1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MILexer.h" 15 #include "MIParser.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/Metadata.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/IR/ModuleSlotTracker.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/IR/ValueSymbolTable.h" 53 #include "llvm/MC/LaneBitmask.h" 54 #include "llvm/MC/MCDwarf.h" 55 #include "llvm/MC/MCInstrDesc.h" 56 #include "llvm/MC/MCRegisterInfo.h" 57 #include "llvm/Support/AtomicOrdering.h" 58 #include "llvm/Support/BranchProbability.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/LowLevelTypeImpl.h" 62 #include "llvm/Support/MemoryBuffer.h" 63 #include "llvm/Support/SMLoc.h" 64 #include "llvm/Support/SourceMgr.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetInstrInfo.h" 67 #include "llvm/Target/TargetIntrinsicInfo.h" 68 #include "llvm/Target/TargetMachine.h" 69 #include "llvm/Target/TargetRegisterInfo.h" 70 #include "llvm/Target/TargetSubtargetInfo.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 namespace { 102 103 /// A wrapper struct around the 'MachineOperand' struct that includes a source 104 /// range and other attributes. 105 struct ParsedMachineOperand { 106 MachineOperand Operand; 107 StringRef::iterator Begin; 108 StringRef::iterator End; 109 Optional<unsigned> TiedDefIdx; 110 111 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 112 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 113 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 114 if (TiedDefIdx) 115 assert(Operand.isReg() && Operand.isUse() && 116 "Only used register operands can be tied"); 117 } 118 }; 119 120 class MIParser { 121 MachineFunction &MF; 122 SMDiagnostic &Error; 123 StringRef Source, CurrentSource; 124 MIToken Token; 125 PerFunctionMIParsingState &PFS; 126 /// Maps from instruction names to op codes. 127 StringMap<unsigned> Names2InstrOpCodes; 128 /// Maps from register names to registers. 129 StringMap<unsigned> Names2Regs; 130 /// Maps from register mask names to register masks. 131 StringMap<const uint32_t *> Names2RegMasks; 132 /// Maps from subregister names to subregister indices. 133 StringMap<unsigned> Names2SubRegIndices; 134 /// Maps from slot numbers to function's unnamed basic blocks. 135 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 136 /// Maps from slot numbers to function's unnamed values. 137 DenseMap<unsigned, const Value *> Slots2Values; 138 /// Maps from target index names to target indices. 139 StringMap<int> Names2TargetIndices; 140 /// Maps from direct target flag names to the direct target flag values. 141 StringMap<unsigned> Names2DirectTargetFlags; 142 /// Maps from direct target flag names to the bitmask target flag values. 143 StringMap<unsigned> Names2BitmaskTargetFlags; 144 145 public: 146 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 147 StringRef Source); 148 149 /// \p SkipChar gives the number of characters to skip before looking 150 /// for the next token. 151 void lex(unsigned SkipChar = 0); 152 153 /// Report an error at the current location with the given message. 154 /// 155 /// This function always return true. 156 bool error(const Twine &Msg); 157 158 /// Report an error at the given location with the given message. 159 /// 160 /// This function always return true. 161 bool error(StringRef::iterator Loc, const Twine &Msg); 162 163 bool 164 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 165 bool parseBasicBlocks(); 166 bool parse(MachineInstr *&MI); 167 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 168 bool parseStandaloneNamedRegister(unsigned &Reg); 169 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 170 bool parseStandaloneRegister(unsigned &Reg); 171 bool parseStandaloneStackObject(int &FI); 172 bool parseStandaloneMDNode(MDNode *&Node); 173 174 bool 175 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 176 bool parseBasicBlock(MachineBasicBlock &MBB, 177 MachineBasicBlock *&AddFalthroughFrom); 178 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 179 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 180 181 bool parseNamedRegister(unsigned &Reg); 182 bool parseVirtualRegister(VRegInfo *&Info); 183 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 184 bool parseRegisterFlag(unsigned &Flags); 185 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 186 bool parseSubRegisterIndex(unsigned &SubReg); 187 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 188 bool parseRegisterOperand(MachineOperand &Dest, 189 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 190 bool parseImmediateOperand(MachineOperand &Dest); 191 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 192 const Constant *&C); 193 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 194 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 195 bool parseTypedImmediateOperand(MachineOperand &Dest); 196 bool parseFPImmediateOperand(MachineOperand &Dest); 197 bool parseMBBReference(MachineBasicBlock *&MBB); 198 bool parseMBBOperand(MachineOperand &Dest); 199 bool parseStackFrameIndex(int &FI); 200 bool parseStackObjectOperand(MachineOperand &Dest); 201 bool parseFixedStackFrameIndex(int &FI); 202 bool parseFixedStackObjectOperand(MachineOperand &Dest); 203 bool parseGlobalValue(GlobalValue *&GV); 204 bool parseGlobalAddressOperand(MachineOperand &Dest); 205 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 206 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 207 bool parseJumpTableIndexOperand(MachineOperand &Dest); 208 bool parseExternalSymbolOperand(MachineOperand &Dest); 209 bool parseMDNode(MDNode *&Node); 210 bool parseMetadataOperand(MachineOperand &Dest); 211 bool parseCFIOffset(int &Offset); 212 bool parseCFIRegister(unsigned &Reg); 213 bool parseCFIOperand(MachineOperand &Dest); 214 bool parseIRBlock(BasicBlock *&BB, const Function &F); 215 bool parseBlockAddressOperand(MachineOperand &Dest); 216 bool parseIntrinsicOperand(MachineOperand &Dest); 217 bool parsePredicateOperand(MachineOperand &Dest); 218 bool parseTargetIndexOperand(MachineOperand &Dest); 219 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 220 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 221 bool parseMachineOperand(MachineOperand &Dest, 222 Optional<unsigned> &TiedDefIdx); 223 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 224 Optional<unsigned> &TiedDefIdx); 225 bool parseOffset(int64_t &Offset); 226 bool parseAlignment(unsigned &Alignment); 227 bool parseOperandsOffset(MachineOperand &Op); 228 bool parseIRValue(const Value *&V); 229 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 230 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 231 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 232 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 233 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 234 235 private: 236 /// Convert the integer literal in the current token into an unsigned integer. 237 /// 238 /// Return true if an error occurred. 239 bool getUnsigned(unsigned &Result); 240 241 /// Convert the integer literal in the current token into an uint64. 242 /// 243 /// Return true if an error occurred. 244 bool getUint64(uint64_t &Result); 245 246 /// Convert the hexadecimal literal in the current token into an unsigned 247 /// APInt with a minimum bitwidth required to represent the value. 248 /// 249 /// Return true if the literal does not represent an integer value. 250 bool getHexUint(APInt &Result); 251 252 /// If the current token is of the given kind, consume it and return false. 253 /// Otherwise report an error and return true. 254 bool expectAndConsume(MIToken::TokenKind TokenKind); 255 256 /// If the current token is of the given kind, consume it and return true. 257 /// Otherwise return false. 258 bool consumeIfPresent(MIToken::TokenKind TokenKind); 259 260 void initNames2InstrOpCodes(); 261 262 /// Try to convert an instruction name to an opcode. Return true if the 263 /// instruction name is invalid. 264 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 265 266 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 267 268 bool assignRegisterTies(MachineInstr &MI, 269 ArrayRef<ParsedMachineOperand> Operands); 270 271 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 272 const MCInstrDesc &MCID); 273 274 void initNames2Regs(); 275 276 /// Try to convert a register name to a register number. Return true if the 277 /// register name is invalid. 278 bool getRegisterByName(StringRef RegName, unsigned &Reg); 279 280 void initNames2RegMasks(); 281 282 /// Check if the given identifier is a name of a register mask. 283 /// 284 /// Return null if the identifier isn't a register mask. 285 const uint32_t *getRegMask(StringRef Identifier); 286 287 void initNames2SubRegIndices(); 288 289 /// Check if the given identifier is a name of a subregister index. 290 /// 291 /// Return 0 if the name isn't a subregister index class. 292 unsigned getSubRegIndex(StringRef Name); 293 294 const BasicBlock *getIRBlock(unsigned Slot); 295 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 296 297 const Value *getIRValue(unsigned Slot); 298 299 void initNames2TargetIndices(); 300 301 /// Try to convert a name of target index to the corresponding target index. 302 /// 303 /// Return true if the name isn't a name of a target index. 304 bool getTargetIndex(StringRef Name, int &Index); 305 306 void initNames2DirectTargetFlags(); 307 308 /// Try to convert a name of a direct target flag to the corresponding 309 /// target flag. 310 /// 311 /// Return true if the name isn't a name of a direct flag. 312 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 313 314 void initNames2BitmaskTargetFlags(); 315 316 /// Try to convert a name of a bitmask target flag to the corresponding 317 /// target flag. 318 /// 319 /// Return true if the name isn't a name of a bitmask target flag. 320 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 321 }; 322 323 } // end anonymous namespace 324 325 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 326 StringRef Source) 327 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 328 {} 329 330 void MIParser::lex(unsigned SkipChar) { 331 CurrentSource = lexMIToken( 332 CurrentSource.data() + SkipChar, Token, 333 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 334 } 335 336 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 337 338 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 339 const SourceMgr &SM = *PFS.SM; 340 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 341 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 342 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 343 // Create an ordinary diagnostic when the source manager's buffer is the 344 // source string. 