1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCDwarf.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SMLoc.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cctype>
75 #include <cstddef>
76 #include <cstdint>
77 #include <limits>
78 #include <string>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
84     SourceMgr &SM, const SlotMapping &IRSlots,
85     const Name2RegClassMap &Names2RegClasses,
86     const Name2RegBankMap &Names2RegBanks)
87   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
88     Names2RegBanks(Names2RegBanks) {
89 }
90 
91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
92   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
93   if (I.second) {
94     MachineRegisterInfo &MRI = MF.getRegInfo();
95     VRegInfo *Info = new (Allocator) VRegInfo;
96     Info->VReg = MRI.createIncompleteVirtualRegister();
97     I.first->second = Info;
98   }
99   return *I.first->second;
100 }
101 
102 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
103   assert(RegName != "" && "Expected named reg.");
104 
105   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
106   if (I.second) {
107     VRegInfo *Info = new (Allocator) VRegInfo;
108     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
109     I.first->second = Info;
110   }
111   return *I.first->second;
112 }
113 
114 namespace {
115 
116 /// A wrapper struct around the 'MachineOperand' struct that includes a source
117 /// range and other attributes.
118 struct ParsedMachineOperand {
119   MachineOperand Operand;
120   StringRef::iterator Begin;
121   StringRef::iterator End;
122   Optional<unsigned> TiedDefIdx;
123 
124   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
125                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
126       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
127     if (TiedDefIdx)
128       assert(Operand.isReg() && Operand.isUse() &&
129              "Only used register operands can be tied");
130   }
131 };
132 
133 class MIParser {
134   MachineFunction &MF;
135   SMDiagnostic &Error;
136   StringRef Source, CurrentSource;
137   MIToken Token;
138   PerFunctionMIParsingState &PFS;
139   /// Maps from instruction names to op codes.
140   StringMap<unsigned> Names2InstrOpCodes;
141   /// Maps from register names to registers.
142   StringMap<unsigned> Names2Regs;
143   /// Maps from register mask names to register masks.
144   StringMap<const uint32_t *> Names2RegMasks;
145   /// Maps from subregister names to subregister indices.
146   StringMap<unsigned> Names2SubRegIndices;
147   /// Maps from slot numbers to function's unnamed basic blocks.
148   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
149   /// Maps from slot numbers to function's unnamed values.
150   DenseMap<unsigned, const Value *> Slots2Values;
151   /// Maps from target index names to target indices.
152   StringMap<int> Names2TargetIndices;
153   /// Maps from direct target flag names to the direct target flag values.
154   StringMap<unsigned> Names2DirectTargetFlags;
155   /// Maps from direct target flag names to the bitmask target flag values.
156   StringMap<unsigned> Names2BitmaskTargetFlags;
157   /// Maps from MMO target flag names to MMO target flag values.
158   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
159 
160 public:
161   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
162            StringRef Source);
163 
164   /// \p SkipChar gives the number of characters to skip before looking
165   /// for the next token.
166   void lex(unsigned SkipChar = 0);
167 
168   /// Report an error at the current location with the given message.
169   ///
170   /// This function always return true.
171   bool error(const Twine &Msg);
172 
173   /// Report an error at the given location with the given message.
174   ///
175   /// This function always return true.
176   bool error(StringRef::iterator Loc, const Twine &Msg);
177 
178   bool
179   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
180   bool parseBasicBlocks();
181   bool parse(MachineInstr *&MI);
182   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
183   bool parseStandaloneNamedRegister(unsigned &Reg);
184   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
185   bool parseStandaloneRegister(unsigned &Reg);
186   bool parseStandaloneStackObject(int &FI);
187   bool parseStandaloneMDNode(MDNode *&Node);
188 
189   bool
190   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
191   bool parseBasicBlock(MachineBasicBlock &MBB,
192                        MachineBasicBlock *&AddFalthroughFrom);
193   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
194   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
195 
196   bool parseNamedRegister(unsigned &Reg);
197   bool parseVirtualRegister(VRegInfo *&Info);
198   bool parseNamedVirtualRegister(VRegInfo *&Info);
199   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
200   bool parseRegisterFlag(unsigned &Flags);
201   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
202   bool parseSubRegisterIndex(unsigned &SubReg);
203   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
204   bool parseRegisterOperand(MachineOperand &Dest,
205                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
206   bool parseImmediateOperand(MachineOperand &Dest);
207   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
208                        const Constant *&C);
209   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
210   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
211   bool parseTypedImmediateOperand(MachineOperand &Dest);
212   bool parseFPImmediateOperand(MachineOperand &Dest);
213   bool parseMBBReference(MachineBasicBlock *&MBB);
214   bool parseMBBOperand(MachineOperand &Dest);
215   bool parseStackFrameIndex(int &FI);
216   bool parseStackObjectOperand(MachineOperand &Dest);
217   bool parseFixedStackFrameIndex(int &FI);
218   bool parseFixedStackObjectOperand(MachineOperand &Dest);
219   bool parseGlobalValue(GlobalValue *&GV);
220   bool parseGlobalAddressOperand(MachineOperand &Dest);
221   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
222   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
223   bool parseJumpTableIndexOperand(MachineOperand &Dest);
224   bool parseExternalSymbolOperand(MachineOperand &Dest);
225   bool parseMCSymbolOperand(MachineOperand &Dest);
226   bool parseMDNode(MDNode *&Node);
227   bool parseDIExpression(MDNode *&Expr);
228   bool parseDILocation(MDNode *&Expr);
229   bool parseMetadataOperand(MachineOperand &Dest);
230   bool parseCFIOffset(int &Offset);
231   bool parseCFIRegister(unsigned &Reg);
232   bool parseCFIEscapeValues(std::string& Values);
233   bool parseCFIOperand(MachineOperand &Dest);
234   bool parseIRBlock(BasicBlock *&BB, const Function &F);
235   bool parseBlockAddressOperand(MachineOperand &Dest);
236   bool parseIntrinsicOperand(MachineOperand &Dest);
237   bool parsePredicateOperand(MachineOperand &Dest);
238   bool parseTargetIndexOperand(MachineOperand &Dest);
239   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
240   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
241   bool parseMachineOperand(MachineOperand &Dest,
242                            Optional<unsigned> &TiedDefIdx);
243   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
244                                          Optional<unsigned> &TiedDefIdx);
245   bool parseOffset(int64_t &Offset);
246   bool parseAlignment(unsigned &Alignment);
247   bool parseAddrspace(unsigned &Addrspace);
248   bool parseOperandsOffset(MachineOperand &Op);
249   bool parseIRValue(const Value *&V);
250   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
251   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
252   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
253   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
254   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
255   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
256   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
257 
258 private:
259   /// Convert the integer literal in the current token into an unsigned integer.
260   ///
261   /// Return true if an error occurred.
262   bool getUnsigned(unsigned &Result);
263 
264   /// Convert the integer literal in the current token into an uint64.
265   ///
266   /// Return true if an error occurred.
267   bool getUint64(uint64_t &Result);
268 
269   /// Convert the hexadecimal literal in the current token into an unsigned
270   ///  APInt with a minimum bitwidth required to represent the value.
271   ///
272   /// Return true if the literal does not represent an integer value.
273   bool getHexUint(APInt &Result);
274 
275   /// If the current token is of the given kind, consume it and return false.
276   /// Otherwise report an error and return true.
277   bool expectAndConsume(MIToken::TokenKind TokenKind);
278 
279   /// If the current token is of the given kind, consume it and return true.
280   /// Otherwise return false.
281   bool consumeIfPresent(MIToken::TokenKind TokenKind);
282 
283   void initNames2InstrOpCodes();
284 
285   /// Try to convert an instruction name to an opcode. Return true if the
286   /// instruction name is invalid.
287   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
288 
289   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
290 
291   bool assignRegisterTies(MachineInstr &MI,
292                           ArrayRef<ParsedMachineOperand> Operands);
293 
294   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
295                               const MCInstrDesc &MCID);
296 
297   void initNames2Regs();
298 
299   /// Try to convert a register name to a register number. Return true if the
300   /// register name is invalid.
301   bool getRegisterByName(StringRef RegName, unsigned &Reg);
302 
303   void initNames2RegMasks();
304 
305   /// Check if the given identifier is a name of a register mask.
306   ///
307   /// Return null if the identifier isn't a register mask.
308   const uint32_t *getRegMask(StringRef Identifier);
309 
310   void initNames2SubRegIndices();
311 
312   /// Check if the given identifier is a name of a subregister index.
313   ///
314   /// Return 0 if the name isn't a subregister index class.
315   unsigned getSubRegIndex(StringRef Name);
316 
317   const BasicBlock *getIRBlock(unsigned Slot);
318   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
319 
320   const Value *getIRValue(unsigned Slot);
321 
322   void initNames2TargetIndices();
323 
324   /// Try to convert a name of target index to the corresponding target index.
325   ///
326   /// Return true if the name isn't a name of a target index.
327   bool getTargetIndex(StringRef Name, int &Index);
328 
329   void initNames2DirectTargetFlags();
330 
331   /// Try to convert a name of a direct target flag to the corresponding
332   /// target flag.
333   ///
334   /// Return true if the name isn't a name of a direct flag.
335   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
336 
337   void initNames2BitmaskTargetFlags();
338 
339   /// Try to convert a name of a bitmask target flag to the corresponding
340   /// target flag.
341   ///
342   /// Return true if the name isn't a name of a bitmask target flag.
343   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
344 
345   void initNames2MMOTargetFlags();
346 
347   /// Try to convert a name of a MachineMemOperand target flag to the
348   /// corresponding target flag.
349   ///
350   /// Return true if the name isn't a name of a target MMO flag.
351   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
352 
353   /// Get or create an MCSymbol for a given name.
354   MCSymbol *getOrCreateMCSymbol(StringRef Name);
355 
356   /// parseStringConstant
357   ///   ::= StringConstant
358   bool parseStringConstant(std::string &Result);
359 };
360 
361 } // end anonymous namespace
362 
363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
364                    StringRef Source)
365     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
366 {}
367 
368 void MIParser::lex(unsigned SkipChar) {
369   CurrentSource = lexMIToken(
370       CurrentSource.data() + SkipChar, Token,
371       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
372 }
373 
374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
375 
376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
377   const SourceMgr &SM = *PFS.SM;
378   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
379   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
380   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
381     // Create an ordinary diagnostic when the source manager's buffer is the
382     // source string.
383     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
384     return true;
385   }
386   // Create a diagnostic for a YAML string literal.
387   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
388                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
389                        Source, None, None);
390   return true;
391 }
392 
393 static const char *toString(MIToken::TokenKind TokenKind) {
394   switch (TokenKind) {
395   case MIToken::comma:
396     return "','";
397   case MIToken::equal:
398     return "'='";
399   case MIToken::colon:
400     return "':'";
401   case MIToken::lparen:
402     return "'('";
403   case MIToken::rparen:
404     return "')'";
405   default:
406     return "<unknown token>";
407   }
408 }
409 
410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
411   if (Token.isNot(TokenKind))
412     return error(Twine("expected ") + toString(TokenKind));
413   lex();
414   return false;
415 }
416 
417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
418   if (Token.isNot(TokenKind))
419     return false;
420   lex();
421   return true;
422 }
423 
424 bool MIParser::parseBasicBlockDefinition(
425     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
426   assert(Token.is(MIToken::MachineBasicBlockLabel));
427   unsigned ID = 0;
428   if (getUnsigned(ID))
429     return true;
430   auto Loc = Token.location();
431   auto Name = Token.stringValue();
432   lex();
433   bool HasAddressTaken = false;
434   bool IsLandingPad = false;
435   unsigned Alignment = 0;
436   BasicBlock *BB = nullptr;
437   if (consumeIfPresent(MIToken::lparen)) {
438     do {
439       // TODO: Report an error when multiple same attributes are specified.
