1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 unsigned &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 auto ValueInfo = Slots2Values.find(Slot); 373 if (ValueInfo == Slots2Values.end()) 374 return nullptr; 375 return ValueInfo->second; 376 } 377 378 namespace { 379 380 /// A wrapper struct around the 'MachineOperand' struct that includes a source 381 /// range and other attributes. 382 struct ParsedMachineOperand { 383 MachineOperand Operand; 384 StringRef::iterator Begin; 385 StringRef::iterator End; 386 Optional<unsigned> TiedDefIdx; 387 388 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 389 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 390 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 391 if (TiedDefIdx) 392 assert(Operand.isReg() && Operand.isUse() && 393 "Only used register operands can be tied"); 394 } 395 }; 396 397 class MIParser { 398 MachineFunction &MF; 399 SMDiagnostic &Error; 400 StringRef Source, CurrentSource; 401 MIToken Token; 402 PerFunctionMIParsingState &PFS; 403 /// Maps from slot numbers to function's unnamed basic blocks. 404 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 405 406 public: 407 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 408 StringRef Source); 409 410 /// \p SkipChar gives the number of characters to skip before looking 411 /// for the next token. 412 void lex(unsigned SkipChar = 0); 413 414 /// Report an error at the current location with the given message. 415 /// 416 /// This function always return true. 417 bool error(const Twine &Msg); 418 419 /// Report an error at the given location with the given message. 420 /// 421 /// This function always return true. 422 bool error(StringRef::iterator Loc, const Twine &Msg); 423 424 bool 425 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 426 bool parseBasicBlocks(); 427 bool parse(MachineInstr *&MI); 428 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 429 bool parseStandaloneNamedRegister(unsigned &Reg); 430 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 431 bool parseStandaloneRegister(unsigned &Reg); 432 bool parseStandaloneStackObject(int &FI); 433 bool parseStandaloneMDNode(MDNode *&Node); 434 435 bool 436 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 437 bool parseBasicBlock(MachineBasicBlock &MBB, 438 MachineBasicBlock *&AddFalthroughFrom); 439 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 440 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 441 442 bool parseNamedRegister(unsigned &Reg); 443 bool parseVirtualRegister(VRegInfo *&Info); 444 bool parseNamedVirtualRegister(VRegInfo *&Info); 445 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 446 bool parseRegisterFlag(unsigned &Flags); 447 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 448 bool parseSubRegisterIndex(unsigned &SubReg); 449 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 450 bool parseRegisterOperand(MachineOperand &Dest, 451 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 452 bool parseImmediateOperand(MachineOperand &Dest); 453 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 454 const Constant *&C); 455 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 456 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 457 bool parseTypedImmediateOperand(MachineOperand &Dest); 458 bool parseFPImmediateOperand(MachineOperand &Dest); 459 bool parseMBBReference(MachineBasicBlock *&MBB); 460 bool parseMBBOperand(MachineOperand &Dest); 461 bool parseStackFrameIndex(int &FI); 462 bool parseStackObjectOperand(MachineOperand &Dest); 463 bool parseFixedStackFrameIndex(int &FI); 464 bool parseFixedStackObjectOperand(MachineOperand &Dest); 465 bool parseGlobalValue(GlobalValue *&GV); 466 bool parseGlobalAddressOperand(MachineOperand &Dest); 467 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 468 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 469 bool parseJumpTableIndexOperand(MachineOperand &Dest); 470 bool parseExternalSymbolOperand(MachineOperand &Dest); 471 bool parseMCSymbolOperand(MachineOperand &Dest); 472 bool parseMDNode(MDNode *&Node); 473 bool parseDIExpression(MDNode *&Expr); 474 bool parseDILocation(MDNode *&Expr); 475 bool parseMetadataOperand(MachineOperand &Dest); 476 bool parseCFIOffset(int &Offset); 477 bool parseCFIRegister(unsigned &Reg); 478 bool parseCFIEscapeValues(std::string& Values); 479 bool parseCFIOperand(MachineOperand &Dest); 480 bool parseIRBlock(BasicBlock *&BB, const Function &F); 481 bool parseBlockAddressOperand(MachineOperand &Dest); 482 bool parseIntrinsicOperand(MachineOperand &Dest); 483 bool parsePredicateOperand(MachineOperand &Dest); 484 bool parseShuffleMaskOperand(MachineOperand &Dest); 485 bool parseTargetIndexOperand(MachineOperand &Dest); 486 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 487 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 488 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 489 MachineOperand &Dest, 490 Optional<unsigned> &TiedDefIdx); 491 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 492 const unsigned OpIdx, 493 MachineOperand &Dest, 494 Optional<unsigned> &TiedDefIdx); 495 bool parseOffset(int64_t &Offset); 496 bool parseAlignment(unsigned &Alignment); 497 bool parseAddrspace(unsigned &Addrspace); 498 bool parseMBBS(MachineBasicBlockSection &T); 499 bool parseOperandsOffset(MachineOperand &Op); 500 bool parseIRValue(const Value *&V); 501 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 502 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 503 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 504 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 505 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 506 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 507 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 508 bool parseHeapAllocMarker(MDNode *&Node); 509 510 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 511 MachineOperand &Dest, const MIRFormatter &MF); 512 513 private: 514 /// Convert the integer literal in the current token into an unsigned integer. 515 /// 516 /// Return true if an error occurred. 517 bool getUnsigned(unsigned &Result); 518 519 /// Convert the integer literal in the current token into an uint64. 520 /// 521 /// Return true if an error occurred. 522 bool getUint64(uint64_t &Result); 523 524 /// Convert the hexadecimal literal in the current token into an unsigned 525 /// APInt with a minimum bitwidth required to represent the value. 526 /// 527 /// Return true if the literal does not represent an integer value. 528 bool getHexUint(APInt &Result); 529 530 /// If the current token is of the given kind, consume it and return false. 531 /// Otherwise report an error and return true. 532 bool expectAndConsume(MIToken::TokenKind TokenKind); 533 534 /// If the current token is of the given kind, consume it and return true. 535 /// Otherwise return false. 536 bool consumeIfPresent(MIToken::TokenKind TokenKind); 537 538 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 539 540 bool assignRegisterTies(MachineInstr &MI, 541 ArrayRef<ParsedMachineOperand> Operands); 542 543 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 544 const MCInstrDesc &MCID); 545 546 const BasicBlock *getIRBlock(unsigned Slot); 547 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 548 549 /// Get or create an MCSymbol for a given name. 550 MCSymbol *getOrCreateMCSymbol(StringRef Name); 551 552 /// parseStringConstant 553 /// ::= StringConstant 554 bool parseStringConstant(std::string &Result); 555 }; 556 557 } // end anonymous namespace 558 559 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 560 StringRef Source) 561 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 562 {} 563 564 void MIParser::lex(unsigned SkipChar) { 565 CurrentSource = lexMIToken( 566 CurrentSource.data() + SkipChar, Token, 567 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 568 } 569 570 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 571 572 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 573 const SourceMgr &SM = *PFS.SM; 574 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 575 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 576 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 577 // Create an ordinary diagnostic when the source manager's buffer is the 578 // source string. 579 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 580 return true; 581 } 582 // Create a diagnostic for a YAML string literal. 583 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 584 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 585 Source, None, None); 586 return true; 587 } 588 589 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 590 ErrorCallbackType; 591 592 static const char *toString(MIToken::TokenKind TokenKind) { 593 switch (TokenKind) { 594 case MIToken::comma: 595 return "','"; 596 case MIToken::equal: 597 return "'='"; 598 case MIToken::colon: 599 return "':'"; 600 case MIToken::lparen: 601 return "'('"; 602 case MIToken::rparen: 603 return "')'"; 604 default: 605 return "<unknown token>"; 606 } 607 } 608 609 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 610 if (Token.isNot(TokenKind)) 611 return error(Twine("expected ") + toString(TokenKind)); 612 lex(); 613 return false; 614 } 615 616 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 617 if (Token.isNot(TokenKind)) 618 return false; 619 lex(); 620 return true; 621 } 622 623 // Parse Machine Basic Block Section Type. 624 bool MIParser::parseMBBS(MachineBasicBlockSection &T) { 625 assert(Token.is(MIToken::kw_bbsections)); 626 lex(); 627 const StringRef &S = Token.stringValue(); 628 if (S == "Entry") 629 T = MBBS_Entry; 630 else if (S == "Exception") 631 T = MBBS_Exception; 632 else if (S == "Cold") 633 T = MBBS_Cold; 634 else if (S == "Unique") 635 T = MBBS_Unique; 636 else 637 return error("Unknown Section Type"); 638 lex(); 639 return false; 640 } 641 642 bool MIParser::parseBasicBlockDefinition( 643 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 644 assert(Token.is(MIToken::MachineBasicBlockLabel)); 645 unsigned ID = 0; 646 if (getUnsigned(ID)) 647 return true; 648 auto Loc = Token.location(); 649 auto Name = Token.stringValue(); 650 lex(); 651 bool HasAddressTaken = false; 652 bool IsLandingPad = false; 653 MachineBasicBlockSection SectionType = MBBS_None; 654 unsigned Alignment = 0; 655 BasicBlock *BB = nullptr; 656 if (consumeIfPresent(MIToken::lparen)) { 657 do { 658 // TODO: Report an error when multiple same attributes are specified. 659 switch (Token.kind()) { 660 case MIToken::kw_address_taken: 661 HasAddressTaken = true; 662 lex(); 663 break; 664 case MIToken::kw_landing_pad: 665 IsLandingPad = true; 666 lex(); 667 break; 668 case MIToken::kw_align: 669 if (parseAlignment(Alignment)) 670 return true; 671 break; 672 case MIToken::IRBlock: 673 // TODO: Report an error when both name and ir block are specified. 674 if (parseIRBlock(BB, MF.getFunction())) 675 return true; 676 lex(); 677 break; 678 case MIToken::kw_bbsections: 679 if (parseMBBS(SectionType)) 680 return true; 681 break; 682 default: 683 break; 684 } 685 } while (consumeIfPresent(MIToken::comma)); 686 if (expectAndConsume(MIToken::rparen)) 687 return true; 688 } 689 if (expectAndConsume(MIToken::colon)) 690 return true; 691 692 if (!Name.empty()) { 693 BB = dyn_cast_or_null<BasicBlock>( 694 MF.getFunction().getValueSymbolTable()->lookup(Name)); 695 if (!BB) 696 return error(Loc, Twine("basic block '") + Name + 697 "' is not defined in the function '" + 698 MF.getName() + "'"); 699 } 700 auto *MBB = MF.CreateMachineBasicBlock(BB); 701 MF.insert(MF.end(), MBB); 702 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 703 if (!WasInserted) 704 return error(Loc, Twine("redefinition of machine basic block with id #") + 705 Twine(ID)); 706 if (Alignment) 707 MBB->setAlignment(Align(Alignment)); 708 if (HasAddressTaken) 709 MBB->setHasAddressTaken(); 710 MBB->setIsEHPad(IsLandingPad); 711 if (SectionType != MBBS_None) { 712 MBB->setSectionType(SectionType); 713 MF.setBBSectionsType(BasicBlockSection::List); 714 } 715 return false; 716 } 717 718 bool MIParser::parseBasicBlockDefinitions( 719 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 720 lex(); 721 // Skip until the first machine basic block. 