345 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 346 return true; 347 } 348 // Create a diagnostic for a YAML string literal. 349 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 350 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 351 Source, None, None); 352 return true; 353 } 354 355 static const char *toString(MIToken::TokenKind TokenKind) { 356 switch (TokenKind) { 357 case MIToken::comma: 358 return "','"; 359 case MIToken::equal: 360 return "'='"; 361 case MIToken::colon: 362 return "':'"; 363 case MIToken::lparen: 364 return "'('"; 365 case MIToken::rparen: 366 return "')'"; 367 default: 368 return "<unknown token>"; 369 } 370 } 371 372 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 373 if (Token.isNot(TokenKind)) 374 return error(Twine("expected ") + toString(TokenKind)); 375 lex(); 376 return false; 377 } 378 379 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 380 if (Token.isNot(TokenKind)) 381 return false; 382 lex(); 383 return true; 384 } 385 386 bool MIParser::parseBasicBlockDefinition( 387 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 388 assert(Token.is(MIToken::MachineBasicBlockLabel)); 389 unsigned ID = 0; 390 if (getUnsigned(ID)) 391 return true; 392 auto Loc = Token.location(); 393 auto Name = Token.stringValue(); 394 lex(); 395 bool HasAddressTaken = false; 396 bool IsLandingPad = false; 397 unsigned Alignment = 0; 398 BasicBlock *BB = nullptr; 399 if (consumeIfPresent(MIToken::lparen)) { 400 do { 401 // TODO: Report an error when multiple same attributes are specified. 402 switch (Token.kind()) { 403 case MIToken::kw_address_taken: 404 HasAddressTaken = true; 405 lex(); 406 break; 407 case MIToken::kw_landing_pad: 408 IsLandingPad = true; 409 lex(); 410 break; 411 case MIToken::kw_align: 412 if (parseAlignment(Alignment)) 413 return true; 414 break; 415 case MIToken::IRBlock: 416 // TODO: Report an error when both name and ir block are specified. 417 if (parseIRBlock(BB, *MF.getFunction())) 418 return true; 419 lex(); 420 break; 421 default: 422 break; 423 } 424 } while (consumeIfPresent(MIToken::comma)); 425 if (expectAndConsume(MIToken::rparen)) 426 return true; 427 } 428 if (expectAndConsume(MIToken::colon)) 429 return true; 430 431 if (!Name.empty()) { 432 BB = dyn_cast_or_null<BasicBlock>( 433 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 434 if (!BB) 435 return error(Loc, Twine("basic block '") + Name + 436 "' is not defined in the function '" + 437 MF.getName() + "'"); 438 } 439 auto *MBB = MF.CreateMachineBasicBlock(BB); 440 MF.insert(MF.end(), MBB); 441 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 442 if (!WasInserted) 443 return error(Loc, Twine("redefinition of machine basic block with id #") + 444 Twine(ID)); 445 if (Alignment) 446 MBB->setAlignment(Alignment); 447 if (HasAddressTaken) 448 MBB->setHasAddressTaken(); 449 MBB->setIsEHPad(IsLandingPad); 450 return false; 451 } 452 453 bool MIParser::parseBasicBlockDefinitions( 454 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 455 lex(); 456 // Skip until the first machine basic block. 457 while (Token.is(MIToken::Newline)) 458 lex(); 459 if (Token.isErrorOrEOF()) 460 return Token.isError(); 461 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 462 return error("expected a basic block definition before instructions"); 463 unsigned BraceDepth = 0; 464 do { 465 if (parseBasicBlockDefinition(MBBSlots)) 466 return true; 467 bool IsAfterNewline = false; 468 // Skip until the next machine basic block. 469 while (true) { 470 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 471 Token.isErrorOrEOF()) 472 break; 473 else if (Token.is(MIToken::MachineBasicBlockLabel)) 474 return error("basic block definition should be located at the start of " 475 "the line"); 476 else if (consumeIfPresent(MIToken::Newline)) { 477 IsAfterNewline = true; 478 continue; 479 } 480 IsAfterNewline = false; 481 if (Token.is(MIToken::lbrace)) 482 ++BraceDepth; 483 if (Token.is(MIToken::rbrace)) { 484 if (!BraceDepth) 485 return error("extraneous closing brace ('}')"); 486 --BraceDepth; 487 } 488 lex(); 489 } 490 // Verify that we closed all of the '{' at the end of a file or a block. 491 if (!Token.isError() && BraceDepth) 492 return error("expected '}'"); // FIXME: Report a note that shows '{'. 493 } while (!Token.isErrorOrEOF()); 494 return Token.isError(); 495 } 496 497 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 498 assert(Token.is(MIToken::kw_liveins)); 499 lex(); 500 if (expectAndConsume(MIToken::colon)) 501 return true; 502 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 503 return false; 504 do { 505 if (Token.isNot(MIToken::NamedRegister)) 506 return error("expected a named register"); 507 unsigned Reg = 0; 508 if (parseNamedRegister(Reg)) 509 return true; 510 lex(); 511 LaneBitmask Mask = LaneBitmask::getAll(); 512 if (consumeIfPresent(MIToken::colon)) { 513 // Parse lane mask. 514 if (Token.isNot(MIToken::IntegerLiteral) && 515 Token.isNot(MIToken::HexLiteral)) 516 return error("expected a lane mask"); 517 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 518 "Use correct get-function for lane mask"); 519 LaneBitmask::Type V; 520 if (getUnsigned(V)) 521 return error("invalid lane mask value"); 522 Mask = LaneBitmask(V); 523 lex(); 524 } 525 MBB.addLiveIn(Reg, Mask); 526 } while (consumeIfPresent(MIToken::comma)); 527 return false; 528 } 529 530 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 531 assert(Token.is(MIToken::kw_successors)); 532 lex(); 533 if (expectAndConsume(MIToken::colon)) 534 return true; 535 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 536 return false; 537 do { 538 if (Token.isNot(MIToken::MachineBasicBlock)) 539 return error("expected a machine basic block reference"); 540 MachineBasicBlock *SuccMBB = nullptr; 541 if (parseMBBReference(SuccMBB)) 542 return true; 543 lex(); 544 unsigned Weight = 0; 545 if (consumeIfPresent(MIToken::lparen)) { 546 if (Token.isNot(MIToken::IntegerLiteral) && 547 Token.isNot(MIToken::HexLiteral)) 548 return error("expected an integer literal after '('"); 549 if (getUnsigned(Weight)) 550 return true; 551 lex(); 552 if (expectAndConsume(MIToken::rparen)) 553 return true; 554 } 555 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 556 } while (consumeIfPresent(MIToken::comma)); 557 MBB.normalizeSuccProbs(); 558 return false; 559 } 560 561 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 562 MachineBasicBlock *&AddFalthroughFrom) { 563 // Skip the definition. 564 assert(Token.is(MIToken::MachineBasicBlockLabel)); 565 lex(); 566 if (consumeIfPresent(MIToken::lparen)) { 567 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 568 lex(); 569 consumeIfPresent(MIToken::rparen); 570 } 571 consumeIfPresent(MIToken::colon); 572 573 // Parse the liveins and successors. 574 // N.B: Multiple lists of successors and liveins are allowed and they're 575 // merged into one. 576 // Example: 577 // liveins: %edi 578 // liveins: %esi 579 // 580 // is equivalent to 581 // liveins: %edi, %esi 582 bool ExplicitSuccesors = false; 583 while (true) { 584 if (Token.is(MIToken::kw_successors)) { 585 if (parseBasicBlockSuccessors(MBB)) 586 return true; 587 ExplicitSuccesors = true; 588 } else if (Token.is(MIToken::kw_liveins)) { 589 if (parseBasicBlockLiveins(MBB)) 590 return true; 591 } else if (consumeIfPresent(MIToken::Newline)) { 592 continue; 593 } else 594 break; 595 if (!Token.isNewlineOrEOF()) 596 return error("expected line break at the end of a list"); 597 lex(); 598 } 599 600 // Parse the instructions. 601 bool IsInBundle = false; 602 MachineInstr *PrevMI = nullptr; 603 while (!Token.is(MIToken::MachineBasicBlockLabel) && 604 !Token.is(MIToken::Eof)) { 605 if (consumeIfPresent(MIToken::Newline)) 606 continue; 607 if (consumeIfPresent(MIToken::rbrace)) { 608 // The first parsing pass should verify that all closing '}' have an 609 // opening '{'. 610 assert(IsInBundle); 611 IsInBundle = false; 612 continue; 613 } 614 MachineInstr *MI = nullptr; 615 if (parse(MI)) 616 return true; 617 MBB.insert(MBB.end(), MI); 618 if (IsInBundle) { 619 PrevMI->setFlag(MachineInstr::BundledSucc); 620 MI->setFlag(MachineInstr::BundledPred); 621 } 622 PrevMI = MI; 623 if (Token.is(MIToken::lbrace)) { 624 if (IsInBundle) 625 return error("nested instruction bundles are not allowed"); 626 lex(); 627 // This instruction is the start of the bundle. 628 MI->setFlag(MachineInstr::BundledSucc); 629 IsInBundle = true; 630 if (!Token.is(MIToken::Newline)) 631 // The next instruction can be on the same line. 632 continue; 633 } 634 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 635 lex(); 636 } 637 638 // Construct successor list by searching for basic block machine operands. 639 if (!ExplicitSuccesors) { 640 SmallVector<MachineBasicBlock*,4> Successors; 641 bool IsFallthrough; 642 guessSuccessors(MBB, Successors, IsFallthrough); 643 for (MachineBasicBlock *Succ : Successors) 644 MBB.addSuccessor(Succ); 645 646 if (IsFallthrough) { 647 AddFalthroughFrom = &MBB; 648 } else { 649 MBB.normalizeSuccProbs(); 650 } 651 } 652 653 return false; 654 } 655 656 bool MIParser::parseBasicBlocks() { 657 lex(); 658 // Skip until the first machine basic block. 