440       switch (Token.kind()) {
441       case MIToken::kw_address_taken:
442         HasAddressTaken = true;
443         lex();
444         break;
445       case MIToken::kw_landing_pad:
446         IsLandingPad = true;
447         lex();
448         break;
449       case MIToken::kw_align:
450         if (parseAlignment(Alignment))
451           return true;
452         break;
453       case MIToken::IRBlock:
454         // TODO: Report an error when both name and ir block are specified.
455         if (parseIRBlock(BB, MF.getFunction()))
456           return true;
457         lex();
458         break;
459       default:
460         break;
461       }
462     } while (consumeIfPresent(MIToken::comma));
463     if (expectAndConsume(MIToken::rparen))
464       return true;
465   }
466   if (expectAndConsume(MIToken::colon))
467     return true;
468 
469   if (!Name.empty()) {
470     BB = dyn_cast_or_null<BasicBlock>(
471         MF.getFunction().getValueSymbolTable()->lookup(Name));
472     if (!BB)
473       return error(Loc, Twine("basic block '") + Name +
474                             "' is not defined in the function '" +
475                             MF.getName() + "'");
476   }
477   auto *MBB = MF.CreateMachineBasicBlock(BB);
478   MF.insert(MF.end(), MBB);
479   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
480   if (!WasInserted)
481     return error(Loc, Twine("redefinition of machine basic block with id #") +
482                           Twine(ID));
483   if (Alignment)
484     MBB->setAlignment(Alignment);
485   if (HasAddressTaken)
486     MBB->setHasAddressTaken();
487   MBB->setIsEHPad(IsLandingPad);
488   return false;
489 }
490 
491 bool MIParser::parseBasicBlockDefinitions(
492     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
493   lex();
494   // Skip until the first machine basic block.
495   while (Token.is(MIToken::Newline))
496     lex();
497   if (Token.isErrorOrEOF())
498     return Token.isError();
499   if (Token.isNot(MIToken::MachineBasicBlockLabel))
500     return error("expected a basic block definition before instructions");
501   unsigned BraceDepth = 0;
502   do {
503     if (parseBasicBlockDefinition(MBBSlots))
504       return true;
505     bool IsAfterNewline = false;
506     // Skip until the next machine basic block.
507     while (true) {
508       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
509           Token.isErrorOrEOF())
510         break;
511       else if (Token.is(MIToken::MachineBasicBlockLabel))
512         return error("basic block definition should be located at the start of "
513                      "the line");
514       else if (consumeIfPresent(MIToken::Newline)) {
515         IsAfterNewline = true;
516         continue;
517       }
518       IsAfterNewline = false;
519       if (Token.is(MIToken::lbrace))
520         ++BraceDepth;
521       if (Token.is(MIToken::rbrace)) {
522         if (!BraceDepth)
523           return error("extraneous closing brace ('}')");
524         --BraceDepth;
525       }
526       lex();
527     }
528     // Verify that we closed all of the '{' at the end of a file or a block.
529     if (!Token.isError() && BraceDepth)
530       return error("expected '}'"); // FIXME: Report a note that shows '{'.
531   } while (!Token.isErrorOrEOF());
532   return Token.isError();
533 }
534 
535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
536   assert(Token.is(MIToken::kw_liveins));
537   lex();
538   if (expectAndConsume(MIToken::colon))
539     return true;
540   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
541     return false;
542   do {
543     if (Token.isNot(MIToken::NamedRegister))
544       return error("expected a named register");
545     unsigned Reg = 0;
546     if (parseNamedRegister(Reg))
547       return true;
548     lex();
549     LaneBitmask Mask = LaneBitmask::getAll();
550     if (consumeIfPresent(MIToken::colon)) {
551       // Parse lane mask.
552       if (Token.isNot(MIToken::IntegerLiteral) &&
553           Token.isNot(MIToken::HexLiteral))
554         return error("expected a lane mask");
555       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
556                     "Use correct get-function for lane mask");
557       LaneBitmask::Type V;
558       if (getUnsigned(V))
559         return error("invalid lane mask value");
560       Mask = LaneBitmask(V);
561       lex();
562     }
563     MBB.addLiveIn(Reg, Mask);
564   } while (consumeIfPresent(MIToken::comma));
565   return false;
566 }
567 
568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
569   assert(Token.is(MIToken::kw_successors));
570   lex();
571   if (expectAndConsume(MIToken::colon))
572     return true;
573   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
574     return false;
575   do {
576     if (Token.isNot(MIToken::MachineBasicBlock))
577       return error("expected a machine basic block reference");
578     MachineBasicBlock *SuccMBB = nullptr;
579     if (parseMBBReference(SuccMBB))
580       return true;
581     lex();
582     unsigned Weight = 0;
583     if (consumeIfPresent(MIToken::lparen)) {
584       if (Token.isNot(MIToken::IntegerLiteral) &&
585           Token.isNot(MIToken::HexLiteral))
586         return error("expected an integer literal after '('");
587       if (getUnsigned(Weight))
588         return true;
589       lex();
590       if (expectAndConsume(MIToken::rparen))
591         return true;
592     }
593     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
594   } while (consumeIfPresent(MIToken::comma));
595   MBB.normalizeSuccProbs();
596   return false;
597 }
598 
599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
600                                MachineBasicBlock *&AddFalthroughFrom) {
601   // Skip the definition.
602   assert(Token.is(MIToken::MachineBasicBlockLabel));
603   lex();
604   if (consumeIfPresent(MIToken::lparen)) {
605     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
606       lex();
607     consumeIfPresent(MIToken::rparen);
608   }
609   consumeIfPresent(MIToken::colon);
610 
611   // Parse the liveins and successors.
612   // N.B: Multiple lists of successors and liveins are allowed and they're
613   // merged into one.
614   // Example:
615   //   liveins: %edi
616   //   liveins: %esi
617   //
618   // is equivalent to
619   //   liveins: %edi, %esi
620   bool ExplicitSuccessors = false;
621   while (true) {
622     if (Token.is(MIToken::kw_successors)) {
623       if (parseBasicBlockSuccessors(MBB))
624         return true;
625       ExplicitSuccessors = true;
626     } else if (Token.is(MIToken::kw_liveins)) {
627       if (parseBasicBlockLiveins(MBB))
628         return true;
629     } else if (consumeIfPresent(MIToken::Newline)) {
630       continue;
631     } else
632       break;
633     if (!Token.isNewlineOrEOF())
634       return error("expected line break at the end of a list");
635     lex();
636   }
637 
638   // Parse the instructions.
639   bool IsInBundle = false;
640   MachineInstr *PrevMI = nullptr;
641   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
642          !Token.is(MIToken::Eof)) {
643     if (consumeIfPresent(MIToken::Newline))
644       continue;
645     if (consumeIfPresent(MIToken::rbrace)) {
646       // The first parsing pass should verify that all closing '}' have an
647       // opening '{'.
648       assert(IsInBundle);
649       IsInBundle = false;
650       continue;
651     }
652     MachineInstr *MI = nullptr;
653     if (parse(MI))
654       return true;
655     MBB.insert(MBB.end(), MI);
656     if (IsInBundle) {
657       PrevMI->setFlag(MachineInstr::BundledSucc);
658       MI->setFlag(MachineInstr::BundledPred);
659     }
660     PrevMI = MI;
661     if (Token.is(MIToken::lbrace)) {
662       if (IsInBundle)
663         return error("nested instruction bundles are not allowed");
664       lex();
665       // This instruction is the start of the bundle.
666       MI->setFlag(MachineInstr::BundledSucc);
667       IsInBundle = true;
668       if (!Token.is(MIToken::Newline))
669         // The next instruction can be on the same line.
670         continue;
671     }
672     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
673     lex();
674   }
675 
676   // Construct successor list by searching for basic block machine operands.
677   if (!ExplicitSuccessors) {
678     SmallVector<MachineBasicBlock*,4> Successors;
679     bool IsFallthrough;
680     guessSuccessors(MBB, Successors, IsFallthrough);
681     for (MachineBasicBlock *Succ : Successors)
682       MBB.addSuccessor(Succ);
683 
684     if (IsFallthrough) {
685       AddFalthroughFrom = &MBB;
686     } else {
687       MBB.normalizeSuccProbs();
688     }
689   }
690 
691   return false;
692 }
693 
694 bool MIParser::parseBasicBlocks() {
695   lex();
696   // Skip until the first machine basic block.
697   while (Token.is(MIToken::Newline))
698     lex();
699   if (Token.isErrorOrEOF())
700     return Token.isError();
701   // The first parsing pass should have verified that this token is a MBB label
702   // in the 'parseBasicBlockDefinitions' method.
703   assert(Token.is(MIToken::MachineBasicBlockLabel));
704   MachineBasicBlock *AddFalthroughFrom = nullptr;
705   do {
706     MachineBasicBlock *MBB = nullptr;
707     if (parseMBBReference(MBB))
708       return true;
709     if (AddFalthroughFrom) {
710       if (!AddFalthroughFrom->isSuccessor(MBB))
711         AddFalthroughFrom->addSuccessor(MBB);
712       AddFalthroughFrom->normalizeSuccProbs();
713       AddFalthroughFrom = nullptr;
714     }
715     if (parseBasicBlock(*MBB, AddFalthroughFrom))
716       return true;
717     // The method 'parseBasicBlock' should parse the whole block until the next
718     // block or the end of file.
719     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
720   } while (Token.isNot(MIToken::Eof));
721   return false;
722 }
723 
724 bool MIParser::parse(MachineInstr *&MI) {
725   // Parse any register operands before '='
726   MachineOperand MO = MachineOperand::CreateImm(0);
727   SmallVector<ParsedMachineOperand, 8> Operands;
728   while (Token.isRegister() || Token.isRegisterFlag()) {
729     auto Loc = Token.location();
730     Optional<unsigned> TiedDefIdx;
731     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
732       return true;
733     Operands.push_back(
734         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
735     if (Token.isNot(MIToken::comma))
736       break;
737     lex();
738   }
739   if (!Operands.empty() && expectAndConsume(MIToken::equal))
740     return true;
741 
742   unsigned OpCode, Flags = 0;
743   if (Token.isError() || parseInstruction(OpCode, Flags))
744     return true;
745 
746   // Parse the remaining machine operands.
747   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
748          Token.isNot(MIToken::kw_post_instr_symbol) &&
749          Token.isNot(MIToken::kw_debug_location) &&
750          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
751     auto Loc = Token.location();
752     Optional<unsigned> TiedDefIdx;
753     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
754       return true;
755     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
756       MO.setIsDebug();
757     Operands.push_back(
758         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
759     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
760         Token.is(MIToken::lbrace))
761       break;
762     if (Token.isNot(MIToken::comma))
763       return error("expected ',' before the next machine operand");
764     lex();
765   }
766 
767   MCSymbol *PreInstrSymbol = nullptr;
768   if (Token.is(MIToken::kw_pre_instr_symbol))
769     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
770       return true;
771   MCSymbol *PostInstrSymbol = nullptr;
772   if (Token.is(MIToken::kw_post_instr_symbol))
773     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
774       return true;
775 
776   DebugLoc DebugLocation;
777   if (Token.is(MIToken::kw_debug_location)) {
778     lex();
779     MDNode *Node = nullptr;
780     if (Token.is(MIToken::exclaim)) {
781       if (parseMDNode(Node))
782         return true;
783     } else if (Token.is(MIToken::md_dilocation)) {
784       if (parseDILocation(Node))
785         return true;
786     } else
787       return error("expected a metadata node after 'debug-location'");
788     if (!isa<DILocation>(Node))
789       return error("referenced metadata is not a DILocation");
790     DebugLocation = DebugLoc(Node);
791   }
792 
793   // Parse the machine memory operands.
794   SmallVector<MachineMemOperand *, 2> MemOperands;
795   if (Token.is(MIToken::coloncolon)) {
796     lex();
797     while (!Token.isNewlineOrEOF()) {
798       MachineMemOperand *MemOp = nullptr;
799       if (parseMachineMemoryOperand(MemOp))
800         return true;
801       MemOperands.push_back(MemOp);
802       if (Token.isNewlineOrEOF())
803         break;
804       if (Token.isNot(MIToken::comma))
805         return error("expected ',' before the next machine memory operand");
806       lex();
807     }
808   }
809 
810   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
811   if (!MCID.isVariadic()) {
812     // FIXME: Move the implicit operand verification to the machine verifier.
