1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/AsmParser/Parser.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/SourceMgr.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 37 using namespace llvm; 38 39 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 40 SourceMgr &SM, const SlotMapping &IRSlots) 41 : MF(MF), SM(&SM), IRSlots(IRSlots) { 42 } 43 44 namespace { 45 46 /// A wrapper struct around the 'MachineOperand' struct that includes a source 47 /// range and other attributes. 48 struct ParsedMachineOperand { 49 MachineOperand Operand; 50 StringRef::iterator Begin; 51 StringRef::iterator End; 52 Optional<unsigned> TiedDefIdx; 53 54 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 55 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 56 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 57 if (TiedDefIdx) 58 assert(Operand.isReg() && Operand.isUse() && 59 "Only used register operands can be tied"); 60 } 61 }; 62 63 class MIParser { 64 MachineFunction &MF; 65 SMDiagnostic &Error; 66 StringRef Source, CurrentSource; 67 MIToken Token; 68 const PerFunctionMIParsingState &PFS; 69 /// Maps from instruction names to op codes. 70 StringMap<unsigned> Names2InstrOpCodes; 71 /// Maps from register names to registers. 72 StringMap<unsigned> Names2Regs; 73 /// Maps from register mask names to register masks. 74 StringMap<const uint32_t *> Names2RegMasks; 75 /// Maps from subregister names to subregister indices. 76 StringMap<unsigned> Names2SubRegIndices; 77 /// Maps from slot numbers to function's unnamed basic blocks. 78 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 79 /// Maps from slot numbers to function's unnamed values. 80 DenseMap<unsigned, const Value *> Slots2Values; 81 /// Maps from target index names to target indices. 82 StringMap<int> Names2TargetIndices; 83 /// Maps from direct target flag names to the direct target flag values. 84 StringMap<unsigned> Names2DirectTargetFlags; 85 /// Maps from direct target flag names to the bitmask target flag values. 86 StringMap<unsigned> Names2BitmaskTargetFlags; 87 88 public: 89 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 90 StringRef Source); 91 92 /// \p SkipChar gives the number of characters to skip before looking 93 /// for the next token. 94 void lex(unsigned SkipChar = 0); 95 96 /// Report an error at the current location with the given message. 97 /// 98 /// This function always return true. 99 bool error(const Twine &Msg); 100 101 /// Report an error at the given location with the given message. 102 /// 103 /// This function always return true. 104 bool error(StringRef::iterator Loc, const Twine &Msg); 105 106 bool 107 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 108 bool parseBasicBlocks(); 109 bool parse(MachineInstr *&MI); 110 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 111 bool parseStandaloneNamedRegister(unsigned &Reg); 112 bool parseStandaloneVirtualRegister(unsigned &Reg); 113 bool parseStandaloneStackObject(int &FI); 114 bool parseStandaloneMDNode(MDNode *&Node); 115 116 bool 117 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 118 bool parseBasicBlock(MachineBasicBlock &MBB); 119 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 120 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 121 122 bool parseRegister(unsigned &Reg); 123 bool parseRegisterFlag(unsigned &Flags); 124 bool parseSubRegisterIndex(unsigned &SubReg); 125 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 126 bool parseSize(unsigned &Size); 127 bool parseRegisterOperand(MachineOperand &Dest, 128 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 129 bool parseImmediateOperand(MachineOperand &Dest); 130 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 131 const Constant *&C); 132 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 133 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty, 134 bool MustBeSized = true); 135 bool parseTypedImmediateOperand(MachineOperand &Dest); 136 bool parseFPImmediateOperand(MachineOperand &Dest); 137 bool parseMBBReference(MachineBasicBlock *&MBB); 138 bool parseMBBOperand(MachineOperand &Dest); 139 bool parseStackFrameIndex(int &FI); 140 bool parseStackObjectOperand(MachineOperand &Dest); 141 bool parseFixedStackFrameIndex(int &FI); 142 bool parseFixedStackObjectOperand(MachineOperand &Dest); 143 bool parseGlobalValue(GlobalValue *&GV); 144 bool parseGlobalAddressOperand(MachineOperand &Dest); 145 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 146 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 147 bool parseJumpTableIndexOperand(MachineOperand &Dest); 148 bool parseExternalSymbolOperand(MachineOperand &Dest); 149 bool parseMDNode(MDNode *&Node); 150 bool parseMetadataOperand(MachineOperand &Dest); 151 bool parseCFIOffset(int &Offset); 152 bool parseCFIRegister(unsigned &Reg); 153 bool parseCFIOperand(MachineOperand &Dest); 154 bool parseIRBlock(BasicBlock *&BB, const Function &F); 155 bool parseBlockAddressOperand(MachineOperand &Dest); 156 bool parseTargetIndexOperand(MachineOperand &Dest); 157 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 158 bool parseMachineOperand(MachineOperand &Dest, 159 Optional<unsigned> &TiedDefIdx); 160 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 161 Optional<unsigned> &TiedDefIdx); 162 bool parseOffset(int64_t &Offset); 163 bool parseAlignment(unsigned &Alignment); 164 bool parseOperandsOffset(MachineOperand &Op); 165 bool parseIRValue(const Value *&V); 166 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 167 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 168 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 169 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 170 171 private: 172 /// Convert the integer literal in the current token into an unsigned integer. 173 /// 174 /// Return true if an error occurred. 175 bool getUnsigned(unsigned &Result); 176 177 /// Convert the integer literal in the current token into an uint64. 178 /// 179 /// Return true if an error occurred. 180 bool getUint64(uint64_t &Result); 181 182 /// If the current token is of the given kind, consume it and return false. 183 /// Otherwise report an error and return true. 184 bool expectAndConsume(MIToken::TokenKind TokenKind); 185 186 /// If the current token is of the given kind, consume it and return true. 187 /// Otherwise return false. 188 bool consumeIfPresent(MIToken::TokenKind TokenKind); 189 190 void initNames2InstrOpCodes(); 191 192 /// Try to convert an instruction name to an opcode. Return true if the 193 /// instruction name is invalid. 194 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 195 196 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 197 198 bool assignRegisterTies(MachineInstr &MI, 199 ArrayRef<ParsedMachineOperand> Operands); 200 201 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 202 const MCInstrDesc &MCID); 203 204 void initNames2Regs(); 205 206 /// Try to convert a register name to a register number. Return true if the 207 /// register name is invalid. 208 bool getRegisterByName(StringRef RegName, unsigned &Reg); 209 210 void initNames2RegMasks(); 211 212 /// Check if the given identifier is a name of a register mask. 213 /// 214 /// Return null if the identifier isn't a register mask. 215 const uint32_t *getRegMask(StringRef Identifier); 216 217 void initNames2SubRegIndices(); 218 219 /// Check if the given identifier is a name of a subregister index. 220 /// 221 /// Return 0 if the name isn't a subregister index class. 222 unsigned getSubRegIndex(StringRef Name); 223 224 const BasicBlock *getIRBlock(unsigned Slot); 225 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 226 227 const Value *getIRValue(unsigned Slot); 228 229 void initNames2TargetIndices(); 230 231 /// Try to convert a name of target index to the corresponding target index. 232 /// 233 /// Return true if the name isn't a name of a target index. 