659 while (Token.is(MIToken::Newline)) 660 lex(); 661 if (Token.isErrorOrEOF()) 662 return Token.isError(); 663 // The first parsing pass should have verified that this token is a MBB label 664 // in the 'parseBasicBlockDefinitions' method. 665 assert(Token.is(MIToken::MachineBasicBlockLabel)); 666 MachineBasicBlock *AddFalthroughFrom = nullptr; 667 do { 668 MachineBasicBlock *MBB = nullptr; 669 if (parseMBBReference(MBB)) 670 return true; 671 if (AddFalthroughFrom) { 672 if (!AddFalthroughFrom->isSuccessor(MBB)) 673 AddFalthroughFrom->addSuccessor(MBB); 674 AddFalthroughFrom->normalizeSuccProbs(); 675 AddFalthroughFrom = nullptr; 676 } 677 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 678 return true; 679 // The method 'parseBasicBlock' should parse the whole block until the next 680 // block or the end of file. 681 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 682 } while (Token.isNot(MIToken::Eof)); 683 return false; 684 } 685 686 bool MIParser::parse(MachineInstr *&MI) { 687 // Parse any register operands before '=' 688 MachineOperand MO = MachineOperand::CreateImm(0); 689 SmallVector<ParsedMachineOperand, 8> Operands; 690 while (Token.isRegister() || Token.isRegisterFlag()) { 691 auto Loc = Token.location(); 692 Optional<unsigned> TiedDefIdx; 693 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 694 return true; 695 Operands.push_back( 696 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 697 if (Token.isNot(MIToken::comma)) 698 break; 699 lex(); 700 } 701 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 702 return true; 703 704 unsigned OpCode, Flags = 0; 705 if (Token.isError() || parseInstruction(OpCode, Flags)) 706 return true; 707 708 // Parse the remaining machine operands. 709 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 710 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 711 auto Loc = Token.location(); 712 Optional<unsigned> TiedDefIdx; 713 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 714 return true; 715 Operands.push_back( 716 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 717 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 718 Token.is(MIToken::lbrace)) 719 break; 720 if (Token.isNot(MIToken::comma)) 721 return error("expected ',' before the next machine operand"); 722 lex(); 723 } 724 725 DebugLoc DebugLocation; 726 if (Token.is(MIToken::kw_debug_location)) { 727 lex(); 728 if (Token.isNot(MIToken::exclaim)) 729 return error("expected a metadata node after 'debug-location'"); 730 MDNode *Node = nullptr; 731 if (parseMDNode(Node)) 732 return true; 733 DebugLocation = DebugLoc(Node); 734 } 735 736 // Parse the machine memory operands. 737 SmallVector<MachineMemOperand *, 2> MemOperands; 738 if (Token.is(MIToken::coloncolon)) { 739 lex(); 740 while (!Token.isNewlineOrEOF()) { 741 MachineMemOperand *MemOp = nullptr; 742 if (parseMachineMemoryOperand(MemOp)) 743 return true; 744 MemOperands.push_back(MemOp); 745 if (Token.isNewlineOrEOF()) 746 break; 747 if (Token.isNot(MIToken::comma)) 748 return error("expected ',' before the next machine memory operand"); 749 lex(); 750 } 751 } 752 753 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 754 if (!MCID.isVariadic()) { 755 // FIXME: Move the implicit operand verification to the machine verifier. 756 if (verifyImplicitOperands(Operands, MCID)) 757 return true; 758 } 759 760 // TODO: Check for extraneous machine operands. 761 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 762 MI->setFlags(Flags); 763 for (const auto &Operand : Operands) 764 MI->addOperand(MF, Operand.Operand); 765 if (assignRegisterTies(*MI, Operands)) 766 return true; 767 if (MemOperands.empty()) 768 return false; 769 MachineInstr::mmo_iterator MemRefs = 770 MF.allocateMemRefsArray(MemOperands.size()); 771 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 772 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 773 return false; 774 } 775 776 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 777 lex(); 778 if (Token.isNot(MIToken::MachineBasicBlock)) 779 return error("expected a machine basic block reference"); 780 if (parseMBBReference(MBB)) 781 return true; 782 lex(); 783 if (Token.isNot(MIToken::Eof)) 784 return error( 785 "expected end of string after the machine basic block reference"); 786 return false; 787 } 788 789 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 790 lex(); 791 if (Token.isNot(MIToken::NamedRegister)) 792 return error("expected a named register"); 793 if (parseNamedRegister(Reg)) 794 return true; 795 lex(); 796 if (Token.isNot(MIToken::Eof)) 797 return error("expected end of string after the register reference"); 798 return false; 799 } 800 801 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 802 lex(); 803 if (Token.isNot(MIToken::VirtualRegister)) 804 return error("expected a virtual register"); 805 if (parseVirtualRegister(Info)) 806 return true; 807 lex(); 808 if (Token.isNot(MIToken::Eof)) 809 return error("expected end of string after the register reference"); 810 return false; 811 } 812 813 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 814 lex(); 815 if (Token.isNot(MIToken::NamedRegister) && 816 Token.isNot(MIToken::VirtualRegister)) 817 return error("expected either a named or virtual register"); 818 819 VRegInfo *Info; 820 if (parseRegister(Reg, Info)) 821 return true; 822 823 lex(); 824 if (Token.isNot(MIToken::Eof)) 825 return error("expected end of string after the register reference"); 826 return false; 827 } 828 829 bool MIParser::parseStandaloneStackObject(int &FI) { 830 lex(); 831 if (Token.isNot(MIToken::StackObject)) 832 return error("expected a stack object"); 833 if (parseStackFrameIndex(FI)) 834 return true; 835 if (Token.isNot(MIToken::Eof)) 836 return error("expected end of string after the stack object reference"); 837 return false; 838 } 839 840 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 841 lex(); 842 if (Token.isNot(MIToken::exclaim)) 843 return error("expected a metadata node"); 844 if (parseMDNode(Node)) 845 return true; 846 if (Token.isNot(MIToken::Eof)) 847 return error("expected end of string after the metadata node"); 848 return false; 849 } 850 851 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 852 assert(MO.isImplicit()); 853 return MO.isDef() ? "implicit-def" : "implicit"; 854 } 855 856 static std::string getRegisterName(const TargetRegisterInfo *TRI, 857 unsigned Reg) { 858 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 859 return StringRef(TRI->getName(Reg)).lower(); 860 } 861 862 /// Return true if the parsed machine operands contain a given machine operand. 863 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 864 ArrayRef<ParsedMachineOperand> Operands) { 865 for (const auto &I : Operands) { 866 if (ImplicitOperand.isIdenticalTo(I.Operand)) 867 return true; 868 } 869 return false; 870 } 871 872 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 873 const MCInstrDesc &MCID) { 874 if (MCID.isCall()) 875 // We can't verify call instructions as they can contain arbitrary implicit 876 // register and register mask operands. 877 return false; 878 879 // Gather all the expected implicit operands. 880 SmallVector<MachineOperand, 4> ImplicitOperands; 881 if (MCID.ImplicitDefs) 882 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 883 ImplicitOperands.push_back( 884 MachineOperand::CreateReg(*ImpDefs, true, true)); 885 if (MCID.ImplicitUses) 886 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 887 ImplicitOperands.push_back( 888 MachineOperand::CreateReg(*ImpUses, false, true)); 889 890 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 891 assert(TRI && "Expected target register info"); 892 for (const auto &I : ImplicitOperands) { 893 if (isImplicitOperandIn(I, Operands)) 894 continue; 895 return error(Operands.empty() ? Token.location() : Operands.back().End, 896 Twine("missing implicit register operand '") + 897 printImplicitRegisterFlag(I) + " %" + 898 getRegisterName(TRI, I.getReg()) + "'"); 899 } 900 return false; 901 } 902 903 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 904 if (Token.is(MIToken::kw_frame_setup)) { 905 Flags |= MachineInstr::FrameSetup; 906 lex(); 907 } 908 if (Token.isNot(MIToken::Identifier)) 909 return error("expected a machine instruction"); 910 StringRef InstrName = Token.stringValue(); 911 if (parseInstrName(InstrName, OpCode)) 912 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 913 lex(); 914 return false; 915 } 916 917 bool MIParser::parseNamedRegister(unsigned &Reg) { 918 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 919 StringRef Name = Token.stringValue(); 920 if (getRegisterByName(Name, Reg)) 921 return error(Twine("unknown register name '") + Name + "'"); 922 return false; 923 } 924 925 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 926 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 927 unsigned ID; 928 if (getUnsigned(ID)) 929 return true; 930 Info = &PFS.getVRegInfo(ID); 931 return false; 932 } 933 934 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 935 switch (Token.kind()) { 936 case MIToken::underscore: 937 Reg = 0; 938 return false; 939 case MIToken::NamedRegister: 940 return parseNamedRegister(Reg); 941 case MIToken::VirtualRegister: 942 if (parseVirtualRegister(Info)) 943 return true; 944 Reg = Info->VReg; 945 return false; 946 // TODO: Parse other register kinds. 947 default: 948 llvm_unreachable("The current token should be a register"); 949 } 950 } 951 952 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 953 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 954 return error("expected '_', register class, or register bank name"); 955 StringRef::iterator Loc = Token.location(); 956 StringRef Name = Token.stringValue(); 957 958 // Was it a register class? 