1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/AsmParser/Parser.h"
29 #include "llvm/AsmParser/SlotMapping.h"
30 #include "llvm/CodeGen/MIRPrinter.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/ModuleSlotTracker.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/IR/ValueSymbolTable.h"
57 #include "llvm/MC/LaneBitmask.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCDwarf.h"
60 #include "llvm/MC/MCInstrDesc.h"
61 #include "llvm/MC/MCRegisterInfo.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/LowLevelTypeImpl.h"
67 #include "llvm/Support/MemoryBuffer.h"
68 #include "llvm/Support/SMLoc.h"
69 #include "llvm/Support/SourceMgr.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetIntrinsicInfo.h"
72 #include "llvm/Target/TargetMachine.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cctype>
76 #include <cstddef>
77 #include <cstdint>
78 #include <limits>
79 #include <string>
80 #include <utility>
81 
82 using namespace llvm;
83 
84 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
85     SourceMgr &SM, const SlotMapping &IRSlots,
86     const Name2RegClassMap &Names2RegClasses,
87     const Name2RegBankMap &Names2RegBanks)
88   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
89     Names2RegBanks(Names2RegBanks) {
90 }
91 
92 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
93   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
94   if (I.second) {
95     MachineRegisterInfo &MRI = MF.getRegInfo();
96     VRegInfo *Info = new (Allocator) VRegInfo;
97     Info->VReg = MRI.createIncompleteVirtualRegister();
98     I.first->second = Info;
99   }
100   return *I.first->second;
101 }
102 
103 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
104   assert(RegName != "" && "Expected named reg.");
105 
106   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
107   if (I.second) {
108     VRegInfo *Info = new (Allocator) VRegInfo;
109     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
110     I.first->second = Info;
111   }
112   return *I.first->second;
113 }
114 
115 namespace {
116 
117 /// A wrapper struct around the 'MachineOperand' struct that includes a source
118 /// range and other attributes.
119 struct ParsedMachineOperand {
120   MachineOperand Operand;
121   StringRef::iterator Begin;
122   StringRef::iterator End;
123   Optional<unsigned> TiedDefIdx;
124 
125   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
126                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
127       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
128     if (TiedDefIdx)
129       assert(Operand.isReg() && Operand.isUse() &&
130              "Only used register operands can be tied");
131   }
132 };
133 
134 class MIParser {
135   MachineFunction &MF;
136   SMDiagnostic &Error;
137   StringRef Source, CurrentSource;
138   MIToken Token;
139   PerFunctionMIParsingState &PFS;
140   /// Maps from instruction names to op codes.
141   StringMap<unsigned> Names2InstrOpCodes;
142   /// Maps from register names to registers.
143   StringMap<unsigned> Names2Regs;
144   /// Maps from register mask names to register masks.
145   StringMap<const uint32_t *> Names2RegMasks;
146   /// Maps from subregister names to subregister indices.
147   StringMap<unsigned> Names2SubRegIndices;
148   /// Maps from slot numbers to function's unnamed basic blocks.
149   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
150   /// Maps from slot numbers to function's unnamed values.
151   DenseMap<unsigned, const Value *> Slots2Values;
152   /// Maps from target index names to target indices.
153   StringMap<int> Names2TargetIndices;
154   /// Maps from direct target flag names to the direct target flag values.
155   StringMap<unsigned> Names2DirectTargetFlags;
156   /// Maps from direct target flag names to the bitmask target flag values.
157   StringMap<unsigned> Names2BitmaskTargetFlags;
158   /// Maps from MMO target flag names to MMO target flag values.
159   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
160 
161 public:
162   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
163            StringRef Source);
164 
165   /// \p SkipChar gives the number of characters to skip before looking
166   /// for the next token.
167   void lex(unsigned SkipChar = 0);
168 
169   /// Report an error at the current location with the given message.
170   ///
171   /// This function always return true.
172   bool error(const Twine &Msg);
173 
174   /// Report an error at the given location with the given message.
175   ///
176   /// This function always return true.
177   bool error(StringRef::iterator Loc, const Twine &Msg);
178 
179   bool
180   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
181   bool parseBasicBlocks();
182   bool parse(MachineInstr *&MI);
183   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
184   bool parseStandaloneNamedRegister(unsigned &Reg);
185   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
186   bool parseStandaloneRegister(unsigned &Reg);
187   bool parseStandaloneStackObject(int &FI);
188   bool parseStandaloneMDNode(MDNode *&Node);
189 
190   bool
191   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
192   bool parseBasicBlock(MachineBasicBlock &MBB,
193                        MachineBasicBlock *&AddFalthroughFrom);
194   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
195   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
196 
197   bool parseNamedRegister(unsigned &Reg);
198   bool parseVirtualRegister(VRegInfo *&Info);
199   bool parseNamedVirtualRegister(VRegInfo *&Info);
200   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
201   bool parseRegisterFlag(unsigned &Flags);
202   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
203   bool parseSubRegisterIndex(unsigned &SubReg);
204   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
205   bool parseRegisterOperand(MachineOperand &Dest,
206                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
207   bool parseImmediateOperand(MachineOperand &Dest);
208   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
209                        const Constant *&C);
210   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
211   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
212   bool parseTypedImmediateOperand(MachineOperand &Dest);
213   bool parseFPImmediateOperand(MachineOperand &Dest);
214   bool parseMBBReference(MachineBasicBlock *&MBB);
215   bool parseMBBOperand(MachineOperand &Dest);
216   bool parseStackFrameIndex(int &FI);
217   bool parseStackObjectOperand(MachineOperand &Dest);
218   bool parseFixedStackFrameIndex(int &FI);
219   bool parseFixedStackObjectOperand(MachineOperand &Dest);
220   bool parseGlobalValue(GlobalValue *&GV);
221   bool parseGlobalAddressOperand(MachineOperand &Dest);
222   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
223   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
224   bool parseJumpTableIndexOperand(MachineOperand &Dest);
225   bool parseExternalSymbolOperand(MachineOperand &Dest);
226   bool parseMCSymbolOperand(MachineOperand &Dest);
227   bool parseMDNode(MDNode *&Node);
228   bool parseDIExpression(MDNode *&Expr);
229   bool parseMetadataOperand(MachineOperand &Dest);
230   bool parseCFIOffset(int &Offset);
231   bool parseCFIRegister(unsigned &Reg);
232   bool parseCFIEscapeValues(std::string& Values);
233   bool parseCFIOperand(MachineOperand &Dest);
234   bool parseIRBlock(BasicBlock *&BB, const Function &F);
235   bool parseBlockAddressOperand(MachineOperand &Dest);
236   bool parseIntrinsicOperand(MachineOperand &Dest);
237   bool parsePredicateOperand(MachineOperand &Dest);
238   bool parseTargetIndexOperand(MachineOperand &Dest);
239   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
240   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
241   bool parseMachineOperand(MachineOperand &Dest,
242                            Optional<unsigned> &TiedDefIdx);
243   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
244                                          Optional<unsigned> &TiedDefIdx);
245   bool parseOffset(int64_t &Offset);
246   bool parseAlignment(unsigned &Alignment);
247   bool parseAddrspace(unsigned &Addrspace);
248   bool parseOperandsOffset(MachineOperand &Op);
249   bool parseIRValue(const Value *&V);
250   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
251   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
252   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
253   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
254   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
255   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
256   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
257 
258 private:
259   /// Convert the integer literal in the current token into an unsigned integer.
260   ///
261   /// Return true if an error occurred.
262   bool getUnsigned(unsigned &Result);
263 
264   /// Convert the integer literal in the current token into an uint64.
265   ///
266   /// Return true if an error occurred.
267   bool getUint64(uint64_t &Result);
268 
269   /// Convert the hexadecimal literal in the current token into an unsigned
270   ///  APInt with a minimum bitwidth required to represent the value.
271   ///
272   /// Return true if the literal does not represent an integer value.
273   bool getHexUint(APInt &Result);
274 
275   /// If the current token is of the given kind, consume it and return false.
276   /// Otherwise report an error and return true.
277   bool expectAndConsume(MIToken::TokenKind TokenKind);
278 
279   /// If the current token is of the given kind, consume it and return true.
280   /// Otherwise return false.
281   bool consumeIfPresent(MIToken::TokenKind TokenKind);
282 
283   void initNames2InstrOpCodes();
284 
285   /// Try to convert an instruction name to an opcode. Return true if the
286   /// instruction name is invalid.
287   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
288 
289   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
290 
291   bool assignRegisterTies(MachineInstr &MI,
292                           ArrayRef<ParsedMachineOperand> Operands);
293 
294   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
295                               const MCInstrDesc &MCID);
296 
297   void initNames2Regs();
298 
299   /// Try to convert a register name to a register number. Return true if the
300   /// register name is invalid.
301   bool getRegisterByName(StringRef RegName, unsigned &Reg);
302 
303   void initNames2RegMasks();
304 
305   /// Check if the given identifier is a name of a register mask.
306   ///
307   /// Return null if the identifier isn't a register mask.
308   const uint32_t *getRegMask(StringRef Identifier);
309 
310   void initNames2SubRegIndices();
311 
312   /// Check if the given identifier is a name of a subregister index.
313   ///
314   /// Return 0 if the name isn't a subregister index class.
315   unsigned getSubRegIndex(StringRef Name);
316 
317   const BasicBlock *getIRBlock(unsigned Slot);
318   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
319 
320   const Value *getIRValue(unsigned Slot);
321 
322   void initNames2TargetIndices();
323 
324   /// Try to convert a name of target index to the corresponding target index.
325   ///
326   /// Return true if the name isn't a name of a target index.
327   bool getTargetIndex(StringRef Name, int &Index);
328 
329   void initNames2DirectTargetFlags();
330 
331   /// Try to convert a name of a direct target flag to the corresponding
332   /// target flag.
333   ///
334   /// Return true if the name isn't a name of a direct flag.
335   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
336 
337   void initNames2BitmaskTargetFlags();
338 
339   /// Try to convert a name of a bitmask target flag to the corresponding
340   /// target flag.
341   ///
342   /// Return true if the name isn't a name of a bitmask target flag.
343   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
344 
345   void initNames2MMOTargetFlags();
346 
347   /// Try to convert a name of a MachineMemOperand target flag to the
348   /// corresponding target flag.