234 bool getTargetIndex(StringRef Name, int &Index); 235 236 void initNames2DirectTargetFlags(); 237 238 /// Try to convert a name of a direct target flag to the corresponding 239 /// target flag. 240 /// 241 /// Return true if the name isn't a name of a direct flag. 242 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 243 244 void initNames2BitmaskTargetFlags(); 245 246 /// Try to convert a name of a bitmask target flag to the corresponding 247 /// target flag. 248 /// 249 /// Return true if the name isn't a name of a bitmask target flag. 250 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 251 }; 252 253 } // end anonymous namespace 254 255 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 256 StringRef Source) 257 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 258 {} 259 260 void MIParser::lex(unsigned SkipChar) { 261 CurrentSource = lexMIToken( 262 CurrentSource.data() + SkipChar, Token, 263 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 264 } 265 266 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 267 268 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 269 const SourceMgr &SM = *PFS.SM; 270 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 271 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 272 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 273 // Create an ordinary diagnostic when the source manager's buffer is the 274 // source string. 275 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 276 return true; 277 } 278 // Create a diagnostic for a YAML string literal. 279 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 280 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 281 Source, None, None); 282 return true; 283 } 284 285 static const char *toString(MIToken::TokenKind TokenKind) { 286 switch (TokenKind) { 287 case MIToken::comma: 288 return "','"; 289 case MIToken::equal: 290 return "'='"; 291 case MIToken::colon: 292 return "':'"; 293 case MIToken::lparen: 294 return "'('"; 295 case MIToken::rparen: 296 return "')'"; 297 default: 298 return "<unknown token>"; 299 } 300 } 301 302 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 303 if (Token.isNot(TokenKind)) 304 return error(Twine("expected ") + toString(TokenKind)); 305 lex(); 306 return false; 307 } 308 309 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 310 if (Token.isNot(TokenKind)) 311 return false; 312 lex(); 313 return true; 314 } 315 316 bool MIParser::parseBasicBlockDefinition( 317 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 318 assert(Token.is(MIToken::MachineBasicBlockLabel)); 319 unsigned ID = 0; 320 if (getUnsigned(ID)) 321 return true; 322 auto Loc = Token.location(); 323 auto Name = Token.stringValue(); 324 lex(); 325 bool HasAddressTaken = false; 326 bool IsLandingPad = false; 327 unsigned Alignment = 0; 328 BasicBlock *BB = nullptr; 329 if (consumeIfPresent(MIToken::lparen)) { 330 do { 331 // TODO: Report an error when multiple same attributes are specified. 332 switch (Token.kind()) { 333 case MIToken::kw_address_taken: 334 HasAddressTaken = true; 335 lex(); 336 break; 337 case MIToken::kw_landing_pad: 338 IsLandingPad = true; 339 lex(); 340 break; 341 case MIToken::kw_align: 342 if (parseAlignment(Alignment)) 343 return true; 344 break; 345 case MIToken::IRBlock: 346 // TODO: Report an error when both name and ir block are specified. 347 if (parseIRBlock(BB, *MF.getFunction())) 348 return true; 349 lex(); 350 break; 351 default: 352 break; 353 } 354 } while (consumeIfPresent(MIToken::comma)); 355 if (expectAndConsume(MIToken::rparen)) 356 return true; 357 } 358 if (expectAndConsume(MIToken::colon)) 359 return true; 360 361 if (!Name.empty()) { 362 BB = dyn_cast_or_null<BasicBlock>( 363 MF.getFunction()->getValueSymbolTable().lookup(Name)); 364 if (!BB) 365 return error(Loc, Twine("basic block '") + Name + 366 "' is not defined in the function '" + 367 MF.getName() + "'"); 368 } 369 auto *MBB = MF.CreateMachineBasicBlock(BB); 370 MF.insert(MF.end(), MBB); 371 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 372 if (!WasInserted) 373 return error(Loc, Twine("redefinition of machine basic block with id #") + 374 Twine(ID)); 375 if (Alignment) 376 MBB->setAlignment(Alignment); 377 if (HasAddressTaken) 378 MBB->setHasAddressTaken(); 379 MBB->setIsEHPad(IsLandingPad); 380 return false; 381 } 382 383 bool MIParser::parseBasicBlockDefinitions( 384 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 385 lex(); 386 // Skip until the first machine basic block. 387 while (Token.is(MIToken::Newline)) 388 lex(); 389 if (Token.isErrorOrEOF()) 390 return Token.isError(); 391 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 392 return error("expected a basic block definition before instructions"); 393 unsigned BraceDepth = 0; 394 do { 395 if (parseBasicBlockDefinition(MBBSlots)) 396 return true; 397 bool IsAfterNewline = false; 398 // Skip until the next machine basic block. 399 while (true) { 400 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 401 Token.isErrorOrEOF()) 402 break; 403 else if (Token.is(MIToken::MachineBasicBlockLabel)) 404 return error("basic block definition should be located at the start of " 405 "the line"); 406 else if (consumeIfPresent(MIToken::Newline)) { 407 IsAfterNewline = true; 408 continue; 409 } 410 IsAfterNewline = false; 411 if (Token.is(MIToken::lbrace)) 412 ++BraceDepth; 413 if (Token.is(MIToken::rbrace)) { 414 if (!BraceDepth) 415 return error("extraneous closing brace ('}')"); 416 --BraceDepth; 417 } 418 lex(); 419 } 420 // Verify that we closed all of the '{' at the end of a file or a block. 421 if (!Token.isError() && BraceDepth) 422 return error("expected '}'"); // FIXME: Report a note that shows '{'. 423 } while (!Token.isErrorOrEOF()); 424 return Token.isError(); 425 } 426 427 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 428 assert(Token.is(MIToken::kw_liveins)); 429 lex(); 430 if (expectAndConsume(MIToken::colon)) 431 return true; 432 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 433 return false; 434 do { 435 if (Token.isNot(MIToken::NamedRegister)) 436 return error("expected a named register"); 437 unsigned Reg = 0; 438 if (parseRegister(Reg)) 439 return true; 440 MBB.addLiveIn(Reg); 441 lex(); 442 } while (consumeIfPresent(MIToken::comma)); 443 return false; 444 } 445 446 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 447 assert(Token.is(MIToken::kw_successors)); 448 lex(); 449 if (expectAndConsume(MIToken::colon)) 450 return true; 451 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 452 return false; 453 do { 454 if (Token.isNot(MIToken::MachineBasicBlock)) 455 return error("expected a machine basic block reference"); 456 MachineBasicBlock *SuccMBB = nullptr; 457 if (parseMBBReference(SuccMBB)) 458 return true; 459 lex(); 460 unsigned Weight = 0; 461 if (consumeIfPresent(MIToken::lparen)) { 462 if (Token.isNot(MIToken::IntegerLiteral)) 463 return error("expected an integer literal after '('"); 464 if (getUnsigned(Weight)) 465 return true; 466 lex(); 467 if (expectAndConsume(MIToken::rparen)) 468 return true; 469 } 470 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 471 } while (consumeIfPresent(MIToken::comma)); 472 MBB.normalizeSuccProbs(); 473 return false; 474 } 475 476 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 477 // Skip the definition. 478 assert(Token.is(MIToken::MachineBasicBlockLabel)); 479 lex(); 480 if (consumeIfPresent(MIToken::lparen)) { 481 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 482 lex(); 483 consumeIfPresent(MIToken::rparen); 484 } 485 consumeIfPresent(MIToken::colon); 486 487 // Parse the liveins and successors. 488 // N.B: Multiple lists of successors and liveins are allowed and they're 489 // merged into one. 490 // Example: 491 // liveins: %edi 492 // liveins: %esi 493 // 494 // is equivalent to 495 // liveins: %edi, %esi 496 while (true) { 497 if (Token.is(MIToken::kw_successors)) { 498 if (parseBasicBlockSuccessors(MBB)) 499 return true; 500 } else if (Token.is(MIToken::kw_liveins)) { 501 if (parseBasicBlockLiveins(MBB)) 502 return true; 503 } else if (consumeIfPresent(MIToken::Newline)) { 504 continue; 505 } else 506 break; 507 if (!Token.isNewlineOrEOF()) 508 return error("expected line break at the end of a list"); 509 lex(); 510 } 511 512 // Parse the instructions. 513 bool IsInBundle = false; 514 MachineInstr *PrevMI = nullptr; 515 while (true) { 516 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 517 return false; 518 else if (consumeIfPresent(MIToken::Newline)) 519 continue; 520 if (consumeIfPresent(MIToken::rbrace)) { 521 // The first parsing pass should verify that all closing '}' have an 522 // opening '{'. 523 assert(IsInBundle); 524 IsInBundle = false; 525 continue; 526 } 527 MachineInstr *MI = nullptr; 528 if (parse(MI)) 529 return true; 530 MBB.insert(MBB.end(), MI); 531 if (IsInBundle) { 532 PrevMI->setFlag(MachineInstr::BundledSucc); 533 MI->setFlag(MachineInstr::BundledPred); 534 } 535 PrevMI = MI; 536 if (Token.is(MIToken::lbrace)) { 537 if (IsInBundle) 538 return error("nested instruction bundles are not allowed"); 539 lex(); 540 // This instruction is the start of the bundle. 