959 auto RCNameI = PFS.Names2RegClasses.find(Name); 960 if (RCNameI != PFS.Names2RegClasses.end()) { 961 lex(); 962 const TargetRegisterClass &RC = *RCNameI->getValue(); 963 964 switch (RegInfo.Kind) { 965 case VRegInfo::UNKNOWN: 966 case VRegInfo::NORMAL: 967 RegInfo.Kind = VRegInfo::NORMAL; 968 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 969 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 970 return error(Loc, Twine("conflicting register classes, previously: ") + 971 Twine(TRI.getRegClassName(RegInfo.D.RC))); 972 } 973 RegInfo.D.RC = &RC; 974 RegInfo.Explicit = true; 975 return false; 976 977 case VRegInfo::GENERIC: 978 case VRegInfo::REGBANK: 979 return error(Loc, "register class specification on generic register"); 980 } 981 llvm_unreachable("Unexpected register kind"); 982 } 983 984 // Should be a register bank or a generic register. 985 const RegisterBank *RegBank = nullptr; 986 if (Name != "_") { 987 auto RBNameI = PFS.Names2RegBanks.find(Name); 988 if (RBNameI == PFS.Names2RegBanks.end()) 989 return error(Loc, "expected '_', register class, or register bank name"); 990 RegBank = RBNameI->getValue(); 991 } 992 993 lex(); 994 995 switch (RegInfo.Kind) { 996 case VRegInfo::UNKNOWN: 997 case VRegInfo::GENERIC: 998 case VRegInfo::REGBANK: 999 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1000 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1001 return error(Loc, "conflicting generic register banks"); 1002 RegInfo.D.RegBank = RegBank; 1003 RegInfo.Explicit = true; 1004 return false; 1005 1006 case VRegInfo::NORMAL: 1007 return error(Loc, "register bank specification on normal register"); 1008 } 1009 llvm_unreachable("Unexpected register kind"); 1010 } 1011 1012 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1013 const unsigned OldFlags = Flags; 1014 switch (Token.kind()) { 1015 case MIToken::kw_implicit: 1016 Flags |= RegState::Implicit; 1017 break; 1018 case MIToken::kw_implicit_define: 1019 Flags |= RegState::ImplicitDefine; 1020 break; 1021 case MIToken::kw_def: 1022 Flags |= RegState::Define; 1023 break; 1024 case MIToken::kw_dead: 1025 Flags |= RegState::Dead; 1026 break; 1027 case MIToken::kw_killed: 1028 Flags |= RegState::Kill; 1029 break; 1030 case MIToken::kw_undef: 1031 Flags |= RegState::Undef; 1032 break; 1033 case MIToken::kw_internal: 1034 Flags |= RegState::InternalRead; 1035 break; 1036 case MIToken::kw_early_clobber: 1037 Flags |= RegState::EarlyClobber; 1038 break; 1039 case MIToken::kw_debug_use: 1040 Flags |= RegState::Debug; 1041 break; 1042 default: 1043 llvm_unreachable("The current token should be a register flag"); 1044 } 1045 if (OldFlags == Flags) 1046 // We know that the same flag is specified more than once when the flags 1047 // weren't modified. 1048 return error("duplicate '" + Token.stringValue() + "' register flag"); 1049 lex(); 1050 return false; 1051 } 1052 1053 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1054 assert(Token.is(MIToken::dot)); 1055 lex(); 1056 if (Token.isNot(MIToken::Identifier)) 1057 return error("expected a subregister index after '.'"); 1058 auto Name = Token.stringValue(); 1059 SubReg = getSubRegIndex(Name); 1060 if (!SubReg) 1061 return error(Twine("use of unknown subregister index '") + Name + "'"); 1062 lex(); 1063 return false; 1064 } 1065 1066 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1067 if (!consumeIfPresent(MIToken::kw_tied_def)) 1068 return true; 1069 if (Token.isNot(MIToken::IntegerLiteral)) 1070 return error("expected an integer literal after 'tied-def'"); 1071 if (getUnsigned(TiedDefIdx)) 1072 return true; 1073 lex(); 1074 if (expectAndConsume(MIToken::rparen)) 1075 return true; 1076 return false; 1077 } 1078 1079 bool MIParser::assignRegisterTies(MachineInstr &MI, 1080 ArrayRef<ParsedMachineOperand> Operands) { 1081 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1082 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1083 if (!Operands[I].TiedDefIdx) 1084 continue; 1085 // The parser ensures that this operand is a register use, so we just have 1086 // to check the tied-def operand. 1087 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1088 if (DefIdx >= E) 1089 return error(Operands[I].Begin, 1090 Twine("use of invalid tied-def operand index '" + 1091 Twine(DefIdx) + "'; instruction has only ") + 1092 Twine(E) + " operands"); 1093 const auto &DefOperand = Operands[DefIdx].Operand; 1094 if (!DefOperand.isReg() || !DefOperand.isDef()) 1095 // FIXME: add note with the def operand. 1096 return error(Operands[I].Begin, 1097 Twine("use of invalid tied-def operand index '") + 1098 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1099 " isn't a defined register"); 1100 // Check that the tied-def operand wasn't tied elsewhere. 1101 for (const auto &TiedPair : TiedRegisterPairs) { 1102 if (TiedPair.first == DefIdx) 1103 return error(Operands[I].Begin, 1104 Twine("the tied-def operand #") + Twine(DefIdx) + 1105 " is already tied with another register operand"); 1106 } 1107 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1108 } 1109 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1110 // indices must be less than tied max. 1111 for (const auto &TiedPair : TiedRegisterPairs) 1112 MI.tieOperands(TiedPair.first, TiedPair.second); 1113 return false; 1114 } 1115 1116 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1117 Optional<unsigned> &TiedDefIdx, 1118 bool IsDef) { 1119 unsigned Flags = IsDef ? RegState::Define : 0; 1120 while (Token.isRegisterFlag()) { 1121 if (parseRegisterFlag(Flags)) 1122 return true; 1123 } 1124 if (!Token.isRegister()) 1125 return error("expected a register after register flags"); 1126 unsigned Reg; 1127 VRegInfo *RegInfo; 1128 if (parseRegister(Reg, RegInfo)) 1129 return true; 1130 lex(); 1131 unsigned SubReg = 0; 1132 if (Token.is(MIToken::dot)) { 1133 if (parseSubRegisterIndex(SubReg)) 1134 return true; 1135 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1136 return error("subregister index expects a virtual register"); 1137 } 1138 if (Token.is(MIToken::colon)) { 1139 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1140 return error("register class specification expects a virtual register"); 1141 lex(); 1142 if (parseRegisterClassOrBank(*RegInfo)) 1143 return true; 1144 } 1145 MachineRegisterInfo &MRI = MF.getRegInfo(); 1146 if ((Flags & RegState::Define) == 0) { 1147 if (consumeIfPresent(MIToken::lparen)) { 1148 unsigned Idx; 1149 if (!parseRegisterTiedDefIndex(Idx)) 1150 TiedDefIdx = Idx; 1151 else { 1152 // Try a redundant low-level type. 1153 LLT Ty; 1154 if (parseLowLevelType(Token.location(), Ty)) 1155 return error("expected tied-def or low-level type after '('"); 1156 1157 if (expectAndConsume(MIToken::rparen)) 1158 return true; 1159 1160 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1161 return error("inconsistent type for generic virtual register"); 1162 1163 MRI.setType(Reg, Ty); 1164 } 1165 } 1166 } else if (consumeIfPresent(MIToken::lparen)) { 1167 // Virtual registers may have a tpe with GlobalISel. 1168 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1169 return error("unexpected type on physical register"); 1170 1171 LLT Ty; 1172 if (parseLowLevelType(Token.location(), Ty)) 1173 return true; 1174 1175 if (expectAndConsume(MIToken::rparen)) 1176 return true; 1177 1178 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1179 return error("inconsistent type for generic virtual register"); 1180 1181 MRI.setType(Reg, Ty); 1182 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1183 // Generic virtual registers must have a type. 1184 // If we end up here this means the type hasn't been specified and 1185 // this is bad! 1186 if (RegInfo->Kind == VRegInfo::GENERIC || 1187 RegInfo->Kind == VRegInfo::REGBANK) 1188 return error("generic virtual registers must have a type"); 1189 } 1190 Dest = MachineOperand::CreateReg( 1191 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1192 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1193 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1194 Flags & RegState::InternalRead); 1195 return false; 1196 } 1197 1198 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1199 assert(Token.is(MIToken::IntegerLiteral)); 1200 const APSInt &Int = Token.integerValue(); 1201 if (Int.getMinSignedBits() > 64) 1202 return error("integer literal is too large to be an immediate operand"); 1203 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1204 lex(); 1205 return false; 1206 } 1207 1208 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1209 const Constant *&C) { 1210 auto Source = StringValue.str(); // The source has to be null terminated. 1211 SMDiagnostic Err; 1212 C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(), 1213 &PFS.IRSlots); 1214 if (!C) 1215 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1216 return false; 1217 } 1218 1219 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1220 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1221 return true; 1222 lex(); 1223 return false; 1224 } 1225 1226 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1227 if (Token.is(MIToken::ScalarType)) { 1228 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1229 lex(); 1230 return false; 1231 } else if (Token.is(MIToken::PointerType)) { 1232 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1233 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1234 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1235 lex(); 1236 return false; 1237 } 1238 1239 // Now we're looking for a vector. 