349   ///
350   /// Return true if the name isn't a name of a target MMO flag.
351   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
352 
353   /// Get or create an MCSymbol for a given name.
354   MCSymbol *getOrCreateMCSymbol(StringRef Name);
355 
356   /// parseStringConstant
357   ///   ::= StringConstant
358   bool parseStringConstant(std::string &Result);
359 };
360 
361 } // end anonymous namespace
362 
363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
364                    StringRef Source)
365     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
366 {}
367 
368 void MIParser::lex(unsigned SkipChar) {
369   CurrentSource = lexMIToken(
370       CurrentSource.data() + SkipChar, Token,
371       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
372 }
373 
374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
375 
376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
377   const SourceMgr &SM = *PFS.SM;
378   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
379   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
380   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
381     // Create an ordinary diagnostic when the source manager's buffer is the
382     // source string.
383     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
384     return true;
385   }
386   // Create a diagnostic for a YAML string literal.
387   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
388                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
389                        Source, None, None);
390   return true;
391 }
392 
393 static const char *toString(MIToken::TokenKind TokenKind) {
394   switch (TokenKind) {
395   case MIToken::comma:
396     return "','";
397   case MIToken::equal:
398     return "'='";
399   case MIToken::colon:
400     return "':'";
401   case MIToken::lparen:
402     return "'('";
403   case MIToken::rparen:
404     return "')'";
405   default:
406     return "<unknown token>";
407   }
408 }
409 
410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
411   if (Token.isNot(TokenKind))
412     return error(Twine("expected ") + toString(TokenKind));
413   lex();
414   return false;
415 }
416 
417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
418   if (Token.isNot(TokenKind))
419     return false;
420   lex();
421   return true;
422 }
423 
424 bool MIParser::parseBasicBlockDefinition(
425     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
426   assert(Token.is(MIToken::MachineBasicBlockLabel));
427   unsigned ID = 0;
428   if (getUnsigned(ID))
429     return true;
430   auto Loc = Token.location();
431   auto Name = Token.stringValue();
432   lex();
433   bool HasAddressTaken = false;
434   bool IsLandingPad = false;
435   unsigned Alignment = 0;
436   BasicBlock *BB = nullptr;
437   if (consumeIfPresent(MIToken::lparen)) {
438     do {
439       // TODO: Report an error when multiple same attributes are specified.
440       switch (Token.kind()) {
441       case MIToken::kw_address_taken:
442         HasAddressTaken = true;
443         lex();
444         break;
445       case MIToken::kw_landing_pad:
446         IsLandingPad = true;
447         lex();
448         break;
449       case MIToken::kw_align:
450         if (parseAlignment(Alignment))
451           return true;
452         break;
453       case MIToken::IRBlock:
454         // TODO: Report an error when both name and ir block are specified.
455         if (parseIRBlock(BB, MF.getFunction()))
456           return true;
457         lex();
458         break;
459       default:
460         break;
461       }
462     } while (consumeIfPresent(MIToken::comma));
463     if (expectAndConsume(MIToken::rparen))
464       return true;
465   }
466   if (expectAndConsume(MIToken::colon))
467     return true;
468 
469   if (!Name.empty()) {
470     BB = dyn_cast_or_null<BasicBlock>(
471         MF.getFunction().getValueSymbolTable()->lookup(Name));
472     if (!BB)
473       return error(Loc, Twine("basic block '") + Name +
474                             "' is not defined in the function '" +
475                             MF.getName() + "'");
476   }
477   auto *MBB = MF.CreateMachineBasicBlock(BB);
478   MF.insert(MF.end(), MBB);
479   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
480   if (!WasInserted)
481     return error(Loc, Twine("redefinition of machine basic block with id #") +
482                           Twine(ID));
483   if (Alignment)
484     MBB->setAlignment(Alignment);
485   if (HasAddressTaken)
486     MBB->setHasAddressTaken();
487   MBB->setIsEHPad(IsLandingPad);
488   return false;
489 }
490 
491 bool MIParser::parseBasicBlockDefinitions(
492     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
493   lex();
494   // Skip until the first machine basic block.
495   while (Token.is(MIToken::Newline))
496     lex();
497   if (Token.isErrorOrEOF())
498     return Token.isError();
499   if (Token.isNot(MIToken::MachineBasicBlockLabel))
500     return error("expected a basic block definition before instructions");
501   unsigned BraceDepth = 0;
502   do {
503     if (parseBasicBlockDefinition(MBBSlots))
504       return true;
505     bool IsAfterNewline = false;
506     // Skip until the next machine basic block.
507     while (true) {
508       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
509           Token.isErrorOrEOF())
510         break;
511       else if (Token.is(MIToken::MachineBasicBlockLabel))
512         return error("basic block definition should be located at the start of "
513                      "the line");
514       else if (consumeIfPresent(MIToken::Newline)) {
515         IsAfterNewline = true;
516         continue;
517       }
518       IsAfterNewline = false;
519       if (Token.is(MIToken::lbrace))
520         ++BraceDepth;
521       if (Token.is(MIToken::rbrace)) {
522         if (!BraceDepth)
523           return error("extraneous closing brace ('}')");
524         --BraceDepth;
525       }
526       lex();
527     }
528     // Verify that we closed all of the '{' at the end of a file or a block.
529     if (!Token.isError() && BraceDepth)
530       return error("expected '}'"); // FIXME: Report a note that shows '{'.
531   } while (!Token.isErrorOrEOF());
532   return Token.isError();
533 }
534 
535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
536   assert(Token.is(MIToken::kw_liveins));
537   lex();
538   if (expectAndConsume(MIToken::colon))
539     return true;
540   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
541     return false;
542   do {
543     if (Token.isNot(MIToken::NamedRegister))
544       return error("expected a named register");
545     unsigned Reg = 0;
546     if (parseNamedRegister(Reg))
547       return true;
548     lex();
549     LaneBitmask Mask = LaneBitmask::getAll();
550     if (consumeIfPresent(MIToken::colon)) {
551       // Parse lane mask.
552       if (Token.isNot(MIToken::IntegerLiteral) &&
553           Token.isNot(MIToken::HexLiteral))
554         return error("expected a lane mask");
555       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
556                     "Use correct get-function for lane mask");
557       LaneBitmask::Type V;
558       if (getUnsigned(V))
559         return error("invalid lane mask value");
560       Mask = LaneBitmask(V);
561       lex();
562     }
563     MBB.addLiveIn(Reg, Mask);
564   } while (consumeIfPresent(MIToken::comma));
565   return false;
566 }
567 
568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
569   assert(Token.is(MIToken::kw_successors));
570   lex();
571   if (expectAndConsume(MIToken::colon))
572     return true;
573   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
574     return false;
575   do {
576     if (Token.isNot(MIToken::MachineBasicBlock))
577       return error("expected a machine basic block reference");
578     MachineBasicBlock *SuccMBB = nullptr;
579     if (parseMBBReference(SuccMBB))
580       return true;
581     lex();
582     unsigned Weight = 0;
583     if (consumeIfPresent(MIToken::lparen)) {
584       if (Token.isNot(MIToken::IntegerLiteral) &&
585           Token.isNot(MIToken::HexLiteral))
586         return error("expected an integer literal after '('");
587       if (getUnsigned(Weight))
588         return true;
589       lex();
590       if (expectAndConsume(MIToken::rparen))
591         return true;
592     }
593     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
594   } while (consumeIfPresent(MIToken::comma));
595   MBB.normalizeSuccProbs();
596   return false;
597 }
598 
599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
600                                MachineBasicBlock *&AddFalthroughFrom) {
601   // Skip the definition.
602   assert(Token.is(MIToken::MachineBasicBlockLabel));
603   lex();
604   if (consumeIfPresent(MIToken::lparen)) {
605     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
606       lex();
607     consumeIfPresent(MIToken::rparen);
608   }
609   consumeIfPresent(MIToken::colon);
610 
611   // Parse the liveins and successors.
612   // N.B: Multiple lists of successors and liveins are allowed and they're
613   // merged into one.
614   // Example:
615   //   liveins: %edi
616   //   liveins: %esi
617   //
618   // is equivalent to
619   //   liveins: %edi, %esi
620   bool ExplicitSuccessors = false;
621   while (true) {
622     if (Token.is(MIToken::kw_successors)) {
623       if (parseBasicBlockSuccessors(MBB))
624         return true;
625       ExplicitSuccessors = true;
626     } else if (Token.is(MIToken::kw_liveins)) {
627       if (parseBasicBlockLiveins(MBB))
628         return true;
629     } else if (consumeIfPresent(MIToken::Newline)) {
630       continue;
631     } else
632       break;
633     if (!Token.isNewlineOrEOF())
634       return error("expected line break at the end of a list");
635     lex();
636   }
637 
638   // Parse the instructions.
639   bool IsInBundle = false;
640   MachineInstr *PrevMI = nullptr;
641   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
642          !Token.is(MIToken::Eof)) {
643     if (consumeIfPresent(MIToken::Newline))
644       continue;
645     if (consumeIfPresent(MIToken::rbrace)) {
646       // The first parsing pass should verify that all closing '}' have an
647       // opening '{'.
648       assert(IsInBundle);
649       IsInBundle = false;
650       continue;
651     }
652     MachineInstr *MI = nullptr;
653     if (parse(MI))
654       return true;
655     MBB.insert(MBB.end(), MI);
656     if (IsInBundle) {
657       PrevMI->setFlag(MachineInstr::BundledSucc);
658       MI->setFlag(MachineInstr::BundledPred);
659     }
660     PrevMI = MI;
661     if (Token.is(MIToken::lbrace)) {
662       if (IsInBundle)
663         return error("nested instruction bundles are not allowed");
664       lex();
665       // This instruction is the start of the bundle.
666       MI->setFlag(MachineInstr::BundledSucc);
667       IsInBundle = true;
668       if (!Token.is(MIToken::Newline))
669         // The next instruction can be on the same line.
670         continue;
671     }
672     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
673     lex();
674   }
675 
676   // Construct successor list by searching for basic block machine operands.