541 MI->setFlag(MachineInstr::BundledSucc); 542 IsInBundle = true; 543 if (!Token.is(MIToken::Newline)) 544 // The next instruction can be on the same line. 545 continue; 546 } 547 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 548 lex(); 549 } 550 return false; 551 } 552 553 bool MIParser::parseBasicBlocks() { 554 lex(); 555 // Skip until the first machine basic block. 556 while (Token.is(MIToken::Newline)) 557 lex(); 558 if (Token.isErrorOrEOF()) 559 return Token.isError(); 560 // The first parsing pass should have verified that this token is a MBB label 561 // in the 'parseBasicBlockDefinitions' method. 562 assert(Token.is(MIToken::MachineBasicBlockLabel)); 563 do { 564 MachineBasicBlock *MBB = nullptr; 565 if (parseMBBReference(MBB)) 566 return true; 567 if (parseBasicBlock(*MBB)) 568 return true; 569 // The method 'parseBasicBlock' should parse the whole block until the next 570 // block or the end of file. 571 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 572 } while (Token.isNot(MIToken::Eof)); 573 return false; 574 } 575 576 bool MIParser::parse(MachineInstr *&MI) { 577 // Parse any register operands before '=' 578 MachineOperand MO = MachineOperand::CreateImm(0); 579 SmallVector<ParsedMachineOperand, 8> Operands; 580 while (Token.isRegister() || Token.isRegisterFlag()) { 581 auto Loc = Token.location(); 582 Optional<unsigned> TiedDefIdx; 583 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 584 return true; 585 Operands.push_back( 586 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 587 if (Token.isNot(MIToken::comma)) 588 break; 589 lex(); 590 } 591 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 592 return true; 593 594 unsigned OpCode, Flags = 0; 595 if (Token.isError() || parseInstruction(OpCode, Flags)) 596 return true; 597 598 SmallVector<LLT, 1> Tys; 599 if (isPreISelGenericOpcode(OpCode)) { 600 // For generic opcode, at least one type is mandatory. 601 expectAndConsume(MIToken::lbrace); 602 do { 603 auto Loc = Token.location(); 604 Tys.resize(Tys.size() + 1); 605 if (parseLowLevelType(Loc, Tys[Tys.size() - 1])) 606 return true; 607 } while (consumeIfPresent(MIToken::comma)); 608 expectAndConsume(MIToken::rbrace); 609 } 610 611 // Parse the remaining machine operands. 612 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 613 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 614 auto Loc = Token.location(); 615 Optional<unsigned> TiedDefIdx; 616 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 617 return true; 618 Operands.push_back( 619 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 620 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 621 Token.is(MIToken::lbrace)) 622 break; 623 if (Token.isNot(MIToken::comma)) 624 return error("expected ',' before the next machine operand"); 625 lex(); 626 } 627 628 DebugLoc DebugLocation; 629 if (Token.is(MIToken::kw_debug_location)) { 630 lex(); 631 if (Token.isNot(MIToken::exclaim)) 632 return error("expected a metadata node after 'debug-location'"); 633 MDNode *Node = nullptr; 634 if (parseMDNode(Node)) 635 return true; 636 DebugLocation = DebugLoc(Node); 637 } 638 639 // Parse the machine memory operands. 640 SmallVector<MachineMemOperand *, 2> MemOperands; 641 if (Token.is(MIToken::coloncolon)) { 642 lex(); 643 while (!Token.isNewlineOrEOF()) { 644 MachineMemOperand *MemOp = nullptr; 645 if (parseMachineMemoryOperand(MemOp)) 646 return true; 647 MemOperands.push_back(MemOp); 648 if (Token.isNewlineOrEOF()) 649 break; 650 if (Token.isNot(MIToken::comma)) 651 return error("expected ',' before the next machine memory operand"); 652 lex(); 653 } 654 } 655 656 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 657 if (!MCID.isVariadic()) { 658 // FIXME: Move the implicit operand verification to the machine verifier. 659 if (verifyImplicitOperands(Operands, MCID)) 660 return true; 661 } 662 663 // TODO: Check for extraneous machine operands. 664 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 665 MI->setFlags(Flags); 666 if (Tys.size() > 0) { 667 for (unsigned i = 0; i < Tys.size(); ++i) 668 MI->setType(Tys[i], i); 669 } 670 for (const auto &Operand : Operands) 671 MI->addOperand(MF, Operand.Operand); 672 if (assignRegisterTies(*MI, Operands)) 673 return true; 674 if (MemOperands.empty()) 675 return false; 676 MachineInstr::mmo_iterator MemRefs = 677 MF.allocateMemRefsArray(MemOperands.size()); 678 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 679 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 680 return false; 681 } 682 683 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 684 lex(); 685 if (Token.isNot(MIToken::MachineBasicBlock)) 686 return error("expected a machine basic block reference"); 687 if (parseMBBReference(MBB)) 688 return true; 689 lex(); 690 if (Token.isNot(MIToken::Eof)) 691 return error( 692 "expected end of string after the machine basic block reference"); 693 return false; 694 } 695 696 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 697 lex(); 698 if (Token.isNot(MIToken::NamedRegister)) 699 return error("expected a named register"); 700 if (parseRegister(Reg)) 701 return true; 702 lex(); 703 if (Token.isNot(MIToken::Eof)) 704 return error("expected end of string after the register reference"); 705 return false; 706 } 707 708 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 709 lex(); 710 if (Token.isNot(MIToken::VirtualRegister)) 711 return error("expected a virtual register"); 712 if (parseRegister(Reg)) 713 return true; 714 lex(); 715 if (Token.isNot(MIToken::Eof)) 716 return error("expected end of string after the register reference"); 717 return false; 718 } 719 720 bool MIParser::parseStandaloneStackObject(int &FI) { 721 lex(); 722 if (Token.isNot(MIToken::StackObject)) 723 return error("expected a stack object"); 724 if (parseStackFrameIndex(FI)) 725 return true; 726 if (Token.isNot(MIToken::Eof)) 727 return error("expected end of string after the stack object reference"); 728 return false; 729 } 730 731 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 732 lex(); 733 if (Token.isNot(MIToken::exclaim)) 734 return error("expected a metadata node"); 735 if (parseMDNode(Node)) 736 return true; 737 if (Token.isNot(MIToken::Eof)) 738 return error("expected end of string after the metadata node"); 739 return false; 740 } 741 742 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 743 assert(MO.isImplicit()); 744 return MO.isDef() ? "implicit-def" : "implicit"; 745 } 746 747 static std::string getRegisterName(const TargetRegisterInfo *TRI, 748 unsigned Reg) { 749 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 750 return StringRef(TRI->getName(Reg)).lower(); 751 } 752 753 /// Return true if the parsed machine operands contain a given machine operand. 754 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 755 ArrayRef<ParsedMachineOperand> Operands) { 756 for (const auto &I : Operands) { 757 if (ImplicitOperand.isIdenticalTo(I.Operand)) 758 return true; 759 } 760 return false; 761 } 762 763 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 764 const MCInstrDesc &MCID) { 765 if (MCID.isCall()) 766 // We can't verify call instructions as they can contain arbitrary implicit 767 // register and register mask operands. 768 return false; 769 770 // Gather all the expected implicit operands. 771 SmallVector<MachineOperand, 4> ImplicitOperands; 772 if (MCID.ImplicitDefs) 773 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 774 ImplicitOperands.push_back( 775 MachineOperand::CreateReg(*ImpDefs, true, true)); 776 if (MCID.ImplicitUses) 777 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 778 ImplicitOperands.push_back( 779 MachineOperand::CreateReg(*ImpUses, false, true)); 780 781 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 782 assert(TRI && "Expected target register info"); 783 for (const auto &I : ImplicitOperands) { 784 if (isImplicitOperandIn(I, Operands)) 785 continue; 786 return error(Operands.empty() ? Token.location() : Operands.back().End, 787 Twine("missing implicit register operand '") + 788 printImplicitRegisterFlag(I) + " %" + 789 getRegisterName(TRI, I.getReg()) + "'"); 790 } 791 return false; 792 } 793 794 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 795 if (Token.is(MIToken::kw_frame_setup)) { 796 Flags |= MachineInstr::FrameSetup; 797 lex(); 798 } 799 if (Token.isNot(MIToken::Identifier)) 800 return error("expected a machine instruction"); 801 StringRef InstrName = Token.stringValue(); 802 if (parseInstrName(InstrName, OpCode)) 803 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 804 lex(); 805 return false; 806 } 807 808 bool MIParser::parseRegister(unsigned &Reg) { 809 switch (Token.kind()) { 810 case MIToken::underscore: 811 Reg = 0; 812 break; 813 case MIToken::NamedRegister: { 814 StringRef Name = Token.stringValue(); 815 if (getRegisterByName(Name, Reg)) 816 return error(Twine("unknown register name '") + Name + "'"); 817 break; 818 } 819 case MIToken::VirtualRegister: { 820 unsigned ID; 821 if (getUnsigned(ID)) 822 return true; 823 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 824 if (RegInfo == PFS.VirtualRegisterSlots.end()) 825 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 826 "'"); 827 Reg = RegInfo->second; 828 break; 829 } 830 // TODO: Parse other register kinds. 