1240 if (Token.isNot(MIToken::less)) 1241 return error(Loc, 1242 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1243 1244 lex(); 1245 1246 if (Token.isNot(MIToken::IntegerLiteral)) 1247 return error(Loc, "expected <N x sM> for vctor type"); 1248 uint64_t NumElements = Token.integerValue().getZExtValue(); 1249 lex(); 1250 1251 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1252 return error(Loc, "expected '<N x sM>' for vector type"); 1253 lex(); 1254 1255 if (Token.isNot(MIToken::ScalarType)) 1256 return error(Loc, "expected '<N x sM>' for vector type"); 1257 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1258 lex(); 1259 1260 if (Token.isNot(MIToken::greater)) 1261 return error(Loc, "expected '<N x sM>' for vector type"); 1262 lex(); 1263 1264 Ty = LLT::vector(NumElements, ScalarSize); 1265 return false; 1266 } 1267 1268 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1269 assert(Token.is(MIToken::IntegerType)); 1270 auto Loc = Token.location(); 1271 lex(); 1272 if (Token.isNot(MIToken::IntegerLiteral)) 1273 return error("expected an integer literal"); 1274 const Constant *C = nullptr; 1275 if (parseIRConstant(Loc, C)) 1276 return true; 1277 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1278 return false; 1279 } 1280 1281 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1282 auto Loc = Token.location(); 1283 lex(); 1284 if (Token.isNot(MIToken::FloatingPointLiteral) && 1285 Token.isNot(MIToken::HexLiteral)) 1286 return error("expected a floating point literal"); 1287 const Constant *C = nullptr; 1288 if (parseIRConstant(Loc, C)) 1289 return true; 1290 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1291 return false; 1292 } 1293 1294 bool MIParser::getUnsigned(unsigned &Result) { 1295 if (Token.hasIntegerValue()) { 1296 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1297 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1298 if (Val64 == Limit) 1299 return error("expected 32-bit integer (too large)"); 1300 Result = Val64; 1301 return false; 1302 } 1303 if (Token.is(MIToken::HexLiteral)) { 1304 APInt A; 1305 if (getHexUint(A)) 1306 return true; 1307 if (A.getBitWidth() > 32) 1308 return error("expected 32-bit integer (too large)"); 1309 Result = A.getZExtValue(); 1310 return false; 1311 } 1312 return true; 1313 } 1314 1315 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1316 assert(Token.is(MIToken::MachineBasicBlock) || 1317 Token.is(MIToken::MachineBasicBlockLabel)); 1318 unsigned Number; 1319 if (getUnsigned(Number)) 1320 return true; 1321 auto MBBInfo = PFS.MBBSlots.find(Number); 1322 if (MBBInfo == PFS.MBBSlots.end()) 1323 return error(Twine("use of undefined machine basic block #") + 1324 Twine(Number)); 1325 MBB = MBBInfo->second; 1326 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1327 return error(Twine("the name of machine basic block #") + Twine(Number) + 1328 " isn't '" + Token.stringValue() + "'"); 1329 return false; 1330 } 1331 1332 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1333 MachineBasicBlock *MBB; 1334 if (parseMBBReference(MBB)) 1335 return true; 1336 Dest = MachineOperand::CreateMBB(MBB); 1337 lex(); 1338 return false; 1339 } 1340 1341 bool MIParser::parseStackFrameIndex(int &FI) { 1342 assert(Token.is(MIToken::StackObject)); 1343 unsigned ID; 1344 if (getUnsigned(ID)) 1345 return true; 1346 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1347 if (ObjectInfo == PFS.StackObjectSlots.end()) 1348 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1349 "'"); 1350 StringRef Name; 1351 if (const auto *Alloca = 1352 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1353 Name = Alloca->getName(); 1354 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1355 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1356 "' isn't '" + Token.stringValue() + "'"); 1357 lex(); 1358 FI = ObjectInfo->second; 1359 return false; 1360 } 1361 1362 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1363 int FI; 1364 if (parseStackFrameIndex(FI)) 1365 return true; 1366 Dest = MachineOperand::CreateFI(FI); 1367 return false; 1368 } 1369 1370 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1371 assert(Token.is(MIToken::FixedStackObject)); 1372 unsigned ID; 1373 if (getUnsigned(ID)) 1374 return true; 1375 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1376 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1377 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1378 Twine(ID) + "'"); 1379 lex(); 1380 FI = ObjectInfo->second; 1381 return false; 1382 } 1383 1384 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1385 int FI; 1386 if (parseFixedStackFrameIndex(FI)) 1387 return true; 1388 Dest = MachineOperand::CreateFI(FI); 1389 return false; 1390 } 1391 1392 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1393 switch (Token.kind()) { 1394 case MIToken::NamedGlobalValue: { 1395 const Module *M = MF.getFunction()->getParent(); 1396 GV = M->getNamedValue(Token.stringValue()); 1397 if (!GV) 1398 return error(Twine("use of undefined global value '") + Token.range() + 1399 "'"); 1400 break; 1401 } 1402 case MIToken::GlobalValue: { 1403 unsigned GVIdx; 1404 if (getUnsigned(GVIdx)) 1405 return true; 1406 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1407 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1408 "'"); 1409 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1410 break; 1411 } 1412 default: 1413 llvm_unreachable("The current token should be a global value"); 1414 } 1415 return false; 1416 } 1417 1418 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1419 GlobalValue *GV = nullptr; 1420 if (parseGlobalValue(GV)) 1421 return true; 1422 lex(); 1423 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1424 if (parseOperandsOffset(Dest)) 1425 return true; 1426 return false; 1427 } 1428 1429 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1430 assert(Token.is(MIToken::ConstantPoolItem)); 1431 unsigned ID; 1432 if (getUnsigned(ID)) 1433 return true; 1434 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1435 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1436 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1437 lex(); 1438 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1439 if (parseOperandsOffset(Dest)) 1440 return true; 1441 return false; 1442 } 1443 1444 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1445 assert(Token.is(MIToken::JumpTableIndex)); 1446 unsigned ID; 1447 if (getUnsigned(ID)) 1448 return true; 1449 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1450 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1451 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1452 lex(); 1453 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1454 return false; 1455 } 1456 1457 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1458 assert(Token.is(MIToken::ExternalSymbol)); 1459 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1460 lex(); 1461 Dest = MachineOperand::CreateES(Symbol); 1462 if (parseOperandsOffset(Dest)) 1463 return true; 1464 return false; 1465 } 1466 1467 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1468 assert(Token.is(MIToken::SubRegisterIndex)); 1469 StringRef Name = Token.stringValue(); 1470 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1471 if (SubRegIndex == 0) 1472 return error(Twine("unknown subregister index '") + Name + "'"); 1473 lex(); 1474 Dest = MachineOperand::CreateImm(SubRegIndex); 1475 return false; 1476 } 1477 1478 bool MIParser::parseMDNode(MDNode *&Node) { 1479 assert(Token.is(MIToken::exclaim)); 1480 auto Loc = Token.location(); 1481 lex(); 1482 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1483 return error("expected metadata id after '!'"); 1484 unsigned ID; 1485 if (getUnsigned(ID)) 1486 return true; 1487 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1488 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1489 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1490 lex(); 1491 Node = NodeInfo->second.get(); 1492 return false; 1493 } 1494 1495 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1496 MDNode *Node = nullptr; 1497 if (parseMDNode(Node)) 1498 return true; 1499 Dest = MachineOperand::CreateMetadata(Node); 1500 return false; 1501 } 1502 1503 bool MIParser::parseCFIOffset(int &Offset) { 1504 if (Token.isNot(MIToken::IntegerLiteral)) 1505 return error("expected a cfi offset"); 1506 if (Token.integerValue().getMinSignedBits() > 32) 1507 return error("expected a 32 bit integer (the cfi offset is too large)"); 1508 Offset = (int)Token.integerValue().getExtValue(); 1509 lex(); 1510 return false; 1511 } 1512 1513 bool MIParser::parseCFIRegister(unsigned &Reg) { 1514 if (Token.isNot(MIToken::NamedRegister)) 1515 return error("expected a cfi register"); 1516 unsigned LLVMReg; 1517 if (parseNamedRegister(LLVMReg)) 1518 return true; 1519 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1520 assert(TRI && "Expected target register info"); 1521 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1522 if (DwarfReg < 0) 1523 return error("invalid DWARF register"); 1524 Reg = (unsigned)DwarfReg; 1525 lex(); 1526 return false; 1527 } 1528 1529 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1530 auto Kind = Token.kind(); 1531 lex(); 1532 int Offset; 1533 unsigned Reg; 1534 unsigned CFIIndex; 1535 switch (Kind) { 1536 case MIToken::kw_cfi_same_value: 1537 if (parseCFIRegister(Reg)) 1538 return true; 1539 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1540 break; 1541 case MIToken::kw_cfi_offset: 1542 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1543 parseCFIOffset(Offset)) 1544 return true; 1545 CFIIndex = 1546 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1547 break; 1548 case MIToken::kw_cfi_def_cfa_register: 1549 if (parseCFIRegister(Reg)) 1550 return true; 1551 CFIIndex = 1552 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1553 break; 1554 case MIToken::kw_cfi_def_cfa_offset: 1555 if (parseCFIOffset(Offset)) 1556 return true; 1557 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1558 CFIIndex = MF.addFrameInst( 1559 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1560 break; 1561 case MIToken::kw_cfi_def_cfa: 1562 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1563 parseCFIOffset(Offset)) 1564 return true; 1565 // NB: MCCFIInstruction::createDefCfa negates the offset. 1566 CFIIndex = 1567 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1568 break; 1569 default: 1570 // TODO: Parse the other CFI operands. 