722 while (Token.is(MIToken::Newline)) 723 lex(); 724 if (Token.isErrorOrEOF()) 725 return Token.isError(); 726 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 727 return error("expected a basic block definition before instructions"); 728 unsigned BraceDepth = 0; 729 do { 730 if (parseBasicBlockDefinition(MBBSlots)) 731 return true; 732 bool IsAfterNewline = false; 733 // Skip until the next machine basic block. 734 while (true) { 735 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 736 Token.isErrorOrEOF()) 737 break; 738 else if (Token.is(MIToken::MachineBasicBlockLabel)) 739 return error("basic block definition should be located at the start of " 740 "the line"); 741 else if (consumeIfPresent(MIToken::Newline)) { 742 IsAfterNewline = true; 743 continue; 744 } 745 IsAfterNewline = false; 746 if (Token.is(MIToken::lbrace)) 747 ++BraceDepth; 748 if (Token.is(MIToken::rbrace)) { 749 if (!BraceDepth) 750 return error("extraneous closing brace ('}')"); 751 --BraceDepth; 752 } 753 lex(); 754 } 755 // Verify that we closed all of the '{' at the end of a file or a block. 756 if (!Token.isError() && BraceDepth) 757 return error("expected '}'"); // FIXME: Report a note that shows '{'. 758 } while (!Token.isErrorOrEOF()); 759 return Token.isError(); 760 } 761 762 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 763 assert(Token.is(MIToken::kw_liveins)); 764 lex(); 765 if (expectAndConsume(MIToken::colon)) 766 return true; 767 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 768 return false; 769 do { 770 if (Token.isNot(MIToken::NamedRegister)) 771 return error("expected a named register"); 772 unsigned Reg = 0; 773 if (parseNamedRegister(Reg)) 774 return true; 775 lex(); 776 LaneBitmask Mask = LaneBitmask::getAll(); 777 if (consumeIfPresent(MIToken::colon)) { 778 // Parse lane mask. 779 if (Token.isNot(MIToken::IntegerLiteral) && 780 Token.isNot(MIToken::HexLiteral)) 781 return error("expected a lane mask"); 782 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 783 "Use correct get-function for lane mask"); 784 LaneBitmask::Type V; 785 if (getUint64(V)) 786 return error("invalid lane mask value"); 787 Mask = LaneBitmask(V); 788 lex(); 789 } 790 MBB.addLiveIn(Reg, Mask); 791 } while (consumeIfPresent(MIToken::comma)); 792 return false; 793 } 794 795 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 796 assert(Token.is(MIToken::kw_successors)); 797 lex(); 798 if (expectAndConsume(MIToken::colon)) 799 return true; 800 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 801 return false; 802 do { 803 if (Token.isNot(MIToken::MachineBasicBlock)) 804 return error("expected a machine basic block reference"); 805 MachineBasicBlock *SuccMBB = nullptr; 806 if (parseMBBReference(SuccMBB)) 807 return true; 808 lex(); 809 unsigned Weight = 0; 810 if (consumeIfPresent(MIToken::lparen)) { 811 if (Token.isNot(MIToken::IntegerLiteral) && 812 Token.isNot(MIToken::HexLiteral)) 813 return error("expected an integer literal after '('"); 814 if (getUnsigned(Weight)) 815 return true; 816 lex(); 817 if (expectAndConsume(MIToken::rparen)) 818 return true; 819 } 820 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 821 } while (consumeIfPresent(MIToken::comma)); 822 MBB.normalizeSuccProbs(); 823 return false; 824 } 825 826 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 827 MachineBasicBlock *&AddFalthroughFrom) { 828 // Skip the definition. 829 assert(Token.is(MIToken::MachineBasicBlockLabel)); 830 lex(); 831 if (consumeIfPresent(MIToken::lparen)) { 832 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 833 lex(); 834 consumeIfPresent(MIToken::rparen); 835 } 836 consumeIfPresent(MIToken::colon); 837 838 // Parse the liveins and successors. 839 // N.B: Multiple lists of successors and liveins are allowed and they're 840 // merged into one. 841 // Example: 842 // liveins: %edi 843 // liveins: %esi 844 // 845 // is equivalent to 846 // liveins: %edi, %esi 847 bool ExplicitSuccessors = false; 848 while (true) { 849 if (Token.is(MIToken::kw_successors)) { 850 if (parseBasicBlockSuccessors(MBB)) 851 return true; 852 ExplicitSuccessors = true; 853 } else if (Token.is(MIToken::kw_liveins)) { 854 if (parseBasicBlockLiveins(MBB)) 855 return true; 856 } else if (consumeIfPresent(MIToken::Newline)) { 857 continue; 858 } else 859 break; 860 if (!Token.isNewlineOrEOF()) 861 return error("expected line break at the end of a list"); 862 lex(); 863 } 864 865 // Parse the instructions. 866 bool IsInBundle = false; 867 MachineInstr *PrevMI = nullptr; 868 while (!Token.is(MIToken::MachineBasicBlockLabel) && 869 !Token.is(MIToken::Eof)) { 870 if (consumeIfPresent(MIToken::Newline)) 871 continue; 872 if (consumeIfPresent(MIToken::rbrace)) { 873 // The first parsing pass should verify that all closing '}' have an 874 // opening '{'. 875 assert(IsInBundle); 876 IsInBundle = false; 877 continue; 878 } 879 MachineInstr *MI = nullptr; 880 if (parse(MI)) 881 return true; 882 MBB.insert(MBB.end(), MI); 883 if (IsInBundle) { 884 PrevMI->setFlag(MachineInstr::BundledSucc); 885 MI->setFlag(MachineInstr::BundledPred); 886 } 887 PrevMI = MI; 888 if (Token.is(MIToken::lbrace)) { 889 if (IsInBundle) 890 return error("nested instruction bundles are not allowed"); 891 lex(); 892 // This instruction is the start of the bundle. 893 MI->setFlag(MachineInstr::BundledSucc); 894 IsInBundle = true; 895 if (!Token.is(MIToken::Newline)) 896 // The next instruction can be on the same line. 897 continue; 898 } 899 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 900 lex(); 901 } 902 903 // Construct successor list by searching for basic block machine operands. 904 if (!ExplicitSuccessors) { 905 SmallVector<MachineBasicBlock*,4> Successors; 906 bool IsFallthrough; 907 guessSuccessors(MBB, Successors, IsFallthrough); 908 for (MachineBasicBlock *Succ : Successors) 909 MBB.addSuccessor(Succ); 910 911 if (IsFallthrough) { 912 AddFalthroughFrom = &MBB; 913 } else { 914 MBB.normalizeSuccProbs(); 915 } 916 } 917 918 return false; 919 } 920 921 bool MIParser::parseBasicBlocks() { 922 lex(); 923 // Skip until the first machine basic block. 924 while (Token.is(MIToken::Newline)) 925 lex(); 926 if (Token.isErrorOrEOF()) 927 return Token.isError(); 928 // The first parsing pass should have verified that this token is a MBB label 929 // in the 'parseBasicBlockDefinitions' method. 930 assert(Token.is(MIToken::MachineBasicBlockLabel)); 931 MachineBasicBlock *AddFalthroughFrom = nullptr; 932 do { 933 MachineBasicBlock *MBB = nullptr; 934 if (parseMBBReference(MBB)) 935 return true; 936 if (AddFalthroughFrom) { 937 if (!AddFalthroughFrom->isSuccessor(MBB)) 938 AddFalthroughFrom->addSuccessor(MBB); 939 AddFalthroughFrom->normalizeSuccProbs(); 940 AddFalthroughFrom = nullptr; 941 } 942 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 943 return true; 944 // The method 'parseBasicBlock' should parse the whole block until the next 945 // block or the end of file. 946 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 947 } while (Token.isNot(MIToken::Eof)); 948 return false; 949 } 950 951 bool MIParser::parse(MachineInstr *&MI) { 952 // Parse any register operands before '=' 953 MachineOperand MO = MachineOperand::CreateImm(0); 954 SmallVector<ParsedMachineOperand, 8> Operands; 955 while (Token.isRegister() || Token.isRegisterFlag()) { 956 auto Loc = Token.location(); 957 Optional<unsigned> TiedDefIdx; 958 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 959 return true; 960 Operands.push_back( 961 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 962 if (Token.isNot(MIToken::comma)) 963 break; 964 lex(); 965 } 966 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 967 return true; 968 969 unsigned OpCode, Flags = 0; 970 if (Token.isError() || parseInstruction(OpCode, Flags)) 971 return true; 972 973 // Parse the remaining machine operands. 974 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 975 Token.isNot(MIToken::kw_post_instr_symbol) && 976 Token.isNot(MIToken::kw_heap_alloc_marker) && 977 Token.isNot(MIToken::kw_debug_location) && 978 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 979 auto Loc = Token.location(); 980 Optional<unsigned> TiedDefIdx; 981 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 982 return true; 983 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 984 MO.setIsDebug(); 985 Operands.push_back( 986 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 987 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 988 Token.is(MIToken::lbrace)) 989 break; 990 if (Token.isNot(MIToken::comma)) 991 return error("expected ',' before the next machine operand"); 992 lex(); 993 } 994 995 MCSymbol *PreInstrSymbol = nullptr; 996 if (Token.is(MIToken::kw_pre_instr_symbol)) 997 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 998 return true; 999 MCSymbol *PostInstrSymbol = nullptr; 1000 if (Token.is(MIToken::kw_post_instr_symbol)) 1001 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1002 return true; 1003 MDNode *HeapAllocMarker = nullptr; 1004 if (Token.is(MIToken::kw_heap_alloc_marker)) 1005 if (parseHeapAllocMarker(HeapAllocMarker)) 1006 return true; 1007 1008 DebugLoc DebugLocation; 1009 if (Token.is(MIToken::kw_debug_location)) { 1010 lex(); 1011 MDNode *Node = nullptr; 1012 if (Token.is(MIToken::exclaim)) { 1013 if (parseMDNode(Node)) 1014 return true; 1015 } else if (Token.is(MIToken::md_dilocation)) { 1016 if (parseDILocation(Node)) 1017 return true; 1018 } else 1019 return error("expected a metadata node after 'debug-location'"); 1020 if (!isa<DILocation>(Node)) 1021 return error("referenced metadata is not a DILocation"); 1022 DebugLocation = DebugLoc(Node); 1023 } 1024 1025 // Parse the machine memory operands. 1026 SmallVector<MachineMemOperand *, 2> MemOperands; 1027 if (Token.is(MIToken::coloncolon)) { 1028 lex(); 1029 while (!Token.isNewlineOrEOF()) { 1030 MachineMemOperand *MemOp = nullptr; 1031 if (parseMachineMemoryOperand(MemOp)) 1032 return true; 1033 MemOperands.push_back(MemOp); 1034 if (Token.isNewlineOrEOF()) 1035 break; 1036 if (Token.isNot(MIToken::comma)) 1037 return error("expected ',' before the next machine memory operand"); 1038 lex(); 1039 } 1040 } 1041 1042 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1043 if (!MCID.isVariadic()) { 1044 // FIXME: Move the implicit operand verification to the machine verifier. 1045 if (verifyImplicitOperands(Operands, MCID)) 1046 return true; 1047 } 1048 1049 // TODO: Check for extraneous machine operands. 