677   if (!ExplicitSuccessors) {
678     SmallVector<MachineBasicBlock*,4> Successors;
679     bool IsFallthrough;
680     guessSuccessors(MBB, Successors, IsFallthrough);
681     for (MachineBasicBlock *Succ : Successors)
682       MBB.addSuccessor(Succ);
683 
684     if (IsFallthrough) {
685       AddFalthroughFrom = &MBB;
686     } else {
687       MBB.normalizeSuccProbs();
688     }
689   }
690 
691   return false;
692 }
693 
694 bool MIParser::parseBasicBlocks() {
695   lex();
696   // Skip until the first machine basic block.
697   while (Token.is(MIToken::Newline))
698     lex();
699   if (Token.isErrorOrEOF())
700     return Token.isError();
701   // The first parsing pass should have verified that this token is a MBB label
702   // in the 'parseBasicBlockDefinitions' method.
703   assert(Token.is(MIToken::MachineBasicBlockLabel));
704   MachineBasicBlock *AddFalthroughFrom = nullptr;
705   do {
706     MachineBasicBlock *MBB = nullptr;
707     if (parseMBBReference(MBB))
708       return true;
709     if (AddFalthroughFrom) {
710       if (!AddFalthroughFrom->isSuccessor(MBB))
711         AddFalthroughFrom->addSuccessor(MBB);
712       AddFalthroughFrom->normalizeSuccProbs();
713       AddFalthroughFrom = nullptr;
714     }
715     if (parseBasicBlock(*MBB, AddFalthroughFrom))
716       return true;
717     // The method 'parseBasicBlock' should parse the whole block until the next
718     // block or the end of file.
719     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
720   } while (Token.isNot(MIToken::Eof));
721   return false;
722 }
723 
724 bool MIParser::parse(MachineInstr *&MI) {
725   // Parse any register operands before '='
726   MachineOperand MO = MachineOperand::CreateImm(0);
727   SmallVector<ParsedMachineOperand, 8> Operands;
728   while (Token.isRegister() || Token.isRegisterFlag()) {
729     auto Loc = Token.location();
730     Optional<unsigned> TiedDefIdx;
731     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
732       return true;
733     Operands.push_back(
734         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
735     if (Token.isNot(MIToken::comma))
736       break;
737     lex();
738   }
739   if (!Operands.empty() && expectAndConsume(MIToken::equal))
740     return true;
741 
742   unsigned OpCode, Flags = 0;
743   if (Token.isError() || parseInstruction(OpCode, Flags))
744     return true;
745 
746   // Parse the remaining machine operands.
747   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
748          Token.isNot(MIToken::kw_post_instr_symbol) &&
749          Token.isNot(MIToken::kw_debug_location) &&
750          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
751     auto Loc = Token.location();
752     Optional<unsigned> TiedDefIdx;
753     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
754       return true;
755     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
756       MO.setIsDebug();
757     Operands.push_back(
758         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
759     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
760         Token.is(MIToken::lbrace))
761       break;
762     if (Token.isNot(MIToken::comma))
763       return error("expected ',' before the next machine operand");
764     lex();
765   }
766 
767   MCSymbol *PreInstrSymbol = nullptr;
768   if (Token.is(MIToken::kw_pre_instr_symbol))
769     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
770       return true;
771   MCSymbol *PostInstrSymbol = nullptr;
772   if (Token.is(MIToken::kw_post_instr_symbol))
773     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
774       return true;
775 
776   DebugLoc DebugLocation;
777   if (Token.is(MIToken::kw_debug_location)) {
778     lex();
779     if (Token.isNot(MIToken::exclaim))
780       return error("expected a metadata node after 'debug-location'");
781     MDNode *Node = nullptr;
782     if (parseMDNode(Node))
783       return true;
784     if (!isa<DILocation>(Node))
785       return error("referenced metadata is not a DILocation");
786     DebugLocation = DebugLoc(Node);
787   }
788 
789   // Parse the machine memory operands.
790   SmallVector<MachineMemOperand *, 2> MemOperands;
791   if (Token.is(MIToken::coloncolon)) {
792     lex();
793     while (!Token.isNewlineOrEOF()) {
794       MachineMemOperand *MemOp = nullptr;
795       if (parseMachineMemoryOperand(MemOp))
796         return true;
797       MemOperands.push_back(MemOp);
798       if (Token.isNewlineOrEOF())
799         break;
800       if (Token.isNot(MIToken::comma))
801         return error("expected ',' before the next machine memory operand");
802       lex();
803     }
804   }
805 
806   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
807   if (!MCID.isVariadic()) {
808     // FIXME: Move the implicit operand verification to the machine verifier.
809     if (verifyImplicitOperands(Operands, MCID))
810       return true;
811   }
812 
813   // TODO: Check for extraneous machine operands.
814   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
815   MI->setFlags(Flags);
816   for (const auto &Operand : Operands)
817     MI->addOperand(MF, Operand.Operand);
818   if (assignRegisterTies(*MI, Operands))
819     return true;
820   if (PreInstrSymbol)
821     MI->setPreInstrSymbol(MF, PreInstrSymbol);
822   if (PostInstrSymbol)
823     MI->setPostInstrSymbol(MF, PostInstrSymbol);
824   if (!MemOperands.empty())
825     MI->setMemRefs(MF, MemOperands);
826   return false;
827 }
828 
829 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
830   lex();
831   if (Token.isNot(MIToken::MachineBasicBlock))
832     return error("expected a machine basic block reference");
833   if (parseMBBReference(MBB))
834     return true;
835   lex();
836   if (Token.isNot(MIToken::Eof))
837     return error(
838         "expected end of string after the machine basic block reference");
839   return false;
840 }
841 
842 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
843   lex();
844   if (Token.isNot(MIToken::NamedRegister))
845     return error("expected a named register");
846   if (parseNamedRegister(Reg))
847     return true;
848   lex();
849   if (Token.isNot(MIToken::Eof))
850     return error("expected end of string after the register reference");
851   return false;
852 }
853 
854 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
855   lex();
856   if (Token.isNot(MIToken::VirtualRegister))
857     return error("expected a virtual register");
858   if (parseVirtualRegister(Info))
859     return true;
860   lex();
861   if (Token.isNot(MIToken::Eof))
862     return error("expected end of string after the register reference");
863   return false;
864 }
865 
866 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
867   lex();
868   if (Token.isNot(MIToken::NamedRegister) &&
869       Token.isNot(MIToken::VirtualRegister))
870     return error("expected either a named or virtual register");
871 
872   VRegInfo *Info;
873   if (parseRegister(Reg, Info))
874     return true;
875 
876   lex();
877   if (Token.isNot(MIToken::Eof))
878     return error("expected end of string after the register reference");
879   return false;
880 }
881 
882 bool MIParser::parseStandaloneStackObject(int &FI) {
883   lex();
884   if (Token.isNot(MIToken::StackObject))
885     return error("expected a stack object");
886   if (parseStackFrameIndex(FI))
887     return true;
888   if (Token.isNot(MIToken::Eof))
889     return error("expected end of string after the stack object reference");
890   return false;
891 }
892 
893 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
894   lex();
895   if (Token.is(MIToken::exclaim)) {
896     if (parseMDNode(Node))
897       return true;
898   } else if (Token.is(MIToken::md_diexpr)) {
899     if (parseDIExpression(Node))
900       return true;
901   } else
902     return error("expected a metadata node");
903   if (Token.isNot(MIToken::Eof))
904     return error("expected end of string after the metadata node");
905   return false;
906 }
907 
908 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
909   assert(MO.isImplicit());
910   return MO.isDef() ? "implicit-def" : "implicit";
911 }
912 
913 static std::string getRegisterName(const TargetRegisterInfo *TRI,
914                                    unsigned Reg) {
915   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
916   return StringRef(TRI->getName(Reg)).lower();
917 }
918 
919 /// Return true if the parsed machine operands contain a given machine operand.
920 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
921                                 ArrayRef<ParsedMachineOperand> Operands) {
922   for (const auto &I : Operands) {
923     if (ImplicitOperand.isIdenticalTo(I.Operand))
924       return true;
925   }
926   return false;
927 }
928 
929 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
930                                       const MCInstrDesc &MCID) {
931   if (MCID.isCall())
932     // We can't verify call instructions as they can contain arbitrary implicit
933     // register and register mask operands.
934     return false;
935 
936   // Gather all the expected implicit operands.
937   SmallVector<MachineOperand, 4> ImplicitOperands;
938   if (MCID.ImplicitDefs)
939     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
940       ImplicitOperands.push_back(
941           MachineOperand::CreateReg(*ImpDefs, true, true));
942   if (MCID.ImplicitUses)
943     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
944       ImplicitOperands.push_back(
945           MachineOperand::CreateReg(*ImpUses, false, true));
946 
947   const auto *TRI = MF.getSubtarget().getRegisterInfo();
948   assert(TRI && "Expected target register info");
949   for (const auto &I : ImplicitOperands) {
950     if (isImplicitOperandIn(I, Operands))
951       continue;
952     return error(Operands.empty() ? Token.location() : Operands.back().End,
953                  Twine("missing implicit register operand '") +
954                      printImplicitRegisterFlag(I) + " $" +
955                      getRegisterName(TRI, I.getReg()) + "'");
956   }
957   return false;
958 }
959 
960 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
961   // Allow frame and fast math flags for OPCODE
962   while (Token.is(MIToken::kw_frame_setup) ||
963          Token.is(MIToken::kw_frame_destroy) ||
964          Token.is(MIToken::kw_nnan) ||
965          Token.is(MIToken::kw_ninf) ||
966          Token.is(MIToken::kw_nsz) ||
967          Token.is(MIToken::kw_arcp) ||
968          Token.is(MIToken::kw_contract) ||
969          Token.is(MIToken::kw_afn) ||
970          Token.is(MIToken::kw_reassoc) ||
971          Token.is(MIToken::kw_nuw) ||
972          Token.is(MIToken::kw_nsw) ||
973          Token.is(MIToken::kw_exact)) {
974     // Mine frame and fast math flags
975     if (Token.is(MIToken::kw_frame_setup))
976       Flags |= MachineInstr::FrameSetup;
977     if (Token.is(MIToken::kw_frame_destroy))
978       Flags |= MachineInstr::FrameDestroy;
979     if (Token.is(MIToken::kw_nnan))
980       Flags |= MachineInstr::FmNoNans;
981     if (Token.is(MIToken::kw_ninf))
982       Flags |= MachineInstr::FmNoInfs;
983     if (Token.is(MIToken::kw_nsz))
984       Flags |= MachineInstr::FmNsz;
985     if (Token.is(MIToken::kw_arcp))
986       Flags |= MachineInstr::FmArcp;
987     if (Token.is(MIToken::kw_contract))
988       Flags |= MachineInstr::FmContract;
989     if (Token.is(MIToken::kw_afn))
990       Flags |= MachineInstr::FmAfn;
991     if (Token.is(MIToken::kw_reassoc))
992       Flags |= MachineInstr::FmReassoc;
993     if (Token.is(MIToken::kw_nuw))
994       Flags |= MachineInstr::NoUWrap;
995     if (Token.is(MIToken::kw_nsw))
996       Flags |= MachineInstr::NoSWrap;
997     if (Token.is(MIToken::kw_exact))
998       Flags |= MachineInstr::IsExact;
999 
1000     lex();
1001   }
1002   if (Token.isNot(MIToken::Identifier))
1003     return error("expected a machine instruction");
1004   StringRef InstrName = Token.stringValue();
1005   if (parseInstrName(InstrName, OpCode))
1006     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1007   lex();
1008   return false;
1009 }
1010 
1011 bool MIParser::parseNamedRegister(unsigned &Reg) {
1012   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1013   StringRef Name = Token.stringValue();
1014   if (getRegisterByName(Name, Reg))
1015     return error(Twine("unknown register name '") + Name + "'");
1016   return false;
1017 }
1018 
1019 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1020   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1021   StringRef Name = Token.stringValue();
1022   // TODO: Check that the VReg name is not the same as a physical register name.
