 return false; 2457 } 2458 2459 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2460 switch (Token.kind()) { 2461 case MIToken::kw_stack: 2462 PSV = MF.getPSVManager().getStack(); 2463 break; 2464 case MIToken::kw_got: 2465 PSV = MF.getPSVManager().getGOT(); 2466 break; 2467 case MIToken::kw_jump_table: 2468 PSV = MF.getPSVManager().getJumpTable(); 2469 break; 2470 case MIToken::kw_constant_pool: 2471 PSV = MF.getPSVManager().getConstantPool(); 2472 break; 2473 case MIToken::FixedStackObject: { 2474 int FI; 2475 if (parseFixedStackFrameIndex(FI)) 2476 return true; 2477 PSV = MF.getPSVManager().getFixedStack(FI); 2478 // The token was already consumed, so use return here instead of break. 2479 return false; 2480 } 2481 case MIToken::StackObject: { 2482 int FI; 2483 if (parseStackFrameIndex(FI)) 2484 return true; 2485 PSV = MF.getPSVManager().getFixedStack(FI); 2486 // The token was already consumed, so use return here instead of break. 2487 return false; 2488 } 2489 case MIToken::kw_call_entry: 2490 lex(); 2491 switch (Token.kind()) { 2492 case MIToken::GlobalValue: 2493 case MIToken::NamedGlobalValue: { 2494 GlobalValue *GV = nullptr; 2495 if (parseGlobalValue(GV)) 2496 return true; 2497 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2498 break; 2499 } 2500 case MIToken::ExternalSymbol: 2501 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2502 MF.createExternalSymbolName(Token.stringValue())); 2503 break; 2504 default: 2505 return error( 2506 "expected a global value or an external symbol after 'call-entry'"); 2507 } 2508 break; 2509 default: 2510 llvm_unreachable("The current token should be pseudo source value"); 2511 } 2512 lex(); 2513 return false; 2514 } 2515 2516 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2517 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2518 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2519 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2520 Token.is(MIToken::kw_call_entry)) { 2521 const PseudoSourceValue *PSV = nullptr; 2522 if (parseMemoryPseudoSourceValue(PSV)) 2523 return true; 2524 int64_t Offset = 0; 2525 if (parseOffset(Offset)) 2526 return true; 2527 Dest = MachinePointerInfo(PSV, Offset); 2528 return false; 2529 } 2530 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2531 Token.isNot(MIToken::GlobalValue) && 2532 Token.isNot(MIToken::NamedGlobalValue) && 2533 Token.isNot(MIToken::QuotedIRValue)) 2534 return error("expected an IR value reference"); 2535 const Value *V = nullptr; 2536 if (parseIRValue(V)) 2537 return true; 2538 if (!V->getType()->isPointerTy()) 2539 return error("expected a pointer IR value"); 2540 lex(); 2541 int64_t Offset = 0; 2542 if (parseOffset(Offset)) 2543 return true; 2544 Dest = MachinePointerInfo(V, Offset); 2545 return false; 2546 } 2547 2548 bool MIParser::parseOptionalScope(LLVMContext &Context, 2549 SyncScope::ID &SSID) { 2550 SSID = SyncScope::System; 2551 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2552 lex(); 2553 if (expectAndConsume(MIToken::lparen)) 2554 return error("expected '(' in syncscope"); 2555 2556 std::string SSN; 2557 if (parseStringConstant(SSN)) 2558 return true; 2559 2560 SSID = Context.getOrInsertSyncScopeID(SSN); 2561 if (expectAndConsume(MIToken::rparen)) 2562 return error("expected ')' in syncscope"); 2563 } 2564 2565 return false; 2566 } 2567 2568 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2569 Order = AtomicOrdering::NotAtomic; 2570 if (Token.isNot(MIToken::Identifier)) 2571 return false; 2572 2573 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2574 .Case("unordered", AtomicOrdering::Unordered) 2575 .Case("monotonic", AtomicOrdering::Monotonic) 2576 .Case("acquire", AtomicOrdering::Acquire) 2577 .Case("release", AtomicOrdering::Release) 2578 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2579 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2580 .Default(AtomicOrdering::NotAtomic); 2581 2582 if (Order != AtomicOrdering::NotAtomic) { 2583 lex(); 2584 return false; 2585 } 2586 2587 return error("expected an atomic scope, ordering or a size specification"); 2588 } 2589 2590 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2591 if (expectAndConsume(MIToken::lparen)) 2592 return true; 2593 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2594 while (Token.isMemoryOperandFlag()) { 2595 if (parseMemoryOperandFlag(Flags)) 2596 return true; 2597 } 2598 if (Token.isNot(MIToken::Identifier) || 2599 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2600 return error("expected 'load' or 'store' memory operation"); 2601 if (Token.stringValue() == "load") 2602 Flags |= MachineMemOperand::MOLoad; 2603 else 2604 Flags |= MachineMemOperand::MOStore; 2605 lex(); 2606 2607 // Optional 'store' for operands that both load and store. 