831 default: 832 llvm_unreachable("The current token should be a register"); 833 } 834 return false; 835 } 836 837 bool MIParser::parseRegisterFlag(unsigned &Flags) { 838 const unsigned OldFlags = Flags; 839 switch (Token.kind()) { 840 case MIToken::kw_implicit: 841 Flags |= RegState::Implicit; 842 break; 843 case MIToken::kw_implicit_define: 844 Flags |= RegState::ImplicitDefine; 845 break; 846 case MIToken::kw_def: 847 Flags |= RegState::Define; 848 break; 849 case MIToken::kw_dead: 850 Flags |= RegState::Dead; 851 break; 852 case MIToken::kw_killed: 853 Flags |= RegState::Kill; 854 break; 855 case MIToken::kw_undef: 856 Flags |= RegState::Undef; 857 break; 858 case MIToken::kw_internal: 859 Flags |= RegState::InternalRead; 860 break; 861 case MIToken::kw_early_clobber: 862 Flags |= RegState::EarlyClobber; 863 break; 864 case MIToken::kw_debug_use: 865 Flags |= RegState::Debug; 866 break; 867 default: 868 llvm_unreachable("The current token should be a register flag"); 869 } 870 if (OldFlags == Flags) 871 // We know that the same flag is specified more than once when the flags 872 // weren't modified. 873 return error("duplicate '" + Token.stringValue() + "' register flag"); 874 lex(); 875 return false; 876 } 877 878 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 879 assert(Token.is(MIToken::colon)); 880 lex(); 881 if (Token.isNot(MIToken::Identifier)) 882 return error("expected a subregister index after ':'"); 883 auto Name = Token.stringValue(); 884 SubReg = getSubRegIndex(Name); 885 if (!SubReg) 886 return error(Twine("use of unknown subregister index '") + Name + "'"); 887 lex(); 888 return false; 889 } 890 891 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 892 if (!consumeIfPresent(MIToken::kw_tied_def)) 893 return error("expected 'tied-def' after '('"); 894 if (Token.isNot(MIToken::IntegerLiteral)) 895 return error("expected an integer literal after 'tied-def'"); 896 if (getUnsigned(TiedDefIdx)) 897 return true; 898 lex(); 899 if (expectAndConsume(MIToken::rparen)) 900 return true; 901 return false; 902 } 903 904 bool MIParser::parseSize(unsigned &Size) { 905 if (Token.isNot(MIToken::IntegerLiteral)) 906 return error("expected an integer literal for the size"); 907 if (getUnsigned(Size)) 908 return true; 909 lex(); 910 if (expectAndConsume(MIToken::rparen)) 911 return true; 912 return false; 913 } 914 915 bool MIParser::assignRegisterTies(MachineInstr &MI, 916 ArrayRef<ParsedMachineOperand> Operands) { 917 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 918 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 919 if (!Operands[I].TiedDefIdx) 920 continue; 921 // The parser ensures that this operand is a register use, so we just have 922 // to check the tied-def operand. 923 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 924 if (DefIdx >= E) 925 return error(Operands[I].Begin, 926 Twine("use of invalid tied-def operand index '" + 927 Twine(DefIdx) + "'; instruction has only ") + 928 Twine(E) + " operands"); 929 const auto &DefOperand = Operands[DefIdx].Operand; 930 if (!DefOperand.isReg() || !DefOperand.isDef()) 931 // FIXME: add note with the def operand. 932 return error(Operands[I].Begin, 933 Twine("use of invalid tied-def operand index '") + 934 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 935 " isn't a defined register"); 936 // Check that the tied-def operand wasn't tied elsewhere. 937 for (const auto &TiedPair : TiedRegisterPairs) { 938 if (TiedPair.first == DefIdx) 939 return error(Operands[I].Begin, 940 Twine("the tied-def operand #") + Twine(DefIdx) + 941 " is already tied with another register operand"); 942 } 943 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 944 } 945 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 946 // indices must be less than tied max. 947 for (const auto &TiedPair : TiedRegisterPairs) 948 MI.tieOperands(TiedPair.first, TiedPair.second); 949 return false; 950 } 951 952 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 953 Optional<unsigned> &TiedDefIdx, 954 bool IsDef) { 955 unsigned Reg; 956 unsigned Flags = IsDef ? RegState::Define : 0; 957 while (Token.isRegisterFlag()) { 958 if (parseRegisterFlag(Flags)) 959 return true; 960 } 961 if (!Token.isRegister()) 962 return error("expected a register after register flags"); 963 if (parseRegister(Reg)) 964 return true; 965 lex(); 966 unsigned SubReg = 0; 967 if (Token.is(MIToken::colon)) { 968 if (parseSubRegisterIndex(SubReg)) 969 return true; 970 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 971 return error("subregister index expects a virtual register"); 972 } 973 if ((Flags & RegState::Define) == 0) { 974 if (consumeIfPresent(MIToken::lparen)) { 975 unsigned Idx; 976 if (parseRegisterTiedDefIndex(Idx)) 977 return true; 978 TiedDefIdx = Idx; 979 } 980 } else if (consumeIfPresent(MIToken::lparen)) { 981 MachineRegisterInfo &MRI = MF.getRegInfo(); 982 983 // Virtual registers may have a size with GlobalISel. 984 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 985 return error("unexpected size on physical register"); 986 if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>()) 987 return error("unexpected size on non-generic virtual register"); 988 989 unsigned Size; 990 if (parseSize(Size)) 991 return true; 992 993 MRI.setSize(Reg, Size); 994 } else if (PFS.GenericVRegs.count(Reg)) { 995 // Generic virtual registers must have a size. 996 // If we end up here this means the size hasn't been specified and 997 // this is bad! 998 return error("generic virtual registers must have a size"); 999 } 1000 Dest = MachineOperand::CreateReg( 1001 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1002 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1003 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1004 Flags & RegState::InternalRead); 1005 return false; 1006 } 1007 1008 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1009 assert(Token.is(MIToken::IntegerLiteral)); 1010 const APSInt &Int = Token.integerValue(); 1011 if (Int.getMinSignedBits() > 64) 1012 return error("integer literal is too large to be an immediate operand"); 1013 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1014 lex(); 1015 return false; 1016 } 1017 1018 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1019 const Constant *&C) { 1020 auto Source = StringValue.str(); // The source has to be null terminated. 1021 SMDiagnostic Err; 1022 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1023 &PFS.IRSlots); 1024 if (!C) 1025 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1026 return false; 1027 } 1028 1029 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1030 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1031 return true; 1032 lex(); 1033 return false; 1034 } 1035 1036 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty, 1037 bool MustBeSized) { 1038 if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") { 1039 if (MustBeSized) 1040 return error(Loc, "expected pN, sN or <N x sM> for sized GlobalISel type"); 1041 lex(); 1042 Ty = LLT::unsized(); 1043 return false; 1044 } else if (Token.is(MIToken::ScalarType)) { 1045 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1046 lex(); 1047 return false; 1048 } else if (Token.is(MIToken::PointerType)) { 1049 Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue()); 1050 lex(); 1051 return false; 1052 } 1053 1054 // Now we're looking for a vector. 