1023   //       If it is, then print a warning (when warnings are implemented).
1024   Info = &PFS.getVRegInfoNamed(Name);
1025   return false;
1026 }
1027 
1028 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1029   if (Token.is(MIToken::NamedVirtualRegister))
1030     return parseNamedVirtualRegister(Info);
1031   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1032   unsigned ID;
1033   if (getUnsigned(ID))
1034     return true;
1035   Info = &PFS.getVRegInfo(ID);
1036   return false;
1037 }
1038 
1039 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1040   switch (Token.kind()) {
1041   case MIToken::underscore:
1042     Reg = 0;
1043     return false;
1044   case MIToken::NamedRegister:
1045     return parseNamedRegister(Reg);
1046   case MIToken::NamedVirtualRegister:
1047   case MIToken::VirtualRegister:
1048     if (parseVirtualRegister(Info))
1049       return true;
1050     Reg = Info->VReg;
1051     return false;
1052   // TODO: Parse other register kinds.
1053   default:
1054     llvm_unreachable("The current token should be a register");
1055   }
1056 }
1057 
1058 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1059   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1060     return error("expected '_', register class, or register bank name");
1061   StringRef::iterator Loc = Token.location();
1062   StringRef Name = Token.stringValue();
1063 
1064   // Was it a register class?
1065   auto RCNameI = PFS.Names2RegClasses.find(Name);
1066   if (RCNameI != PFS.Names2RegClasses.end()) {
1067     lex();
1068     const TargetRegisterClass &RC = *RCNameI->getValue();
1069 
1070     switch (RegInfo.Kind) {
1071     case VRegInfo::UNKNOWN:
1072     case VRegInfo::NORMAL:
1073       RegInfo.Kind = VRegInfo::NORMAL;
1074       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1075         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1076         return error(Loc, Twine("conflicting register classes, previously: ") +
1077                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1078       }
1079       RegInfo.D.RC = &RC;
1080       RegInfo.Explicit = true;
1081       return false;
1082 
1083     case VRegInfo::GENERIC:
1084     case VRegInfo::REGBANK:
1085       return error(Loc, "register class specification on generic register");
1086     }
1087     llvm_unreachable("Unexpected register kind");
1088   }
1089 
1090   // Should be a register bank or a generic register.
1091   const RegisterBank *RegBank = nullptr;
1092   if (Name != "_") {
1093     auto RBNameI = PFS.Names2RegBanks.find(Name);
1094     if (RBNameI == PFS.Names2RegBanks.end())
1095       return error(Loc, "expected '_', register class, or register bank name");
1096     RegBank = RBNameI->getValue();
1097   }
1098 
1099   lex();
1100 
1101   switch (RegInfo.Kind) {
1102   case VRegInfo::UNKNOWN:
1103   case VRegInfo::GENERIC:
1104   case VRegInfo::REGBANK:
1105     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1106     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1107       return error(Loc, "conflicting generic register banks");
1108     RegInfo.D.RegBank = RegBank;
1109     RegInfo.Explicit = true;
1110     return false;
1111 
1112   case VRegInfo::NORMAL:
1113     return error(Loc, "register bank specification on normal register");
1114   }
1115   llvm_unreachable("Unexpected register kind");
1116 }
1117 
1118 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1119   const unsigned OldFlags = Flags;
1120   switch (Token.kind()) {
1121   case MIToken::kw_implicit:
1122     Flags |= RegState::Implicit;
1123     break;
1124   case MIToken::kw_implicit_define:
1125     Flags |= RegState::ImplicitDefine;
1126     break;
1127   case MIToken::kw_def:
1128     Flags |= RegState::Define;
1129     break;
1130   case MIToken::kw_dead:
1131     Flags |= RegState::Dead;
1132     break;
1133   case MIToken::kw_killed:
1134     Flags |= RegState::Kill;
1135     break;
1136   case MIToken::kw_undef:
1137     Flags |= RegState::Undef;
1138     break;
1139   case MIToken::kw_internal:
1140     Flags |= RegState::InternalRead;
1141     break;
1142   case MIToken::kw_early_clobber:
1143     Flags |= RegState::EarlyClobber;
1144     break;
1145   case MIToken::kw_debug_use:
1146     Flags |= RegState::Debug;
1147     break;
1148   case MIToken::kw_renamable:
1149     Flags |= RegState::Renamable;
1150     break;
1151   default:
1152     llvm_unreachable("The current token should be a register flag");
1153   }
1154   if (OldFlags == Flags)
1155     // We know that the same flag is specified more than once when the flags
1156     // weren't modified.
1157     return error("duplicate '" + Token.stringValue() + "' register flag");
1158   lex();
1159   return false;
1160 }
1161 
1162 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1163   assert(Token.is(MIToken::dot));
1164   lex();
1165   if (Token.isNot(MIToken::Identifier))
1166     return error("expected a subregister index after '.'");
1167   auto Name = Token.stringValue();
1168   SubReg = getSubRegIndex(Name);
1169   if (!SubReg)
1170     return error(Twine("use of unknown subregister index '") + Name + "'");
1171   lex();
1172   return false;
1173 }
1174 
1175 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1176   if (!consumeIfPresent(MIToken::kw_tied_def))
1177     return true;
1178   if (Token.isNot(MIToken::IntegerLiteral))
1179     return error("expected an integer literal after 'tied-def'");
1180   if (getUnsigned(TiedDefIdx))
1181     return true;
1182   lex();
1183   if (expectAndConsume(MIToken::rparen))
1184     return true;
1185   return false;
1186 }
1187 
1188 bool MIParser::assignRegisterTies(MachineInstr &MI,
1189                                   ArrayRef<ParsedMachineOperand> Operands) {
1190   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1191   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1192     if (!Operands[I].TiedDefIdx)
1193       continue;
1194     // The parser ensures that this operand is a register use, so we just have
1195     // to check the tied-def operand.
1196     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1197     if (DefIdx >= E)
1198       return error(Operands[I].Begin,
1199                    Twine("use of invalid tied-def operand index '" +
1200                          Twine(DefIdx) + "'; instruction has only ") +
1201                        Twine(E) + " operands");
1202     const auto &DefOperand = Operands[DefIdx].Operand;
1203     if (!DefOperand.isReg() || !DefOperand.isDef())
1204       // FIXME: add note with the def operand.
1205       return error(Operands[I].Begin,
1206                    Twine("use of invalid tied-def operand index '") +
1207                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1208                        " isn't a defined register");
1209     // Check that the tied-def operand wasn't tied elsewhere.
1210     for (const auto &TiedPair : TiedRegisterPairs) {
1211       if (TiedPair.first == DefIdx)
1212         return error(Operands[I].Begin,
1213                      Twine("the tied-def operand #") + Twine(DefIdx) +
1214                          " is already tied with another register operand");
1215     }
1216     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1217   }
1218   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1219   // indices must be less than tied max.
1220   for (const auto &TiedPair : TiedRegisterPairs)
1221     MI.tieOperands(TiedPair.first, TiedPair.second);
1222   return false;
1223 }
1224 
1225 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1226                                     Optional<unsigned> &TiedDefIdx,
1227                                     bool IsDef) {
1228   unsigned Flags = IsDef ? RegState::Define : 0;
1229   while (Token.isRegisterFlag()) {
1230     if (parseRegisterFlag(Flags))
1231       return true;
1232   }
1233   if (!Token.isRegister())
1234     return error("expected a register after register flags");
1235   unsigned Reg;
1236   VRegInfo *RegInfo;
1237   if (parseRegister(Reg, RegInfo))
1238     return true;
1239   lex();
1240   unsigned SubReg = 0;
1241   if (Token.is(MIToken::dot)) {
1242     if (parseSubRegisterIndex(SubReg))
1243       return true;
1244     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1245       return error("subregister index expects a virtual register");
1246   }
1247   if (Token.is(MIToken::colon)) {
1248     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1249       return error("register class specification expects a virtual register");
1250     lex();
1251     if (parseRegisterClassOrBank(*RegInfo))
1252         return true;
1253   }
1254   MachineRegisterInfo &MRI = MF.getRegInfo();
1255   if ((Flags & RegState::Define) == 0) {
1256     if (consumeIfPresent(MIToken::lparen)) {
1257       unsigned Idx;
1258       if (!parseRegisterTiedDefIndex(Idx))
1259         TiedDefIdx = Idx;
1260       else {
1261         // Try a redundant low-level type.