2608 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2609 Flags |= MachineMemOperand::MOStore; 2610 lex(); 2611 } 2612 2613 // Optional synchronization scope. 2614 SyncScope::ID SSID; 2615 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2616 return true; 2617 2618 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2619 AtomicOrdering Order, FailureOrder; 2620 if (parseOptionalAtomicOrdering(Order)) 2621 return true; 2622 2623 if (parseOptionalAtomicOrdering(FailureOrder)) 2624 return true; 2625 2626 if (Token.isNot(MIToken::IntegerLiteral) && 2627 Token.isNot(MIToken::kw_unknown_size)) 2628 return error("expected the size integer literal or 'unknown-size' after " 2629 "memory operation"); 2630 uint64_t Size; 2631 if (Token.is(MIToken::IntegerLiteral)) { 2632 if (getUint64(Size)) 2633 return true; 2634 } else if (Token.is(MIToken::kw_unknown_size)) { 2635 Size = MemoryLocation::UnknownSize; 2636 } 2637 lex(); 2638 2639 MachinePointerInfo Ptr = MachinePointerInfo(); 2640 if (Token.is(MIToken::Identifier)) { 2641 const char *Word = 2642 ((Flags & MachineMemOperand::MOLoad) && 2643 (Flags & MachineMemOperand::MOStore)) 2644 ? "on" 2645 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2646 if (Token.stringValue() != Word) 2647 return error(Twine("expected '") + Word + "'"); 2648 lex(); 2649 2650 if (parseMachinePointerInfo(Ptr)) 2651 return true; 2652 } 2653 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2654 AAMDNodes AAInfo; 2655 MDNode *Range = nullptr; 2656 while (consumeIfPresent(MIToken::comma)) { 2657 switch (Token.kind()) { 2658 case MIToken::kw_align: 2659 if (parseAlignment(BaseAlignment)) 2660 return true; 2661 break; 2662 case MIToken::kw_addrspace: 2663 if (parseAddrspace(Ptr.AddrSpace)) 2664 return true; 2665 break; 2666 case MIToken::md_tbaa: 2667 lex(); 2668 if (parseMDNode(AAInfo.TBAA)) 2669 return true; 2670 break; 2671 case MIToken::md_alias_scope: 2672 lex(); 2673 if (parseMDNode(AAInfo.Scope)) 2674 return true; 2675 break; 2676 case MIToken::md_noalias: 2677 lex(); 2678 if (parseMDNode(AAInfo.NoAlias)) 2679 return true; 2680 break; 2681 case MIToken::md_range: 2682 lex(); 2683 if (parseMDNode(Range)) 2684 return true; 2685 break; 2686 // TODO: Report an error on duplicate metadata nodes. 2687 default: 2688 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2689 "'!noalias' or '!range'"); 2690 } 2691 } 2692 if (expectAndConsume(MIToken::rparen)) 2693 return true; 2694 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2695 SSID, Order, FailureOrder); 2696 return false; 2697 } 2698 2699 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2700 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2701 Token.is(MIToken::kw_post_instr_symbol)) && 2702 "Invalid token for a pre- post-instruction symbol!"); 2703 lex(); 2704 if (Token.isNot(MIToken::MCSymbol)) 2705 return error("expected a symbol after 'pre-instr-symbol'"); 2706 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2707 lex(); 2708 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2709 Token.is(MIToken::lbrace)) 2710 return false; 2711 if (Token.isNot(MIToken::comma)) 2712 return error("expected ',' before the next machine operand"); 2713 lex(); 2714 return false; 2715 } 2716 2717 void MIParser::initNames2InstrOpCodes() { 2718 if (!Names2InstrOpCodes.empty()) 2719 return; 2720 const auto *TII = MF.getSubtarget().getInstrInfo(); 2721 assert(TII && "Expected target instruction info"); 2722 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2723 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2724 } 2725 2726 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2727 initNames2InstrOpCodes(); 2728 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2729 if (InstrInfo == Names2InstrOpCodes.end()) 2730 return true; 2731 OpCode = InstrInfo->getValue(); 2732 return false; 2733 } 2734 2735 void MIParser::initNames2Regs() { 2736 if (!Names2Regs.empty()) 2737 return; 2738 // The '%noreg' register is the register 0. 