1571 llvm_unreachable("The current token should be a cfi operand"); 1572 } 1573 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1574 return false; 1575 } 1576 1577 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1578 switch (Token.kind()) { 1579 case MIToken::NamedIRBlock: { 1580 BB = dyn_cast_or_null<BasicBlock>( 1581 F.getValueSymbolTable()->lookup(Token.stringValue())); 1582 if (!BB) 1583 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1584 break; 1585 } 1586 case MIToken::IRBlock: { 1587 unsigned SlotNumber = 0; 1588 if (getUnsigned(SlotNumber)) 1589 return true; 1590 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1591 if (!BB) 1592 return error(Twine("use of undefined IR block '%ir-block.") + 1593 Twine(SlotNumber) + "'"); 1594 break; 1595 } 1596 default: 1597 llvm_unreachable("The current token should be an IR block reference"); 1598 } 1599 return false; 1600 } 1601 1602 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1603 assert(Token.is(MIToken::kw_blockaddress)); 1604 lex(); 1605 if (expectAndConsume(MIToken::lparen)) 1606 return true; 1607 if (Token.isNot(MIToken::GlobalValue) && 1608 Token.isNot(MIToken::NamedGlobalValue)) 1609 return error("expected a global value"); 1610 GlobalValue *GV = nullptr; 1611 if (parseGlobalValue(GV)) 1612 return true; 1613 auto *F = dyn_cast<Function>(GV); 1614 if (!F) 1615 return error("expected an IR function reference"); 1616 lex(); 1617 if (expectAndConsume(MIToken::comma)) 1618 return true; 1619 BasicBlock *BB = nullptr; 1620 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1621 return error("expected an IR block reference"); 1622 if (parseIRBlock(BB, *F)) 1623 return true; 1624 lex(); 1625 if (expectAndConsume(MIToken::rparen)) 1626 return true; 1627 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1628 if (parseOperandsOffset(Dest)) 1629 return true; 1630 return false; 1631 } 1632 1633 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1634 assert(Token.is(MIToken::kw_intrinsic)); 1635 lex(); 1636 if (expectAndConsume(MIToken::lparen)) 1637 return error("expected syntax intrinsic(@llvm.whatever)"); 1638 1639 if (Token.isNot(MIToken::NamedGlobalValue)) 1640 return error("expected syntax intrinsic(@llvm.whatever)"); 1641 1642 std::string Name = Token.stringValue(); 1643 lex(); 1644 1645 if (expectAndConsume(MIToken::rparen)) 1646 return error("expected ')' to terminate intrinsic name"); 1647 1648 // Find out what intrinsic we're dealing with, first try the global namespace 1649 // and then the target's private intrinsics if that fails. 1650 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1651 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1652 if (ID == Intrinsic::not_intrinsic && TII) 1653 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1654 1655 if (ID == Intrinsic::not_intrinsic) 1656 return error("unknown intrinsic name"); 1657 Dest = MachineOperand::CreateIntrinsicID(ID); 1658 1659 return false; 1660 } 1661 1662 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1663 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1664 bool IsFloat = Token.is(MIToken::kw_floatpred); 1665 lex(); 1666 1667 if (expectAndConsume(MIToken::lparen)) 1668 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1669 1670 if (Token.isNot(MIToken::Identifier)) 1671 return error("whatever"); 1672 1673 CmpInst::Predicate Pred; 1674 if (IsFloat) { 1675 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1676 .Case("false", CmpInst::FCMP_FALSE) 1677 .Case("oeq", CmpInst::FCMP_OEQ) 1678 .Case("ogt", CmpInst::FCMP_OGT) 1679 .Case("oge", CmpInst::FCMP_OGE) 1680 .Case("olt", CmpInst::FCMP_OLT) 1681 .Case("ole", CmpInst::FCMP_OLE) 1682 .Case("one", CmpInst::FCMP_ONE) 1683 .Case("ord", CmpInst::FCMP_ORD) 1684 .Case("uno", CmpInst::FCMP_UNO) 1685 .Case("ueq", CmpInst::FCMP_UEQ) 1686 .Case("ugt", CmpInst::FCMP_UGT) 1687 .Case("uge", CmpInst::FCMP_UGE) 1688 .Case("ult", CmpInst::FCMP_ULT) 1689 .Case("ule", CmpInst::FCMP_ULE) 1690 .Case("une", CmpInst::FCMP_UNE) 1691 .Case("true", CmpInst::FCMP_TRUE) 1692 .Default(CmpInst::BAD_FCMP_PREDICATE); 1693 if (!CmpInst::isFPPredicate(Pred)) 1694 return error("invalid floating-point predicate"); 1695 } else { 1696 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1697 .Case("eq", CmpInst::ICMP_EQ) 1698 .Case("ne", CmpInst::ICMP_NE) 1699 .Case("sgt", CmpInst::ICMP_SGT) 1700 .Case("sge", CmpInst::ICMP_SGE) 1701 .Case("slt", CmpInst::ICMP_SLT) 1702 .Case("sle", CmpInst::ICMP_SLE) 1703 .Case("ugt", CmpInst::ICMP_UGT) 1704 .Case("uge", CmpInst::ICMP_UGE) 1705 .Case("ult", CmpInst::ICMP_ULT) 1706 .Case("ule", CmpInst::ICMP_ULE) 1707 .Default(CmpInst::BAD_ICMP_PREDICATE); 1708 if (!CmpInst::isIntPredicate(Pred)) 1709 return error("invalid integer predicate"); 1710 } 1711 1712 lex(); 1713 Dest = MachineOperand::CreatePredicate(Pred); 1714 if (expectAndConsume(MIToken::rparen)) 1715 return error("predicate should be terminated by ')'."); 1716 1717 return false; 1718 } 1719 1720 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1721 assert(Token.is(MIToken::kw_target_index)); 1722 lex(); 1723 if (expectAndConsume(MIToken::lparen)) 1724 return true; 1725 if (Token.isNot(MIToken::Identifier)) 1726 return error("expected the name of the target index"); 1727 int Index = 0; 1728 if (getTargetIndex(Token.stringValue(), Index)) 1729 return error("use of undefined target index '" + Token.stringValue() + "'"); 1730 lex(); 1731 if (expectAndConsume(MIToken::rparen)) 1732 return true; 1733 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1734 if (parseOperandsOffset(Dest)) 1735 return true; 1736 return false; 1737 } 1738 1739 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1740 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1741 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1742 assert(TRI && "Expected target register info"); 1743 lex(); 1744 if (expectAndConsume(MIToken::lparen)) 1745 return true; 1746 1747 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1748 while (true) { 1749 if (Token.isNot(MIToken::NamedRegister)) 1750 return error("expected a named register"); 1751 unsigned Reg; 1752 if (parseNamedRegister(Reg)) 1753 return true; 1754 lex(); 1755 Mask[Reg / 32] |= 1U << (Reg % 32); 1756 // TODO: Report an error if the same register is used more than once. 1757 if (Token.isNot(MIToken::comma)) 1758 break; 1759 lex(); 1760 } 1761 1762 if (expectAndConsume(MIToken::rparen)) 1763 return true; 1764 Dest = MachineOperand::CreateRegMask(Mask); 1765 return false; 1766 } 1767 1768 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1769 assert(Token.is(MIToken::kw_liveout)); 1770 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1771 assert(TRI && "Expected target register info"); 1772 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1773 lex(); 1774 if (expectAndConsume(MIToken::lparen)) 1775 return true; 1776 while (true) { 1777 if (Token.isNot(MIToken::NamedRegister)) 1778 return error("expected a named register"); 1779 unsigned Reg; 1780 if (parseNamedRegister(Reg)) 1781 return true; 1782 lex(); 1783 Mask[Reg / 32] |= 1U << (Reg % 32); 1784 // TODO: Report an error if the same register is used more than once. 1785 if (Token.isNot(MIToken::comma)) 1786 break; 1787 lex(); 1788 } 1789 if (expectAndConsume(MIToken::rparen)) 1790 return true; 1791 Dest = MachineOperand::CreateRegLiveOut(Mask); 1792 return false; 1793 } 1794 1795 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1796 Optional<unsigned> &TiedDefIdx) { 1797 switch (Token.kind()) { 1798 case MIToken::kw_implicit: 1799 case MIToken::kw_implicit_define: 1800 case MIToken::kw_def: 1801 case MIToken::kw_dead: 1802 case MIToken::kw_killed: 1803 case MIToken::kw_undef: 1804 case MIToken::kw_internal: 1805 case MIToken::kw_early_clobber: 1806 case MIToken::kw_debug_use: 1807 case MIToken::underscore: 1808 case MIToken::NamedRegister: 1809 case MIToken::VirtualRegister: 1810 return parseRegisterOperand(Dest, TiedDefIdx); 1811 case MIToken::IntegerLiteral: 1812 return parseImmediateOperand(Dest); 1813 case MIToken::IntegerType: 1814 return parseTypedImmediateOperand(Dest); 1815 case MIToken::kw_half: 1816 case MIToken::kw_float: 1817 case MIToken::kw_double: 1818 case MIToken::kw_x86_fp80: 1819 case MIToken::kw_fp128: 1820 case MIToken::kw_ppc_fp128: 1821 return parseFPImmediateOperand(Dest); 1822 case MIToken::MachineBasicBlock: 1823 return parseMBBOperand(Dest); 1824 case MIToken::StackObject: 1825 return parseStackObjectOperand(Dest); 1826 case MIToken::FixedStackObject: 1827 return parseFixedStackObjectOperand(Dest); 1828 case MIToken::GlobalValue: 1829 case MIToken::NamedGlobalValue: 1830 return parseGlobalAddressOperand(Dest); 1831 case MIToken::ConstantPoolItem: 1832 return parseConstantPoolIndexOperand(Dest); 1833 case MIToken::JumpTableIndex: 1834 return parseJumpTableIndexOperand(Dest); 1835 case MIToken::ExternalSymbol: 1836 return parseExternalSymbolOperand(Dest); 1837 case MIToken::SubRegisterIndex: 1838 return parseSubRegisterIndexOperand(Dest); 1839 case MIToken::exclaim: 1840 return parseMetadataOperand(Dest); 1841 case MIToken::kw_cfi_same_value: 1842 case MIToken::kw_cfi_offset: 1843 case MIToken::kw_cfi_def_cfa_register: 1844 case MIToken::kw_cfi_def_cfa_offset: 1845 case MIToken::kw_cfi_def_cfa: 1846 return parseCFIOperand(Dest); 1847 case MIToken::kw_blockaddress: 1848 return parseBlockAddressOperand(Dest); 1849 case MIToken::kw_intrinsic: 1850 return parseIntrinsicOperand(Dest); 1851 case MIToken::kw_target_index: 1852 return parseTargetIndexOperand(Dest); 1853 case MIToken::kw_liveout: 1854 return parseLiveoutRegisterMaskOperand(Dest); 1855 case MIToken::kw_floatpred: 1856 case MIToken::kw_intpred: 1857 return parsePredicateOperand(Dest); 1858 case MIToken::Error: 1859 return true; 1860 case MIToken::Identifier: 1861 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1862 Dest = MachineOperand::CreateRegMask(RegMask); 1863 lex(); 1864 break; 1865 } else 1866 return parseCustomRegisterMaskOperand(Dest); 1867 default: 1868 // FIXME: Parse the MCSymbol machine operand. 