1262         LLT Ty;
1263         if (parseLowLevelType(Token.location(), Ty))
1264           return error("expected tied-def or low-level type after '('");
1265 
1266         if (expectAndConsume(MIToken::rparen))
1267           return true;
1268 
1269         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1270           return error("inconsistent type for generic virtual register");
1271 
1272         MRI.setType(Reg, Ty);
1273       }
1274     }
1275   } else if (consumeIfPresent(MIToken::lparen)) {
1276     // Virtual registers may have a tpe with GlobalISel.
1277     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1278       return error("unexpected type on physical register");
1279 
1280     LLT Ty;
1281     if (parseLowLevelType(Token.location(), Ty))
1282       return true;
1283 
1284     if (expectAndConsume(MIToken::rparen))
1285       return true;
1286 
1287     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1288       return error("inconsistent type for generic virtual register");
1289 
1290     MRI.setType(Reg, Ty);
1291   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1292     // Generic virtual registers must have a type.
1293     // If we end up here this means the type hasn't been specified and
1294     // this is bad!
1295     if (RegInfo->Kind == VRegInfo::GENERIC ||
1296         RegInfo->Kind == VRegInfo::REGBANK)
1297       return error("generic virtual registers must have a type");
1298   }
1299   Dest = MachineOperand::CreateReg(
1300       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1301       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1302       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1303       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1304 
1305   return false;
1306 }
1307 
1308 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1309   assert(Token.is(MIToken::IntegerLiteral));
1310   const APSInt &Int = Token.integerValue();
1311   if (Int.getMinSignedBits() > 64)
1312     return error("integer literal is too large to be an immediate operand");
1313   Dest = MachineOperand::CreateImm(Int.getExtValue());
1314   lex();
1315   return false;
1316 }
1317 
1318 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1319                                const Constant *&C) {
1320   auto Source = StringValue.str(); // The source has to be null terminated.
1321   SMDiagnostic Err;
1322   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1323                          &PFS.IRSlots);
1324   if (!C)
1325     return error(Loc + Err.getColumnNo(), Err.getMessage());
1326   return false;
1327 }
1328 
1329 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1330   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1331     return true;
1332   lex();
1333   return false;
1334 }
1335 
1336 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1337   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1338     StringRef SizeStr = Token.range().drop_front();
1339     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1340       return error("expected integers after 's'/'p' type character");
1341   }
1342 
1343   if (Token.range().front() == 's') {
1344     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1345     lex();
1346     return false;
1347   } else if (Token.range().front() == 'p') {
1348     const DataLayout &DL = MF.getDataLayout();
1349     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1350     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1351     lex();
1352     return false;
1353   }
1354 
1355   // Now we're looking for a vector.
1356   if (Token.isNot(MIToken::less))
1357     return error(Loc,
1358                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1359   lex();
1360 
1361   if (Token.isNot(MIToken::IntegerLiteral))
1362     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1363   uint64_t NumElements = Token.integerValue().getZExtValue();
1364   lex();
1365 
1366   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1367     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1368   lex();
1369 
1370   if (Token.range().front() != 's' && Token.range().front() != 'p')
1371     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1372   StringRef SizeStr = Token.range().drop_front();
1373   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1374     return error("expected integers after 's'/'p' type character");
1375 
1376   if (Token.range().front() == 's')
1377     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1378   else if (Token.range().front() == 'p') {
1379     const DataLayout &DL = MF.getDataLayout();
1380     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1381     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1382   } else
1383     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1384   lex();
1385 
1386   if (Token.isNot(MIToken::greater))
1387     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1388   lex();
1389 
1390   Ty = LLT::vector(NumElements, Ty);
1391   return false;
1392 }
1393 
1394 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1395   assert(Token.is(MIToken::Identifier));
1396   StringRef TypeStr = Token.range();
1397   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1398       TypeStr.front() != 'p')
1399     return error(
1400         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1401   StringRef SizeStr = Token.range().drop_front();
1402   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1403     return error("expected integers after 'i'/'s'/'p' type character");
1404 
1405   auto Loc = Token.location();
1406   lex();
1407   if (Token.isNot(MIToken::IntegerLiteral)) {
1408     if (Token.isNot(MIToken::Identifier) ||
1409         !(Token.range() == "true" || Token.range() == "false"))
1410       return error("expected an integer literal");
1411   }
1412   const Constant *C = nullptr;
1413   if (parseIRConstant(Loc, C))
1414     return true;
1415   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1416   return false;
1417 }
1418 
1419 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1420   auto Loc = Token.location();
1421   lex();
1422   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1423       Token.isNot(MIToken::HexLiteral))
1424     return error("expected a floating point literal");
1425   const Constant *C = nullptr;
1426   if (parseIRConstant(Loc, C))
1427     return true;
1428   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1429   return false;
1430 }
1431 
1432 bool MIParser::getUnsigned(unsigned &Result) {
1433   if (Token.hasIntegerValue()) {
1434     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1435     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1436     if (Val64 == Limit)
1437       return error("expected 32-bit integer (too large)");
1438     Result = Val64;
1439     return false;
1440   }
1441   if (Token.is(MIToken::HexLiteral)) {
1442     APInt A;
1443     if (getHexUint(A))
1444       return true;
1445     if (A.getBitWidth() > 32)
1446       return error("expected 32-bit integer (too large)");
1447     Result = A.getZExtValue();
1448     return false;
1449   }
1450   return true;
1451 }
1452 
1453 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1454   assert(Token.is(MIToken::MachineBasicBlock) ||
1455          Token.is(MIToken::MachineBasicBlockLabel));
1456   unsigned Number;
1457   if (getUnsigned(Number))
1458     return true;
1459   auto MBBInfo = PFS.MBBSlots.find(Number);
1460   if (MBBInfo == PFS.MBBSlots.end())
1461     return error(Twine("use of undefined machine basic block #") +
1462                  Twine(Number));
1463   MBB = MBBInfo->second;
1464   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1465   // we drop the <irname> from the bb.<id>.<irname> format.
1466   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1467     return error(Twine("the name of machine basic block #") + Twine(Number) +
1468                  " isn't '" + Token.stringValue() + "'");
1469   return false;
1470 }
1471 
1472 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1473   MachineBasicBlock *MBB;
1474   if (parseMBBReference(MBB))
1475     return true;
1476   Dest = MachineOperand::CreateMBB(MBB);
1477   lex();
1478   return false;
1479 }
1480 
1481 bool MIParser::parseStackFrameIndex(int &FI) {
1482   assert(Token.is(MIToken::StackObject));
1483   unsigned ID;
1484   if (getUnsigned(ID))
1485     return true;
1486   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1487   if (ObjectInfo == PFS.StackObjectSlots.end())
1488     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1489                  "'");
1490   StringRef Name;
1491   if (const auto *Alloca =
1492           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1493     Name = Alloca->getName();
1494   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1495     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1496                  "' isn't '" + Token.stringValue() + "'");
1497   lex();
1498   FI = ObjectInfo->second;
1499   return false;
1500 }
1501 
1502 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1503   int FI;
1504   if (parseStackFrameIndex(FI))
1505     return true;
1506   Dest = MachineOperand::CreateFI(FI);
1507   return false;
1508 }
1509 
1510 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1511   assert(Token.is(MIToken::FixedStackObject));
1512   unsigned ID;
1513   if (getUnsigned(ID))
1514     return true;
1515   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1516   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1517     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1518                  Twine(ID) + "'");
1519   lex();
1520   FI = ObjectInfo->second;
1521   return false;
1522 }
1523 
1524 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1525   int FI;
1526   if (parseFixedStackFrameIndex(FI))
1527     return true;
1528   Dest = MachineOperand::CreateFI(FI);
1529   return false;
1530 }
1531 
1532 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1533   switch (Token.kind()) {
1534   case MIToken::NamedGlobalValue: {
1535     const Module *M = MF.getFunction().getParent();
1536     GV = M->getNamedValue(Token.stringValue());
1537     if (!GV)
1538       return error(Twine("use of undefined global value '") + Token.range() +
1539                    "'");
1540     break;
1541   }
1542   case MIToken::GlobalValue: {
1543     unsigned GVIdx;
1544     if (getUnsigned(GVIdx))
1545       return true;
1546     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1547       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1548                    "'");
1549     GV = PFS.IRSlots.GlobalValues[GVIdx];
1550     break;
1551   }
1552   default:
1553     llvm_unreachable("The current token should be a global value");
1554   }
1555   return false;
1556 }
1557 
1558 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1559   GlobalValue *GV = nullptr;
1560   if (parseGlobalValue(GV))
1561     return true;
1562   lex();
1563   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1564   if (parseOperandsOffset(Dest))
1565     return true;
1566   return false;
1567 }
1568 
1569 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1570   assert(Token.is(MIToken::ConstantPoolItem));
1571   unsigned ID;
1572   if (getUnsigned(ID))
1573     return true;
1574   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1575   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1576     return error("use of undefined constant '%const." + Twine(ID) + "'");
1577   lex();
1578   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1579   if (parseOperandsOffset(Dest))
1580     return true;
1581   return false;
1582 }
1583 
1584 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1585   assert(Token.is(MIToken::JumpTableIndex));
1586   unsigned ID;
1587   if (getUnsigned(ID))
1588     return true;
1589   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1590   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1591     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1592   lex();
1593   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1594   return false;
1595 }
1596 
1597 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1598   assert(Token.is(MIToken::ExternalSymbol));
1599   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1600   lex();
1601   Dest = MachineOperand::CreateES(Symbol);
1602   if (parseOperandsOffset(Dest))
1603     return true;
1604   return false;
1605 }
1606 
1607 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1608   assert(Token.is(MIToken::MCSymbol));
1609   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1610   lex();
1611   Dest = MachineOperand::CreateMCSymbol(Symbol);
1612   if (parseOperandsOffset(Dest))
1613     return true;
1614   return false;
1615 }
1616 
1617 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1618   assert(Token.is(MIToken::SubRegisterIndex));
1619   StringRef Name = Token.stringValue();
1620   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1621   if (SubRegIndex == 0)
1622     return error(Twine("unknown subregister index '") + Name + "'");
1623   lex();
1624   Dest = MachineOperand::CreateImm(SubRegIndex);
1625   return false;
1626 }
1627 
1628 bool MIParser::parseMDNode(MDNode *&Node) {
1629   assert(Token.is(MIToken::exclaim));
1630 
1631   auto Loc = Token.location();
1632   lex();
1633   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1634     return error("expected metadata id after '!'");
1635   unsigned ID;
1636   if (getUnsigned(ID))
1637     return true;
1638   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1639   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1640     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1641   lex();
1642   Node = NodeInfo->second.get();
1643   return false;
1644 }
1645 
1646 bool MIParser::parseDIExpression(MDNode *&Expr) {
1647   assert(Token.is(MIToken::md_diexpr));
1648   lex();
1649 
1650   // FIXME: Share this parsing with the IL parser.