2739 Names2Regs.insert(std::make_pair("noreg", 0)); 2740 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2741 assert(TRI && "Expected target register info"); 2742 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2743 bool WasInserted = 2744 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2745 .second; 2746 (void)WasInserted; 2747 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2748 } 2749 } 2750 2751 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2752 initNames2Regs(); 2753 auto RegInfo = Names2Regs.find(RegName); 2754 if (RegInfo == Names2Regs.end()) 2755 return true; 2756 Reg = RegInfo->getValue(); 2757 return false; 2758 } 2759 2760 void MIParser::initNames2RegMasks() { 2761 if (!Names2RegMasks.empty()) 2762 return; 2763 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2764 assert(TRI && "Expected target register info"); 2765 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2766 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2767 assert(RegMasks.size() == RegMaskNames.size()); 2768 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2769 Names2RegMasks.insert( 2770 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2771 } 2772 2773 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2774 initNames2RegMasks(); 2775 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2776 if (RegMaskInfo == Names2RegMasks.end()) 2777 return nullptr; 2778 return RegMaskInfo->getValue(); 2779 } 2780 2781 void MIParser::initNames2SubRegIndices() { 2782 if (!Names2SubRegIndices.empty()) 2783 return; 2784 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2785 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2786 Names2SubRegIndices.insert( 2787 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2788 } 2789 2790 unsigned MIParser::getSubRegIndex(StringRef Name) { 2791 initNames2SubRegIndices(); 2792 auto SubRegInfo = Names2SubRegIndices.find(Name); 2793 if (SubRegInfo == Names2SubRegIndices.end()) 2794 return 0; 2795 return SubRegInfo->getValue(); 2796 } 2797 2798 static void initSlots2BasicBlocks( 2799 const Function &F, 2800 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2801 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2802 MST.incorporateFunction(F); 2803 for (auto &BB : F) { 2804 if (BB.hasName()) 2805 continue; 2806 int Slot = MST.getLocalSlot(&BB); 2807 if (Slot == -1) 2808 continue; 2809 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2810 } 2811 } 2812 2813 static const BasicBlock *getIRBlockFromSlot( 2814 unsigned Slot, 2815 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2816 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2817 if (BlockInfo == Slots2BasicBlocks.end()) 2818 return nullptr; 2819 return BlockInfo->second; 2820 } 2821 2822 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2823 if (Slots2BasicBlocks.empty()) 2824 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2825 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2826 } 2827 2828 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2829 if (&F == &MF.getFunction()) 2830 return getIRBlock(Slot); 2831 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2832 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2833 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2834 } 2835 2836 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2837 DenseMap<unsigned, const Value *> &Slots2Values) { 2838 int Slot = MST.getLocalSlot(V); 2839 if (Slot == -1) 2840 return; 2841 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2842 } 2843 2844 /// Creates the mapping from slot numbers to function's unnamed IR values. 2845 static void initSlots2Values(const Function &F, 2846 DenseMap<unsigned, const Value *> &Slots2Values) { 2847 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2848 MST.incorporateFunction(F); 2849 for (const auto &Arg : F.args()) 2850 mapValueToSlot(&Arg, MST, Slots2Values); 2851 for (const auto &BB : F) { 2852 mapValueToSlot(&BB, MST, Slots2Values); 2853 for (const auto &I : BB) 2854 mapValueToSlot(&I, MST, Slots2Values); 2855 } 2856 } 2857 2858 const Value *MIParser::getIRValue(unsigned Slot) { 2859 if (Slots2Values.empty()) 2860 initSlots2Values(MF.getFunction(), Slots2Values); 2861 auto ValueInfo = Slots2Values.find(Slot); 2862 if (ValueInfo == Slots2Values.end()) 2863 return nullptr; 2864 return ValueInfo->second; 2865 } 2866 2867 void MIParser::initNames2TargetIndices() { 2868 if (!Names2TargetIndices.empty()) 2869 return; 2870 const auto *TII = MF.getSubtarget().getInstrInfo(); 2871 assert(TII && "Expected target instruction info"); 2872 auto Indices = TII->getSerializableTargetIndices(); 2873 for (const auto &I : Indices) 2874 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2875 } 2876 2877 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2878 initNames2TargetIndices(); 2879 auto IndexInfo = Names2TargetIndices.find(Name); 2880 if (IndexInfo == Names2TargetIndices.end()) 2881 return true; 2882 Index = IndexInfo->second; 2883 return false; 2884 } 2885 2886 void MIParser::initNames2DirectTargetFlags() { 2887 if (!Names2DirectTargetFlags.empty()) 2888 return; 2889 const auto *TII = MF.getSubtarget().getInstrInfo(); 2890 assert(TII && "Expected target instruction info"); 2891 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2892 for (const auto &I : Flags) 2893 Names2DirectTargetFlags.insert( 2894 std::make_pair(StringRef(I.second), I.first)); 2895 } 2896 2897 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2898 initNames2DirectTargetFlags(); 2899 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2900 if (FlagInfo == Names2DirectTargetFlags.end()) 2901 return true; 2902 Flag = FlagInfo->second; 2903 return false; 2904 } 2905 2906 void MIParser::initNames2BitmaskTargetFlags() { 2907 if (!Names2BitmaskTargetFlags.empty()) 2908 return; 2909 const auto *TII = MF.getSubtarget().getInstrInfo(); 2910 assert(TII && "Expected target instruction info"); 2911 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2912 for (const auto &I : Flags) 2913 Names2BitmaskTargetFlags.insert( 2914 std::make_pair(StringRef(I.second), I.first)); 2915 } 2916 2917 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2918 initNames2BitmaskTargetFlags(); 2919 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2920 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2921 return true; 2922 Flag = FlagInfo->second; 2923 return false; 2924 } 2925 2926 void MIParser::initNames2MMOTargetFlags() { 2927 if (!Names2MMOTargetFlags.empty()) 2928 return; 2929 const auto *TII = MF.getSubtarget().getInstrInfo(); 2930 assert(TII && "Expected target instruction info"); 2931 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2932 for (const auto &I : Flags) 2933 Names2MMOTargetFlags.insert( 2934 std::make_pair(StringRef(I.second), I.first)); 2935 } 2936 2937 bool MIParser::getMMOTargetFlag(StringRef Name, 2938 MachineMemOperand::Flags &Flag) { 2939 initNames2MMOTargetFlags(); 2940 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2941 if (FlagInfo == Names2MMOTargetFlags.end()) 2942 return true; 2943 Flag = FlagInfo->second; 2944 return false; 2945 } 2946 2947 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2948 // FIXME: Currently we can't recognize temporary or local symbols and call all 2949 // of the appropriate forms to create them. However, this handles basic cases 2950 // well as most of the special aspects are recognized by a prefix on their 2951 // name, and the input names should already be unique. For test cases, keeping 2952 // the symbol name out of the symbol table isn't terribly important. 2953 return MF.getContext().getOrCreateSymbol(Name); 2954 } 2955 2956 bool MIParser::parseStringConstant(std::string &Result) { 2957 if (Token.isNot(MIToken::StringConstant)) 2958 return error("expected string constant"); 2959 Result = Token.stringValue(); 2960 lex(); 2961 return false; 2962 } 2963 2964 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2965 StringRef Src, 2966 SMDiagnostic &Error) { 2967 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2968 } 2969 2970 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2971 StringRef Src, SMDiagnostic &Error) { 2972 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2973 } 2974 2975 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2976 MachineBasicBlock *&MBB, StringRef Src, 2977 SMDiagnostic &Error) { 2978 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2979 } 2980 2981 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2982 unsigned &Reg, StringRef Src, 2983 SMDiagnostic &Error) { 2984 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2985 } 2986 2987 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2988 unsigned &Reg, StringRef Src, 2989 SMDiagnostic &Error) { 2990 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2991 } 2992 2993 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2994 VRegInfo *&Info, StringRef Src, 2995 SMDiagnostic &Error) { 2996 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2997 } 2998 2999 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3000 int &FI, StringRef Src, 3001 SMDiagnostic &Error) { 3002 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3003 } 3004 3005 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3006 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3007 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3008 } 3009