1055 if (Token.isNot(MIToken::less)) 1056 return error(Loc, 1057 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1058 1059 lex(); 1060 1061 if (Token.isNot(MIToken::IntegerLiteral)) 1062 return error(Loc, "expected <N x sM> for vctor type"); 1063 uint64_t NumElements = Token.integerValue().getZExtValue(); 1064 lex(); 1065 1066 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1067 return error(Loc, "expected '<N x sM>' for vector type"); 1068 lex(); 1069 1070 if (Token.isNot(MIToken::ScalarType)) 1071 return error(Loc, "expected '<N x sM>' for vector type"); 1072 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1073 lex(); 1074 1075 if (Token.isNot(MIToken::greater)) 1076 return error(Loc, "expected '<N x sM>' for vector type"); 1077 lex(); 1078 1079 Ty = LLT::vector(NumElements, ScalarSize); 1080 return false; 1081 } 1082 1083 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1084 assert(Token.is(MIToken::IntegerType)); 1085 auto Loc = Token.location(); 1086 lex(); 1087 if (Token.isNot(MIToken::IntegerLiteral)) 1088 return error("expected an integer literal"); 1089 const Constant *C = nullptr; 1090 if (parseIRConstant(Loc, C)) 1091 return true; 1092 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1093 return false; 1094 } 1095 1096 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1097 auto Loc = Token.location(); 1098 lex(); 1099 if (Token.isNot(MIToken::FloatingPointLiteral)) 1100 return error("expected a floating point literal"); 1101 const Constant *C = nullptr; 1102 if (parseIRConstant(Loc, C)) 1103 return true; 1104 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1105 return false; 1106 } 1107 1108 bool MIParser::getUnsigned(unsigned &Result) { 1109 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1110 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1111 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1112 if (Val64 == Limit) 1113 return error("expected 32-bit integer (too large)"); 1114 Result = Val64; 1115 return false; 1116 } 1117 1118 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1119 assert(Token.is(MIToken::MachineBasicBlock) || 1120 Token.is(MIToken::MachineBasicBlockLabel)); 1121 unsigned Number; 1122 if (getUnsigned(Number)) 1123 return true; 1124 auto MBBInfo = PFS.MBBSlots.find(Number); 1125 if (MBBInfo == PFS.MBBSlots.end()) 1126 return error(Twine("use of undefined machine basic block #") + 1127 Twine(Number)); 1128 MBB = MBBInfo->second; 1129 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1130 return error(Twine("the name of machine basic block #") + Twine(Number) + 1131 " isn't '" + Token.stringValue() + "'"); 1132 return false; 1133 } 1134 1135 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1136 MachineBasicBlock *MBB; 1137 if (parseMBBReference(MBB)) 1138 return true; 1139 Dest = MachineOperand::CreateMBB(MBB); 1140 lex(); 1141 return false; 1142 } 1143 1144 bool MIParser::parseStackFrameIndex(int &FI) { 1145 assert(Token.is(MIToken::StackObject)); 1146 unsigned ID; 1147 if (getUnsigned(ID)) 1148 return true; 1149 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1150 if (ObjectInfo == PFS.StackObjectSlots.end()) 1151 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1152 "'"); 1153 StringRef Name; 1154 if (const auto *Alloca = 1155 MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second)) 1156 Name = Alloca->getName(); 1157 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1158 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1159 "' isn't '" + Token.stringValue() + "'"); 1160 lex(); 1161 FI = ObjectInfo->second; 1162 return false; 1163 } 1164 1165 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1166 int FI; 1167 if (parseStackFrameIndex(FI)) 1168 return true; 1169 Dest = MachineOperand::CreateFI(FI); 1170 return false; 1171 } 1172 1173 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1174 assert(Token.is(MIToken::FixedStackObject)); 1175 unsigned ID; 1176 if (getUnsigned(ID)) 1177 return true; 1178 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1179 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1180 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1181 Twine(ID) + "'"); 1182 lex(); 1183 FI = ObjectInfo->second; 1184 return false; 1185 } 1186 1187 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1188 int FI; 1189 if (parseFixedStackFrameIndex(FI)) 1190 return true; 1191 Dest = MachineOperand::CreateFI(FI); 1192 return false; 1193 } 1194 1195 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1196 switch (Token.kind()) { 1197 case MIToken::NamedGlobalValue: { 1198 const Module *M = MF.getFunction()->getParent(); 1199 GV = M->getNamedValue(Token.stringValue()); 1200 if (!GV) 1201 return error(Twine("use of undefined global value '") + Token.range() + 1202 "'"); 1203 break; 1204 } 1205 case MIToken::GlobalValue: { 1206 unsigned GVIdx; 1207 if (getUnsigned(GVIdx)) 1208 return true; 1209 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1210 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1211 "'"); 1212 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1213 break; 1214 } 1215 default: 1216 llvm_unreachable("The current token should be a global value"); 1217 } 1218 return false; 1219 } 1220 1221 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1222 GlobalValue *GV = nullptr; 1223 if (parseGlobalValue(GV)) 1224 return true; 1225 lex(); 1226 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1227 if (parseOperandsOffset(Dest)) 1228 return true; 1229 return false; 1230 } 1231 1232 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1233 assert(Token.is(MIToken::ConstantPoolItem)); 1234 unsigned ID; 1235 if (getUnsigned(ID)) 1236 return true; 1237 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1238 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1239 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1240 lex(); 1241 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1242 if (parseOperandsOffset(Dest)) 1243 return true; 1244 return false; 1245 } 1246 1247 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1248 assert(Token.is(MIToken::JumpTableIndex)); 1249 unsigned ID; 1250 if (getUnsigned(ID)) 1251 return true; 1252 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1253 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1254 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1255 lex(); 1256 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1257 return false; 1258 } 1259 1260 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1261 assert(Token.is(MIToken::ExternalSymbol)); 1262 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1263 lex(); 1264 Dest = MachineOperand::CreateES(Symbol); 1265 if (parseOperandsOffset(Dest)) 1266 return true; 1267 return false; 1268 } 1269 1270 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1271 assert(Token.is(MIToken::SubRegisterIndex)); 1272 StringRef Name = Token.stringValue(); 1273 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1274 if (SubRegIndex == 0) 1275 return error(Twine("unknown subregister index '") + Name + "'"); 1276 lex(); 1277 Dest = MachineOperand::CreateImm(SubRegIndex); 1278 return false; 1279 } 1280 1281 bool MIParser::parseMDNode(MDNode *&Node) { 1282 assert(Token.is(MIToken::exclaim)); 1283 auto Loc = Token.location(); 1284 lex(); 1285 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1286 return error("expected metadata id after '!'"); 1287 unsigned ID; 1288 if (getUnsigned(ID)) 1289 return true; 1290 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1291 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1292 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1293 lex(); 1294 Node = NodeInfo->second.get(); 1295 return false; 1296 } 1297 1298 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1299 MDNode *Node = nullptr; 1300 if (parseMDNode(Node)) 1301 return true; 1302 Dest = MachineOperand::CreateMetadata(Node); 1303 return false; 1304 } 1305 1306 bool MIParser::parseCFIOffset(int &Offset) { 1307 if (Token.isNot(MIToken::IntegerLiteral)) 1308 return error("expected a cfi offset"); 1309 if (Token.integerValue().getMinSignedBits() > 32) 1310 return error("expected a 32 bit integer (the cfi offset is too large)"); 1311 Offset = (int)Token.integerValue().getExtValue(); 1312 lex(); 1313 return false; 1314 } 1315 1316 bool MIParser::parseCFIRegister(unsigned &Reg) { 1317 if (Token.isNot(MIToken::NamedRegister)) 1318 return error("expected a cfi register"); 1319 unsigned LLVMReg; 1320 if (parseRegister(LLVMReg)) 1321 return true; 1322 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1323 assert(TRI && "Expected target register info"); 1324 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1325 if (DwarfReg < 0) 1326 return error("invalid DWARF register"); 1327 Reg = (unsigned)DwarfReg; 1328 lex(); 1329 return false; 1330 } 1331 1332 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1333 auto Kind = Token.kind(); 1334 lex(); 1335 auto &MMI = MF.getMMI(); 1336 int Offset; 1337 unsigned Reg; 1338 unsigned CFIIndex; 1339 switch (Kind) { 1340 case MIToken::kw_cfi_same_value: 1341 if (parseCFIRegister(Reg)) 1342 return true; 1343 CFIIndex = 1344 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1345 break; 1346 case MIToken::kw_cfi_offset: 1347 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1348 parseCFIOffset(Offset)) 1349 return true; 1350 CFIIndex = 1351 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1352 break; 1353 case MIToken::kw_cfi_def_cfa_register: 1354 if (parseCFIRegister(Reg)) 1355 return true; 1356 CFIIndex = 1357 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1358 break; 1359 case MIToken::kw_cfi_def_cfa_offset: 1360 if (parseCFIOffset(Offset)) 1361 return true; 1362 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1363 CFIIndex = MMI.addFrameInst( 1364 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1365 break; 1366 case MIToken::kw_cfi_def_cfa: 1367 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1368 parseCFIOffset(Offset)) 1369 return true; 1370 // NB: MCCFIInstruction::createDefCfa negates the offset. 1371 CFIIndex = 1372 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1373 break; 1374 default: 1375 // TODO: Parse the other CFI operands. 1376 llvm_unreachable("The current token should be a cfi operand"); 1377 } 1378 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1379 return false; 1380 } 1381 1382 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1383 switch (Token.kind()) { 1384 case MIToken::NamedIRBlock: { 1385 BB = dyn_cast_or_null<BasicBlock>( 1386 F.getValueSymbolTable().lookup(Token.stringValue())); 1387 if (!BB) 1388 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1389 break; 1390 } 1391 case MIToken::IRBlock: { 1392 unsigned SlotNumber = 0; 1393 if (getUnsigned(SlotNumber)) 1394 return true; 1395 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1396 if (!BB) 1397 return error(Twine("use of undefined IR block '%ir-block.") + 1398 Twine(SlotNumber) + "'"); 1399 break; 1400 } 1401 default: 1402 llvm_unreachable("The current token should be an IR block reference"); 1403 } 1404 return false; 1405 } 1406 1407 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1408 assert(Token.is(MIToken::kw_blockaddress)); 1409 lex(); 1410 if (expectAndConsume(MIToken::lparen)) 1411 return true; 1412 if (Token.isNot(MIToken::GlobalValue) && 1413 Token.isNot(MIToken::NamedGlobalValue)) 1414 return error("expected a global value"); 1415 GlobalValue *GV = nullptr; 1416 if (parseGlobalValue(GV)) 1417 return true; 1418 auto *F = dyn_cast<Function>(GV); 1419 if (!F) 1420 return error("expected an IR function reference"); 1421 lex(); 1422 if (expectAndConsume(MIToken::comma)) 1423 return true; 1424 BasicBlock *BB = nullptr; 1425 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1426 return error("expected an IR block reference"); 1427 if (parseIRBlock(BB, *F)) 1428 return true; 1429 lex(); 1430 if (expectAndConsume(MIToken::rparen)) 1431 return true; 1432 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1433 if (parseOperandsOffset(Dest)) 1434 return true; 1435 return false; 1436 } 1437 1438 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1439 assert(Token.is(MIToken::kw_target_index)); 1440 lex(); 1441 if (expectAndConsume(MIToken::lparen)) 1442 return true; 1443 if (Token.isNot(MIToken::Identifier)) 1444 return error("expected the name of the target index"); 1445 int Index = 0; 1446 if (getTargetIndex(Token.stringValue(), Index)) 1447 return error("use of undefined target index '" + Token.stringValue() + "'"); 1448 lex(); 1449 if (expectAndConsume(MIToken::rparen)) 1450 return true; 1451 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1452 if (parseOperandsOffset(Dest)) 1453 return true; 1454 return false; 1455 } 1456 1457 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1458 assert(Token.is(MIToken::kw_liveout)); 1459 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1460 assert(TRI && "Expected target register info"); 1461 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1462 lex(); 1463 if (expectAndConsume(MIToken::lparen)) 1464 return true; 1465 while (true) { 1466 if (Token.isNot(MIToken::NamedRegister)) 1467 return error("expected a named register"); 1468 unsigned Reg = 0; 1469 if (parseRegister(Reg)) 1470 return true; 1471 lex(); 1472 Mask[Reg / 32] |= 1U << (Reg % 32); 1473 // TODO: Report an error if the same register is used more than once. 1474 if (Token.isNot(MIToken::comma)) 1475 break; 1476 lex(); 1477 } 1478 if (expectAndConsume(MIToken::rparen)) 1479 return true; 1480 Dest = MachineOperand::CreateRegLiveOut(Mask); 1481 return false; 1482 } 1483 1484 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1485 Optional<unsigned> &TiedDefIdx) { 1486 switch (Token.kind()) { 1487 case MIToken::kw_implicit: 1488 case MIToken::kw_implicit_define: 1489 case MIToken::kw_def: 1490 case MIToken::kw_dead: 1491 case MIToken::kw_killed: 1492 case MIToken::kw_undef: 1493 case MIToken::kw_internal: 1494 case MIToken::kw_early_clobber: 1495 case MIToken::kw_debug_use: 1496 case MIToken::underscore: 1497 case MIToken::NamedRegister: 1498 case MIToken::VirtualRegister: 1499 return parseRegisterOperand(Dest, TiedDefIdx); 1500 case MIToken::IntegerLiteral: 1501 return parseImmediateOperand(Dest); 1502 case MIToken::IntegerType: 1503 return parseTypedImmediateOperand(Dest); 1504 case MIToken::kw_half: 1505 case MIToken::kw_float: 1506 case MIToken::kw_double: 1507 case MIToken::kw_x86_fp80: 1508 case MIToken::kw_fp128: 1509 case MIToken::kw_ppc_fp128: 1510 return parseFPImmediateOperand(Dest); 1511 case MIToken::MachineBasicBlock: 1512 return parseMBBOperand(Dest); 1513 case MIToken::StackObject: 1514 return parseStackObjectOperand(Dest); 1515 case MIToken::FixedStackObject: 1516 return parseFixedStackObjectOperand(Dest); 1517 case MIToken::GlobalValue: 1518 case MIToken::NamedGlobalValue: 1519 return parseGlobalAddressOperand(Dest); 1520 case MIToken::ConstantPoolItem: 1521 return parseConstantPoolIndexOperand(Dest); 1522 case MIToken::JumpTableIndex: 1523 return parseJumpTableIndexOperand(Dest); 1524 case MIToken::ExternalSymbol: 1525 return parseExternalSymbolOperand(Dest); 1526 case MIToken::SubRegisterIndex: 1527 return parseSubRegisterIndexOperand(Dest); 1528 case MIToken::exclaim: 1529 return parseMetadataOperand(Dest); 1530 case MIToken::kw_cfi_same_value: 1531 case MIToken::kw_cfi_offset: 1532 case MIToken::kw_cfi_def_cfa_register: 1533 case MIToken::kw_cfi_def_cfa_offset: 1534 case MIToken::kw_cfi_def_cfa: 1535 return parseCFIOperand(Dest); 1536 case MIToken::kw_blockaddress: 1537 return parseBlockAddressOperand(Dest); 1538 case MIToken::kw_target_index: 1539 return parseTargetIndexOperand(Dest); 1540 case MIToken::kw_liveout: 1541 return parseLiveoutRegisterMaskOperand(Dest); 1542 case MIToken::Error: 1543 return true; 1544 case MIToken::Identifier: 1545 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1546 Dest = MachineOperand::CreateRegMask(RegMask); 1547 lex(); 1548 break; 1549 } 1550 // fallthrough 1551 default: 1552 // FIXME: Parse the MCSymbol machine operand. 