1651   SmallVector<uint64_t, 8> Elements;
1652 
1653   if (expectAndConsume(MIToken::lparen))
1654     return true;
1655 
1656   if (Token.isNot(MIToken::rparen)) {
1657     do {
1658       if (Token.is(MIToken::Identifier)) {
1659         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1660           lex();
1661           Elements.push_back(Op);
1662           continue;
1663         }
1664         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1665       }
1666 
1667       if (Token.isNot(MIToken::IntegerLiteral) ||
1668           Token.integerValue().isSigned())
1669         return error("expected unsigned integer");
1670 
1671       auto &U = Token.integerValue();
1672       if (U.ugt(UINT64_MAX))
1673         return error("element too large, limit is " + Twine(UINT64_MAX));
1674       Elements.push_back(U.getZExtValue());
1675       lex();
1676 
1677     } while (consumeIfPresent(MIToken::comma));
1678   }
1679 
1680   if (expectAndConsume(MIToken::rparen))
1681     return true;
1682 
1683   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1684   return false;
1685 }
1686 
1687 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1688   MDNode *Node = nullptr;
1689   if (Token.is(MIToken::exclaim)) {
1690     if (parseMDNode(Node))
1691       return true;
1692   } else if (Token.is(MIToken::md_diexpr)) {
1693     if (parseDIExpression(Node))
1694       return true;
1695   }
1696   Dest = MachineOperand::CreateMetadata(Node);
1697   return false;
1698 }
1699 
1700 bool MIParser::parseCFIOffset(int &Offset) {
1701   if (Token.isNot(MIToken::IntegerLiteral))
1702     return error("expected a cfi offset");
1703   if (Token.integerValue().getMinSignedBits() > 32)
1704     return error("expected a 32 bit integer (the cfi offset is too large)");
1705   Offset = (int)Token.integerValue().getExtValue();
1706   lex();
1707   return false;
1708 }
1709 
1710 bool MIParser::parseCFIRegister(unsigned &Reg) {
1711   if (Token.isNot(MIToken::NamedRegister))
1712     return error("expected a cfi register");
1713   unsigned LLVMReg;
1714   if (parseNamedRegister(LLVMReg))
1715     return true;
1716   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1717   assert(TRI && "Expected target register info");
1718   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1719   if (DwarfReg < 0)
1720     return error("invalid DWARF register");
1721   Reg = (unsigned)DwarfReg;
1722   lex();
1723   return false;
1724 }
1725 
1726 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1727   do {
1728     if (Token.isNot(MIToken::HexLiteral))
1729       return error("expected a hexadecimal literal");
1730     unsigned Value;
1731     if (getUnsigned(Value))
1732       return true;
1733     if (Value > UINT8_MAX)
1734       return error("expected a 8-bit integer (too large)");
1735     Values.push_back(static_cast<uint8_t>(Value));
1736     lex();
1737   } while (consumeIfPresent(MIToken::comma));
1738   return false;
1739 }
1740 
1741 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1742   auto Kind = Token.kind();
1743   lex();
1744   int Offset;
1745   unsigned Reg;
1746   unsigned CFIIndex;
1747   switch (Kind) {
1748   case MIToken::kw_cfi_same_value:
1749     if (parseCFIRegister(Reg))
1750       return true;
1751     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1752     break;
1753   case MIToken::kw_cfi_offset:
1754     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1755         parseCFIOffset(Offset))
1756       return true;
1757     CFIIndex =
1758         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1759     break;
1760   case MIToken::kw_cfi_rel_offset:
1761     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1762         parseCFIOffset(Offset))
1763       return true;
1764     CFIIndex = MF.addFrameInst(
1765         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1766     break;
1767   case MIToken::kw_cfi_def_cfa_register:
1768     if (parseCFIRegister(Reg))
1769       return true;
1770     CFIIndex =
1771         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1772     break;
1773   case MIToken::kw_cfi_def_cfa_offset:
1774     if (parseCFIOffset(Offset))
1775       return true;
1776     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1777     CFIIndex = MF.addFrameInst(
1778         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1779     break;
1780   case MIToken::kw_cfi_adjust_cfa_offset:
1781     if (parseCFIOffset(Offset))
1782       return true;
1783     CFIIndex = MF.addFrameInst(
1784         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1785     break;
1786   case MIToken::kw_cfi_def_cfa:
1787     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1788         parseCFIOffset(Offset))
1789       return true;
1790     // NB: MCCFIInstruction::createDefCfa negates the offset.
1791     CFIIndex =
1792         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1793     break;
1794   case MIToken::kw_cfi_remember_state:
1795     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1796     break;
1797   case MIToken::kw_cfi_restore:
1798     if (parseCFIRegister(Reg))
1799       return true;
1800     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1801     break;
1802   case MIToken::kw_cfi_restore_state:
1803     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1804     break;
1805   case MIToken::kw_cfi_undefined:
1806     if (parseCFIRegister(Reg))
1807       return true;
1808     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1809     break;
1810   case MIToken::kw_cfi_register: {
1811     unsigned Reg2;
1812     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1813         parseCFIRegister(Reg2))
1814       return true;
1815 
1816     CFIIndex =
1817         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1818     break;
1819   }
1820   case MIToken::kw_cfi_window_save:
1821     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1822     break;
1823   case MIToken::kw_cfi_escape: {
1824     std::string Values;
1825     if (parseCFIEscapeValues(Values))
1826       return true;
1827     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1828     break;
1829   }
1830   default:
1831     // TODO: Parse the other CFI operands.
1832     llvm_unreachable("The current token should be a cfi operand");
1833   }
1834   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1835   return false;
1836 }
1837 
1838 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1839   switch (Token.kind()) {
1840   case MIToken::NamedIRBlock: {
1841     BB = dyn_cast_or_null<BasicBlock>(
1842         F.getValueSymbolTable()->lookup(Token.stringValue()));
1843     if (!BB)
1844       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1845     break;
1846   }
1847   case MIToken::IRBlock: {
1848     unsigned SlotNumber = 0;
1849     if (getUnsigned(SlotNumber))
1850       return true;
1851     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1852     if (!BB)
1853       return error(Twine("use of undefined IR block '%ir-block.") +
1854                    Twine(SlotNumber) + "'");
1855     break;
1856   }
1857   default:
1858     llvm_unreachable("The current token should be an IR block reference");
1859   }
1860   return false;
1861 }
1862 
1863 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1864   assert(Token.is(MIToken::kw_blockaddress));
1865   lex();
1866   if (expectAndConsume(MIToken::lparen))
1867     return true;
1868   if (Token.isNot(MIToken::GlobalValue) &&
1869       Token.isNot(MIToken::NamedGlobalValue))
1870     return error("expected a global value");
1871   GlobalValue *GV = nullptr;
1872   if (parseGlobalValue(GV))
1873     return true;
1874   auto *F = dyn_cast<Function>(GV);
1875   if (!F)
1876     return error("expected an IR function reference");
1877   lex();
1878   if (expectAndConsume(MIToken::comma))
1879     return true;
1880   BasicBlock *BB = nullptr;
1881   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1882     return error("expected an IR block reference");
1883   if (parseIRBlock(BB, *F))
1884     return true;
1885   lex();
1886   if (expectAndConsume(MIToken::rparen))
1887     return true;
1888   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1889   if (parseOperandsOffset(Dest))
1890     return true;
1891   return false;
1892 }
1893 
1894 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1895   assert(Token.is(MIToken::kw_intrinsic));
1896   lex();
1897   if (expectAndConsume(MIToken::lparen))
1898     return error("expected syntax intrinsic(@llvm.whatever)");
1899 
1900   if (Token.isNot(MIToken::NamedGlobalValue))
1901     return error("expected syntax intrinsic(@llvm.whatever)");
1902 
1903   std::string Name = Token.stringValue();
1904   lex();
1905 
1906   if (expectAndConsume(MIToken::rparen))
1907     return error("expected ')' to terminate intrinsic name");
1908 
1909   // Find out what intrinsic we're dealing with, first try the global namespace
1910   // and then the target's private intrinsics if that fails.