1869 return error("expected a machine operand"); 1870 } 1871 return false; 1872 } 1873 1874 bool MIParser::parseMachineOperandAndTargetFlags( 1875 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1876 unsigned TF = 0; 1877 bool HasTargetFlags = false; 1878 if (Token.is(MIToken::kw_target_flags)) { 1879 HasTargetFlags = true; 1880 lex(); 1881 if (expectAndConsume(MIToken::lparen)) 1882 return true; 1883 if (Token.isNot(MIToken::Identifier)) 1884 return error("expected the name of the target flag"); 1885 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1886 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1887 return error("use of undefined target flag '" + Token.stringValue() + 1888 "'"); 1889 } 1890 lex(); 1891 while (Token.is(MIToken::comma)) { 1892 lex(); 1893 if (Token.isNot(MIToken::Identifier)) 1894 return error("expected the name of the target flag"); 1895 unsigned BitFlag = 0; 1896 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1897 return error("use of undefined target flag '" + Token.stringValue() + 1898 "'"); 1899 // TODO: Report an error when using a duplicate bit target flag. 1900 TF |= BitFlag; 1901 lex(); 1902 } 1903 if (expectAndConsume(MIToken::rparen)) 1904 return true; 1905 } 1906 auto Loc = Token.location(); 1907 if (parseMachineOperand(Dest, TiedDefIdx)) 1908 return true; 1909 if (!HasTargetFlags) 1910 return false; 1911 if (Dest.isReg()) 1912 return error(Loc, "register operands can't have target flags"); 1913 Dest.setTargetFlags(TF); 1914 return false; 1915 } 1916 1917 bool MIParser::parseOffset(int64_t &Offset) { 1918 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1919 return false; 1920 StringRef Sign = Token.range(); 1921 bool IsNegative = Token.is(MIToken::minus); 1922 lex(); 1923 if (Token.isNot(MIToken::IntegerLiteral)) 1924 return error("expected an integer literal after '" + Sign + "'"); 1925 if (Token.integerValue().getMinSignedBits() > 64) 1926 return error("expected 64-bit integer (too large)"); 1927 Offset = Token.integerValue().getExtValue(); 1928 if (IsNegative) 1929 Offset = -Offset; 1930 lex(); 1931 return false; 1932 } 1933 1934 bool MIParser::parseAlignment(unsigned &Alignment) { 1935 assert(Token.is(MIToken::kw_align)); 1936 lex(); 1937 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1938 return error("expected an integer literal after 'align'"); 1939 if (getUnsigned(Alignment)) 1940 return true; 1941 lex(); 1942 return false; 1943 } 1944 1945 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1946 int64_t Offset = 0; 1947 if (parseOffset(Offset)) 1948 return true; 1949 Op.setOffset(Offset); 1950 return false; 1951 } 1952 1953 bool MIParser::parseIRValue(const Value *&V) { 1954 switch (Token.kind()) { 1955 case MIToken::NamedIRValue: { 1956 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1957 break; 1958 } 1959 case MIToken::IRValue: { 1960 unsigned SlotNumber = 0; 1961 if (getUnsigned(SlotNumber)) 1962 return true; 1963 V = getIRValue(SlotNumber); 1964 break; 1965 } 1966 case MIToken::NamedGlobalValue: 1967 case MIToken::GlobalValue: { 1968 GlobalValue *GV = nullptr; 1969 if (parseGlobalValue(GV)) 1970 return true; 1971 V = GV; 1972 break; 1973 } 1974 case MIToken::QuotedIRValue: { 1975 const Constant *C = nullptr; 1976 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1977 return true; 1978 V = C; 1979 break; 1980 } 1981 default: 1982 llvm_unreachable("The current token should be an IR block reference"); 1983 } 1984 if (!V) 1985 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1986 return false; 1987 } 1988 1989 bool MIParser::getUint64(uint64_t &Result) { 1990 if (Token.hasIntegerValue()) { 1991 if (Token.integerValue().getActiveBits() > 64) 1992 return error("expected 64-bit integer (too large)"); 1993 Result = Token.integerValue().getZExtValue(); 1994 return false; 1995 } 1996 if (Token.is(MIToken::HexLiteral)) { 1997 APInt A; 1998 if (getHexUint(A)) 1999 return true; 2000 if (A.getBitWidth() > 64) 2001 return error("expected 64-bit integer (too large)"); 2002 Result = A.getZExtValue(); 2003 return false; 2004 } 2005 return true; 2006 } 2007 2008 bool MIParser::getHexUint(APInt &Result) { 2009 assert(Token.is(MIToken::HexLiteral)); 2010 StringRef S = Token.range(); 2011 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2012 // This could be a floating point literal with a special prefix. 2013 if (!isxdigit(S[2])) 2014 return true; 2015 StringRef V = S.substr(2); 2016 APInt A(V.size()*4, V, 16); 2017 Result = APInt(A.getActiveBits(), 2018 ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2019 return false; 2020 } 2021 2022 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2023 const auto OldFlags = Flags; 2024 switch (Token.kind()) { 2025 case MIToken::kw_volatile: 2026 Flags |= MachineMemOperand::MOVolatile; 2027 break; 2028 case MIToken::kw_non_temporal: 2029 Flags |= MachineMemOperand::MONonTemporal; 2030 break; 2031 case MIToken::kw_dereferenceable: 2032 Flags |= MachineMemOperand::MODereferenceable; 2033 break; 2034 case MIToken::kw_invariant: 2035 Flags |= MachineMemOperand::MOInvariant; 2036 break; 2037 // TODO: parse the target specific memory operand flags. 2038 default: 2039 llvm_unreachable("The current token should be a memory operand flag"); 2040 } 2041 if (OldFlags == Flags) 2042 // We know that the same flag is specified more than once when the flags 2043 // weren't modified. 2044 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2045 lex(); 2046 return false; 2047 } 2048 2049 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2050 switch (Token.kind()) { 2051 case MIToken::kw_stack: 2052 PSV = MF.getPSVManager().getStack(); 2053 break; 2054 case MIToken::kw_got: 2055 PSV = MF.getPSVManager().getGOT(); 2056 break; 2057 case MIToken::kw_jump_table: 2058 PSV = MF.getPSVManager().getJumpTable(); 2059 break; 2060 case MIToken::kw_constant_pool: 2061 PSV = MF.getPSVManager().getConstantPool(); 2062 break; 2063 case MIToken::FixedStackObject: { 2064 int FI; 2065 if (parseFixedStackFrameIndex(FI)) 2066 return true; 2067 PSV = MF.getPSVManager().getFixedStack(FI); 2068 // The token was already consumed, so use return here instead of break. 2069 return false; 2070 } 2071 case MIToken::StackObject: { 2072 int FI; 2073 if (parseStackFrameIndex(FI)) 2074 return true; 2075 PSV = MF.getPSVManager().getFixedStack(FI); 2076 // The token was already consumed, so use return here instead of break. 2077 return false; 2078 } 2079 case MIToken::kw_call_entry: 2080 lex(); 2081 switch (Token.kind()) { 2082 case MIToken::GlobalValue: 2083 case MIToken::NamedGlobalValue: { 2084 GlobalValue *GV = nullptr; 2085 if (parseGlobalValue(GV)) 2086 return true; 2087 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2088 break; 2089 } 2090 case MIToken::ExternalSymbol: 2091 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2092 MF.createExternalSymbolName(Token.stringValue())); 2093 break; 2094 default: 2095 return error( 2096 "expected a global value or an external symbol after 'call-entry'"); 2097 } 2098 break; 2099 default: 2100 llvm_unreachable("The current token should be pseudo source value"); 2101 } 2102 lex(); 2103 return false; 2104 } 2105 2106 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2107 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2108 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2109 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2110 Token.is(MIToken::kw_call_entry)) { 2111 const PseudoSourceValue *PSV = nullptr; 2112 if (parseMemoryPseudoSourceValue(PSV)) 2113 return true; 2114 int64_t Offset = 0; 2115 if (parseOffset(Offset)) 2116 return true; 2117 Dest = MachinePointerInfo(PSV, Offset); 2118 return false; 2119 } 2120 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2121 Token.isNot(MIToken::GlobalValue) && 2122 Token.isNot(MIToken::NamedGlobalValue) && 2123 Token.isNot(MIToken::QuotedIRValue)) 2124 return error("expected an IR value reference"); 2125 const Value *V = nullptr; 2126 if (parseIRValue(V)) 2127 return true; 2128 if (!V->getType()->isPointerTy()) 2129 return error("expected a pointer IR value"); 2130 lex(); 2131 int64_t Offset = 0; 2132 if (parseOffset(Offset)) 2133 return true; 2134 Dest = MachinePointerInfo(V, Offset); 2135 return false; 2136 } 2137 2138 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2139 Order = AtomicOrdering::NotAtomic; 2140 if (Token.isNot(MIToken::Identifier)) 2141 return false; 2142 2143 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2144 .Case("unordered", AtomicOrdering::Unordered) 2145 .Case("monotonic", AtomicOrdering::Monotonic) 2146 .Case("acquire", AtomicOrdering::Acquire) 2147 .Case("release", AtomicOrdering::Release) 2148 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2149 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2150 .Default(AtomicOrdering::NotAtomic); 2151 2152 if (Order != AtomicOrdering::NotAtomic) { 2153 lex(); 2154 return false; 2155 } 2156 2157 return error("expected an atomic scope, ordering or a size integer literal"); 2158 } 2159 2160 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2161 if (expectAndConsume(MIToken::lparen)) 2162 return true; 2163 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2164 while (Token.isMemoryOperandFlag()) { 2165 if (parseMemoryOperandFlag(Flags)) 2166 return true; 2167 } 2168 if (Token.isNot(MIToken::Identifier) || 2169 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2170 return error("expected 'load' or 'store' memory operation"); 2171 if (Token.stringValue() == "load") 2172 Flags |= MachineMemOperand::MOLoad; 2173 else 2174 Flags |= MachineMemOperand::MOStore; 2175 lex(); 2176 2177 // Optional "singlethread" scope. 