1050 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1051 MI->setFlags(Flags); 1052 for (const auto &Operand : Operands) 1053 MI->addOperand(MF, Operand.Operand); 1054 if (assignRegisterTies(*MI, Operands)) 1055 return true; 1056 if (PreInstrSymbol) 1057 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1058 if (PostInstrSymbol) 1059 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1060 if (HeapAllocMarker) 1061 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1062 if (!MemOperands.empty()) 1063 MI->setMemRefs(MF, MemOperands); 1064 return false; 1065 } 1066 1067 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1068 lex(); 1069 if (Token.isNot(MIToken::MachineBasicBlock)) 1070 return error("expected a machine basic block reference"); 1071 if (parseMBBReference(MBB)) 1072 return true; 1073 lex(); 1074 if (Token.isNot(MIToken::Eof)) 1075 return error( 1076 "expected end of string after the machine basic block reference"); 1077 return false; 1078 } 1079 1080 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 1081 lex(); 1082 if (Token.isNot(MIToken::NamedRegister)) 1083 return error("expected a named register"); 1084 if (parseNamedRegister(Reg)) 1085 return true; 1086 lex(); 1087 if (Token.isNot(MIToken::Eof)) 1088 return error("expected end of string after the register reference"); 1089 return false; 1090 } 1091 1092 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1093 lex(); 1094 if (Token.isNot(MIToken::VirtualRegister)) 1095 return error("expected a virtual register"); 1096 if (parseVirtualRegister(Info)) 1097 return true; 1098 lex(); 1099 if (Token.isNot(MIToken::Eof)) 1100 return error("expected end of string after the register reference"); 1101 return false; 1102 } 1103 1104 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 1105 lex(); 1106 if (Token.isNot(MIToken::NamedRegister) && 1107 Token.isNot(MIToken::VirtualRegister)) 1108 return error("expected either a named or virtual register"); 1109 1110 VRegInfo *Info; 1111 if (parseRegister(Reg, Info)) 1112 return true; 1113 1114 lex(); 1115 if (Token.isNot(MIToken::Eof)) 1116 return error("expected end of string after the register reference"); 1117 return false; 1118 } 1119 1120 bool MIParser::parseStandaloneStackObject(int &FI) { 1121 lex(); 1122 if (Token.isNot(MIToken::StackObject)) 1123 return error("expected a stack object"); 1124 if (parseStackFrameIndex(FI)) 1125 return true; 1126 if (Token.isNot(MIToken::Eof)) 1127 return error("expected end of string after the stack object reference"); 1128 return false; 1129 } 1130 1131 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1132 lex(); 1133 if (Token.is(MIToken::exclaim)) { 1134 if (parseMDNode(Node)) 1135 return true; 1136 } else if (Token.is(MIToken::md_diexpr)) { 1137 if (parseDIExpression(Node)) 1138 return true; 1139 } else if (Token.is(MIToken::md_dilocation)) { 1140 if (parseDILocation(Node)) 1141 return true; 1142 } else 1143 return error("expected a metadata node"); 1144 if (Token.isNot(MIToken::Eof)) 1145 return error("expected end of string after the metadata node"); 1146 return false; 1147 } 1148 1149 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1150 assert(MO.isImplicit()); 1151 return MO.isDef() ? "implicit-def" : "implicit"; 1152 } 1153 1154 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1155 unsigned Reg) { 1156 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1157 return StringRef(TRI->getName(Reg)).lower(); 1158 } 1159 1160 /// Return true if the parsed machine operands contain a given machine operand. 1161 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1162 ArrayRef<ParsedMachineOperand> Operands) { 1163 for (const auto &I : Operands) { 1164 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1165 return true; 1166 } 1167 return false; 1168 } 1169 1170 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1171 const MCInstrDesc &MCID) { 1172 if (MCID.isCall()) 1173 // We can't verify call instructions as they can contain arbitrary implicit 1174 // register and register mask operands. 1175 return false; 1176 1177 // Gather all the expected implicit operands. 1178 SmallVector<MachineOperand, 4> ImplicitOperands; 1179 if (MCID.ImplicitDefs) 1180 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1181 ImplicitOperands.push_back( 1182 MachineOperand::CreateReg(*ImpDefs, true, true)); 1183 if (MCID.ImplicitUses) 1184 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1185 ImplicitOperands.push_back( 1186 MachineOperand::CreateReg(*ImpUses, false, true)); 1187 1188 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1189 assert(TRI && "Expected target register info"); 1190 for (const auto &I : ImplicitOperands) { 1191 if (isImplicitOperandIn(I, Operands)) 1192 continue; 1193 return error(Operands.empty() ? Token.location() : Operands.back().End, 1194 Twine("missing implicit register operand '") + 1195 printImplicitRegisterFlag(I) + " $" + 1196 getRegisterName(TRI, I.getReg()) + "'"); 1197 } 1198 return false; 1199 } 1200 1201 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1202 // Allow frame and fast math flags for OPCODE 1203 while (Token.is(MIToken::kw_frame_setup) || 1204 Token.is(MIToken::kw_frame_destroy) || 1205 Token.is(MIToken::kw_nnan) || 1206 Token.is(MIToken::kw_ninf) || 1207 Token.is(MIToken::kw_nsz) || 1208 Token.is(MIToken::kw_arcp) || 1209 Token.is(MIToken::kw_contract) || 1210 Token.is(MIToken::kw_afn) || 1211 Token.is(MIToken::kw_reassoc) || 1212 Token.is(MIToken::kw_nuw) || 1213 Token.is(MIToken::kw_nsw) || 1214 Token.is(MIToken::kw_exact) || 1215 Token.is(MIToken::kw_nofpexcept)) { 1216 // Mine frame and fast math flags 1217 if (Token.is(MIToken::kw_frame_setup)) 1218 Flags |= MachineInstr::FrameSetup; 1219 if (Token.is(MIToken::kw_frame_destroy)) 1220 Flags |= MachineInstr::FrameDestroy; 1221 if (Token.is(MIToken::kw_nnan)) 1222 Flags |= MachineInstr::FmNoNans; 1223 if (Token.is(MIToken::kw_ninf)) 1224 Flags |= MachineInstr::FmNoInfs; 1225 if (Token.is(MIToken::kw_nsz)) 1226 Flags |= MachineInstr::FmNsz; 1227 if (Token.is(MIToken::kw_arcp)) 1228 Flags |= MachineInstr::FmArcp; 1229 if (Token.is(MIToken::kw_contract)) 1230 Flags |= MachineInstr::FmContract; 1231 if (Token.is(MIToken::kw_afn)) 1232 Flags |= MachineInstr::FmAfn; 1233 if (Token.is(MIToken::kw_reassoc)) 1234 Flags |= MachineInstr::FmReassoc; 1235 if (Token.is(MIToken::kw_nuw)) 1236 Flags |= MachineInstr::NoUWrap; 1237 if (Token.is(MIToken::kw_nsw)) 1238 Flags |= MachineInstr::NoSWrap; 1239 if (Token.is(MIToken::kw_exact)) 1240 Flags |= MachineInstr::IsExact; 1241 if (Token.is(MIToken::kw_nofpexcept)) 1242 Flags |= MachineInstr::NoFPExcept; 1243 1244 lex(); 1245 } 1246 if (Token.isNot(MIToken::Identifier)) 1247 return error("expected a machine instruction"); 1248 StringRef InstrName = Token.stringValue(); 1249 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1250 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1251 lex(); 1252 return false; 1253 } 1254 1255 bool MIParser::parseNamedRegister(unsigned &Reg) { 1256 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1257 StringRef Name = Token.stringValue(); 1258 if (PFS.Target.getRegisterByName(Name, Reg)) 1259 return error(Twine("unknown register name '") + Name + "'"); 1260 return false; 1261 } 1262 1263 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1264 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1265 StringRef Name = Token.stringValue(); 1266 // TODO: Check that the VReg name is not the same as a physical register name. 1267 // If it is, then print a warning (when warnings are implemented). 1268 Info = &PFS.getVRegInfoNamed(Name); 1269 return false; 1270 } 1271 1272 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1273 if (Token.is(MIToken::NamedVirtualRegister)) 1274 return parseNamedVirtualRegister(Info); 1275 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1276 unsigned ID; 1277 if (getUnsigned(ID)) 1278 return true; 1279 Info = &PFS.getVRegInfo(ID); 1280 return false; 1281 } 1282 1283 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1284 switch (Token.kind()) { 1285 case MIToken::underscore: 1286 Reg = 0; 1287 return false; 1288 case MIToken::NamedRegister: 1289 return parseNamedRegister(Reg); 1290 case MIToken::NamedVirtualRegister: 1291 case MIToken::VirtualRegister: 1292 if (parseVirtualRegister(Info)) 1293 return true; 1294 Reg = Info->VReg; 1295 return false; 1296 // TODO: Parse other register kinds. 1297 default: 1298 llvm_unreachable("The current token should be a register"); 1299 } 1300 } 1301 1302 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1303 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1304 return error("expected '_', register class, or register bank name"); 1305 StringRef::iterator Loc = Token.location(); 1306 StringRef Name = Token.stringValue(); 1307 1308 // Was it a register class? 1309 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1310 if (RC) { 1311 lex(); 1312 1313 switch (RegInfo.Kind) { 1314 case VRegInfo::UNKNOWN: 1315 case VRegInfo::NORMAL: 1316 RegInfo.Kind = VRegInfo::NORMAL; 1317 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1318 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1319 return error(Loc, Twine("conflicting register classes, previously: ") + 1320 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1321 } 1322 RegInfo.D.RC = RC; 1323 RegInfo.Explicit = true; 1324 return false; 1325 1326 case VRegInfo::GENERIC: 1327 case VRegInfo::REGBANK: 1328 return error(Loc, "register class specification on generic register"); 1329 } 1330 llvm_unreachable("Unexpected register kind"); 1331 } 1332 1333 // Should be a register bank or a generic register. 1334 const RegisterBank *RegBank = nullptr; 1335 if (Name != "_") { 1336 RegBank = PFS.Target.getRegBank(Name); 1337 if (!RegBank) 1338 return error(Loc, "expected '_', register class, or register bank name"); 1339 } 1340 1341 lex(); 1342 1343 switch (RegInfo.Kind) { 1344 case VRegInfo::UNKNOWN: 1345 case VRegInfo::GENERIC: 1346 case VRegInfo::REGBANK: 1347 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1348 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1349 return error(Loc, "conflicting generic register banks"); 1350 RegInfo.D.RegBank = RegBank; 1351 RegInfo.Explicit = true; 1352 return false; 1353 1354 case VRegInfo::NORMAL: 1355 return error(Loc, "register bank specification on normal register"); 1356 } 1357 llvm_unreachable("Unexpected register kind"); 1358 } 1359 1360 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1361 const unsigned OldFlags = Flags; 1362 switch (Token.kind()) { 1363 case MIToken::kw_implicit: 1364 Flags |= RegState::Implicit; 1365 break; 1366 case MIToken::kw_implicit_define: 1367 Flags |= RegState::ImplicitDefine; 1368 break; 1369 case MIToken::kw_def: 1370 Flags |= RegState::Define; 1371 break; 1372 case MIToken::kw_dead: 1373 Flags |= RegState::Dead; 1374 break; 1375 case MIToken::kw_killed: 1376 Flags |= RegState::Kill; 1377 break; 1378 case MIToken::kw_undef: 1379 Flags |= RegState::Undef; 1380 break; 1381 case MIToken::kw_internal: 1382 Flags |= RegState::InternalRead; 1383 break; 1384 case MIToken::kw_early_clobber: 1385 Flags |= RegState::EarlyClobber; 1386 break; 1387 case MIToken::kw_debug_use: 1388 Flags |= RegState::Debug; 1389 break; 1390 case MIToken::kw_renamable: 1391 Flags |= RegState::Renamable; 1392 break; 1393 default: 1394 llvm_unreachable("The current token should be a register flag"); 1395 } 1396 if (OldFlags == Flags) 1397 // We know that the same flag is specified more than once when the flags 1398 // weren't modified. 1399 return error("duplicate '" + Token.stringValue() + "' register flag"); 1400 lex(); 1401 return false; 1402 } 1403 1404 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1405 assert(Token.is(MIToken::dot)); 1406 lex(); 1407 if (Token.isNot(MIToken::Identifier)) 1408 return error("expected a subregister index after '.'"); 1409 auto Name = Token.stringValue(); 1410 SubReg = PFS.Target.getSubRegIndex(Name); 1411 if (!SubReg) 1412 return error(Twine("use of unknown subregister index '") + Name + "'"); 1413 lex(); 1414 return false; 1415 } 1416 1417 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1418 if (!consumeIfPresent(MIToken::kw_tied_def)) 1419 return true; 1420 if (Token.isNot(MIToken::IntegerLiteral)) 1421 return error("expected an integer literal after 'tied-def'"); 1422 if (getUnsigned(TiedDefIdx)) 1423 return true; 1424 lex(); 1425 if (expectAndConsume(MIToken::rparen)) 1426 return true; 1427 return false; 1428 } 1429 1430 bool MIParser::assignRegisterTies(MachineInstr &MI, 1431 ArrayRef<ParsedMachineOperand> Operands) { 1432 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1433 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1434 if (!Operands[I].TiedDefIdx) 1435 continue; 1436 // The parser ensures that this operand is a register use, so we just have 1437 // to check the tied-def operand. 