1911   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1912   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1913   if (ID == Intrinsic::not_intrinsic && TII)
1914     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1915 
1916   if (ID == Intrinsic::not_intrinsic)
1917     return error("unknown intrinsic name");
1918   Dest = MachineOperand::CreateIntrinsicID(ID);
1919 
1920   return false;
1921 }
1922 
1923 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1924   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1925   bool IsFloat = Token.is(MIToken::kw_floatpred);
1926   lex();
1927 
1928   if (expectAndConsume(MIToken::lparen))
1929     return error("expected syntax intpred(whatever) or floatpred(whatever");
1930 
1931   if (Token.isNot(MIToken::Identifier))
1932     return error("whatever");
1933 
1934   CmpInst::Predicate Pred;
1935   if (IsFloat) {
1936     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1937                .Case("false", CmpInst::FCMP_FALSE)
1938                .Case("oeq", CmpInst::FCMP_OEQ)
1939                .Case("ogt", CmpInst::FCMP_OGT)
1940                .Case("oge", CmpInst::FCMP_OGE)
1941                .Case("olt", CmpInst::FCMP_OLT)
1942                .Case("ole", CmpInst::FCMP_OLE)
1943                .Case("one", CmpInst::FCMP_ONE)
1944                .Case("ord", CmpInst::FCMP_ORD)
1945                .Case("uno", CmpInst::FCMP_UNO)
1946                .Case("ueq", CmpInst::FCMP_UEQ)
1947                .Case("ugt", CmpInst::FCMP_UGT)
1948                .Case("uge", CmpInst::FCMP_UGE)
1949                .Case("ult", CmpInst::FCMP_ULT)
1950                .Case("ule", CmpInst::FCMP_ULE)
1951                .Case("une", CmpInst::FCMP_UNE)
1952                .Case("true", CmpInst::FCMP_TRUE)
1953                .Default(CmpInst::BAD_FCMP_PREDICATE);
1954     if (!CmpInst::isFPPredicate(Pred))
1955       return error("invalid floating-point predicate");
1956   } else {
1957     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1958                .Case("eq", CmpInst::ICMP_EQ)
1959                .Case("ne", CmpInst::ICMP_NE)
1960                .Case("sgt", CmpInst::ICMP_SGT)
1961                .Case("sge", CmpInst::ICMP_SGE)
1962                .Case("slt", CmpInst::ICMP_SLT)
1963                .Case("sle", CmpInst::ICMP_SLE)
1964                .Case("ugt", CmpInst::ICMP_UGT)
1965                .Case("uge", CmpInst::ICMP_UGE)
1966                .Case("ult", CmpInst::ICMP_ULT)
1967                .Case("ule", CmpInst::ICMP_ULE)
1968                .Default(CmpInst::BAD_ICMP_PREDICATE);
1969     if (!CmpInst::isIntPredicate(Pred))
1970       return error("invalid integer predicate");
1971   }
1972 
1973   lex();
1974   Dest = MachineOperand::CreatePredicate(Pred);
1975   if (expectAndConsume(MIToken::rparen))
1976     return error("predicate should be terminated by ')'.");
1977 
1978   return false;
1979 }
1980 
1981 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1982   assert(Token.is(MIToken::kw_target_index));
1983   lex();
1984   if (expectAndConsume(MIToken::lparen))
1985     return true;
1986   if (Token.isNot(MIToken::Identifier))
1987     return error("expected the name of the target index");
1988   int Index = 0;
1989   if (getTargetIndex(Token.stringValue(), Index))
1990     return error("use of undefined target index '" + Token.stringValue() + "'");
1991   lex();
1992   if (expectAndConsume(MIToken::rparen))
1993     return true;
1994   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1995   if (parseOperandsOffset(Dest))
1996     return true;
1997   return false;
1998 }
1999 
2000 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2001   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2002   lex();
2003   if (expectAndConsume(MIToken::lparen))
2004     return true;
2005 
2006   uint32_t *Mask = MF.allocateRegMask();
2007   while (true) {
2008     if (Token.isNot(MIToken::NamedRegister))
2009       return error("expected a named register");
2010     unsigned Reg;
2011     if (parseNamedRegister(Reg))
2012       return true;
2013     lex();
2014     Mask[Reg / 32] |= 1U << (Reg % 32);
2015     // TODO: Report an error if the same register is used more than once.
2016     if (Token.isNot(MIToken::comma))
2017       break;
2018     lex();
2019   }
2020 
2021   if (expectAndConsume(MIToken::rparen))
2022     return true;
2023   Dest = MachineOperand::CreateRegMask(Mask);
2024   return false;
2025 }
2026 
2027 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2028   assert(Token.is(MIToken::kw_liveout));
2029   uint32_t *Mask = MF.allocateRegMask();
2030   lex();
2031   if (expectAndConsume(MIToken::lparen))
2032     return true;
2033   while (true) {
2034     if (Token.isNot(MIToken::NamedRegister))
2035       return error("expected a named register");
2036     unsigned Reg;
2037     if (parseNamedRegister(Reg))
2038       return true;
2039     lex();
2040     Mask[Reg / 32] |= 1U << (Reg % 32);
2041     // TODO: Report an error if the same register is used more than once.
2042     if (Token.isNot(MIToken::comma))
2043       break;
2044     lex();
2045   }
2046   if (expectAndConsume(MIToken::rparen))
2047     return true;
2048   Dest = MachineOperand::CreateRegLiveOut(Mask);
2049   return false;
2050 }
2051 
2052 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2053                                    Optional<unsigned> &TiedDefIdx) {
2054   switch (Token.kind()) {
2055   case MIToken::kw_implicit:
2056   case MIToken::kw_implicit_define:
2057   case MIToken::kw_def:
2058   case MIToken::kw_dead:
2059   case MIToken::kw_killed:
2060   case MIToken::kw_undef:
2061   case MIToken::kw_internal:
2062   case MIToken::kw_early_clobber:
2063   case MIToken::kw_debug_use:
2064   case MIToken::kw_renamable:
2065   case MIToken::underscore:
2066   case MIToken::NamedRegister:
2067   case MIToken::VirtualRegister:
2068   case MIToken::NamedVirtualRegister:
2069     return parseRegisterOperand(Dest, TiedDefIdx);
2070   case MIToken::IntegerLiteral:
2071     return parseImmediateOperand(Dest);
2072   case MIToken::kw_half:
2073   case MIToken::kw_float:
2074   case MIToken::kw_double:
2075   case MIToken::kw_x86_fp80:
2076   case MIToken::kw_fp128:
2077   case MIToken::kw_ppc_fp128:
2078     return parseFPImmediateOperand(Dest);
2079   case MIToken::MachineBasicBlock:
2080     return parseMBBOperand(Dest);
2081   case MIToken::StackObject:
2082     return parseStackObjectOperand(Dest);
2083   case MIToken::FixedStackObject:
2084     return parseFixedStackObjectOperand(Dest);
2085   case MIToken::GlobalValue:
2086   case MIToken::NamedGlobalValue:
2087     return parseGlobalAddressOperand(Dest);
2088   case MIToken::ConstantPoolItem:
2089     return parseConstantPoolIndexOperand(Dest);
2090   case MIToken::JumpTableIndex:
2091     return parseJumpTableIndexOperand(Dest);
2092   case MIToken::ExternalSymbol:
2093     return parseExternalSymbolOperand(Dest);
2094   case MIToken::MCSymbol:
2095     return parseMCSymbolOperand(Dest);
2096   case MIToken::SubRegisterIndex:
2097     return parseSubRegisterIndexOperand(Dest);
2098   case MIToken::md_diexpr:
2099   case MIToken::exclaim:
2100     return parseMetadataOperand(Dest);
2101   case MIToken::kw_cfi_same_value:
2102   case MIToken::kw_cfi_offset:
2103   case MIToken::kw_cfi_rel_offset:
2104   case MIToken::kw_cfi_def_cfa_register:
2105   case MIToken::kw_cfi_def_cfa_offset:
2106   case MIToken::kw_cfi_adjust_cfa_offset:
2107   case MIToken::kw_cfi_escape:
2108   case MIToken::kw_cfi_def_cfa:
2109   case MIToken::kw_cfi_register:
2110   case MIToken::kw_cfi_remember_state:
2111   case MIToken::kw_cfi_restore:
2112   case MIToken::kw_cfi_restore_state:
2113   case MIToken::kw_cfi_undefined:
2114   case MIToken::kw_cfi_window_save:
2115     return parseCFIOperand(Dest);
2116   case MIToken::kw_blockaddress:
2117     return parseBlockAddressOperand(Dest);
2118   case MIToken::kw_intrinsic:
2119     return parseIntrinsicOperand(Dest);
2120   case MIToken::kw_target_index:
2121     return parseTargetIndexOperand(Dest);
2122   case MIToken::kw_liveout:
2123     return parseLiveoutRegisterMaskOperand(Dest);
2124   case MIToken::kw_floatpred:
2125   case MIToken::kw_intpred:
2126     return parsePredicateOperand(Dest);
2127   case MIToken::Error:
2128     return true;
2129   case MIToken::Identifier:
2130     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2131       Dest = MachineOperand::CreateRegMask(RegMask);
2132       lex();
2133       break;
2134     } else if (Token.stringValue() == "CustomRegMask") {
2135       return parseCustomRegisterMaskOperand(Dest);
2136     } else
2137       return parseTypedImmediateOperand(Dest);
2138   default:
2139     // FIXME: Parse the MCSymbol machine operand.
2140     return error("expected a machine operand");
2141   }
2142   return false;
2143 }
2144 
2145 bool MIParser::parseMachineOperandAndTargetFlags(
2146     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2147   unsigned TF = 0;
2148   bool HasTargetFlags = false;
2149   if (Token.is(MIToken::kw_target_flags)) {
2150     HasTargetFlags = true;
2151     lex();
2152     if (expectAndConsume(MIToken::lparen))
2153       return true;
2154     if (Token.isNot(MIToken::Identifier))
2155       return error("expected the name of the target flag");
2156     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2157       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2158         return error("use of undefined target flag '" + Token.stringValue() +
2159                      "'");
2160     }
2161     lex();
2162     while (Token.is(MIToken::comma)) {
2163       lex();
2164       if (Token.isNot(MIToken::Identifier))
2165         return error("expected the name of the target flag");
2166       unsigned BitFlag = 0;
2167       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2168         return error("use of undefined target flag '" + Token.stringValue() +
2169                      "'");
2170       // TODO: Report an error when using a duplicate bit target flag.