1553 return error("expected a machine operand"); 1554 } 1555 return false; 1556 } 1557 1558 bool MIParser::parseMachineOperandAndTargetFlags( 1559 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1560 unsigned TF = 0; 1561 bool HasTargetFlags = false; 1562 if (Token.is(MIToken::kw_target_flags)) { 1563 HasTargetFlags = true; 1564 lex(); 1565 if (expectAndConsume(MIToken::lparen)) 1566 return true; 1567 if (Token.isNot(MIToken::Identifier)) 1568 return error("expected the name of the target flag"); 1569 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1570 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1571 return error("use of undefined target flag '" + Token.stringValue() + 1572 "'"); 1573 } 1574 lex(); 1575 while (Token.is(MIToken::comma)) { 1576 lex(); 1577 if (Token.isNot(MIToken::Identifier)) 1578 return error("expected the name of the target flag"); 1579 unsigned BitFlag = 0; 1580 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1581 return error("use of undefined target flag '" + Token.stringValue() + 1582 "'"); 1583 // TODO: Report an error when using a duplicate bit target flag. 1584 TF |= BitFlag; 1585 lex(); 1586 } 1587 if (expectAndConsume(MIToken::rparen)) 1588 return true; 1589 } 1590 auto Loc = Token.location(); 1591 if (parseMachineOperand(Dest, TiedDefIdx)) 1592 return true; 1593 if (!HasTargetFlags) 1594 return false; 1595 if (Dest.isReg()) 1596 return error(Loc, "register operands can't have target flags"); 1597 Dest.setTargetFlags(TF); 1598 return false; 1599 } 1600 1601 bool MIParser::parseOffset(int64_t &Offset) { 1602 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1603 return false; 1604 StringRef Sign = Token.range(); 1605 bool IsNegative = Token.is(MIToken::minus); 1606 lex(); 1607 if (Token.isNot(MIToken::IntegerLiteral)) 1608 return error("expected an integer literal after '" + Sign + "'"); 1609 if (Token.integerValue().getMinSignedBits() > 64) 1610 return error("expected 64-bit integer (too large)"); 1611 Offset = Token.integerValue().getExtValue(); 1612 if (IsNegative) 1613 Offset = -Offset; 1614 lex(); 1615 return false; 1616 } 1617 1618 bool MIParser::parseAlignment(unsigned &Alignment) { 1619 assert(Token.is(MIToken::kw_align)); 1620 lex(); 1621 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1622 return error("expected an integer literal after 'align'"); 1623 if (getUnsigned(Alignment)) 1624 return true; 1625 lex(); 1626 return false; 1627 } 1628 1629 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1630 int64_t Offset = 0; 1631 if (parseOffset(Offset)) 1632 return true; 1633 Op.setOffset(Offset); 1634 return false; 1635 } 1636 1637 bool MIParser::parseIRValue(const Value *&V) { 1638 switch (Token.kind()) { 1639 case MIToken::NamedIRValue: { 1640 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1641 break; 1642 } 1643 case MIToken::IRValue: { 1644 unsigned SlotNumber = 0; 1645 if (getUnsigned(SlotNumber)) 1646 return true; 1647 V = getIRValue(SlotNumber); 1648 break; 1649 } 1650 case MIToken::NamedGlobalValue: 1651 case MIToken::GlobalValue: { 1652 GlobalValue *GV = nullptr; 1653 if (parseGlobalValue(GV)) 1654 return true; 1655 V = GV; 1656 break; 1657 } 1658 case MIToken::QuotedIRValue: { 1659 const Constant *C = nullptr; 1660 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1661 return true; 1662 V = C; 1663 break; 1664 } 1665 default: 1666 llvm_unreachable("The current token should be an IR block reference"); 1667 } 1668 if (!V) 1669 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1670 return false; 1671 } 1672 1673 bool MIParser::getUint64(uint64_t &Result) { 1674 assert(Token.hasIntegerValue()); 1675 if (Token.integerValue().getActiveBits() > 64) 1676 return error("expected 64-bit integer (too large)"); 1677 Result = Token.integerValue().getZExtValue(); 1678 return false; 1679 } 1680 1681 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1682 const auto OldFlags = Flags; 1683 switch (Token.kind()) { 1684 case MIToken::kw_volatile: 1685 Flags |= MachineMemOperand::MOVolatile; 1686 break; 1687 case MIToken::kw_non_temporal: 1688 Flags |= MachineMemOperand::MONonTemporal; 1689 break; 1690 case MIToken::kw_invariant: 1691 Flags |= MachineMemOperand::MOInvariant; 1692 break; 1693 // TODO: parse the target specific memory operand flags. 1694 default: 1695 llvm_unreachable("The current token should be a memory operand flag"); 1696 } 1697 if (OldFlags == Flags) 1698 // We know that the same flag is specified more than once when the flags 1699 // weren't modified. 1700 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1701 lex(); 1702 return false; 1703 } 1704 1705 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1706 switch (Token.kind()) { 1707 case MIToken::kw_stack: 1708 PSV = MF.getPSVManager().getStack(); 1709 break; 1710 case MIToken::kw_got: 1711 PSV = MF.getPSVManager().getGOT(); 1712 break; 1713 case MIToken::kw_jump_table: 1714 PSV = MF.getPSVManager().getJumpTable(); 1715 break; 1716 case MIToken::kw_constant_pool: 1717 PSV = MF.getPSVManager().getConstantPool(); 1718 break; 1719 case MIToken::FixedStackObject: { 1720 int FI; 1721 if (parseFixedStackFrameIndex(FI)) 1722 return true; 1723 PSV = MF.getPSVManager().getFixedStack(FI); 1724 // The token was already consumed, so use return here instead of break. 1725 return false; 1726 } 1727 case MIToken::StackObject: { 1728 int FI; 1729 if (parseStackFrameIndex(FI)) 1730 return true; 1731 PSV = MF.getPSVManager().getFixedStack(FI); 1732 // The token was already consumed, so use return here instead of break. 1733 return false; 1734 } 1735 case MIToken::kw_call_entry: { 1736 lex(); 1737 switch (Token.kind()) { 1738 case MIToken::GlobalValue: 1739 case MIToken::NamedGlobalValue: { 1740 GlobalValue *GV = nullptr; 1741 if (parseGlobalValue(GV)) 1742 return true; 1743 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1744 break; 1745 } 1746 case MIToken::ExternalSymbol: 1747 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1748 MF.createExternalSymbolName(Token.stringValue())); 1749 break; 1750 default: 1751 return error( 1752 "expected a global value or an external symbol after 'call-entry'"); 1753 } 1754 break; 1755 } 1756 default: 1757 llvm_unreachable("The current token should be pseudo source value"); 1758 } 1759 lex(); 1760 return false; 1761 } 1762 1763 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1764 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1765 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1766 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1767 Token.is(MIToken::kw_call_entry)) { 1768 const PseudoSourceValue *PSV = nullptr; 1769 if (parseMemoryPseudoSourceValue(PSV)) 1770 return true; 1771 int64_t Offset = 0; 1772 if (parseOffset(Offset)) 1773 return true; 1774 Dest = MachinePointerInfo(PSV, Offset); 1775 return false; 1776 } 1777 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1778 Token.isNot(MIToken::GlobalValue) && 1779 Token.isNot(MIToken::NamedGlobalValue) && 1780 Token.isNot(MIToken::QuotedIRValue)) 1781 return error("expected an IR value reference"); 1782 const Value *V = nullptr; 1783 if (parseIRValue(V)) 1784 return true; 1785 if (!V->getType()->isPointerTy()) 1786 return error("expected a pointer IR value"); 1787 lex(); 1788 int64_t Offset = 0; 1789 if (parseOffset(Offset)) 1790 return true; 1791 Dest = MachinePointerInfo(V, Offset); 1792 return false; 1793 } 1794 1795 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1796 if (expectAndConsume(MIToken::lparen)) 1797 return true; 1798 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1799 while (Token.isMemoryOperandFlag()) { 1800 if (parseMemoryOperandFlag(Flags)) 1801 return true; 1802 } 1803 if (Token.isNot(MIToken::Identifier) || 1804 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1805 return error("expected 'load' or 'store' memory operation"); 1806 if (Token.stringValue() == "load") 1807 Flags |= MachineMemOperand::MOLoad; 1808 else 1809 Flags |= MachineMemOperand::MOStore; 1810 lex(); 1811 1812 if (Token.isNot(MIToken::IntegerLiteral)) 1813 return error("expected the size integer literal after memory operation"); 1814 uint64_t Size; 1815 if (getUint64(Size)) 1816 return true; 1817 lex(); 1818 1819 MachinePointerInfo Ptr = MachinePointerInfo(); 1820 if (Token.is(MIToken::Identifier)) { 1821 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1822 if (Token.stringValue() != Word) 1823 return error(Twine("expected '") + Word + "'"); 1824 lex(); 1825 1826 if (parseMachinePointerInfo(Ptr)) 1827 return true; 1828 } 1829 unsigned BaseAlignment = Size; 1830 AAMDNodes AAInfo; 1831 MDNode *Range = nullptr; 1832 while (consumeIfPresent(MIToken::comma)) { 1833 switch (Token.kind()) { 1834 case MIToken::kw_align: 1835 if (parseAlignment(BaseAlignment)) 1836 return true; 1837 break; 1838 case MIToken::md_tbaa: 1839 lex(); 1840 if (parseMDNode(AAInfo.TBAA)) 1841 return true; 1842 break; 1843 case MIToken::md_alias_scope: 1844 lex(); 1845 if (parseMDNode(AAInfo.Scope)) 1846 return true; 1847 break; 1848 case MIToken::md_noalias: 1849 lex(); 1850 if (parseMDNode(AAInfo.NoAlias)) 1851 return true; 1852 break; 1853 case MIToken::md_range: 1854 lex(); 1855 if (parseMDNode(Range)) 1856 return true; 1857 break; 1858 // TODO: Report an error on duplicate metadata nodes. 