813     if (verifyImplicitOperands(Operands, MCID))
814       return true;
815   }
816 
817   // TODO: Check for extraneous machine operands.
818   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
819   MI->setFlags(Flags);
820   for (const auto &Operand : Operands)
821     MI->addOperand(MF, Operand.Operand);
822   if (assignRegisterTies(*MI, Operands))
823     return true;
824   if (PreInstrSymbol)
825     MI->setPreInstrSymbol(MF, PreInstrSymbol);
826   if (PostInstrSymbol)
827     MI->setPostInstrSymbol(MF, PostInstrSymbol);
828   if (!MemOperands.empty())
829     MI->setMemRefs(MF, MemOperands);
830   return false;
831 }
832 
833 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
834   lex();
835   if (Token.isNot(MIToken::MachineBasicBlock))
836     return error("expected a machine basic block reference");
837   if (parseMBBReference(MBB))
838     return true;
839   lex();
840   if (Token.isNot(MIToken::Eof))
841     return error(
842         "expected end of string after the machine basic block reference");
843   return false;
844 }
845 
846 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
847   lex();
848   if (Token.isNot(MIToken::NamedRegister))
849     return error("expected a named register");
850   if (parseNamedRegister(Reg))
851     return true;
852   lex();
853   if (Token.isNot(MIToken::Eof))
854     return error("expected end of string after the register reference");
855   return false;
856 }
857 
858 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
859   lex();
860   if (Token.isNot(MIToken::VirtualRegister))
861     return error("expected a virtual register");
862   if (parseVirtualRegister(Info))
863     return true;
864   lex();
865   if (Token.isNot(MIToken::Eof))
866     return error("expected end of string after the register reference");
867   return false;
868 }
869 
870 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
871   lex();
872   if (Token.isNot(MIToken::NamedRegister) &&
873       Token.isNot(MIToken::VirtualRegister))
874     return error("expected either a named or virtual register");
875 
876   VRegInfo *Info;
877   if (parseRegister(Reg, Info))
878     return true;
879 
880   lex();
881   if (Token.isNot(MIToken::Eof))
882     return error("expected end of string after the register reference");
883   return false;
884 }
885 
886 bool MIParser::parseStandaloneStackObject(int &FI) {
887   lex();
888   if (Token.isNot(MIToken::StackObject))
889     return error("expected a stack object");
890   if (parseStackFrameIndex(FI))
891     return true;
892   if (Token.isNot(MIToken::Eof))
893     return error("expected end of string after the stack object reference");
894   return false;
895 }
896 
897 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
898   lex();
899   if (Token.is(MIToken::exclaim)) {
900     if (parseMDNode(Node))
901       return true;
902   } else if (Token.is(MIToken::md_diexpr)) {
903     if (parseDIExpression(Node))
904       return true;
905   } else if (Token.is(MIToken::md_dilocation)) {
906     if (parseDILocation(Node))
907       return true;
908   } else
909     return error("expected a metadata node");
910   if (Token.isNot(MIToken::Eof))
911     return error("expected end of string after the metadata node");
912   return false;
913 }
914 
915 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
916   assert(MO.isImplicit());
917   return MO.isDef() ? "implicit-def" : "implicit";
918 }
919 
920 static std::string getRegisterName(const TargetRegisterInfo *TRI,
921                                    unsigned Reg) {
922   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
923   return StringRef(TRI->getName(Reg)).lower();
924 }
925 
926 /// Return true if the parsed machine operands contain a given machine operand.
927 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
928                                 ArrayRef<ParsedMachineOperand> Operands) {
929   for (const auto &I : Operands) {
930     if (ImplicitOperand.isIdenticalTo(I.Operand))
931       return true;
932   }
933   return false;
934 }
935 
936 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
937                                       const MCInstrDesc &MCID) {
938   if (MCID.isCall())
939     // We can't verify call instructions as they can contain arbitrary implicit
940     // register and register mask operands.
941     return false;
942 
943   // Gather all the expected implicit operands.
944   SmallVector<MachineOperand, 4> ImplicitOperands;
945   if (MCID.ImplicitDefs)
946     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
947       ImplicitOperands.push_back(
948           MachineOperand::CreateReg(*ImpDefs, true, true));
949   if (MCID.ImplicitUses)
950     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
951       ImplicitOperands.push_back(
952           MachineOperand::CreateReg(*ImpUses, false, true));
953 
954   const auto *TRI = MF.getSubtarget().getRegisterInfo();
955   assert(TRI && "Expected target register info");
956   for (const auto &I : ImplicitOperands) {
957     if (isImplicitOperandIn(I, Operands))
958       continue;
959     return error(Operands.empty() ? Token.location() : Operands.back().End,
960                  Twine("missing implicit register operand '") +
961                      printImplicitRegisterFlag(I) + " $" +
962                      getRegisterName(TRI, I.getReg()) + "'");
963   }
964   return false;
965 }
966 
967 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
968   // Allow frame and fast math flags for OPCODE
969   while (Token.is(MIToken::kw_frame_setup) ||
970          Token.is(MIToken::kw_frame_destroy) ||
971          Token.is(MIToken::kw_nnan) ||
972          Token.is(MIToken::kw_ninf) ||
973          Token.is(MIToken::kw_nsz) ||
974          Token.is(MIToken::kw_arcp) ||
975          Token.is(MIToken::kw_contract) ||
976          Token.is(MIToken::kw_afn) ||
977          Token.is(MIToken::kw_reassoc) ||
978          Token.is(MIToken::kw_nuw) ||
979          Token.is(MIToken::kw_nsw) ||
980          Token.is(MIToken::kw_exact)) {
981     // Mine frame and fast math flags
982     if (Token.is(MIToken::kw_frame_setup))
983       Flags |= MachineInstr::FrameSetup;
984     if (Token.is(MIToken::kw_frame_destroy))
985       Flags |= MachineInstr::FrameDestroy;
986     if (Token.is(MIToken::kw_nnan))
987       Flags |= MachineInstr::FmNoNans;
988     if (Token.is(MIToken::kw_ninf))
989       Flags |= MachineInstr::FmNoInfs;
990     if (Token.is(MIToken::kw_nsz))
991       Flags |= MachineInstr::FmNsz;
992     if (Token.is(MIToken::kw_arcp))
993       Flags |= MachineInstr::FmArcp;
994     if (Token.is(MIToken::kw_contract))
995       Flags |= MachineInstr::FmContract;
996     if (Token.is(MIToken::kw_afn))
997       Flags |= MachineInstr::FmAfn;
998     if (Token.is(MIToken::kw_reassoc))
999       Flags |= MachineInstr::FmReassoc;
1000     if (Token.is(MIToken::kw_nuw))
1001       Flags |= MachineInstr::NoUWrap;
1002     if (Token.is(MIToken::kw_nsw))
1003       Flags |= MachineInstr::NoSWrap;
1004     if (Token.is(MIToken::kw_exact))
1005       Flags |= MachineInstr::IsExact;
1006 
1007     lex();
1008   }
1009   if (Token.isNot(MIToken::Identifier))
1010     return error("expected a machine instruction");
1011   StringRef InstrName = Token.stringValue();
1012   if (parseInstrName(InstrName, OpCode))
1013     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1014   lex();
1015   return false;
1016 }
1017 
1018 bool MIParser::parseNamedRegister(unsigned &Reg) {
1019   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1020   StringRef Name = Token.stringValue();
1021   if (getRegisterByName(Name, Reg))
1022     return error(Twine("unknown register name '") + Name + "'");
1023   return false;
1024 }
1025 
1026 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1027   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1028   StringRef Name = Token.stringValue();
1029   // TODO: Check that the VReg name is not the same as a physical register name.
1030   //       If it is, then print a warning (when warnings are implemented).
1031   Info = &PFS.getVRegInfoNamed(Name);
1032   return false;
1033 }
1034 
1035 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1036   if (Token.is(MIToken::NamedVirtualRegister))
1037     return parseNamedVirtualRegister(Info);
1038   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1039   unsigned ID;
1040   if (getUnsigned(ID))
1041     return true;
1042   Info = &PFS.getVRegInfo(ID);
1043   return false;
1044 }
1045 
1046 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1047   switch (Token.kind()) {
1048   case MIToken::underscore:
1049     Reg = 0;
1050     return false;
1051   case MIToken::NamedRegister:
1052     return parseNamedRegister(Reg);
1053   case MIToken::NamedVirtualRegister:
1054   case MIToken::VirtualRegister:
1055     if (parseVirtualRegister(Info))
1056       return true;
1057     Reg = Info->VReg;
1058     return false;
1059   // TODO: Parse other register kinds.
1060   default:
1061     llvm_unreachable("The current token should be a register");
1062   }
1063 }
1064 
1065 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1066   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1067     return error("expected '_', register class, or register bank name");
1068   StringRef::iterator Loc = Token.location();
1069   StringRef Name = Token.stringValue();
1070 
1071   // Was it a register class?
1072   auto RCNameI = PFS.Names2RegClasses.find(Name);
1073   if (RCNameI != PFS.Names2RegClasses.end()) {
1074     lex();
1075     const TargetRegisterClass &RC = *RCNameI->getValue();
1076 
1077     switch (RegInfo.Kind) {
1078     case VRegInfo::UNKNOWN:
1079     case VRegInfo::NORMAL:
1080       RegInfo.Kind = VRegInfo::NORMAL;
1081       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1082         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1083         return error(Loc, Twine("conflicting register classes, previously: ") +
1084                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1085       }
1086       RegInfo.D.RC = &RC;
1087       RegInfo.Explicit = true;
1088       return false;
1089 
1090     case VRegInfo::GENERIC:
1091     case VRegInfo::REGBANK:
1092       return error(Loc, "register class specification on generic register");
1093     }
1094     llvm_unreachable("Unexpected register kind");
1095   }
1096 
1097   // Should be a register bank or a generic register.
1098   const RegisterBank *RegBank = nullptr;
1099   if (Name != "_") {
1100     auto RBNameI = PFS.Names2RegBanks.find(Name);
1101     if (RBNameI == PFS.Names2RegBanks.end())
1102       return error(Loc, "expected '_', register class, or register bank name");
1103     RegBank = RBNameI->getValue();
1104   }
1105 
1106   lex();
1107 
1108   switch (RegInfo.Kind) {
1109   case VRegInfo::UNKNOWN:
1110   case VRegInfo::GENERIC:
1111   case VRegInfo::REGBANK:
1112     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1113     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1114       return error(Loc, "conflicting generic register banks");
1115     RegInfo.D.RegBank = RegBank;
1116     RegInfo.Explicit = true;
1117     return false;
1118 
1119   case VRegInfo::NORMAL:
1120     return error(Loc, "register bank specification on normal register");
1121   }
1122   llvm_unreachable("Unexpected register kind");
1123 }
1124 
1125 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1126   const unsigned OldFlags = Flags;
1127   switch (Token.kind()) {
1128   case MIToken::kw_implicit:
1129     Flags |= RegState::Implicit;
1130     break;
1131   case MIToken::kw_implicit_define:
1132     Flags |= RegState::ImplicitDefine;
1133     break;
1134   case MIToken::kw_def:
1135     Flags |= RegState::Define;
1136     break;
1137   case MIToken::kw_dead:
1138     Flags |= RegState::Dead;
1139     break;
1140   case MIToken::kw_killed:
1141     Flags |= RegState::Kill;
1142     break;
1143   case MIToken::kw_undef:
1144     Flags |= RegState::Undef;
1145     break;
1146   case MIToken::kw_internal:
1147     Flags |= RegState::InternalRead;
1148     break;
1149   case MIToken::kw_early_clobber:
1150     Flags |= RegState::EarlyClobber;
1151     break;
1152   case MIToken::kw_debug_use:
1153     Flags |= RegState::Debug;
1154     break;
1155   case MIToken::kw_renamable:
1156     Flags |= RegState::Renamable;
1157     break;
1158   default:
1159     llvm_unreachable("The current token should be a register flag");
1160   }
1161   if (OldFlags == Flags)
1162     // We know that the same flag is specified more than once when the flags
1163     // weren't modified.