1438 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1439 if (DefIdx >= E) 1440 return error(Operands[I].Begin, 1441 Twine("use of invalid tied-def operand index '" + 1442 Twine(DefIdx) + "'; instruction has only ") + 1443 Twine(E) + " operands"); 1444 const auto &DefOperand = Operands[DefIdx].Operand; 1445 if (!DefOperand.isReg() || !DefOperand.isDef()) 1446 // FIXME: add note with the def operand. 1447 return error(Operands[I].Begin, 1448 Twine("use of invalid tied-def operand index '") + 1449 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1450 " isn't a defined register"); 1451 // Check that the tied-def operand wasn't tied elsewhere. 1452 for (const auto &TiedPair : TiedRegisterPairs) { 1453 if (TiedPair.first == DefIdx) 1454 return error(Operands[I].Begin, 1455 Twine("the tied-def operand #") + Twine(DefIdx) + 1456 " is already tied with another register operand"); 1457 } 1458 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1459 } 1460 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1461 // indices must be less than tied max. 1462 for (const auto &TiedPair : TiedRegisterPairs) 1463 MI.tieOperands(TiedPair.first, TiedPair.second); 1464 return false; 1465 } 1466 1467 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1468 Optional<unsigned> &TiedDefIdx, 1469 bool IsDef) { 1470 unsigned Flags = IsDef ? RegState::Define : 0; 1471 while (Token.isRegisterFlag()) { 1472 if (parseRegisterFlag(Flags)) 1473 return true; 1474 } 1475 if (!Token.isRegister()) 1476 return error("expected a register after register flags"); 1477 unsigned Reg; 1478 VRegInfo *RegInfo; 1479 if (parseRegister(Reg, RegInfo)) 1480 return true; 1481 lex(); 1482 unsigned SubReg = 0; 1483 if (Token.is(MIToken::dot)) { 1484 if (parseSubRegisterIndex(SubReg)) 1485 return true; 1486 if (!Register::isVirtualRegister(Reg)) 1487 return error("subregister index expects a virtual register"); 1488 } 1489 if (Token.is(MIToken::colon)) { 1490 if (!Register::isVirtualRegister(Reg)) 1491 return error("register class specification expects a virtual register"); 1492 lex(); 1493 if (parseRegisterClassOrBank(*RegInfo)) 1494 return true; 1495 } 1496 MachineRegisterInfo &MRI = MF.getRegInfo(); 1497 if ((Flags & RegState::Define) == 0) { 1498 if (consumeIfPresent(MIToken::lparen)) { 1499 unsigned Idx; 1500 if (!parseRegisterTiedDefIndex(Idx)) 1501 TiedDefIdx = Idx; 1502 else { 1503 // Try a redundant low-level type. 1504 LLT Ty; 1505 if (parseLowLevelType(Token.location(), Ty)) 1506 return error("expected tied-def or low-level type after '('"); 1507 1508 if (expectAndConsume(MIToken::rparen)) 1509 return true; 1510 1511 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1512 return error("inconsistent type for generic virtual register"); 1513 1514 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1515 MRI.setType(Reg, Ty); 1516 } 1517 } 1518 } else if (consumeIfPresent(MIToken::lparen)) { 1519 // Virtual registers may have a tpe with GlobalISel. 1520 if (!Register::isVirtualRegister(Reg)) 1521 return error("unexpected type on physical register"); 1522 1523 LLT Ty; 1524 if (parseLowLevelType(Token.location(), Ty)) 1525 return true; 1526 1527 if (expectAndConsume(MIToken::rparen)) 1528 return true; 1529 1530 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1531 return error("inconsistent type for generic virtual register"); 1532 1533 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1534 MRI.setType(Reg, Ty); 1535 } else if (Register::isVirtualRegister(Reg)) { 1536 // Generic virtual registers must have a type. 1537 // If we end up here this means the type hasn't been specified and 1538 // this is bad! 1539 if (RegInfo->Kind == VRegInfo::GENERIC || 1540 RegInfo->Kind == VRegInfo::REGBANK) 1541 return error("generic virtual registers must have a type"); 1542 } 1543 Dest = MachineOperand::CreateReg( 1544 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1545 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1546 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1547 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1548 1549 return false; 1550 } 1551 1552 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1553 assert(Token.is(MIToken::IntegerLiteral)); 1554 const APSInt &Int = Token.integerValue(); 1555 if (Int.getMinSignedBits() > 64) 1556 return error("integer literal is too large to be an immediate operand"); 1557 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1558 lex(); 1559 return false; 1560 } 1561 1562 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1563 const unsigned OpIdx, 1564 MachineOperand &Dest, 1565 const MIRFormatter &MF) { 1566 assert(Token.is(MIToken::dot)); 1567 auto Loc = Token.location(); // record start position 1568 size_t Len = 1; // for "." 1569 lex(); 1570 1571 // Handle the case that mnemonic starts with number. 1572 if (Token.is(MIToken::IntegerLiteral)) { 1573 Len += Token.range().size(); 1574 lex(); 1575 } 1576 1577 StringRef Src; 1578 if (Token.is(MIToken::comma)) 1579 Src = StringRef(Loc, Len); 1580 else { 1581 assert(Token.is(MIToken::Identifier)); 1582 Src = StringRef(Loc, Len + Token.stringValue().size()); 1583 } 1584 int64_t Val; 1585 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1586 [this](StringRef::iterator Loc, const Twine &Msg) 1587 -> bool { return error(Loc, Msg); })) 1588 return true; 1589 1590 Dest = MachineOperand::CreateImm(Val); 1591 if (!Token.is(MIToken::comma)) 1592 lex(); 1593 return false; 1594 } 1595 1596 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1597 PerFunctionMIParsingState &PFS, const Constant *&C, 1598 ErrorCallbackType ErrCB) { 1599 auto Source = StringValue.str(); // The source has to be null terminated. 1600 SMDiagnostic Err; 1601 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1602 &PFS.IRSlots); 1603 if (!C) 1604 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1605 return false; 1606 } 1607 1608 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1609 const Constant *&C) { 1610 return ::parseIRConstant( 1611 Loc, StringValue, PFS, C, 1612 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1613 return error(Loc, Msg); 1614 }); 1615 } 1616 1617 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1618 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1619 return true; 1620 lex(); 1621 return false; 1622 } 1623 1624 // See LLT implemntation for bit size limits. 1625 static bool verifyScalarSize(uint64_t Size) { 1626 return Size != 0 && isUInt<16>(Size); 1627 } 1628 1629 static bool verifyVectorElementCount(uint64_t NumElts) { 1630 return NumElts != 0 && isUInt<16>(NumElts); 1631 } 1632 1633 static bool verifyAddrSpace(uint64_t AddrSpace) { 1634 return isUInt<24>(AddrSpace); 1635 } 1636 1637 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1638 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1639 StringRef SizeStr = Token.range().drop_front(); 1640 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1641 return error("expected integers after 's'/'p' type character"); 1642 } 1643 1644 if (Token.range().front() == 's') { 1645 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1646 if (!verifyScalarSize(ScalarSize)) 1647 return error("invalid size for scalar type"); 1648 1649 Ty = LLT::scalar(ScalarSize); 1650 lex(); 1651 return false; 1652 } else if (Token.range().front() == 'p') { 1653 const DataLayout &DL = MF.getDataLayout(); 1654 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1655 if (!verifyAddrSpace(AS)) 1656 return error("invalid address space number"); 1657 1658 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1659 lex(); 1660 return false; 1661 } 1662 1663 // Now we're looking for a vector. 1664 if (Token.isNot(MIToken::less)) 1665 return error(Loc, 1666 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1667 lex(); 1668 1669 if (Token.isNot(MIToken::IntegerLiteral)) 1670 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1671 uint64_t NumElements = Token.integerValue().getZExtValue(); 1672 if (!verifyVectorElementCount(NumElements)) 1673 return error("invalid number of vector elements"); 1674 1675 lex(); 1676 1677 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1678 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1679 lex(); 1680 1681 if (Token.range().front() != 's' && Token.range().front() != 'p') 1682 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1683 StringRef SizeStr = Token.range().drop_front(); 1684 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1685 return error("expected integers after 's'/'p' type character"); 1686 1687 if (Token.range().front() == 's') { 1688 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1689 if (!verifyScalarSize(ScalarSize)) 1690 return error("invalid size for scalar type"); 1691 Ty = LLT::scalar(ScalarSize); 1692 } else if (Token.range().front() == 'p') { 1693 const DataLayout &DL = MF.getDataLayout(); 1694 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1695 if (!verifyAddrSpace(AS)) 1696 return error("invalid address space number"); 1697 1698 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1699 } else 1700 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1701 lex(); 1702 1703 if (Token.isNot(MIToken::greater)) 1704 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1705 lex(); 1706 1707 Ty = LLT::vector(NumElements, Ty); 1708 return false; 1709 } 1710 1711 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1712 assert(Token.is(MIToken::Identifier)); 1713 StringRef TypeStr = Token.range(); 1714 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1715 TypeStr.front() != 'p') 1716 return error( 1717 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1718 StringRef SizeStr = Token.range().drop_front(); 1719 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1720 return error("expected integers after 'i'/'s'/'p' type character"); 1721 1722 auto Loc = Token.location(); 1723 lex(); 1724 if (Token.isNot(MIToken::IntegerLiteral)) { 1725 if (Token.isNot(MIToken::Identifier) || 1726 !(Token.range() == "true" || Token.range() == "false")) 1727 return error("expected an integer literal"); 1728 } 1729 const Constant *C = nullptr; 1730 if (parseIRConstant(Loc, C)) 1731 return true; 1732 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1733 return false; 1734 } 1735 1736 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1737 auto Loc = Token.location(); 1738 lex(); 1739 if (Token.isNot(MIToken::FloatingPointLiteral) && 1740 Token.isNot(MIToken::HexLiteral)) 1741 return error("expected a floating point literal"); 1742 const Constant *C = nullptr; 1743 if (parseIRConstant(Loc, C)) 1744 return true; 1745 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1746 return false; 1747 } 1748 1749 static bool getHexUint(const MIToken &Token, APInt &Result) { 1750 assert(Token.is(MIToken::HexLiteral)); 1751 StringRef S = Token.range(); 1752 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1753 // This could be a floating point literal with a special prefix. 1754 if (!isxdigit(S[2])) 1755 return true; 1756 StringRef V = S.substr(2); 1757 APInt A(V.size()*4, V, 16); 1758 1759 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1760 // sure it isn't the case before constructing result. 