1859 default: 1860 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1861 "'!noalias' or '!range'"); 1862 } 1863 } 1864 if (expectAndConsume(MIToken::rparen)) 1865 return true; 1866 Dest = 1867 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1868 return false; 1869 } 1870 1871 void MIParser::initNames2InstrOpCodes() { 1872 if (!Names2InstrOpCodes.empty()) 1873 return; 1874 const auto *TII = MF.getSubtarget().getInstrInfo(); 1875 assert(TII && "Expected target instruction info"); 1876 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1877 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1878 } 1879 1880 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1881 initNames2InstrOpCodes(); 1882 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1883 if (InstrInfo == Names2InstrOpCodes.end()) 1884 return true; 1885 OpCode = InstrInfo->getValue(); 1886 return false; 1887 } 1888 1889 void MIParser::initNames2Regs() { 1890 if (!Names2Regs.empty()) 1891 return; 1892 // The '%noreg' register is the register 0. 1893 Names2Regs.insert(std::make_pair("noreg", 0)); 1894 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1895 assert(TRI && "Expected target register info"); 1896 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1897 bool WasInserted = 1898 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1899 .second; 1900 (void)WasInserted; 1901 assert(WasInserted && "Expected registers to be unique case-insensitively"); 1902 } 1903 } 1904 1905 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 1906 initNames2Regs(); 1907 auto RegInfo = Names2Regs.find(RegName); 1908 if (RegInfo == Names2Regs.end()) 1909 return true; 1910 Reg = RegInfo->getValue(); 1911 return false; 1912 } 1913 1914 void MIParser::initNames2RegMasks() { 1915 if (!Names2RegMasks.empty()) 1916 return; 1917 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1918 assert(TRI && "Expected target register info"); 1919 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 1920 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 1921 assert(RegMasks.size() == RegMaskNames.size()); 1922 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 1923 Names2RegMasks.insert( 1924 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 1925 } 1926 1927 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 1928 initNames2RegMasks(); 1929 auto RegMaskInfo = Names2RegMasks.find(Identifier); 1930 if (RegMaskInfo == Names2RegMasks.end()) 1931 return nullptr; 1932 return RegMaskInfo->getValue(); 1933 } 1934 1935 void MIParser::initNames2SubRegIndices() { 1936 if (!Names2SubRegIndices.empty()) 1937 return; 1938 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1939 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 1940 Names2SubRegIndices.insert( 1941 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 1942 } 1943 1944 unsigned MIParser::getSubRegIndex(StringRef Name) { 1945 initNames2SubRegIndices(); 1946 auto SubRegInfo = Names2SubRegIndices.find(Name); 1947 if (SubRegInfo == Names2SubRegIndices.end()) 1948 return 0; 1949 return SubRegInfo->getValue(); 1950 } 1951 1952 static void initSlots2BasicBlocks( 1953 const Function &F, 1954 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1955 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1956 MST.incorporateFunction(F); 1957 for (auto &BB : F) { 1958 if (BB.hasName()) 1959 continue; 1960 int Slot = MST.getLocalSlot(&BB); 1961 if (Slot == -1) 1962 continue; 1963 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 1964 } 1965 } 1966 1967 static const BasicBlock *getIRBlockFromSlot( 1968 unsigned Slot, 1969 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1970 auto BlockInfo = Slots2BasicBlocks.find(Slot); 1971 if (BlockInfo == Slots2BasicBlocks.end()) 1972 return nullptr; 1973 return BlockInfo->second; 1974 } 1975 1976 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 1977 if (Slots2BasicBlocks.empty()) 1978 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 1979 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 1980 } 1981 1982 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 1983 if (&F == MF.getFunction()) 1984 return getIRBlock(Slot); 1985 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 1986 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 1987 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 1988 } 1989 1990 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 1991 DenseMap<unsigned, const Value *> &Slots2Values) { 1992 int Slot = MST.getLocalSlot(V); 1993 if (Slot == -1) 1994 return; 1995 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 1996 } 1997 1998 /// Creates the mapping from slot numbers to function's unnamed IR values. 1999 static void initSlots2Values(const Function &F, 2000 DenseMap<unsigned, const Value *> &Slots2Values) { 2001 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2002 MST.incorporateFunction(F); 2003 for (const auto &Arg : F.args()) 2004 mapValueToSlot(&Arg, MST, Slots2Values); 2005 for (const auto &BB : F) { 2006 mapValueToSlot(&BB, MST, Slots2Values); 2007 for (const auto &I : BB) 2008 mapValueToSlot(&I, MST, Slots2Values); 2009 } 2010 } 2011 2012 const Value *MIParser::getIRValue(unsigned Slot) { 2013 if (Slots2Values.empty()) 2014 initSlots2Values(*MF.getFunction(), Slots2Values); 2015 auto ValueInfo = Slots2Values.find(Slot); 2016 if (ValueInfo == Slots2Values.end()) 2017 return nullptr; 2018 return ValueInfo->second; 2019 } 2020 2021 void MIParser::initNames2TargetIndices() { 2022 if (!Names2TargetIndices.empty()) 2023 return; 2024 const auto *TII = MF.getSubtarget().getInstrInfo(); 2025 assert(TII && "Expected target instruction info"); 2026 auto Indices = TII->getSerializableTargetIndices(); 2027 for (const auto &I : Indices) 2028 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2029 } 2030 2031 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2032 initNames2TargetIndices(); 2033 auto IndexInfo = Names2TargetIndices.find(Name); 2034 if (IndexInfo == Names2TargetIndices.end()) 2035 return true; 2036 Index = IndexInfo->second; 2037 return false; 2038 } 2039 2040 void MIParser::initNames2DirectTargetFlags() { 2041 if (!Names2DirectTargetFlags.empty()) 2042 return; 2043 const auto *TII = MF.getSubtarget().getInstrInfo(); 2044 assert(TII && "Expected target instruction info"); 2045 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2046 for (const auto &I : Flags) 2047 Names2DirectTargetFlags.insert( 2048 std::make_pair(StringRef(I.second), I.first)); 2049 } 2050 2051 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2052 initNames2DirectTargetFlags(); 2053 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2054 if (FlagInfo == Names2DirectTargetFlags.end()) 2055 return true; 2056 Flag = FlagInfo->second; 2057 return false; 2058 } 2059 2060 void MIParser::initNames2BitmaskTargetFlags() { 2061 if (!Names2BitmaskTargetFlags.empty()) 2062 return; 2063 const auto *TII = MF.getSubtarget().getInstrInfo(); 2064 assert(TII && "Expected target instruction info"); 2065 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2066 for (const auto &I : Flags) 2067 Names2BitmaskTargetFlags.insert( 2068 std::make_pair(StringRef(I.second), I.first)); 2069 } 2070 2071 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2072 initNames2BitmaskTargetFlags(); 2073 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2074 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2075 return true; 2076 Flag = FlagInfo->second; 2077 return false; 2078 } 2079 2080 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2081 StringRef Src, 2082 SMDiagnostic &Error) { 2083 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2084 } 2085 2086 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS, 2087 StringRef Src, SMDiagnostic &Error) { 2088 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2089 } 2090 2091 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS, 2092 MachineBasicBlock *&MBB, StringRef Src, 2093 SMDiagnostic &Error) { 2094 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2095 } 2096 2097 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS, 2098 unsigned &Reg, StringRef Src, 2099 SMDiagnostic &Error) { 2100 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2101 } 2102 2103 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS, 2104 unsigned &Reg, StringRef Src, 2105 SMDiagnostic &Error) { 2106 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg); 2107 } 2108 2109 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS, 2110 int &FI, StringRef Src, 2111 SMDiagnostic &Error) { 2112 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2113 } 2114 2115 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS, 2116 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2117 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2118 } 2119