1164     return error("duplicate '" + Token.stringValue() + "' register flag");
1165   lex();
1166   return false;
1167 }
1168 
1169 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1170   assert(Token.is(MIToken::dot));
1171   lex();
1172   if (Token.isNot(MIToken::Identifier))
1173     return error("expected a subregister index after '.'");
1174   auto Name = Token.stringValue();
1175   SubReg = getSubRegIndex(Name);
1176   if (!SubReg)
1177     return error(Twine("use of unknown subregister index '") + Name + "'");
1178   lex();
1179   return false;
1180 }
1181 
1182 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1183   if (!consumeIfPresent(MIToken::kw_tied_def))
1184     return true;
1185   if (Token.isNot(MIToken::IntegerLiteral))
1186     return error("expected an integer literal after 'tied-def'");
1187   if (getUnsigned(TiedDefIdx))
1188     return true;
1189   lex();
1190   if (expectAndConsume(MIToken::rparen))
1191     return true;
1192   return false;
1193 }
1194 
1195 bool MIParser::assignRegisterTies(MachineInstr &MI,
1196                                   ArrayRef<ParsedMachineOperand> Operands) {
1197   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1198   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1199     if (!Operands[I].TiedDefIdx)
1200       continue;
1201     // The parser ensures that this operand is a register use, so we just have
1202     // to check the tied-def operand.
1203     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1204     if (DefIdx >= E)
1205       return error(Operands[I].Begin,
1206                    Twine("use of invalid tied-def operand index '" +
1207                          Twine(DefIdx) + "'; instruction has only ") +
1208                        Twine(E) + " operands");
1209     const auto &DefOperand = Operands[DefIdx].Operand;
1210     if (!DefOperand.isReg() || !DefOperand.isDef())
1211       // FIXME: add note with the def operand.
1212       return error(Operands[I].Begin,
1213                    Twine("use of invalid tied-def operand index '") +
1214                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1215                        " isn't a defined register");
1216     // Check that the tied-def operand wasn't tied elsewhere.
1217     for (const auto &TiedPair : TiedRegisterPairs) {
1218       if (TiedPair.first == DefIdx)
1219         return error(Operands[I].Begin,
1220                      Twine("the tied-def operand #") + Twine(DefIdx) +
1221                          " is already tied with another register operand");
1222     }
1223     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1224   }
1225   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1226   // indices must be less than tied max.
1227   for (const auto &TiedPair : TiedRegisterPairs)
1228     MI.tieOperands(TiedPair.first, TiedPair.second);
1229   return false;
1230 }
1231 
1232 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1233                                     Optional<unsigned> &TiedDefIdx,
1234                                     bool IsDef) {
1235   unsigned Flags = IsDef ? RegState::Define : 0;
1236   while (Token.isRegisterFlag()) {
1237     if (parseRegisterFlag(Flags))
1238       return true;
1239   }
1240   if (!Token.isRegister())
1241     return error("expected a register after register flags");
1242   unsigned Reg;
1243   VRegInfo *RegInfo;
1244   if (parseRegister(Reg, RegInfo))
1245     return true;
1246   lex();
1247   unsigned SubReg = 0;
1248   if (Token.is(MIToken::dot)) {
1249     if (parseSubRegisterIndex(SubReg))
1250       return true;
1251     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1252       return error("subregister index expects a virtual register");
1253   }
1254   if (Token.is(MIToken::colon)) {
1255     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1256       return error("register class specification expects a virtual register");
1257     lex();
1258     if (parseRegisterClassOrBank(*RegInfo))
1259         return true;
1260   }
1261   MachineRegisterInfo &MRI = MF.getRegInfo();
1262   if ((Flags & RegState::Define) == 0) {
1263     if (consumeIfPresent(MIToken::lparen)) {
1264       unsigned Idx;
1265       if (!parseRegisterTiedDefIndex(Idx))
1266         TiedDefIdx = Idx;
1267       else {
1268         // Try a redundant low-level type.
1269         LLT Ty;
1270         if (parseLowLevelType(Token.location(), Ty))
1271           return error("expected tied-def or low-level type after '('");
1272 
1273         if (expectAndConsume(MIToken::rparen))
1274           return true;
1275 
1276         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1277           return error("inconsistent type for generic virtual register");
1278 
1279         MRI.setType(Reg, Ty);
1280       }
1281     }
1282   } else if (consumeIfPresent(MIToken::lparen)) {
1283     // Virtual registers may have a tpe with GlobalISel.
1284     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1285       return error("unexpected type on physical register");
1286 
1287     LLT Ty;
1288     if (parseLowLevelType(Token.location(), Ty))
1289       return true;
1290 
1291     if (expectAndConsume(MIToken::rparen))
1292       return true;
1293 
1294     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1295       return error("inconsistent type for generic virtual register");
1296 
1297     MRI.setType(Reg, Ty);
1298   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1299     // Generic virtual registers must have a type.
1300     // If we end up here this means the type hasn't been specified and
1301     // this is bad!
1302     if (RegInfo->Kind == VRegInfo::GENERIC ||
1303         RegInfo->Kind == VRegInfo::REGBANK)
1304       return error("generic virtual registers must have a type");
1305   }
1306   Dest = MachineOperand::CreateReg(
1307       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1308       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1309       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1310       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1311 
1312   return false;
1313 }
1314 
1315 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1316   assert(Token.is(MIToken::IntegerLiteral));
1317   const APSInt &Int = Token.integerValue();
1318   if (Int.getMinSignedBits() > 64)
1319     return error("integer literal is too large to be an immediate operand");
1320   Dest = MachineOperand::CreateImm(Int.getExtValue());
1321   lex();
1322   return false;
1323 }
1324 
1325 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1326                                const Constant *&C) {
1327   auto Source = StringValue.str(); // The source has to be null terminated.
1328   SMDiagnostic Err;
1329   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1330                          &PFS.IRSlots);
1331   if (!C)
1332     return error(Loc + Err.getColumnNo(), Err.getMessage());
1333   return false;
1334 }
1335 
1336 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1337   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1338     return true;
1339   lex();
1340   return false;
1341 }
1342 
1343 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1344   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1345     StringRef SizeStr = Token.range().drop_front();
1346     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1347       return error("expected integers after 's'/'p' type character");
1348   }
1349 
1350   if (Token.range().front() == 's') {
1351     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1352     lex();
1353     return false;
1354   } else if (Token.range().front() == 'p') {
1355     const DataLayout &DL = MF.getDataLayout();
1356     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1357     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1358     lex();
1359     return false;
1360   }
1361 
1362   // Now we're looking for a vector.
1363   if (Token.isNot(MIToken::less))
1364     return error(Loc,
1365                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1366   lex();
1367 
1368   if (Token.isNot(MIToken::IntegerLiteral))
1369     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1370   uint64_t NumElements = Token.integerValue().getZExtValue();
1371   lex();
1372 
1373   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1374     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1375   lex();
1376 
1377   if (Token.range().front() != 's' && Token.range().front() != 'p')
1378     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1379   StringRef SizeStr = Token.range().drop_front();
1380   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1381     return error("expected integers after 's'/'p' type character");
1382 
1383   if (Token.range().front() == 's')
1384     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1385   else if (Token.range().front() == 'p') {
1386     const DataLayout &DL = MF.getDataLayout();
1387     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1388     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1389   } else
1390     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1391   lex();
1392 
1393   if (Token.isNot(MIToken::greater))
1394     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1395   lex();
1396 
1397   Ty = LLT::vector(NumElements, Ty);
1398   return false;
1399 }
1400 
1401 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1402   assert(Token.is(MIToken::Identifier));
1403   StringRef TypeStr = Token.range();
1404   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1405       TypeStr.front() != 'p')
1406     return error(
1407         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1408   StringRef SizeStr = Token.range().drop_front();
1409   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1410     return error("expected integers after 'i'/'s'/'p' type character");
1411 
1412   auto Loc = Token.location();
1413   lex();
1414   if (Token.isNot(MIToken::IntegerLiteral)) {
1415     if (Token.isNot(MIToken::Identifier) ||
1416         !(Token.range() == "true" || Token.range() == "false"))
1417       return error("expected an integer literal");
1418   }
1419   const Constant *C = nullptr;
1420   if (parseIRConstant(Loc, C))
1421     return true;
1422   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1423   return false;
1424 }
1425 
1426 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1427   auto Loc = Token.location();
1428   lex();
1429   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1430       Token.isNot(MIToken::HexLiteral))
1431     return error("expected a floating point literal");
1432   const Constant *C = nullptr;
1433   if (parseIRConstant(Loc, C))
1434     return true;
1435   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1436   return false;
1437 }
1438 
1439 bool MIParser::getUnsigned(unsigned &Result) {
1440   if (Token.hasIntegerValue()) {
1441     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1442     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1443     if (Val64 == Limit)
1444       return error("expected 32-bit integer (too large)");
1445     Result = Val64;
1446     return false;
1447   }
1448   if (Token.is(MIToken::HexLiteral)) {
1449     APInt A;
1450     if (getHexUint(A))
1451       return true;
1452     if (A.getBitWidth() > 32)
1453       return error("expected 32-bit integer (too large)");
1454     Result = A.getZExtValue();
1455     return false;
1456   }
1457   return true;
1458 }
1459 
1460 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1461   assert(Token.is(MIToken::MachineBasicBlock) ||
1462          Token.is(MIToken::MachineBasicBlockLabel));
1463   unsigned Number;
1464   if (getUnsigned(Number))
1465     return true;
1466   auto MBBInfo = PFS.MBBSlots.find(Number);
1467   if (MBBInfo == PFS.MBBSlots.end())
1468     return error(Twine("use of undefined machine basic block #") +
1469                  Twine(Number));
1470   MBB = MBBInfo->second;
1471   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1472   // we drop the <irname> from the bb.<id>.<irname> format.