1761 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1762 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1763 return false; 1764 } 1765 1766 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1767 ErrorCallbackType ErrCB) { 1768 if (Token.hasIntegerValue()) { 1769 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1770 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1771 if (Val64 == Limit) 1772 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1773 Result = Val64; 1774 return false; 1775 } 1776 if (Token.is(MIToken::HexLiteral)) { 1777 APInt A; 1778 if (getHexUint(Token, A)) 1779 return true; 1780 if (A.getBitWidth() > 32) 1781 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1782 Result = A.getZExtValue(); 1783 return false; 1784 } 1785 return true; 1786 } 1787 1788 bool MIParser::getUnsigned(unsigned &Result) { 1789 return ::getUnsigned( 1790 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1791 return error(Loc, Msg); 1792 }); 1793 } 1794 1795 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1796 assert(Token.is(MIToken::MachineBasicBlock) || 1797 Token.is(MIToken::MachineBasicBlockLabel)); 1798 unsigned Number; 1799 if (getUnsigned(Number)) 1800 return true; 1801 auto MBBInfo = PFS.MBBSlots.find(Number); 1802 if (MBBInfo == PFS.MBBSlots.end()) 1803 return error(Twine("use of undefined machine basic block #") + 1804 Twine(Number)); 1805 MBB = MBBInfo->second; 1806 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1807 // we drop the <irname> from the bb.<id>.<irname> format. 1808 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1809 return error(Twine("the name of machine basic block #") + Twine(Number) + 1810 " isn't '" + Token.stringValue() + "'"); 1811 return false; 1812 } 1813 1814 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1815 MachineBasicBlock *MBB; 1816 if (parseMBBReference(MBB)) 1817 return true; 1818 Dest = MachineOperand::CreateMBB(MBB); 1819 lex(); 1820 return false; 1821 } 1822 1823 bool MIParser::parseStackFrameIndex(int &FI) { 1824 assert(Token.is(MIToken::StackObject)); 1825 unsigned ID; 1826 if (getUnsigned(ID)) 1827 return true; 1828 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1829 if (ObjectInfo == PFS.StackObjectSlots.end()) 1830 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1831 "'"); 1832 StringRef Name; 1833 if (const auto *Alloca = 1834 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1835 Name = Alloca->getName(); 1836 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1837 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1838 "' isn't '" + Token.stringValue() + "'"); 1839 lex(); 1840 FI = ObjectInfo->second; 1841 return false; 1842 } 1843 1844 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1845 int FI; 1846 if (parseStackFrameIndex(FI)) 1847 return true; 1848 Dest = MachineOperand::CreateFI(FI); 1849 return false; 1850 } 1851 1852 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1853 assert(Token.is(MIToken::FixedStackObject)); 1854 unsigned ID; 1855 if (getUnsigned(ID)) 1856 return true; 1857 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1858 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1859 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1860 Twine(ID) + "'"); 1861 lex(); 1862 FI = ObjectInfo->second; 1863 return false; 1864 } 1865 1866 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1867 int FI; 1868 if (parseFixedStackFrameIndex(FI)) 1869 return true; 1870 Dest = MachineOperand::CreateFI(FI); 1871 return false; 1872 } 1873 1874 static bool parseGlobalValue(const MIToken &Token, 1875 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 1876 ErrorCallbackType ErrCB) { 1877 switch (Token.kind()) { 1878 case MIToken::NamedGlobalValue: { 1879 const Module *M = PFS.MF.getFunction().getParent(); 1880 GV = M->getNamedValue(Token.stringValue()); 1881 if (!GV) 1882 return ErrCB(Token.location(), Twine("use of undefined global value '") + 1883 Token.range() + "'"); 1884 break; 1885 } 1886 case MIToken::GlobalValue: { 1887 unsigned GVIdx; 1888 if (getUnsigned(Token, GVIdx, ErrCB)) 1889 return true; 1890 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1891 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 1892 Twine(GVIdx) + "'"); 1893 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1894 break; 1895 } 1896 default: 1897 llvm_unreachable("The current token should be a global value"); 1898 } 1899 return false; 1900 } 1901 1902 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1903 return ::parseGlobalValue( 1904 Token, PFS, GV, 1905 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1906 return error(Loc, Msg); 1907 }); 1908 } 1909 1910 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1911 GlobalValue *GV = nullptr; 1912 if (parseGlobalValue(GV)) 1913 return true; 1914 lex(); 1915 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1916 if (parseOperandsOffset(Dest)) 1917 return true; 1918 return false; 1919 } 1920 1921 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1922 assert(Token.is(MIToken::ConstantPoolItem)); 1923 unsigned ID; 1924 if (getUnsigned(ID)) 1925 return true; 1926 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1927 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1928 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1929 lex(); 1930 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1931 if (parseOperandsOffset(Dest)) 1932 return true; 1933 return false; 1934 } 1935 1936 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1937 assert(Token.is(MIToken::JumpTableIndex)); 1938 unsigned ID; 1939 if (getUnsigned(ID)) 1940 return true; 1941 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1942 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1943 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1944 lex(); 1945 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1946 return false; 1947 } 1948 1949 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1950 assert(Token.is(MIToken::ExternalSymbol)); 1951 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1952 lex(); 1953 Dest = MachineOperand::CreateES(Symbol); 1954 if (parseOperandsOffset(Dest)) 1955 return true; 1956 return false; 1957 } 1958 1959 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1960 assert(Token.is(MIToken::MCSymbol)); 1961 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1962 lex(); 1963 Dest = MachineOperand::CreateMCSymbol(Symbol); 1964 if (parseOperandsOffset(Dest)) 1965 return true; 1966 return false; 1967 } 1968 1969 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1970 assert(Token.is(MIToken::SubRegisterIndex)); 1971 StringRef Name = Token.stringValue(); 1972 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1973 if (SubRegIndex == 0) 1974 return error(Twine("unknown subregister index '") + Name + "'"); 1975 lex(); 1976 Dest = MachineOperand::CreateImm(SubRegIndex); 1977 return false; 1978 } 1979 1980 bool MIParser::parseMDNode(MDNode *&Node) { 1981 assert(Token.is(MIToken::exclaim)); 1982 1983 auto Loc = Token.location(); 1984 lex(); 1985 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1986 return error("expected metadata id after '!'"); 1987 unsigned ID; 1988 if (getUnsigned(ID)) 1989 return true; 1990 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1991 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1992 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1993 lex(); 1994 Node = NodeInfo->second.get(); 1995 return false; 1996 } 1997 1998 bool MIParser::parseDIExpression(MDNode *&Expr) { 1999 assert(Token.is(MIToken::md_diexpr)); 2000 lex(); 2001 2002 // FIXME: Share this parsing with the IL parser. 2003 SmallVector<uint64_t, 8> Elements; 2004 2005 if (expectAndConsume(MIToken::lparen)) 2006 return true; 2007 2008 if (Token.isNot(MIToken::rparen)) { 2009 do { 2010 if (Token.is(MIToken::Identifier)) { 2011 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2012 lex(); 2013 Elements.push_back(Op); 2014 continue; 2015 } 2016 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2017 lex(); 2018 Elements.push_back(Enc); 2019 continue; 2020 } 2021 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2022 } 2023 2024 if (Token.isNot(MIToken::IntegerLiteral) || 2025 Token.integerValue().isSigned()) 2026 return error("expected unsigned integer"); 2027 2028 auto &U = Token.integerValue(); 2029 if (U.ugt(UINT64_MAX)) 2030 return error("element too large, limit is " + Twine(UINT64_MAX)); 2031 Elements.push_back(U.getZExtValue()); 2032 lex(); 2033 2034 } while (consumeIfPresent(MIToken::comma)); 2035 } 2036 2037 if (expectAndConsume(MIToken::rparen)) 2038 return true; 2039 2040 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2041 return false; 2042 } 2043 2044 bool MIParser::parseDILocation(MDNode *&Loc) { 2045 assert(Token.is(MIToken::md_dilocation)); 2046 lex(); 2047 2048 bool HaveLine = false; 2049 unsigned Line = 0; 2050 unsigned Column = 0; 2051 MDNode *Scope = nullptr; 2052 MDNode *InlinedAt = nullptr; 2053 bool ImplicitCode = false; 2054 2055 if (expectAndConsume(MIToken::lparen)) 2056 return true; 2057 2058 if (Token.isNot(MIToken::rparen)) { 2059 do { 2060 if (Token.is(MIToken::Identifier)) { 2061 if (Token.stringValue() == "line") { 2062 lex(); 2063 if (expectAndConsume(MIToken::colon)) 2064 return true; 2065 if (Token.isNot(MIToken::IntegerLiteral) || 2066 Token.integerValue().isSigned()) 2067 return error("expected unsigned integer"); 2068 Line = Token.integerValue().getZExtValue(); 2069 HaveLine = true; 2070 lex(); 2071 continue; 2072 } 2073 if (Token.stringValue() == "column") { 2074 lex(); 2075 if (expectAndConsume(MIToken::colon)) 2076 return true; 2077 if (Token.isNot(MIToken::IntegerLiteral) || 2078 Token.integerValue().isSigned()) 2079 return error("expected unsigned integer"); 2080 Column = Token.integerValue().getZExtValue(); 2081 lex(); 2082 continue; 2083 } 2084 if (Token.stringValue() == "scope") { 2085 lex(); 2086 if (expectAndConsume(MIToken::colon)) 2087 return true; 2088 if (parseMDNode(Scope)) 2089 return error("expected metadata node"); 2090 if (!isa<DIScope>(Scope)) 2091 return error("expected DIScope node"); 2092 continue; 2093 } 2094 if (Token.stringValue() == "inlinedAt") { 2095 lex(); 2096 if (expectAndConsume(MIToken::colon)) 2097 return true; 2098 if (Token.is(MIToken::exclaim)) { 2099 if (parseMDNode(InlinedAt)) 2100 return true; 2101 } else if (Token.is(MIToken::md_dilocation)) { 2102 if (parseDILocation(InlinedAt)) 2103 return true; 2104 } else 2105 return error("expected metadata node"); 2106 if (!isa<DILocation>(InlinedAt)) 2107 return error("expected DILocation node"); 2108 continue; 2109 } 2110 if (Token.stringValue() == "isImplicitCode") { 2111 lex(); 2112 if (expectAndConsume(MIToken::colon)) 2113 return true; 2114 if (!Token.is(MIToken::Identifier)) 2115 return error("expected true/false"); 2116 // As far as I can see, we don't have any existing need for parsing 2117 // true/false in MIR yet. Do it ad-hoc until there's something else 2118 // that needs it. 2119 if (Token.stringValue() == "true") 2120 ImplicitCode = true; 2121 else if (Token.stringValue() == "false") 2122 ImplicitCode = false; 2123 else 2124 return error("expected true/false"); 2125 lex(); 2126 continue; 2127 } 2128 } 2129 return error(Twine("invalid DILocation argument '") + 2130 Token.stringValue() + "'"); 2131 } while (consumeIfPresent(MIToken::comma)); 2132 } 2133 2134 if (expectAndConsume(MIToken::rparen)) 2135 return true; 2136 2137 if (!HaveLine) 2138 return error("DILocation requires line number"); 2139 if (!Scope) 2140 return error("DILocation requires a scope"); 2141 2142 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2143 InlinedAt, ImplicitCode); 2144 return false; 2145 } 2146 2147 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2148 MDNode *Node = nullptr; 2149 if (Token.is(MIToken::exclaim)) { 2150 