2178 SynchronizationScope Scope = SynchronizationScope::CrossThread; 2179 if (Token.is(MIToken::Identifier) && Token.stringValue() == "singlethread") { 2180 Scope = SynchronizationScope::SingleThread; 2181 lex(); 2182 } 2183 2184 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2185 AtomicOrdering Order, FailureOrder; 2186 if (parseOptionalAtomicOrdering(Order)) 2187 return true; 2188 2189 if (parseOptionalAtomicOrdering(FailureOrder)) 2190 return true; 2191 2192 if (Token.isNot(MIToken::IntegerLiteral)) 2193 return error("expected the size integer literal after memory operation"); 2194 uint64_t Size; 2195 if (getUint64(Size)) 2196 return true; 2197 lex(); 2198 2199 MachinePointerInfo Ptr = MachinePointerInfo(); 2200 if (Token.is(MIToken::Identifier)) { 2201 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2202 if (Token.stringValue() != Word) 2203 return error(Twine("expected '") + Word + "'"); 2204 lex(); 2205 2206 if (parseMachinePointerInfo(Ptr)) 2207 return true; 2208 } 2209 unsigned BaseAlignment = Size; 2210 AAMDNodes AAInfo; 2211 MDNode *Range = nullptr; 2212 while (consumeIfPresent(MIToken::comma)) { 2213 switch (Token.kind()) { 2214 case MIToken::kw_align: 2215 if (parseAlignment(BaseAlignment)) 2216 return true; 2217 break; 2218 case MIToken::md_tbaa: 2219 lex(); 2220 if (parseMDNode(AAInfo.TBAA)) 2221 return true; 2222 break; 2223 case MIToken::md_alias_scope: 2224 lex(); 2225 if (parseMDNode(AAInfo.Scope)) 2226 return true; 2227 break; 2228 case MIToken::md_noalias: 2229 lex(); 2230 if (parseMDNode(AAInfo.NoAlias)) 2231 return true; 2232 break; 2233 case MIToken::md_range: 2234 lex(); 2235 if (parseMDNode(Range)) 2236 return true; 2237 break; 2238 // TODO: Report an error on duplicate metadata nodes. 2239 default: 2240 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2241 "'!noalias' or '!range'"); 2242 } 2243 } 2244 if (expectAndConsume(MIToken::rparen)) 2245 return true; 2246 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2247 Scope, Order, FailureOrder); 2248 return false; 2249 } 2250 2251 void MIParser::initNames2InstrOpCodes() { 2252 if (!Names2InstrOpCodes.empty()) 2253 return; 2254 const auto *TII = MF.getSubtarget().getInstrInfo(); 2255 assert(TII && "Expected target instruction info"); 2256 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2257 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2258 } 2259 2260 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2261 initNames2InstrOpCodes(); 2262 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2263 if (InstrInfo == Names2InstrOpCodes.end()) 2264 return true; 2265 OpCode = InstrInfo->getValue(); 2266 return false; 2267 } 2268 2269 void MIParser::initNames2Regs() { 2270 if (!Names2Regs.empty()) 2271 return; 2272 // The '%noreg' register is the register 0. 2273 Names2Regs.insert(std::make_pair("noreg", 0)); 2274 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2275 assert(TRI && "Expected target register info"); 2276 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2277 bool WasInserted = 2278 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2279 .second; 2280 (void)WasInserted; 2281 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2282 } 2283 } 2284 2285 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2286 initNames2Regs(); 2287 auto RegInfo = Names2Regs.find(RegName); 2288 if (RegInfo == Names2Regs.end()) 2289 return true; 2290 Reg = RegInfo->getValue(); 2291 return false; 2292 } 2293 2294 void MIParser::initNames2RegMasks() { 2295 if (!Names2RegMasks.empty()) 2296 return; 2297 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2298 assert(TRI && "Expected target register info"); 2299 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2300 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2301 assert(RegMasks.size() == RegMaskNames.size()); 2302 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2303 Names2RegMasks.insert( 2304 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2305 } 2306 2307 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2308 initNames2RegMasks(); 2309 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2310 if (RegMaskInfo == Names2RegMasks.end()) 2311 return nullptr; 2312 return RegMaskInfo->getValue(); 2313 } 2314 2315 void MIParser::initNames2SubRegIndices() { 2316 if (!Names2SubRegIndices.empty()) 2317 return; 2318 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2319 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2320 Names2SubRegIndices.insert( 2321 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2322 } 2323 2324 unsigned MIParser::getSubRegIndex(StringRef Name) { 2325 initNames2SubRegIndices(); 2326 auto SubRegInfo = Names2SubRegIndices.find(Name); 2327 if (SubRegInfo == Names2SubRegIndices.end()) 2328 return 0; 2329 return SubRegInfo->getValue(); 2330 } 2331 2332 static void initSlots2BasicBlocks( 2333 const Function &F, 2334 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2335 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2336 MST.incorporateFunction(F); 2337 for (auto &BB : F) { 2338 if (BB.hasName()) 2339 continue; 2340 int Slot = MST.getLocalSlot(&BB); 2341 if (Slot == -1) 2342 continue; 2343 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2344 } 2345 } 2346 2347 static const BasicBlock *getIRBlockFromSlot( 2348 unsigned Slot, 2349 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2350 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2351 if (BlockInfo == Slots2BasicBlocks.end()) 2352 return nullptr; 2353 return BlockInfo->second; 2354 } 2355 2356 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2357 if (Slots2BasicBlocks.empty()) 2358 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2359 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2360 } 2361 2362 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2363 if (&F == MF.getFunction()) 2364 return getIRBlock(Slot); 2365 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2366 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2367 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2368 } 2369 2370 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2371 DenseMap<unsigned, const Value *> &Slots2Values) { 2372 int Slot = MST.getLocalSlot(V); 2373 if (Slot == -1) 2374 return; 2375 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2376 } 2377 2378 /// Creates the mapping from slot numbers to function's unnamed IR values. 2379 static void initSlots2Values(const Function &F, 2380 DenseMap<unsigned, const Value *> &Slots2Values) { 2381 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2382 MST.incorporateFunction(F); 2383 for (const auto &Arg : F.args()) 2384 mapValueToSlot(&Arg, MST, Slots2Values); 2385 for (const auto &BB : F) { 2386 mapValueToSlot(&BB, MST, Slots2Values); 2387 for (const auto &I : BB) 2388 mapValueToSlot(&I, MST, Slots2Values); 2389 } 2390 } 2391 2392 const Value *MIParser::getIRValue(unsigned Slot) { 2393 if (Slots2Values.empty()) 2394 initSlots2Values(*MF.getFunction(), Slots2Values); 2395 auto ValueInfo = Slots2Values.find(Slot); 2396 if (ValueInfo == Slots2Values.end()) 2397 return nullptr; 2398 return ValueInfo->second; 2399 } 2400 2401 void MIParser::initNames2TargetIndices() { 2402 if (!Names2TargetIndices.empty()) 2403 return; 2404 const auto *TII = MF.getSubtarget().getInstrInfo(); 2405 assert(TII && "Expected target instruction info"); 2406 auto Indices = TII->getSerializableTargetIndices(); 2407 for (const auto &I : Indices) 2408 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2409 } 2410 2411 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2412 initNames2TargetIndices(); 2413 auto IndexInfo = Names2TargetIndices.find(Name); 2414 if (IndexInfo == Names2TargetIndices.end()) 2415 return true; 2416 Index = IndexInfo->second; 2417 return false; 2418 } 2419 2420 void MIParser::initNames2DirectTargetFlags() { 2421 if (!Names2DirectTargetFlags.empty()) 2422 return; 2423 const auto *TII = MF.getSubtarget().getInstrInfo(); 2424 assert(TII && "Expected target instruction info"); 2425 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2426 for (const auto &I : Flags) 2427 Names2DirectTargetFlags.insert( 2428 std::make_pair(StringRef(I.second), I.first)); 2429 } 2430 2431 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2432 initNames2DirectTargetFlags(); 2433 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2434 if (FlagInfo == Names2DirectTargetFlags.end()) 2435 return true; 2436 Flag = FlagInfo->second; 2437 return false; 2438 } 2439 2440 void MIParser::initNames2BitmaskTargetFlags() { 2441 if (!Names2BitmaskTargetFlags.empty()) 2442 return; 2443 const auto *TII = MF.getSubtarget().getInstrInfo(); 2444 assert(TII && "Expected target instruction info"); 2445 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2446 for (const auto &I : Flags) 2447 Names2BitmaskTargetFlags.insert( 2448 std::make_pair(StringRef(I.second), I.first)); 2449 } 2450 2451 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2452 initNames2BitmaskTargetFlags(); 2453 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2454 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2455 return true; 2456 Flag = FlagInfo->second; 2457 return false; 2458 } 2459 2460 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2461 StringRef Src, 2462 SMDiagnostic &Error) { 2463 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2464 } 2465 2466 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2467 StringRef Src, SMDiagnostic &Error) { 2468 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2469 } 2470 2471 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2472 MachineBasicBlock *&MBB, StringRef Src, 2473 SMDiagnostic &Error) { 2474 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2475 } 2476 2477 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2478 unsigned &Reg, StringRef Src, 2479 SMDiagnostic &Error) { 2480 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2481 } 2482 2483 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2484 unsigned &Reg, StringRef Src, 2485 SMDiagnostic &Error) { 2486 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2487 } 2488 2489 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2490 VRegInfo *&Info, StringRef Src, 2491 SMDiagnostic &Error) { 2492 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2493 } 2494 2495 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2496 int &FI, StringRef Src, 2497 SMDiagnostic &Error) { 2498 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2499 } 2500 2501 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2502 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2503 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2504 } 2505