1473   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1474     return error(Twine("the name of machine basic block #") + Twine(Number) +
1475                  " isn't '" + Token.stringValue() + "'");
1476   return false;
1477 }
1478 
1479 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1480   MachineBasicBlock *MBB;
1481   if (parseMBBReference(MBB))
1482     return true;
1483   Dest = MachineOperand::CreateMBB(MBB);
1484   lex();
1485   return false;
1486 }
1487 
1488 bool MIParser::parseStackFrameIndex(int &FI) {
1489   assert(Token.is(MIToken::StackObject));
1490   unsigned ID;
1491   if (getUnsigned(ID))
1492     return true;
1493   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1494   if (ObjectInfo == PFS.StackObjectSlots.end())
1495     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1496                  "'");
1497   StringRef Name;
1498   if (const auto *Alloca =
1499           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1500     Name = Alloca->getName();
1501   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1502     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1503                  "' isn't '" + Token.stringValue() + "'");
1504   lex();
1505   FI = ObjectInfo->second;
1506   return false;
1507 }
1508 
1509 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1510   int FI;
1511   if (parseStackFrameIndex(FI))
1512     return true;
1513   Dest = MachineOperand::CreateFI(FI);
1514   return false;
1515 }
1516 
1517 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1518   assert(Token.is(MIToken::FixedStackObject));
1519   unsigned ID;
1520   if (getUnsigned(ID))
1521     return true;
1522   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1523   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1524     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1525                  Twine(ID) + "'");
1526   lex();
1527   FI = ObjectInfo->second;
1528   return false;
1529 }
1530 
1531 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1532   int FI;
1533   if (parseFixedStackFrameIndex(FI))
1534     return true;
1535   Dest = MachineOperand::CreateFI(FI);
1536   return false;
1537 }
1538 
1539 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1540   switch (Token.kind()) {
1541   case MIToken::NamedGlobalValue: {
1542     const Module *M = MF.getFunction().getParent();
1543     GV = M->getNamedValue(Token.stringValue());
1544     if (!GV)
1545       return error(Twine("use of undefined global value '") + Token.range() +
1546                    "'");
1547     break;
1548   }
1549   case MIToken::GlobalValue: {
1550     unsigned GVIdx;
1551     if (getUnsigned(GVIdx))
1552       return true;
1553     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1554       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1555                    "'");
1556     GV = PFS.IRSlots.GlobalValues[GVIdx];
1557     break;
1558   }
1559   default:
1560     llvm_unreachable("The current token should be a global value");
1561   }
1562   return false;
1563 }
1564 
1565 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1566   GlobalValue *GV = nullptr;
1567   if (parseGlobalValue(GV))
1568     return true;
1569   lex();
1570   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1571   if (parseOperandsOffset(Dest))
1572     return true;
1573   return false;
1574 }
1575 
1576 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1577   assert(Token.is(MIToken::ConstantPoolItem));
1578   unsigned ID;
1579   if (getUnsigned(ID))
1580     return true;
1581   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1582   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1583     return error("use of undefined constant '%const." + Twine(ID) + "'");
1584   lex();
1585   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1586   if (parseOperandsOffset(Dest))
1587     return true;
1588   return false;
1589 }
1590 
1591 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1592   assert(Token.is(MIToken::JumpTableIndex));
1593   unsigned ID;
1594   if (getUnsigned(ID))
1595     return true;
1596   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1597   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1598     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1599   lex();
1600   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1601   return false;
1602 }
1603 
1604 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1605   assert(Token.is(MIToken::ExternalSymbol));
1606   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1607   lex();
1608   Dest = MachineOperand::CreateES(Symbol);
1609   if (parseOperandsOffset(Dest))
1610     return true;
1611   return false;
1612 }
1613 
1614 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1615   assert(Token.is(MIToken::MCSymbol));
1616   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1617   lex();
1618   Dest = MachineOperand::CreateMCSymbol(Symbol);
1619   if (parseOperandsOffset(Dest))
1620     return true;
1621   return false;
1622 }
1623 
1624 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1625   assert(Token.is(MIToken::SubRegisterIndex));
1626   StringRef Name = Token.stringValue();
1627   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1628   if (SubRegIndex == 0)
1629     return error(Twine("unknown subregister index '") + Name + "'");
1630   lex();
1631   Dest = MachineOperand::CreateImm(SubRegIndex);
1632   return false;
1633 }
1634 
1635 bool MIParser::parseMDNode(MDNode *&Node) {
1636   assert(Token.is(MIToken::exclaim));
1637 
1638   auto Loc = Token.location();
1639   lex();
1640   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1641     return error("expected metadata id after '!'");
1642   unsigned ID;
1643   if (getUnsigned(ID))
1644     return true;
1645   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1646   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1647     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1648   lex();
1649   Node = NodeInfo->second.get();
1650   return false;
1651 }
1652 
1653 bool MIParser::parseDIExpression(MDNode *&Expr) {
1654   assert(Token.is(MIToken::md_diexpr));
1655   lex();
1656 
1657   // FIXME: Share this parsing with the IL parser.
1658   SmallVector<uint64_t, 8> Elements;
1659 
1660   if (expectAndConsume(MIToken::lparen))
1661     return true;
1662 
1663   if (Token.isNot(MIToken::rparen)) {
1664     do {
1665       if (Token.is(MIToken::Identifier)) {
1666         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1667           lex();
1668           Elements.push_back(Op);
1669           continue;
1670         }
1671         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1672       }
1673 
1674       if (Token.isNot(MIToken::IntegerLiteral) ||
1675           Token.integerValue().isSigned())
1676         return error("expected unsigned integer");
1677 
1678       auto &U = Token.integerValue();
1679       if (U.ugt(UINT64_MAX))
1680         return error("element too large, limit is " + Twine(UINT64_MAX));
1681       Elements.push_back(U.getZExtValue());
1682       lex();
1683 
1684     } while (consumeIfPresent(MIToken::comma));
1685   }
1686 
1687   if (expectAndConsume(MIToken::rparen))
1688     return true;
1689 
1690   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1691   return false;
1692 }
1693 
1694 bool MIParser::parseDILocation(MDNode *&Loc) {
1695   assert(Token.is(MIToken::md_dilocation));
1696   lex();
1697 
1698   bool HaveLine = false;
1699   unsigned Line = 0;
1700   unsigned Column = 0;
1701   MDNode *Scope = nullptr;
1702   MDNode *InlinedAt = nullptr;
1703   bool ImplicitCode = false;
1704 
1705   if (expectAndConsume(MIToken::lparen))
1706     return true;
1707 
1708   if (Token.isNot(MIToken::rparen)) {
1709     do {
1710       if (Token.is(MIToken::Identifier)) {
1711         if (Token.stringValue() == "line") {
1712           lex();
1713           if (expectAndConsume(MIToken::colon))
1714             return true;
1715           if (Token.isNot(MIToken::IntegerLiteral) ||
1716               Token.integerValue().isSigned())
1717             return error("expected unsigned integer");
1718           Line = Token.integerValue().getZExtValue();
1719           HaveLine = true;
1720           lex();
1721           continue;
1722         }
1723         if (Token.stringValue() == "column") {
1724           lex();
1725           if (expectAndConsume(MIToken::colon))
1726             return true;
1727           if (Token.isNot(MIToken::IntegerLiteral) ||
1728               Token.integerValue().isSigned())
1729             return error("expected unsigned integer");
1730           Column = Token.integerValue().getZExtValue();
1731           lex();
1732           continue;
1733         }
1734         if (Token.stringValue() == "scope") {
1735           lex();
1736           if (expectAndConsume(MIToken::colon))
1737             return true;
1738           if (parseMDNode(Scope))
1739             return error("expected metadata node");
1740           if (!isa<DIScope>(Scope))
1741             return error("expected DIScope node");
1742           continue;
1743         }
1744         if (Token.stringValue() == "inlinedAt") {
1745           lex();
1746           if (expectAndConsume(MIToken::colon))
1747             return true;
1748           if (Token.is(MIToken::exclaim)) {
1749             if (parseMDNode(InlinedAt))
1750               return true;
1751           } else if (Token.is(MIToken::md_dilocation)) {
1752             if (parseDILocation(InlinedAt))
1753               return true;
1754           } else
1755             return error("expected metadata node");
1756           if (!isa<DILocation>(InlinedAt))
1757             return error("expected DILocation node");
1758           continue;
1759         }
1760         if (Token.stringValue() == "isImplicitCode") {
1761           lex();
1762           if (expectAndConsume(MIToken::colon))
1763             return true;
1764           if (!Token.is(MIToken::Identifier))
1765             return error("expected true/false");
1766           // As far as I can see, we don't have any existing need for parsing
1767           // true/false in MIR yet. Do it ad-hoc until there's something else
1768           // that needs it.
1769           if (Token.stringValue() == "true")
1770             ImplicitCode = true;
1771           else if (Token.stringValue() == "false")
1772             ImplicitCode = false;
1773           else
1774             return error("expected true/false");
1775           lex();
1776           continue;
1777         }
1778       }
1779       return error(Twine("invalid DILocation argument '") +
1780                    Token.stringValue() + "'");
1781     } while (consumeIfPresent(MIToken::comma));
1782   }
1783 
1784   if (expectAndConsume(MIToken::rparen))
1785     return true;
1786 
1787   if (!HaveLine)
1788     return error("DILocation requires line number");
1789   if (!Scope)
1790     return error("DILocation requires a scope");
1791 
1792   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
1793                         InlinedAt, ImplicitCode);
1794   return false;
1795 }
1796 
1797 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1798   MDNode *Node = nullptr;
1799   if (Token.is(MIToken::exclaim)) {
1800     if (parseMDNode(Node))
1801       return true;
1802   } else if (Token.is(MIToken::md_diexpr)) {
1803     if (parseDIExpression(Node))
1804       return true;
1805   }
1806   Dest = MachineOperand::CreateMetadata(Node);
1807   return false;
1808 }
1809 
1810 bool MIParser::parseCFIOffset(int &Offset) {
1811   if (Token.isNot(MIToken::IntegerLiteral))
1812     return error("expected a cfi offset");
1813   if (Token.integerValue().getMinSignedBits() > 32)
1814     return error("expected a 32 bit integer (the cfi offset is too large)");
1815   Offset = (int)Token.integerValue().getExtValue();
1816   lex();
1817   return false;
1818 }
1819 
1820 bool MIParser::parseCFIRegister(unsigned &Reg) {
1821   if (Token.isNot(MIToken::NamedRegister))
1822     return error("expected a cfi register");
1823   unsigned LLVMReg;
1824   if (parseNamedRegister(LLVMReg))
1825     return true;
1826   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1827   assert(TRI && "Expected target register info");
1828   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1829   if (DwarfReg < 0)
1830     return error("invalid DWARF register");
1831   Reg = (unsigned)DwarfReg;
1832   lex();
1833   return false;
1834 }
1835 
1836 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1837   do {
1838     if (Token.isNot(MIToken::HexLiteral))
1839       return error("expected a hexadecimal literal");
1840     unsigned Value;
1841     if (getUnsigned(Value))
1842       return true;
1843     if (Value > UINT8_MAX)
1844       return error("expected a 8-bit integer (too large)");
1845     Values.push_back(static_cast<uint8_t>(Value));
1846     lex();
1847   } while (consumeIfPresent(MIToken::comma));
1848   return false;
1849 }
1850 
1851 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1852   auto Kind = Token.kind();
1853   lex();
1854   int Offset;
1855   unsigned Reg;
1856   unsigned CFIIndex;
1857   switch (Kind) {
1858   case MIToken::kw_cfi_same_value:
1859     if (parseCFIRegister(Reg))
1860       return true;
1861     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1862     break;
1863   case MIToken::kw_cfi_offset:
1864     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1865         parseCFIOffset(Offset))
1866       return true;
1867     CFIIndex =
1868         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1869     break;
1870   case MIToken::kw_cfi_rel_offset:
1871     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1872         parseCFIOffset(Offset))
1873       return true;
1874     CFIIndex = MF.addFrameInst(
1875         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1876     break;
1877   case MIToken::kw_cfi_def_cfa_register:
1878     if (parseCFIRegister(Reg))
1879       return true;
1880     CFIIndex =
1881         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1882     break;
1883   case MIToken::kw_cfi_def_cfa_offset:
1884     if (parseCFIOffset(Offset))
1885       return true;
1886     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1887     CFIIndex = MF.addFrameInst(
1888         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1889     break;
1890   case MIToken::kw_cfi_adjust_cfa_offset:
1891     if (parseCFIOffset(Offset))
1892       return true;
1893     CFIIndex = MF.addFrameInst(
1894         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1895     break;
1896   case MIToken::kw_cfi_def_cfa:
1897     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1898         parseCFIOffset(Offset))
1899       return true;
1900     // NB: MCCFIInstruction::createDefCfa negates the offset.
1901     CFIIndex =
1902         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1903     break;
1904   case MIToken::kw_cfi_remember_state:
1905     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1906     break;
1907   case MIToken::kw_cfi_restore:
1908     if (parseCFIRegister(Reg))
1909       return true;
1910     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1911     break;
1912   case MIToken::kw_cfi_restore_state:
1913     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1914     break;
1915   case MIToken::kw_cfi_undefined:
1916     if (parseCFIRegister(Reg))
1917       return true;
1918     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1919     break;
1920   case MIToken::kw_cfi_register: {
1921     unsigned Reg2;
1922     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1923         parseCFIRegister(Reg2))
1924       return true;
1925 
1926     CFIIndex =
1927         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1928     break;
1929   }
1930   case MIToken::kw_cfi_window_save:
1931     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1932     break;
1933   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
1934     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1935     break;
1936   case MIToken::kw_cfi_escape: {
1937     std::string Values;
1938     if (parseCFIEscapeValues(Values))
1939       return true;
1940     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1941     break;
1942   }
1943   default:
1944     // TODO: Parse the other CFI operands.