if (parseMDNode(Node)) 2151 return true; 2152 } else if (Token.is(MIToken::md_diexpr)) { 2153 if (parseDIExpression(Node)) 2154 return true; 2155 } 2156 Dest = MachineOperand::CreateMetadata(Node); 2157 return false; 2158 } 2159 2160 bool MIParser::parseCFIOffset(int &Offset) { 2161 if (Token.isNot(MIToken::IntegerLiteral)) 2162 return error("expected a cfi offset"); 2163 if (Token.integerValue().getMinSignedBits() > 32) 2164 return error("expected a 32 bit integer (the cfi offset is too large)"); 2165 Offset = (int)Token.integerValue().getExtValue(); 2166 lex(); 2167 return false; 2168 } 2169 2170 bool MIParser::parseCFIRegister(unsigned &Reg) { 2171 if (Token.isNot(MIToken::NamedRegister)) 2172 return error("expected a cfi register"); 2173 unsigned LLVMReg; 2174 if (parseNamedRegister(LLVMReg)) 2175 return true; 2176 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2177 assert(TRI && "Expected target register info"); 2178 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2179 if (DwarfReg < 0) 2180 return error("invalid DWARF register"); 2181 Reg = (unsigned)DwarfReg; 2182 lex(); 2183 return false; 2184 } 2185 2186 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2187 do { 2188 if (Token.isNot(MIToken::HexLiteral)) 2189 return error("expected a hexadecimal literal"); 2190 unsigned Value; 2191 if (getUnsigned(Value)) 2192 return true; 2193 if (Value > UINT8_MAX) 2194 return error("expected a 8-bit integer (too large)"); 2195 Values.push_back(static_cast<uint8_t>(Value)); 2196 lex(); 2197 } while (consumeIfPresent(MIToken::comma)); 2198 return false; 2199 } 2200 2201 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2202 auto Kind = Token.kind(); 2203 lex(); 2204 int Offset; 2205 unsigned Reg; 2206 unsigned CFIIndex; 2207 switch (Kind) { 2208 case MIToken::kw_cfi_same_value: 2209 if (parseCFIRegister(Reg)) 2210 return true; 2211 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2212 break; 2213 case MIToken::kw_cfi_offset: 2214 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2215 parseCFIOffset(Offset)) 2216 return true; 2217 CFIIndex = 2218 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2219 break; 2220 case MIToken::kw_cfi_rel_offset: 2221 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2222 parseCFIOffset(Offset)) 2223 return true; 2224 CFIIndex = MF.addFrameInst( 2225 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2226 break; 2227 case MIToken::kw_cfi_def_cfa_register: 2228 if (parseCFIRegister(Reg)) 2229 return true; 2230 CFIIndex = 2231 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2232 break; 2233 case MIToken::kw_cfi_def_cfa_offset: 2234 if (parseCFIOffset(Offset)) 2235 return true; 2236 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 2237 CFIIndex = MF.addFrameInst( 2238 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 2239 break; 2240 case MIToken::kw_cfi_adjust_cfa_offset: 2241 if (parseCFIOffset(Offset)) 2242 return true; 2243 CFIIndex = MF.addFrameInst( 2244 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2245 break; 2246 case MIToken::kw_cfi_def_cfa: 2247 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2248 parseCFIOffset(Offset)) 2249 return true; 2250 // NB: MCCFIInstruction::createDefCfa negates the offset. 2251 CFIIndex = 2252 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 2253 break; 2254 case MIToken::kw_cfi_remember_state: 2255 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2256 break; 2257 case MIToken::kw_cfi_restore: 2258 if (parseCFIRegister(Reg)) 2259 return true; 2260 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2261 break; 2262 case MIToken::kw_cfi_restore_state: 2263 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2264 break; 2265 case MIToken::kw_cfi_undefined: 2266 if (parseCFIRegister(Reg)) 2267 return true; 2268 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2269 break; 2270 case MIToken::kw_cfi_register: { 2271 unsigned Reg2; 2272 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2273 parseCFIRegister(Reg2)) 2274 return true; 2275 2276 CFIIndex = 2277 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2278 break; 2279 } 2280 case MIToken::kw_cfi_window_save: 2281 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2282 break; 2283 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2284 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2285 break; 2286 case MIToken::kw_cfi_escape: { 2287 std::string Values; 2288 if (parseCFIEscapeValues(Values)) 2289 return true; 2290 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2291 break; 2292 } 2293 default: 2294 // TODO: Parse the other CFI operands. 2295 llvm_unreachable("The current token should be a cfi operand"); 2296 } 2297 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2298 return false; 2299 } 2300 2301 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2302 switch (Token.kind()) { 2303 case MIToken::NamedIRBlock: { 2304 BB = dyn_cast_or_null<BasicBlock>( 2305 F.getValueSymbolTable()->lookup(Token.stringValue())); 2306 if (!BB) 2307 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2308 break; 2309 } 2310 case MIToken::IRBlock: { 2311 unsigned SlotNumber = 0; 2312 if (getUnsigned(SlotNumber)) 2313 return true; 2314 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2315 if (!BB) 2316 return error(Twine("use of undefined IR block '%ir-block.") + 2317 Twine(SlotNumber) + "'"); 2318 break; 2319 } 2320 default: 2321 llvm_unreachable("The current token should be an IR block reference"); 2322 } 2323 return false; 2324 } 2325 2326 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2327 assert(Token.is(MIToken::kw_blockaddress)); 2328 lex(); 2329 if (expectAndConsume(MIToken::lparen)) 2330 return true; 2331 if (Token.isNot(MIToken::GlobalValue) && 2332 Token.isNot(MIToken::NamedGlobalValue)) 2333 return error("expected a global value"); 2334 GlobalValue *GV = nullptr; 2335 if (parseGlobalValue(GV)) 2336 return true; 2337 auto *F = dyn_cast<Function>(GV); 2338 if (!F) 2339 return error("expected an IR function reference"); 2340 lex(); 2341 if (expectAndConsume(MIToken::comma)) 2342 return true; 2343 BasicBlock *BB = nullptr; 2344 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2345 return error("expected an IR block reference"); 2346 if (parseIRBlock(BB, *F)) 2347 return true; 2348 lex(); 2349 if (expectAndConsume(MIToken::rparen)) 2350 return true; 2351 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2352 if (parseOperandsOffset(Dest)) 2353 return true; 2354 return false; 2355 } 2356 2357 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2358 assert(Token.is(MIToken::kw_intrinsic)); 2359 lex(); 2360 if (expectAndConsume(MIToken::lparen)) 2361 return error("expected syntax intrinsic(@llvm.whatever)"); 2362 2363 if (Token.isNot(MIToken::NamedGlobalValue)) 2364 return error("expected syntax intrinsic(@llvm.whatever)"); 2365 2366 std::string Name = std::string(Token.stringValue()); 2367 lex(); 2368 2369 if (expectAndConsume(MIToken::rparen)) 2370 return error("expected ')' to terminate intrinsic name"); 2371 2372 // Find out what intrinsic we're dealing with, first try the global namespace 2373 // and then the target's private intrinsics if that fails. 2374 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2375 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2376 if (ID == Intrinsic::not_intrinsic && TII) 2377 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2378 2379 if (ID == Intrinsic::not_intrinsic) 2380 return error("unknown intrinsic name"); 2381 Dest = MachineOperand::CreateIntrinsicID(ID); 2382 2383 return false; 2384 } 2385 2386 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2387 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2388 bool IsFloat = Token.is(MIToken::kw_floatpred); 2389 lex(); 2390 2391 if (expectAndConsume(MIToken::lparen)) 2392 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2393 2394 if (Token.isNot(MIToken::Identifier)) 2395 return error("whatever"); 2396 2397 CmpInst::Predicate Pred; 2398 if (IsFloat) { 2399 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2400 .Case("false", CmpInst::FCMP_FALSE) 2401 .Case("oeq", CmpInst::FCMP_OEQ) 2402 .Case("ogt", CmpInst::FCMP_OGT) 2403 .Case("oge", CmpInst::FCMP_OGE) 2404 .Case("olt", CmpInst::FCMP_OLT) 2405 .Case("ole", CmpInst::FCMP_OLE) 2406 .Case("one", CmpInst::FCMP_ONE) 2407 .Case("ord", CmpInst::FCMP_ORD) 2408 .Case("uno", CmpInst::FCMP_UNO) 2409 .Case("ueq", CmpInst::FCMP_UEQ) 2410 .Case("ugt", CmpInst::FCMP_UGT) 2411 .Case("uge", CmpInst::FCMP_UGE) 2412 .Case("ult", CmpInst::FCMP_ULT) 2413 .Case("ule", CmpInst::FCMP_ULE) 2414 .Case("une", CmpInst::FCMP_UNE) 2415 .Case("true", CmpInst::FCMP_TRUE) 2416 .Default(CmpInst::BAD_FCMP_PREDICATE); 2417 if (!CmpInst::isFPPredicate(Pred)) 2418 return error("invalid floating-point predicate"); 2419 } else { 2420 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2421 .Case("eq", CmpInst::ICMP_EQ) 2422 .Case("ne", CmpInst::ICMP_NE) 2423 .Case("sgt", CmpInst::ICMP_SGT) 2424 .Case("sge", CmpInst::ICMP_SGE) 2425 .Case("slt", CmpInst::ICMP_SLT) 2426 .Case("sle", CmpInst::ICMP_SLE) 2427 .Case("ugt", CmpInst::ICMP_UGT) 2428 .Case("uge", CmpInst::ICMP_UGE) 2429 .Case("ult", CmpInst::ICMP_ULT) 2430 .Case("ule", CmpInst::ICMP_ULE) 2431 .Default(CmpInst::BAD_ICMP_PREDICATE); 2432 if (!CmpInst::isIntPredicate(Pred)) 2433 return error("invalid integer predicate"); 2434 } 2435 2436 lex(); 2437 Dest = MachineOperand::CreatePredicate(Pred); 2438 if (expectAndConsume(MIToken::rparen)) 2439 return error("predicate should be terminated by ')'."); 2440 2441 return false; 2442 } 2443 2444 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2445 assert(Token.is(MIToken::kw_shufflemask)); 2446 2447 lex(); 2448 if (expectAndConsume(MIToken::lparen)) 2449 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2450 2451 SmallVector<int, 32> ShufMask; 2452 do { 2453 if (Token.is(MIToken::kw_undef)) { 2454 ShufMask.push_back(-1); 2455 } else if (Token.is(MIToken::IntegerLiteral)) { 2456 const APSInt &Int = Token.integerValue(); 2457 ShufMask.push_back(Int.getExtValue()); 2458 } else 2459 return error("expected integer constant"); 2460 2461 lex(); 2462 } while (consumeIfPresent(MIToken::comma)); 2463 2464 if (expectAndConsume(MIToken::rparen)) 2465 return error("shufflemask should be terminated by ')'."); 2466 2467 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2468 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2469 return false; 2470 } 2471 2472 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2473 assert(Token.is(MIToken::kw_target_index)); 2474 lex(); 2475 if (expectAndConsume(MIToken::lparen)) 2476 return true; 2477 if (Token.isNot(MIToken::Identifier)) 2478 return error("expected the name of the target index"); 2479 int Index = 0; 2480 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2481 return error("use of undefined target index '" + Token.stringValue() + "'"); 2482 lex(); 2483 if (expectAndConsume(MIToken::rparen)) 2484 return true; 2485 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2486 if (parseOperandsOffset(Dest)) 2487 return true; 2488 return false; 2489 } 2490 2491 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2492 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2493 lex(); 2494 if (expectAndConsume(MIToken::lparen)) 2495 return true; 2496 2497 uint32_t *Mask = MF.allocateRegMask(); 2498 while (true) { 2499 if (Token.isNot(MIToken::NamedRegister)) 2500 return error("expected a named register"); 2501 unsigned Reg; 2502 if (parseNamedRegister(Reg)) 2503 return true; 2504 lex(); 2505 Mask[Reg / 32] |= 1U << (Reg % 32); 2506 // TODO: Report an error if the same register is used more than once. 2507 if (Token.isNot(MIToken::comma)) 2508 break; 2509 