1945     llvm_unreachable("The current token should be a cfi operand");
1946   }
1947   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1948   return false;
1949 }
1950 
1951 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1952   switch (Token.kind()) {
1953   case MIToken::NamedIRBlock: {
1954     BB = dyn_cast_or_null<BasicBlock>(
1955         F.getValueSymbolTable()->lookup(Token.stringValue()));
1956     if (!BB)
1957       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1958     break;
1959   }
1960   case MIToken::IRBlock: {
1961     unsigned SlotNumber = 0;
1962     if (getUnsigned(SlotNumber))
1963       return true;
1964     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1965     if (!BB)
1966       return error(Twine("use of undefined IR block '%ir-block.") +
1967                    Twine(SlotNumber) + "'");
1968     break;
1969   }
1970   default:
1971     llvm_unreachable("The current token should be an IR block reference");
1972   }
1973   return false;
1974 }
1975 
1976 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1977   assert(Token.is(MIToken::kw_blockaddress));
1978   lex();
1979   if (expectAndConsume(MIToken::lparen))
1980     return true;
1981   if (Token.isNot(MIToken::GlobalValue) &&
1982       Token.isNot(MIToken::NamedGlobalValue))
1983     return error("expected a global value");
1984   GlobalValue *GV = nullptr;
1985   if (parseGlobalValue(GV))
1986     return true;
1987   auto *F = dyn_cast<Function>(GV);
1988   if (!F)
1989     return error("expected an IR function reference");
1990   lex();
1991   if (expectAndConsume(MIToken::comma))
1992     return true;
1993   BasicBlock *BB = nullptr;
1994   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1995     return error("expected an IR block reference");
1996   if (parseIRBlock(BB, *F))
1997     return true;
1998   lex();
1999   if (expectAndConsume(MIToken::rparen))
2000     return true;
2001   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2002   if (parseOperandsOffset(Dest))
2003     return true;
2004   return false;
2005 }
2006 
2007 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2008   assert(Token.is(MIToken::kw_intrinsic));
2009   lex();
2010   if (expectAndConsume(MIToken::lparen))
2011     return error("expected syntax intrinsic(@llvm.whatever)");
2012 
2013   if (Token.isNot(MIToken::NamedGlobalValue))
2014     return error("expected syntax intrinsic(@llvm.whatever)");
2015 
2016   std::string Name = Token.stringValue();
2017   lex();
2018 
2019   if (expectAndConsume(MIToken::rparen))
2020     return error("expected ')' to terminate intrinsic name");
2021 
2022   // Find out what intrinsic we're dealing with, first try the global namespace
2023   // and then the target's private intrinsics if that fails.
2024   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2025   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2026   if (ID == Intrinsic::not_intrinsic && TII)
2027     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2028 
2029   if (ID == Intrinsic::not_intrinsic)
2030     return error("unknown intrinsic name");
2031   Dest = MachineOperand::CreateIntrinsicID(ID);
2032 
2033   return false;
2034 }
2035 
2036 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2037   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2038   bool IsFloat = Token.is(MIToken::kw_floatpred);
2039   lex();
2040 
2041   if (expectAndConsume(MIToken::lparen))
2042     return error("expected syntax intpred(whatever) or floatpred(whatever");
2043 
2044   if (Token.isNot(MIToken::Identifier))
2045     return error("whatever");
2046 
2047   CmpInst::Predicate Pred;
2048   if (IsFloat) {
2049     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2050                .Case("false", CmpInst::FCMP_FALSE)
2051                .Case("oeq", CmpInst::FCMP_OEQ)
2052                .Case("ogt", CmpInst::FCMP_OGT)
2053                .Case("oge", CmpInst::FCMP_OGE)
2054                .Case("olt", CmpInst::FCMP_OLT)
2055                .Case("ole", CmpInst::FCMP_OLE)
2056                .Case("one", CmpInst::FCMP_ONE)
2057                .Case("ord", CmpInst::FCMP_ORD)
2058                .Case("uno", CmpInst::FCMP_UNO)
2059                .Case("ueq", CmpInst::FCMP_UEQ)
2060                .Case("ugt", CmpInst::FCMP_UGT)
2061                .Case("uge", CmpInst::FCMP_UGE)
2062                .Case("ult", CmpInst::FCMP_ULT)
2063                .Case("ule", CmpInst::FCMP_ULE)
2064                .Case("une", CmpInst::FCMP_UNE)
2065                .Case("true", CmpInst::FCMP_TRUE)
2066                .Default(CmpInst::BAD_FCMP_PREDICATE);
2067     if (!CmpInst::isFPPredicate(Pred))
2068       return error("invalid floating-point predicate");
2069   } else {
2070     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2071                .Case("eq", CmpInst::ICMP_EQ)
2072                .Case("ne", CmpInst::ICMP_NE)
2073                .Case("sgt", CmpInst::ICMP_SGT)
2074                .Case("sge", CmpInst::ICMP_SGE)
2075                .Case("slt", CmpInst::ICMP_SLT)
2076                .Case("sle", CmpInst::ICMP_SLE)
2077                .Case("ugt", CmpInst::ICMP_UGT)
2078                .Case("uge", CmpInst::ICMP_UGE)
2079                .Case("ult", CmpInst::ICMP_ULT)
2080                .Case("ule", CmpInst::ICMP_ULE)
2081                .Default(CmpInst::BAD_ICMP_PREDICATE);
2082     if (!CmpInst::isIntPredicate(Pred))
2083       return error("invalid integer predicate");
2084   }
2085 
2086   lex();
2087   Dest = MachineOperand::CreatePredicate(Pred);
2088   if (expectAndConsume(MIToken::rparen))
2089     return error("predicate should be terminated by ')'.");
2090 
2091   return false;
2092 }
2093 
2094 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2095   assert(Token.is(MIToken::kw_target_index));
2096   lex();
2097   if (expectAndConsume(MIToken::lparen))
2098     return true;
2099   if (Token.isNot(MIToken::Identifier))
2100     return error("expected the name of the target index");
2101   int Index = 0;
2102   if (getTargetIndex(Token.stringValue(), Index))
2103     return error("use of undefined target index '" + Token.stringValue() + "'");
2104   lex();
2105   if (expectAndConsume(MIToken::rparen))
2106     return true;
2107   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2108   if (parseOperandsOffset(Dest))
2109     return true;
2110   return false;
2111 }
2112 
2113 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2114   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2115   lex();
2116   if (expectAndConsume(MIToken::lparen))
2117     return true;
2118 
2119   uint32_t *Mask = MF.allocateRegMask();
2120   while (true) {
2121     if (Token.isNot(MIToken::NamedRegister))
2122       return error("expected a named register");
2123     unsigned Reg;
2124     if (parseNamedRegister(Reg))
2125       return true;
2126     lex();
2127     Mask[Reg / 32] |= 1U << (Reg % 32);
2128     // TODO: Report an error if the same register is used more than once.
2129     if (Token.isNot(MIToken::comma))
2130       break;
2131     lex();
2132   }
2133 
2134   if (expectAndConsume(MIToken::rparen))
2135     return true;
2136   Dest = MachineOperand::CreateRegMask(Mask);
2137   return false;
2138 }
2139 
2140 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2141   assert(Token.is(MIToken::kw_liveout));
2142   uint32_t *Mask = MF.allocateRegMask();
2143   lex();
2144   if (expectAndConsume(MIToken::lparen))
2145     return true;
2146   while (true) {
2147     if (Token.isNot(MIToken::NamedRegister))
2148       return error("expected a named register");
2149     unsigned Reg;
2150     if (parseNamedRegister(Reg))
2151       return true;
2152     lex();
2153     Mask[Reg / 32] |= 1U << (Reg % 32);
2154     // TODO: Report an error if the same register is used more than once.
2155     if (Token.isNot(MIToken::comma))
2156       break;
2157     lex();
2158   }
2159   if (expectAndConsume(MIToken::rparen))
2160     return true;
2161   Dest = MachineOperand::CreateRegLiveOut(Mask);
2162   return false;
2163 }
2164 
2165 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2166                                    Optional<unsigned> &TiedDefIdx) {
2167   switch (Token.kind()) {
2168   case MIToken::kw_implicit:
2169   case MIToken::kw_implicit_define:
2170   case MIToken::kw_def:
2171   case MIToken::kw_dead:
2172   case MIToken::kw_killed:
2173   case MIToken::kw_undef:
2174   case MIToken::kw_internal:
2175   case MIToken::kw_early_clobber:
2176   case MIToken::kw_debug_use:
2177   case MIToken::kw_renamable:
2178   case MIToken::underscore:
2179   case MIToken::NamedRegister:
2180   case MIToken::VirtualRegister:
2181   case MIToken::NamedVirtualRegister:
2182     return parseRegisterOperand(Dest, TiedDefIdx);
2183   case MIToken::IntegerLiteral:
2184     return parseImmediateOperand(Dest);
2185   case MIToken::kw_half:
2186   case MIToken::kw_float:
2187   case MIToken::kw_double:
2188   case MIToken::kw_x86_fp80:
2189   case MIToken::kw_fp128:
2190   case MIToken::kw_ppc_fp128:
2191     return parseFPImmediateOperand(Dest);
2192   case MIToken::MachineBasicBlock:
2193     return parseMBBOperand(Dest);
2194   case MIToken::StackObject:
2195     return parseStackObjectOperand(Dest);
2196   case MIToken::FixedStackObject:
2197     return parseFixedStackObjectOperand(Dest);
2198   case MIToken::GlobalValue:
2199   case MIToken::NamedGlobalValue:
2200     return parseGlobalAddressOperand(Dest);
2201   case MIToken::ConstantPoolItem:
2202     return parseConstantPoolIndexOperand(Dest);
2203   case MIToken::JumpTableIndex:
2204     return parseJumpTableIndexOperand(Dest);
2205   case MIToken::ExternalSymbol:
2206     return parseExternalSymbolOperand(Dest);
2207   case MIToken::MCSymbol:
2208     return parseMCSymbolOperand(Dest);
2209   case MIToken::SubRegisterIndex:
2210     return parseSubRegisterIndexOperand(Dest);
2211   case MIToken::md_diexpr:
2212   case MIToken::exclaim:
2213     return parseMetadataOperand(Dest);
2214   case MIToken::kw_cfi_same_value:
2215   case MIToken::kw_cfi_offset:
2216   case MIToken::kw_cfi_rel_offset:
2217   case MIToken::kw_cfi_def_cfa_register:
2218   case MIToken::kw_cfi_def_cfa_offset:
2219   case MIToken::kw_cfi_adjust_cfa_offset:
2220   case MIToken::kw_cfi_escape:
2221   case MIToken::kw_cfi_def_cfa:
2222   case MIToken::kw_cfi_register:
2223   case MIToken::kw_cfi_remember_state:
2224   case MIToken::kw_cfi_restore:
2225   case MIToken::kw_cfi_restore_state:
2226   case MIToken::kw_cfi_undefined:
2227   case MIToken::kw_cfi_window_save:
2228   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2229     return parseCFIOperand(Dest);
2230   case MIToken::kw_blockaddress:
2231     return parseBlockAddressOperand(Dest);
2232   case MIToken::kw_intrinsic:
2233     return parseIntrinsicOperand(Dest);
2234   case MIToken::kw_target_index:
2235     return parseTargetIndexOperand(Dest);
2236   case MIToken::kw_liveout:
2237     return parseLiveoutRegisterMaskOperand(Dest);
2238   case MIToken::kw_floatpred:
2239   case MIToken::kw_intpred:
2240     return parsePredicateOperand(Dest);
2241   case MIToken::Error:
2242     return true;
2243   case MIToken::Identifier:
2244     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2245       Dest = MachineOperand::CreateRegMask(RegMask);
2246       lex();
2247       break;
2248     } else if (Token.stringValue() == "CustomRegMask") {
2249       return parseCustomRegisterMaskOperand(Dest);
2250     } else
2251       return parseTypedImmediateOperand(Dest);
2252   default:
2253     // FIXME: Parse the MCSymbol machine operand.
2254     return error("expected a machine operand");
2255   }
2256   return false;
2257 }
2258 
2259 bool MIParser::parseMachineOperandAndTargetFlags(
2260     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2261   unsigned TF = 0;
2262   bool HasTargetFlags = false;
2263   if (Token.is(MIToken::kw_target_flags)) {
2264     HasTargetFlags = true;
2265     lex();
2266     if (expectAndConsume(MIToken::lparen))
2267       return true;
2268     if (Token.isNot(MIToken::Identifier))
2269       return error("expected the name of the target flag");
2270     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2271       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2272         return error("use of undefined target flag '" + Token.stringValue() +
2273                      "'");
2274     }
2275     lex();
2276     while (Token.is(MIToken::comma)) {
2277       lex();
2278       if (Token.isNot(MIToken::Identifier))
2279         return error("expected the name of the target flag");
2280       unsigned BitFlag = 0;
2281       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2282         return error("use of undefined target flag '" + Token.stringValue() +
2283                      "'");
2284       // TODO: Report an error when using a duplicate bit target flag.
2285       TF |= BitFlag;
2286       lex();
2287     }
2288     if (expectAndConsume(MIToken::rparen))
2289       return true;
2290   }
2291   auto Loc = Token.location();
2292   if (parseMachineOperand(Dest, TiedDefIdx))
2293     return true;
2294   if (!HasTargetFlags)
2295     return false;
2296   if (Dest.isReg())
2297     return error(Loc, "register operands can't have target flags");
2298   Dest.setTargetFlags(TF);
2299   return false;
2300 }
2301 
2302 bool MIParser::parseOffset(int64_t &Offset) {
2303   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2304     return false;
2305   StringRef Sign = Token.range();
2306   bool IsNegative = Token.is(MIToken::minus);
2307   lex();
2308   if (Token.isNot(MIToken::IntegerLiteral))
2309     return error("expected an integer literal after '" + Sign + "'");
2310   if (Token.integerValue().getMinSignedBits() > 64)
2311     return error("expected 64-bit integer (too large)");
2312   Offset = Token.integerValue().getExtValue();
2313   if (IsNegative)
2314     Offset = -Offset;
2315   lex();
2316   return false;
2317 }
2318 
2319 bool MIParser::parseAlignment(unsigned &Alignment) {
2320   assert(Token.is(MIToken::kw_align));
2321   lex();
2322   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2323     return error("expected an integer literal after 'align'");
2324   if (getUnsigned(Alignment))
2325     return true;
2326   lex();
2327 
2328   if (!isPowerOf2_32(Alignment))
2329     return error("expected a power-of-2 literal after 'align'");
2330 
2331   return false;
2332 }
2333 
2334 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2335   assert(Token.is(MIToken::kw_addrspace));
2336   lex();
2337   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2338     return error("expected an integer literal after 'addrspace'");
2339   if (getUnsigned(Addrspace))
2340     return true;
2341   lex();
2342   return false;
2343 }
2344 
2345 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2346   int64_t Offset = 0;
2347   if (parseOffset(Offset))
2348     return true;
2349   Op.setOffset(Offset);
2350   return false;
2351 }
2352 
2353 bool MIParser::parseIRValue(const Value *&V) {
2354   switch (Token.kind()) {
2355   case MIToken::NamedIRValue: {
2356     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2357     break;
2358   }
2359   case MIToken::IRValue: {
2360     unsigned SlotNumber = 0;
2361     if (getUnsigned(SlotNumber))
2362       return true;
2363     V = getIRValue(SlotNumber);
2364     break;
2365   }
2366   case MIToken::NamedGlobalValue:
2367   case MIToken::GlobalValue: {
2368     GlobalValue *GV = nullptr;
2369     if (parseGlobalValue(GV))
2370       return true;
2371     V = GV;
2372     break;
2373   }
2374   case MIToken::QuotedIRValue: {
2375     const Constant *C = nullptr;
2376     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2377       return true;
2378     V = C;
2379     break;
2380   }
2381   default:
2382     llvm_unreachable("The current token should be an IR block reference");
2383   }
2384   if (!V)
2385     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2386   return false;
2387 }
2388 
2389 bool MIParser::getUint64(uint64_t &Result) {
2390   if (Token.hasIntegerValue()) {
2391     if (Token.integerValue().getActiveBits() > 64)
2392       return error("expected 64-bit integer (too large)");
2393     Result = Token.integerValue().getZExtValue();
2394     return false;
2395   }
2396   if (Token.is(MIToken::HexLiteral)) {
2397     APInt A;
2398     if (getHexUint(A))
2399       return true;
2400     if (A.getBitWidth() > 64)
2401       return error("expected 64-bit integer (too large)");
2402     Result = A.getZExtValue();
2403     return false;
2404   }
2405   return true;
2406 }
2407 
2408 bool MIParser::getHexUint(APInt &Result) {
2409   assert(Token.is(MIToken::HexLiteral));
2410   StringRef S = Token.range();
2411   assert(S[0] == '0' && tolower(S[1]) == 'x');
2412   // This could be a floating point literal with a special prefix.
2413   if (!isxdigit(S[2]))
2414     return true;
2415   StringRef V = S.substr(2);
2416   APInt A(V.size()*4, V, 16);
2417 
2418   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2419   // sure it isn't the case before constructing result.
2420   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2421   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2422   return false;
2423 }
2424 
2425 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2426   const auto OldFlags = Flags;
2427   switch (Token.kind()) {
2428   case MIToken::kw_volatile:
2429     Flags |= MachineMemOperand::MOVolatile;
2430     break;
2431   case MIToken::kw_non_temporal:
2432     Flags |= MachineMemOperand::MONonTemporal;
2433     break;
2434   case MIToken::kw_dereferenceable:
2435     Flags |= MachineMemOperand::MODereferenceable;
2436     break;
2437   case MIToken::kw_invariant:
2438     Flags |= MachineMemOperand::MOInvariant;
2439     break;
2440   case MIToken::StringConstant: {
2441     MachineMemOperand::Flags TF;
2442     if (getMMOTargetFlag(Token.stringValue(), TF))
2443       return error("use of undefined target MMO flag '" + Token.stringValue() +
2444                    "'");
2445     Flags |= TF;
2446     break;
2447   }
2448   default:
2449     llvm_unreachable("The current token should be a memory operand flag");
2450   }
2451   if (OldFlags == Flags)
2452     // We know that the same flag is specified more than once when the flags
2453     // weren't modified.
2454     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2455   lex();
2456   return false;
2457 }
2458 
2459 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2460   switch (Token.kind()) {
2461   case MIToken::kw_stack:
2462     PSV = MF.getPSVManager().getStack();
2463     break;
2464   case MIToken::kw_got:
2465     PSV = MF.getPSVManager().getGOT();
2466     break;
2467   case MIToken::kw_jump_table:
2468     PSV = MF.getPSVManager().getJumpTable();
2469     break;
2470   case MIToken::kw_constant_pool:
2471     PSV = MF.getPSVManager().getConstantPool();
2472     break;
2473   case MIToken::FixedStackObject: {
2474     int FI;
2475     if (parseFixedStackFrameIndex(FI))
2476       return true;
2477     PSV = MF.getPSVManager().getFixedStack(FI);
2478     // The token was already consumed, so use return here instead of break.
2479     return false;
2480   }
2481   case MIToken::StackObject: {
2482     int FI;
2483     if (parseStackFrameIndex(FI))
2484       return true;
2485     PSV = MF.getPSVManager().getFixedStack(FI);
2486     // The token was already consumed, so use return here instead of break.
2487     return false;
2488   }
2489   case MIToken::kw_call_entry:
2490     lex();
2491     switch (Token.kind()) {
2492     case MIToken::GlobalValue:
2493     case MIToken::NamedGlobalValue: {
2494       GlobalValue *GV = nullptr;
2495       if (parseGlobalValue(GV))
2496         return true;
2497       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2498       break;
2499     }
2500     case MIToken::ExternalSymbol:
2501       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2502           MF.createExternalSymbolName(Token.stringValue()));
2503       break;
2504     default:
2505       return error(
2506           "expected a global value or an external symbol after 'call-entry'");
2507     }
2508     break;
2509   default:
2510     llvm_unreachable("The current token should be pseudo source value");
2511   }
2512   lex();
2513   return false;
2514 }
2515 
2516 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2517   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2518       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2519       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2520       Token.is(MIToken::kw_call_entry)) {
2521     const PseudoSourceValue *PSV = nullptr;
2522     if (parseMemoryPseudoSourceValue(PSV))
2523       return true;
2524     int64_t Offset = 0;
2525     if (parseOffset(Offset))
2526       return true;
2527     Dest = MachinePointerInfo(PSV, Offset);
2528     return false;
2529   }
2530   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2531       Token.isNot(MIToken::GlobalValue) &&
2532       Token.isNot(MIToken::NamedGlobalValue) &&
2533       Token.isNot(MIToken::QuotedIRValue))
2534     return error("expected an IR value reference");
2535   const Value *V = nullptr;
2536   if (parseIRValue(V))
2537     return true;
2538   if (!V->getType()->isPointerTy())
2539     return error("expected a pointer IR value");
2540   lex();
2541   int64_t Offset = 0;
2542   if (parseOffset(Offset))
2543     return true;
2544   Dest = MachinePointerInfo(V, Offset);
2545   return false;
2546 }
2547 
2548 bool MIParser::parseOptionalScope(LLVMContext &Context,
2549                                   SyncScope::ID &SSID) {
2550   SSID = SyncScope::System;
2551   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2552     lex();
2553     if (expectAndConsume(MIToken::lparen))
2554       return error("expected '(' in syncscope");
2555 
2556     std::string SSN;
2557     if (parseStringConstant(SSN))
2558       return true;
2559 
2560     SSID = Context.getOrInsertSyncScopeID(SSN);
2561     if (expectAndConsume(MIToken::rparen))
2562       return error("expected ')' in syncscope");
2563   }
2564 
2565   return false;
2566 }
2567 
2568 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2569   Order = AtomicOrdering::NotAtomic;
2570   if (Token.isNot(MIToken::Identifier))
2571     return false;
2572 
2573   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2574               .Case("unordered", AtomicOrdering::Unordered)
2575               .Case("monotonic", AtomicOrdering::Monotonic)
2576               .Case("acquire", AtomicOrdering::Acquire)
2577               .Case("release", AtomicOrdering::Release)
2578               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2579               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2580               .Default(AtomicOrdering::NotAtomic);
2581 
2582   if (Order != AtomicOrdering::NotAtomic) {
2583     lex();
2584     return false;
2585   }
2586 
2587   return error("expected an atomic scope, ordering or a size specification");
2588 }
2589 
2590 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2591   if (expectAndConsume(MIToken::lparen))
2592     return true;
2593   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2594   while (Token.isMemoryOperandFlag()) {
2595     if (parseMemoryOperandFlag(Flags))
2596       return true;
2597   }
2598   if (Token.isNot(MIToken::Identifier) ||
2599       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2600     return error("expected 'load' or 'store' memory operation");
2601   if (Token.stringValue() == "load")
2602     Flags |= MachineMemOperand::MOLoad;
2603   else
2604     Flags |= MachineMemOperand::MOStore;
2605   lex();
2606 
2607   // Optional 'store' for operands that both load and store.
2608   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2609     Flags |= MachineMemOperand::MOStore;
2610     lex();
2611   }
2612 
2613   // Optional synchronization scope.