lex(); 2510 } 2511 2512 if (expectAndConsume(MIToken::rparen)) 2513 return true; 2514 Dest = MachineOperand::CreateRegMask(Mask); 2515 return false; 2516 } 2517 2518 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2519 assert(Token.is(MIToken::kw_liveout)); 2520 uint32_t *Mask = MF.allocateRegMask(); 2521 lex(); 2522 if (expectAndConsume(MIToken::lparen)) 2523 return true; 2524 while (true) { 2525 if (Token.isNot(MIToken::NamedRegister)) 2526 return error("expected a named register"); 2527 unsigned Reg; 2528 if (parseNamedRegister(Reg)) 2529 return true; 2530 lex(); 2531 Mask[Reg / 32] |= 1U << (Reg % 32); 2532 // TODO: Report an error if the same register is used more than once. 2533 if (Token.isNot(MIToken::comma)) 2534 break; 2535 lex(); 2536 } 2537 if (expectAndConsume(MIToken::rparen)) 2538 return true; 2539 Dest = MachineOperand::CreateRegLiveOut(Mask); 2540 return false; 2541 } 2542 2543 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2544 MachineOperand &Dest, 2545 Optional<unsigned> &TiedDefIdx) { 2546 switch (Token.kind()) { 2547 case MIToken::kw_implicit: 2548 case MIToken::kw_implicit_define: 2549 case MIToken::kw_def: 2550 case MIToken::kw_dead: 2551 case MIToken::kw_killed: 2552 case MIToken::kw_undef: 2553 case MIToken::kw_internal: 2554 case MIToken::kw_early_clobber: 2555 case MIToken::kw_debug_use: 2556 case MIToken::kw_renamable: 2557 case MIToken::underscore: 2558 case MIToken::NamedRegister: 2559 case MIToken::VirtualRegister: 2560 case MIToken::NamedVirtualRegister: 2561 return parseRegisterOperand(Dest, TiedDefIdx); 2562 case MIToken::IntegerLiteral: 2563 return parseImmediateOperand(Dest); 2564 case MIToken::kw_half: 2565 case MIToken::kw_float: 2566 case MIToken::kw_double: 2567 case MIToken::kw_x86_fp80: 2568 case MIToken::kw_fp128: 2569 case MIToken::kw_ppc_fp128: 2570 return parseFPImmediateOperand(Dest); 2571 case MIToken::MachineBasicBlock: 2572 return parseMBBOperand(Dest); 2573 case MIToken::StackObject: 2574 return parseStackObjectOperand(Dest); 2575 case MIToken::FixedStackObject: 2576 return parseFixedStackObjectOperand(Dest); 2577 case MIToken::GlobalValue: 2578 case MIToken::NamedGlobalValue: 2579 return parseGlobalAddressOperand(Dest); 2580 case MIToken::ConstantPoolItem: 2581 return parseConstantPoolIndexOperand(Dest); 2582 case MIToken::JumpTableIndex: 2583 return parseJumpTableIndexOperand(Dest); 2584 case MIToken::ExternalSymbol: 2585 return parseExternalSymbolOperand(Dest); 2586 case MIToken::MCSymbol: 2587 return parseMCSymbolOperand(Dest); 2588 case MIToken::SubRegisterIndex: 2589 return parseSubRegisterIndexOperand(Dest); 2590 case MIToken::md_diexpr: 2591 case MIToken::exclaim: 2592 return parseMetadataOperand(Dest); 2593 case MIToken::kw_cfi_same_value: 2594 case MIToken::kw_cfi_offset: 2595 case MIToken::kw_cfi_rel_offset: 2596 case MIToken::kw_cfi_def_cfa_register: 2597 case MIToken::kw_cfi_def_cfa_offset: 2598 case MIToken::kw_cfi_adjust_cfa_offset: 2599 case MIToken::kw_cfi_escape: 2600 case MIToken::kw_cfi_def_cfa: 2601 case MIToken::kw_cfi_register: 2602 case MIToken::kw_cfi_remember_state: 2603 case MIToken::kw_cfi_restore: 2604 case MIToken::kw_cfi_restore_state: 2605 case MIToken::kw_cfi_undefined: 2606 case MIToken::kw_cfi_window_save: 2607 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2608 return parseCFIOperand(Dest); 2609 case MIToken::kw_blockaddress: 2610 return parseBlockAddressOperand(Dest); 2611 case MIToken::kw_intrinsic: 2612 return parseIntrinsicOperand(Dest); 2613 case MIToken::kw_target_index: 2614 return parseTargetIndexOperand(Dest); 2615 case MIToken::kw_liveout: 2616 return parseLiveoutRegisterMaskOperand(Dest); 2617 case MIToken::kw_floatpred: 2618 case MIToken::kw_intpred: 2619 return parsePredicateOperand(Dest); 2620 case MIToken::kw_shufflemask: 2621 return parseShuffleMaskOperand(Dest); 2622 case MIToken::Error: 2623 return true; 2624 case MIToken::Identifier: 2625 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2626 Dest = MachineOperand::CreateRegMask(RegMask); 2627 lex(); 2628 break; 2629 } else if (Token.stringValue() == "CustomRegMask") { 2630 return parseCustomRegisterMaskOperand(Dest); 2631 } else 2632 return parseTypedImmediateOperand(Dest); 2633 case MIToken::dot: { 2634 const auto *TII = MF.getSubtarget().getInstrInfo(); 2635 if (const auto *Formatter = TII->getMIRFormatter()) { 2636 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2637 } 2638 LLVM_FALLTHROUGH; 2639 } 2640 default: 2641 // FIXME: Parse the MCSymbol machine operand. 2642 return error("expected a machine operand"); 2643 } 2644 return false; 2645 } 2646 2647 bool MIParser::parseMachineOperandAndTargetFlags( 2648 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2649 Optional<unsigned> &TiedDefIdx) { 2650 unsigned TF = 0; 2651 bool HasTargetFlags = false; 2652 if (Token.is(MIToken::kw_target_flags)) { 2653 HasTargetFlags = true; 2654 lex(); 2655 if (expectAndConsume(MIToken::lparen)) 2656 return true; 2657 if (Token.isNot(MIToken::Identifier)) 2658 return error("expected the name of the target flag"); 2659 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2660 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2661 return error("use of undefined target flag '" + Token.stringValue() + 2662 "'"); 2663 } 2664 lex(); 2665 while (Token.is(MIToken::comma)) { 2666 lex(); 2667 if (Token.isNot(MIToken::Identifier)) 2668 return error("expected the name of the target flag"); 2669 unsigned BitFlag = 0; 2670 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2671 return error("use of undefined target flag '" + Token.stringValue() + 2672 "'"); 2673 // TODO: Report an error when using a duplicate bit target flag. 2674 TF |= BitFlag; 2675 lex(); 2676 } 2677 if (expectAndConsume(MIToken::rparen)) 2678 return true; 2679 } 2680 auto Loc = Token.location(); 2681 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2682 return true; 2683 if (!HasTargetFlags) 2684 return false; 2685 if (Dest.isReg()) 2686 return error(Loc, "register operands can't have target flags"); 2687 Dest.setTargetFlags(TF); 2688 return false; 2689 } 2690 2691 bool MIParser::parseOffset(int64_t &Offset) { 2692 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2693 return false; 2694 StringRef Sign = Token.range(); 2695 bool IsNegative = Token.is(MIToken::minus); 2696 lex(); 2697 if (Token.isNot(MIToken::IntegerLiteral)) 2698 return error("expected an integer literal after '" + Sign + "'"); 2699 if (Token.integerValue().getMinSignedBits() > 64) 2700 return error("expected 64-bit integer (too large)"); 2701 Offset = Token.integerValue().getExtValue(); 2702 if (IsNegative) 2703 Offset = -Offset; 2704 lex(); 2705 return false; 2706 } 2707 2708 bool MIParser::parseAlignment(unsigned &Alignment) { 2709 assert(Token.is(MIToken::kw_align)); 2710 lex(); 2711 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2712 return error("expected an integer literal after 'align'"); 2713 if (getUnsigned(Alignment)) 2714 return true; 2715 lex(); 2716 2717 if (!isPowerOf2_32(Alignment)) 2718 return error("expected a power-of-2 literal after 'align'"); 2719 2720 return false; 2721 } 2722 2723 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2724 assert(Token.is(MIToken::kw_addrspace)); 2725 lex(); 2726 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2727 return error("expected an integer literal after 'addrspace'"); 2728 if (getUnsigned(Addrspace)) 2729 return true; 2730 lex(); 2731 return false; 2732 } 2733 2734 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2735 int64_t Offset = 0; 2736 if (parseOffset(Offset)) 2737 return true; 2738 Op.setOffset(Offset); 2739 return false; 2740 } 2741 2742 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2743 const Value *&V, ErrorCallbackType ErrCB) { 2744 switch (Token.kind()) { 2745 case MIToken::NamedIRValue: { 2746 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2747 break; 2748 } 2749 case MIToken::IRValue: { 2750 unsigned SlotNumber = 0; 2751 if (getUnsigned(Token, SlotNumber, ErrCB)) 2752 return true; 2753 V = PFS.getIRValue(SlotNumber); 2754 break; 2755 } 2756 case MIToken::NamedGlobalValue: 2757 case MIToken::GlobalValue: { 2758 GlobalValue *GV = nullptr; 2759 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2760 return true; 2761 V = GV; 2762 break; 2763 } 2764 case MIToken::QuotedIRValue: { 2765 const Constant *C = nullptr; 2766 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2767 return true; 2768 V = C; 2769 break; 2770 } 2771 default: 2772 llvm_unreachable("The current token should be an IR block reference"); 2773 } 2774 if (!V) 2775 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2776 return false; 2777 } 2778 2779 bool MIParser::parseIRValue(const Value *&V) { 2780 return ::parseIRValue( 2781 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2782 return error(Loc, Msg); 2783 }); 2784 } 2785 2786 bool MIParser::getUint64(uint64_t &Result) { 2787 if (Token.hasIntegerValue()) { 2788 if (Token.integerValue().getActiveBits() > 64) 2789 return error("expected 64-bit integer (too large)"); 2790 Result = Token.integerValue().getZExtValue(); 2791 return false; 2792 } 2793 if (Token.is(MIToken::HexLiteral)) { 2794 APInt A; 2795 if (getHexUint(A)) 2796 return true; 2797 if (A.getBitWidth() > 64) 2798 return error("expected 64-bit integer (too large)"); 2799 Result = A.getZExtValue(); 2800 return false; 2801 } 2802 return true; 2803 } 2804 2805 bool MIParser::getHexUint(APInt &Result) { 2806 return ::getHexUint(Token, Result); 2807 } 2808 2809 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2810 const auto OldFlags = Flags; 2811 switch (Token.kind()) { 2812 case MIToken::kw_volatile: 2813 Flags |= MachineMemOperand::MOVolatile; 2814 break; 2815 case MIToken::kw_non_temporal: 2816 Flags |= MachineMemOperand::MONonTemporal; 2817 break; 2818 case MIToken::kw_dereferenceable: 2819 Flags |= MachineMemOperand::MODereferenceable; 2820 break; 2821 case MIToken::kw_invariant: 2822 Flags |= MachineMemOperand::MOInvariant; 2823 break; 2824 case MIToken::StringConstant: { 2825 MachineMemOperand::Flags TF; 2826 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2827 return error("use of undefined target MMO flag '" + Token.stringValue() + 2828 "'"); 2829 Flags |= TF; 2830 break; 2831 } 2832 default: 2833 llvm_unreachable("The current token should be a memory operand flag"); 2834 } 2835 if (OldFlags == Flags) 2836 // We know that the same flag is specified more than once when the flags 2837 // weren't modified. 2838 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2839 lex(); 2840 return false; 2841 } 2842 2843 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2844 switch (Token.kind()) { 2845 case MIToken::kw_stack: 2846 PSV = MF.getPSVManager().getStack(); 2847 break; 2848 case MIToken::kw_got: 2849 PSV = MF.getPSVManager().getGOT(); 2850 break; 2851 case MIToken::kw_jump_table: 2852 PSV = MF.getPSVManager().getJumpTable(); 2853 break; 2854 case MIToken::kw_constant_pool: 2855 PSV = MF.getPSVManager().getConstantPool(); 2856 break; 2857 case MIToken::FixedStackObject: { 2858 int FI; 2859 if (parseFixedStackFrameIndex(FI)) 2860 return true; 2861 PSV = MF.getPSVManager().getFixedStack(FI); 2862 // The token was already consumed, so use return here instead of break. 2863 return false; 2864 } 2865 case MIToken::StackObject: { 2866 int FI; 2867 if (parseStackFrameIndex(FI)) 2868 return true; 2869 PSV = MF.getPSVManager().getFixedStack(FI); 2870 // The token was already consumed, so use return here instead of break. 