2614   SyncScope::ID SSID;
2615   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2616     return true;
2617 
2618   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2619   AtomicOrdering Order, FailureOrder;
2620   if (parseOptionalAtomicOrdering(Order))
2621     return true;
2622 
2623   if (parseOptionalAtomicOrdering(FailureOrder))
2624     return true;
2625 
2626   if (Token.isNot(MIToken::IntegerLiteral) &&
2627       Token.isNot(MIToken::kw_unknown_size))
2628     return error("expected the size integer literal or 'unknown-size' after "
2629                  "memory operation");
2630   uint64_t Size;
2631   if (Token.is(MIToken::IntegerLiteral)) {
2632     if (getUint64(Size))
2633       return true;
2634   } else if (Token.is(MIToken::kw_unknown_size)) {
2635     Size = MemoryLocation::UnknownSize;
2636   }
2637   lex();
2638 
2639   MachinePointerInfo Ptr = MachinePointerInfo();
2640   if (Token.is(MIToken::Identifier)) {
2641     const char *Word =
2642         ((Flags & MachineMemOperand::MOLoad) &&
2643          (Flags & MachineMemOperand::MOStore))
2644             ? "on"
2645             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2646     if (Token.stringValue() != Word)
2647       return error(Twine("expected '") + Word + "'");
2648     lex();
2649 
2650     if (parseMachinePointerInfo(Ptr))
2651       return true;
2652   }
2653   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2654   AAMDNodes AAInfo;
2655   MDNode *Range = nullptr;
2656   while (consumeIfPresent(MIToken::comma)) {
2657     switch (Token.kind()) {
2658     case MIToken::kw_align:
2659       if (parseAlignment(BaseAlignment))
2660         return true;
2661       break;
2662     case MIToken::kw_addrspace:
2663       if (parseAddrspace(Ptr.AddrSpace))
2664         return true;
2665       break;
2666     case MIToken::md_tbaa:
2667       lex();
2668       if (parseMDNode(AAInfo.TBAA))
2669         return true;
2670       break;
2671     case MIToken::md_alias_scope:
2672       lex();
2673       if (parseMDNode(AAInfo.Scope))
2674         return true;
2675       break;
2676     case MIToken::md_noalias:
2677       lex();
2678       if (parseMDNode(AAInfo.NoAlias))
2679         return true;
2680       break;
2681     case MIToken::md_range:
2682       lex();
2683       if (parseMDNode(Range))
2684         return true;
2685       break;
2686     // TODO: Report an error on duplicate metadata nodes.
2687     default:
2688       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2689                    "'!noalias' or '!range'");
2690     }
2691   }
2692   if (expectAndConsume(MIToken::rparen))
2693     return true;
2694   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2695                                  SSID, Order, FailureOrder);
2696   return false;
2697 }
2698 
2699 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2700   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2701           Token.is(MIToken::kw_post_instr_symbol)) &&
2702          "Invalid token for a pre- post-instruction symbol!");
2703   lex();
2704   if (Token.isNot(MIToken::MCSymbol))
2705     return error("expected a symbol after 'pre-instr-symbol'");
2706   Symbol = getOrCreateMCSymbol(Token.stringValue());
2707   lex();
2708   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2709       Token.is(MIToken::lbrace))
2710     return false;
2711   if (Token.isNot(MIToken::comma))
2712     return error("expected ',' before the next machine operand");
2713   lex();
2714   return false;
2715 }
2716 
2717 void MIParser::initNames2InstrOpCodes() {
2718   if (!Names2InstrOpCodes.empty())
2719     return;
2720   const auto *TII = MF.getSubtarget().getInstrInfo();
2721   assert(TII && "Expected target instruction info");
2722   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2723     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2724 }
2725 
2726 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2727   initNames2InstrOpCodes();
2728   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2729   if (InstrInfo == Names2InstrOpCodes.end())
2730     return true;
2731   OpCode = InstrInfo->getValue();
2732   return false;
2733 }
2734 
2735 void MIParser::initNames2Regs() {
2736   if (!Names2Regs.empty())
2737     return;
2738   // The '%noreg' register is the register 0.
2739   Names2Regs.insert(std::make_pair("noreg", 0));
2740   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2741   assert(TRI && "Expected target register info");
2742   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2743     bool WasInserted =
2744         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2745             .second;
2746     (void)WasInserted;
2747     assert(WasInserted && "Expected registers to be unique case-insensitively");
2748   }
2749 }
2750 
2751 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2752   initNames2Regs();
2753   auto RegInfo = Names2Regs.find(RegName);
2754   if (RegInfo == Names2Regs.end())
2755     return true;
2756   Reg = RegInfo->getValue();
2757   return false;
2758 }
2759 
2760 void MIParser::initNames2RegMasks() {
2761   if (!Names2RegMasks.empty())
2762     return;
2763   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2764   assert(TRI && "Expected target register info");
2765   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2766   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2767   assert(RegMasks.size() == RegMaskNames.size());
2768   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2769     Names2RegMasks.insert(
2770         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2771 }
2772 
2773 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2774   initNames2RegMasks();
2775   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2776   if (RegMaskInfo == Names2RegMasks.end())
2777     return nullptr;
2778   return RegMaskInfo->getValue();
2779 }
2780 
2781 void MIParser::initNames2SubRegIndices() {
2782   if (!Names2SubRegIndices.empty())
2783     return;
2784   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2785   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2786     Names2SubRegIndices.insert(
2787         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2788 }
2789 
2790 unsigned MIParser::getSubRegIndex(StringRef Name) {
2791   initNames2SubRegIndices();
2792   auto SubRegInfo = Names2SubRegIndices.find(Name);
2793   if (SubRegInfo == Names2SubRegIndices.end())
2794     return 0;
2795   return SubRegInfo->getValue();
2796 }
2797 
2798 static void initSlots2BasicBlocks(
2799     const Function &F,
2800     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2801   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2802   MST.incorporateFunction(F);
2803   for (auto &BB : F) {
2804     if (BB.hasName())
2805       continue;
2806     int Slot = MST.getLocalSlot(&BB);
2807     if (Slot == -1)
2808       continue;
2809     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2810   }
2811 }
2812 
2813 static const BasicBlock *getIRBlockFromSlot(
2814     unsigned Slot,
2815     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2816   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2817   if (BlockInfo == Slots2BasicBlocks.end())
2818     return nullptr;
2819   return BlockInfo->second;
2820 }
2821 
2822 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2823   if (Slots2BasicBlocks.empty())
2824     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2825   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2826 }
2827 
2828 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2829   if (&F == &MF.getFunction())
2830     return getIRBlock(Slot);
2831   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2832   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2833   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2834 }
2835 
2836 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2837                            DenseMap<unsigned, const Value *> &Slots2Values) {
2838   int Slot = MST.getLocalSlot(V);
2839   if (Slot == -1)
2840     return;
2841   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2842 }
2843 
2844 /// Creates the mapping from slot numbers to function's unnamed IR values.
2845 static void initSlots2Values(const Function &F,
2846                              DenseMap<unsigned, const Value *> &Slots2Values) {
2847   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2848   MST.incorporateFunction(F);
2849   for (const auto &Arg : F.args())
2850     mapValueToSlot(&Arg, MST, Slots2Values);
2851   for (const auto &BB : F) {
2852     mapValueToSlot(&BB, MST, Slots2Values);
2853     for (const auto &I : BB)
2854       mapValueToSlot(&I, MST, Slots2Values);
2855   }
2856 }
2857 
2858 const Value *MIParser::getIRValue(unsigned Slot) {
2859   if (Slots2Values.empty())
2860     initSlots2Values(MF.getFunction(), Slots2Values);
2861   auto ValueInfo = Slots2Values.find(Slot);
2862   if (ValueInfo == Slots2Values.end())
2863     return nullptr;
2864   return ValueInfo->second;
2865 }
2866 
2867 void MIParser::initNames2TargetIndices() {
2868   if (!Names2TargetIndices.empty())
2869     return;
2870   const auto *TII = MF.getSubtarget().getInstrInfo();
2871   assert(TII && "Expected target instruction info");
2872   auto Indices = TII->getSerializableTargetIndices();
2873   for (const auto &I : Indices)
2874     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2875 }
2876 
2877 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2878   initNames2TargetIndices();
2879   auto IndexInfo = Names2TargetIndices.find(Name);
2880   if (IndexInfo == Names2TargetIndices.end())
2881     return true;
2882   Index = IndexInfo->second;
2883   return false;
2884 }
2885 
2886 void MIParser::initNames2DirectTargetFlags() {
2887   if (!Names2DirectTargetFlags.empty())
2888     return;
2889   const auto *TII = MF.getSubtarget().getInstrInfo();
2890   assert(TII && "Expected target instruction info");
2891   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2892   for (const auto &I : Flags)
2893     Names2DirectTargetFlags.insert(
2894         std::make_pair(StringRef(I.second), I.first));
2895 }
2896 
2897 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2898   initNames2DirectTargetFlags();
2899   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2900   if (FlagInfo == Names2DirectTargetFlags.end())
2901     return true;
2902   Flag = FlagInfo->second;
2903   return false;
2904 }
2905 
2906 void MIParser::initNames2BitmaskTargetFlags() {
2907   if (!Names2BitmaskTargetFlags.empty())
2908     return;
2909   const auto *TII = MF.getSubtarget().getInstrInfo();
2910   assert(TII && "Expected target instruction info");
2911   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2912   for (const auto &I : Flags)
2913     Names2BitmaskTargetFlags.insert(
2914         std::make_pair(StringRef(I.second), I.first));
2915 }
2916 
2917 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2918   initNames2BitmaskTargetFlags();
2919   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2920   if (FlagInfo == Names2BitmaskTargetFlags.end())
2921     return true;
2922   Flag = FlagInfo->second;
2923   return false;
2924 }
2925 
2926 void MIParser::initNames2MMOTargetFlags() {
2927   if (!Names2MMOTargetFlags.empty())
2928     return;
2929   const auto *TII = MF.getSubtarget().getInstrInfo();
2930   assert(TII && "Expected target instruction info");
2931   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2932   for (const auto &I : Flags)
2933     Names2MMOTargetFlags.insert(
2934         std::make_pair(StringRef(I.second), I.first));
2935 }
2936 
2937 bool MIParser::getMMOTargetFlag(StringRef Name,
2938                                 MachineMemOperand::Flags &Flag) {
2939   initNames2MMOTargetFlags();
2940   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2941   if (FlagInfo == Names2MMOTargetFlags.end())
2942     return true;
2943   Flag = FlagInfo->second;
2944   return false;
2945 }
2946 
2947 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
2948   // FIXME: Currently we can't recognize temporary or local symbols and call all
2949   // of the appropriate forms to create them. However, this handles basic cases
2950   // well as most of the special aspects are recognized by a prefix on their
2951   // name, and the input names should already be unique. For test cases, keeping
2952   // the symbol name out of the symbol table isn't terribly important.
2953   return MF.getContext().getOrCreateSymbol(Name);
2954 }
2955 
2956 bool MIParser::parseStringConstant(std::string &Result) {
2957   if (Token.isNot(MIToken::StringConstant))
2958     return error("expected string constant");
2959   Result = Token.stringValue();
2960   lex();
2961   return false;
2962 }
2963 
2964 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2965                                              StringRef Src,
2966                                              SMDiagnostic &Error) {
2967   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2968 }
2969 
2970 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2971                                     StringRef Src, SMDiagnostic &Error) {
2972   return MIParser(PFS, Error, Src).parseBasicBlocks();
2973 }
2974 
2975 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2976                              MachineBasicBlock *&MBB, StringRef Src,
2977                              SMDiagnostic &Error) {
2978   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2979 }
2980 
2981 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2982                                   unsigned &Reg, StringRef Src,
2983                                   SMDiagnostic &Error) {
2984   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2985 }
2986 
2987 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2988                                        unsigned &Reg, StringRef Src,
2989                                        SMDiagnostic &Error) {
2990   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2991 }
2992 
2993 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2994                                          VRegInfo *&Info, StringRef Src,
2995                                          SMDiagnostic &Error) {
2996   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2997 }
2998 
2999 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3000                                      int &FI, StringRef Src,
3001                                      SMDiagnostic &Error) {
3002   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3003 }
3004 
3005 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3006                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3007   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3008 }
3009