2871 return false; 2872 } 2873 case MIToken::kw_call_entry: 2874 lex(); 2875 switch (Token.kind()) { 2876 case MIToken::GlobalValue: 2877 case MIToken::NamedGlobalValue: { 2878 GlobalValue *GV = nullptr; 2879 if (parseGlobalValue(GV)) 2880 return true; 2881 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2882 break; 2883 } 2884 case MIToken::ExternalSymbol: 2885 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2886 MF.createExternalSymbolName(Token.stringValue())); 2887 break; 2888 default: 2889 return error( 2890 "expected a global value or an external symbol after 'call-entry'"); 2891 } 2892 break; 2893 case MIToken::kw_custom: { 2894 lex(); 2895 const auto *TII = MF.getSubtarget().getInstrInfo(); 2896 if (const auto *Formatter = TII->getMIRFormatter()) { 2897 if (Formatter->parseCustomPseudoSourceValue( 2898 Token.stringValue(), MF, PFS, PSV, 2899 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2900 return error(Loc, Msg); 2901 })) 2902 return true; 2903 } else 2904 return error("unable to parse target custom pseudo source value"); 2905 break; 2906 } 2907 default: 2908 llvm_unreachable("The current token should be pseudo source value"); 2909 } 2910 lex(); 2911 return false; 2912 } 2913 2914 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2915 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2916 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2917 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2918 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 2919 const PseudoSourceValue *PSV = nullptr; 2920 if (parseMemoryPseudoSourceValue(PSV)) 2921 return true; 2922 int64_t Offset = 0; 2923 if (parseOffset(Offset)) 2924 return true; 2925 Dest = MachinePointerInfo(PSV, Offset); 2926 return false; 2927 } 2928 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2929 Token.isNot(MIToken::GlobalValue) && 2930 Token.isNot(MIToken::NamedGlobalValue) && 2931 Token.isNot(MIToken::QuotedIRValue)) 2932 return error("expected an IR value reference"); 2933 const Value *V = nullptr; 2934 if (parseIRValue(V)) 2935 return true; 2936 if (!V->getType()->isPointerTy()) 2937 return error("expected a pointer IR value"); 2938 lex(); 2939 int64_t Offset = 0; 2940 if (parseOffset(Offset)) 2941 return true; 2942 Dest = MachinePointerInfo(V, Offset); 2943 return false; 2944 } 2945 2946 bool MIParser::parseOptionalScope(LLVMContext &Context, 2947 SyncScope::ID &SSID) { 2948 SSID = SyncScope::System; 2949 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2950 lex(); 2951 if (expectAndConsume(MIToken::lparen)) 2952 return error("expected '(' in syncscope"); 2953 2954 std::string SSN; 2955 if (parseStringConstant(SSN)) 2956 return true; 2957 2958 SSID = Context.getOrInsertSyncScopeID(SSN); 2959 if (expectAndConsume(MIToken::rparen)) 2960 return error("expected ')' in syncscope"); 2961 } 2962 2963 return false; 2964 } 2965 2966 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2967 Order = AtomicOrdering::NotAtomic; 2968 if (Token.isNot(MIToken::Identifier)) 2969 return false; 2970 2971 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2972 .Case("unordered", AtomicOrdering::Unordered) 2973 .Case("monotonic", AtomicOrdering::Monotonic) 2974 .Case("acquire", AtomicOrdering::Acquire) 2975 .Case("release", AtomicOrdering::Release) 2976 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2977 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2978 .Default(AtomicOrdering::NotAtomic); 2979 2980 if (Order != AtomicOrdering::NotAtomic) { 2981 lex(); 2982 return false; 2983 } 2984 2985 return error("expected an atomic scope, ordering or a size specification"); 2986 } 2987 2988 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2989 if (expectAndConsume(MIToken::lparen)) 2990 return true; 2991 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2992 while (Token.isMemoryOperandFlag()) { 2993 if (parseMemoryOperandFlag(Flags)) 2994 return true; 2995 } 2996 if (Token.isNot(MIToken::Identifier) || 2997 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2998 return error("expected 'load' or 'store' memory operation"); 2999 if (Token.stringValue() == "load") 3000 Flags |= MachineMemOperand::MOLoad; 3001 else 3002 Flags |= MachineMemOperand::MOStore; 3003 lex(); 3004 3005 // Optional 'store' for operands that both load and store. 3006 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3007 Flags |= MachineMemOperand::MOStore; 3008 lex(); 3009 } 3010 3011 // Optional synchronization scope. 3012 SyncScope::ID SSID; 3013 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3014 return true; 3015 3016 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3017 AtomicOrdering Order, FailureOrder; 3018 if (parseOptionalAtomicOrdering(Order)) 3019 return true; 3020 3021 if (parseOptionalAtomicOrdering(FailureOrder)) 3022 return true; 3023 3024 if (Token.isNot(MIToken::IntegerLiteral) && 3025 Token.isNot(MIToken::kw_unknown_size)) 3026 return error("expected the size integer literal or 'unknown-size' after " 3027 "memory operation"); 3028 uint64_t Size; 3029 if (Token.is(MIToken::IntegerLiteral)) { 3030 if (getUint64(Size)) 3031 return true; 3032 } else if (Token.is(MIToken::kw_unknown_size)) { 3033 Size = MemoryLocation::UnknownSize; 3034 } 3035 lex(); 3036 3037 MachinePointerInfo Ptr = MachinePointerInfo(); 3038 if (Token.is(MIToken::Identifier)) { 3039 const char *Word = 3040 ((Flags & MachineMemOperand::MOLoad) && 3041 (Flags & MachineMemOperand::MOStore)) 3042 ? "on" 3043 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3044 if (Token.stringValue() != Word) 3045 return error(Twine("expected '") + Word + "'"); 3046 lex(); 3047 3048 if (parseMachinePointerInfo(Ptr)) 3049 return true; 3050 } 3051 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 3052 AAMDNodes AAInfo; 3053 MDNode *Range = nullptr; 3054 while (consumeIfPresent(MIToken::comma)) { 3055 switch (Token.kind()) { 3056 case MIToken::kw_align: 3057 if (parseAlignment(BaseAlignment)) 3058 return true; 3059 break; 3060 case MIToken::kw_addrspace: 3061 if (parseAddrspace(Ptr.AddrSpace)) 3062 return true; 3063 break; 3064 case MIToken::md_tbaa: 3065 lex(); 3066 if (parseMDNode(AAInfo.TBAA)) 3067 return true; 3068 break; 3069 case MIToken::md_alias_scope: 3070 lex(); 3071 if (parseMDNode(AAInfo.Scope)) 3072 return true; 3073 break; 3074 case MIToken::md_noalias: 3075 lex(); 3076 if (parseMDNode(AAInfo.NoAlias)) 3077 return true; 3078 break; 3079 case MIToken::md_range: 3080 lex(); 3081 if (parseMDNode(Range)) 3082 return true; 3083 break; 3084 // TODO: Report an error on duplicate metadata nodes. 3085 default: 3086 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3087 "'!noalias' or '!range'"); 3088 } 3089 } 3090 if (expectAndConsume(MIToken::rparen)) 3091 return true; 3092 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 3093 SSID, Order, FailureOrder); 3094 return false; 3095 } 3096 3097 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3098 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3099 Token.is(MIToken::kw_post_instr_symbol)) && 3100 "Invalid token for a pre- post-instruction symbol!"); 3101 lex(); 3102 if (Token.isNot(MIToken::MCSymbol)) 3103 return error("expected a symbol after 'pre-instr-symbol'"); 3104 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3105 lex(); 3106 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3107 Token.is(MIToken::lbrace)) 3108 return false; 3109 if (Token.isNot(MIToken::comma)) 3110 return error("expected ',' before the next machine operand"); 3111 lex(); 3112 return false; 3113 } 3114 3115 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3116 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3117 "Invalid token for a heap alloc marker!"); 3118 lex(); 3119 parseMDNode(Node); 3120 if (!Node) 3121 return error("expected a MDNode after 'heap-alloc-marker'"); 3122 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3123 Token.is(MIToken::lbrace)) 3124 return false; 3125 if (Token.isNot(MIToken::comma)) 3126 return error("expected ',' before the next machine operand"); 3127 lex(); 3128 return false; 3129 } 3130 3131 static void initSlots2BasicBlocks( 3132 const Function &F, 3133 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3134 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3135 MST.incorporateFunction(F); 3136 for (auto &BB : F) { 3137 if (BB.hasName()) 3138 continue; 3139 int Slot = MST.getLocalSlot(&BB); 3140 if (Slot == -1) 3141 continue; 3142 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3143 } 3144 } 3145 3146 static const BasicBlock *getIRBlockFromSlot( 3147 unsigned Slot, 3148 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3149 auto BlockInfo = Slots2BasicBlocks.find(Slot); 3150 if (BlockInfo == Slots2BasicBlocks.end()) 3151 return nullptr; 3152 return BlockInfo->second; 3153 } 3154 3155 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3156 if (Slots2BasicBlocks.empty()) 3157 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3158 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3159 } 3160 3161 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3162 if (&F == &MF.getFunction()) 3163 return getIRBlock(Slot); 3164 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3165 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3166 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3167 } 3168 3169 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3170 // FIXME: Currently we can't recognize temporary or local symbols and call all 3171 // of the appropriate forms to create them. However, this handles basic cases 3172 // well as most of the special aspects are recognized by a prefix on their 3173 // name, and the input names should already be unique. For test cases, keeping 3174 // the symbol name out of the symbol table isn't terribly important. 3175 return MF.getContext().getOrCreateSymbol(Name); 3176 } 3177 3178 bool MIParser::parseStringConstant(std::string &Result) { 3179 if (Token.isNot(MIToken::StringConstant)) 3180 return error("expected string constant"); 3181 Result = std::string(Token.stringValue()); 3182 lex(); 3183 return false; 3184 } 3185 3186 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3187 StringRef Src, 3188 SMDiagnostic &Error) { 3189 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3190 } 3191 3192 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3193 StringRef Src, SMDiagnostic &Error) { 3194 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3195 } 3196 3197 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3198 MachineBasicBlock *&MBB, StringRef Src, 3199 SMDiagnostic &Error) { 3200 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3201 } 3202 3203 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3204 unsigned &Reg, StringRef Src, 3205 SMDiagnostic &Error) { 3206 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3207 } 3208 3209 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3210 unsigned &Reg, StringRef Src, 3211 SMDiagnostic &Error) { 3212 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3213 } 3214 3215 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3216 VRegInfo *&Info, StringRef Src, 3217 SMDiagnostic &Error) { 3218 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3219 } 3220 3221 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3222 int &FI, StringRef Src, 3223 SMDiagnostic &Error) { 3224 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3225 } 3226 3227 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3228 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3229 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3230 } 3231 3232 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3233 PerFunctionMIParsingState &PFS, const Value *&V, 3234 ErrorCallbackType ErrorCallback) { 3235 MIToken Token; 3236 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3237 ErrorCallback(Loc, Msg); 3238 }); 3239 V = nullptr; 3240 3241 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3242 } 3243