2171       TF |= BitFlag;
2172       lex();
2173     }
2174     if (expectAndConsume(MIToken::rparen))
2175       return true;
2176   }
2177   auto Loc = Token.location();
2178   if (parseMachineOperand(Dest, TiedDefIdx))
2179     return true;
2180   if (!HasTargetFlags)
2181     return false;
2182   if (Dest.isReg())
2183     return error(Loc, "register operands can't have target flags");
2184   Dest.setTargetFlags(TF);
2185   return false;
2186 }
2187 
2188 bool MIParser::parseOffset(int64_t &Offset) {
2189   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2190     return false;
2191   StringRef Sign = Token.range();
2192   bool IsNegative = Token.is(MIToken::minus);
2193   lex();
2194   if (Token.isNot(MIToken::IntegerLiteral))
2195     return error("expected an integer literal after '" + Sign + "'");
2196   if (Token.integerValue().getMinSignedBits() > 64)
2197     return error("expected 64-bit integer (too large)");
2198   Offset = Token.integerValue().getExtValue();
2199   if (IsNegative)
2200     Offset = -Offset;
2201   lex();
2202   return false;
2203 }
2204 
2205 bool MIParser::parseAlignment(unsigned &Alignment) {
2206   assert(Token.is(MIToken::kw_align));
2207   lex();
2208   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2209     return error("expected an integer literal after 'align'");
2210   if (getUnsigned(Alignment))
2211     return true;
2212   lex();
2213   return false;
2214 }
2215 
2216 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2217   assert(Token.is(MIToken::kw_addrspace));
2218   lex();
2219   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2220     return error("expected an integer literal after 'addrspace'");
2221   if (getUnsigned(Addrspace))
2222     return true;
2223   lex();
2224   return false;
2225 }
2226 
2227 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2228   int64_t Offset = 0;
2229   if (parseOffset(Offset))
2230     return true;
2231   Op.setOffset(Offset);
2232   return false;
2233 }
2234 
2235 bool MIParser::parseIRValue(const Value *&V) {
2236   switch (Token.kind()) {
2237   case MIToken::NamedIRValue: {
2238     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2239     break;
2240   }
2241   case MIToken::IRValue: {
2242     unsigned SlotNumber = 0;
2243     if (getUnsigned(SlotNumber))
2244       return true;
2245     V = getIRValue(SlotNumber);
2246     break;
2247   }
2248   case MIToken::NamedGlobalValue:
2249   case MIToken::GlobalValue: {
2250     GlobalValue *GV = nullptr;
2251     if (parseGlobalValue(GV))
2252       return true;
2253     V = GV;
2254     break;
2255   }
2256   case MIToken::QuotedIRValue: {
2257     const Constant *C = nullptr;
2258     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2259       return true;
2260     V = C;
2261     break;
2262   }
2263   default:
2264     llvm_unreachable("The current token should be an IR block reference");
2265   }
2266   if (!V)
2267     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2268   return false;
2269 }
2270 
2271 bool MIParser::getUint64(uint64_t &Result) {
2272   if (Token.hasIntegerValue()) {
2273     if (Token.integerValue().getActiveBits() > 64)
2274       return error("expected 64-bit integer (too large)");
2275     Result = Token.integerValue().getZExtValue();
2276     return false;
2277   }
2278   if (Token.is(MIToken::HexLiteral)) {
2279     APInt A;
2280     if (getHexUint(A))
2281       return true;
2282     if (A.getBitWidth() > 64)
2283       return error("expected 64-bit integer (too large)");
2284     Result = A.getZExtValue();
2285     return false;
2286   }
2287   return true;
2288 }
2289 
2290 bool MIParser::getHexUint(APInt &Result) {
2291   assert(Token.is(MIToken::HexLiteral));
2292   StringRef S = Token.range();
2293   assert(S[0] == '0' && tolower(S[1]) == 'x');
2294   // This could be a floating point literal with a special prefix.
2295   if (!isxdigit(S[2]))
2296     return true;
2297   StringRef V = S.substr(2);
2298   APInt A(V.size()*4, V, 16);
2299 
2300   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2301   // sure it isn't the case before constructing result.
2302   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2303   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2304   return false;
2305 }
2306 
2307 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2308   const auto OldFlags = Flags;
2309   switch (Token.kind()) {
2310   case MIToken::kw_volatile:
2311     Flags |= MachineMemOperand::MOVolatile;
2312     break;
2313   case MIToken::kw_non_temporal:
2314     Flags |= MachineMemOperand::MONonTemporal;
2315     break;
2316   case MIToken::kw_dereferenceable:
2317     Flags |= MachineMemOperand::MODereferenceable;
2318     break;
2319   case MIToken::kw_invariant:
2320     Flags |= MachineMemOperand::MOInvariant;
2321     break;
2322   case MIToken::StringConstant: {
2323     MachineMemOperand::Flags TF;
2324     if (getMMOTargetFlag(Token.stringValue(), TF))
2325       return error("use of undefined target MMO flag '" + Token.stringValue() +
2326                    "'");
2327     Flags |= TF;
2328     break;
2329   }
2330   default:
2331     llvm_unreachable("The current token should be a memory operand flag");
2332   }
2333   if (OldFlags == Flags)
2334     // We know that the same flag is specified more than once when the flags
2335     // weren't modified.
2336     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2337   lex();
2338   return false;
2339 }
2340 
2341 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2342   switch (Token.kind()) {
2343   case MIToken::kw_stack:
2344     PSV = MF.getPSVManager().getStack();
2345     break;
2346   case MIToken::kw_got:
2347     PSV = MF.getPSVManager().getGOT();
2348     break;
2349   case MIToken::kw_jump_table:
2350     PSV = MF.getPSVManager().getJumpTable();
2351     break;
2352   case MIToken::kw_constant_pool:
2353     PSV = MF.getPSVManager().getConstantPool();
2354     break;
2355   case MIToken::FixedStackObject: {
2356     int FI;
2357     if (parseFixedStackFrameIndex(FI))
2358       return true;
2359     PSV = MF.getPSVManager().getFixedStack(FI);
2360     // The token was already consumed, so use return here instead of break.
2361     return false;
2362   }
2363   case MIToken::StackObject: {
2364     int FI;
2365     if (parseStackFrameIndex(FI))
2366       return true;
2367     PSV = MF.getPSVManager().getFixedStack(FI);
2368     // The token was already consumed, so use return here instead of break.
2369     return false;
2370   }
2371   case MIToken::kw_call_entry:
2372     lex();
2373     switch (Token.kind()) {
2374     case MIToken::GlobalValue:
2375     case MIToken::NamedGlobalValue: {
2376       GlobalValue *GV = nullptr;
2377       if (parseGlobalValue(GV))
2378         return true;
2379       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2380       break;
2381     }
2382     case MIToken::ExternalSymbol:
2383       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2384           MF.createExternalSymbolName(Token.stringValue()));
2385       break;
2386     default:
2387       return error(
2388           "expected a global value or an external symbol after 'call-entry'");
2389     }
2390     break;
2391   default:
2392     llvm_unreachable("The current token should be pseudo source value");
2393   }
2394   lex();
2395   return false;
2396 }
2397 
2398 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2399   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2400       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2401       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2402       Token.is(MIToken::kw_call_entry)) {
2403     const PseudoSourceValue *PSV = nullptr;
2404     if (parseMemoryPseudoSourceValue(PSV))
2405       return true;
2406     int64_t Offset = 0;
2407     if (parseOffset(Offset))
2408       return true;
2409     Dest = MachinePointerInfo(PSV, Offset);
2410     return false;
2411   }
2412   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2413       Token.isNot(MIToken::GlobalValue) &&
2414       Token.isNot(MIToken::NamedGlobalValue) &&
2415       Token.isNot(MIToken::QuotedIRValue))
2416     return error("expected an IR value reference");
2417   const Value *V = nullptr;
2418   if (parseIRValue(V))
2419     return true;
2420   if (!V->getType()->isPointerTy())
2421     return error("expected a pointer IR value");
2422   lex();
2423   int64_t Offset = 0;
2424   if (parseOffset(Offset))
2425     return true;
2426   Dest = MachinePointerInfo(V, Offset);
2427   return false;
2428 }
2429 
2430 bool MIParser::parseOptionalScope(LLVMContext &Context,
2431                                   SyncScope::ID &SSID) {
2432   SSID = SyncScope::System;
2433   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2434     lex();
2435     if (expectAndConsume(MIToken::lparen))
2436       return error("expected '(' in syncscope");
2437 
2438     std::string SSN;
2439     if (parseStringConstant(SSN))
2440       return true;
2441 
2442     SSID = Context.getOrInsertSyncScopeID(SSN);
2443     if (expectAndConsume(MIToken::rparen))
2444       return error("expected ')' in syncscope");
2445   }
2446 
2447   return false;
2448 }
2449 
2450 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2451   Order = AtomicOrdering::NotAtomic;
2452   if (Token.isNot(MIToken::Identifier))
2453     return false;
2454 
2455   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2456               .Case("unordered", AtomicOrdering::Unordered)
2457               .Case("monotonic", AtomicOrdering::Monotonic)
2458               .Case("acquire", AtomicOrdering::Acquire)
2459               .Case("release", AtomicOrdering::Release)
2460               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2461               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2462               .Default(AtomicOrdering::NotAtomic);
2463 
2464   if (Order != AtomicOrdering::NotAtomic) {
2465     lex();
2466     return false;
2467   }
2468 
2469   return error("expected an atomic scope, ordering or a size specification");
2470 }
2471 
2472 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2473   if (expectAndConsume(MIToken::lparen))
2474     return true;
2475   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2476   while (Token.isMemoryOperandFlag()) {
2477     if (parseMemoryOperandFlag(Flags))
2478       return true;
2479   }
2480   if (Token.isNot(MIToken::Identifier) ||
2481       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2482     return error("expected 'load' or 'store' memory operation");
2483   if (Token.stringValue() == "load")
2484     Flags |= MachineMemOperand::MOLoad;
2485   else
2486     Flags |= MachineMemOperand::MOStore;
2487   lex();
2488 
2489   // Optional 'store' for operands that both load and store.
2490   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2491     Flags |= MachineMemOperand::MOStore;
2492     lex();
2493   }
2494 
2495   // Optional synchronization scope.
2496   SyncScope::ID SSID;
2497   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2498     return true;
2499 
2500   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2501   AtomicOrdering Order, FailureOrder;
2502   if (parseOptionalAtomicOrdering(Order))
2503     return true;
2504 
2505   if (parseOptionalAtomicOrdering(FailureOrder))
2506     return true;
2507 
2508   if (Token.isNot(MIToken::IntegerLiteral) &&
2509       Token.isNot(MIToken::kw_unknown_size))
2510     return error("expected the size integer literal or 'unknown-size' after "
2511                  "memory operation");
2512   uint64_t Size;
2513   if (Token.is(MIToken::IntegerLiteral)) {
2514     if (getUint64(Size))
2515       return true;
2516   } else if (Token.is(MIToken::kw_unknown_size)) {
2517     Size = MemoryLocation::UnknownSize;
2518   }
2519   lex();
2520 
2521   MachinePointerInfo Ptr = MachinePointerInfo();
2522   if (Token.is(MIToken::Identifier)) {
2523     const char *Word =
2524         ((Flags & MachineMemOperand::MOLoad) &&
2525          (Flags & MachineMemOperand::MOStore))
2526             ? "on"
2527             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2528     if (Token.stringValue() != Word)
2529       return error(Twine("expected '") + Word + "'");
2530     lex();
2531 
2532     if (parseMachinePointerInfo(Ptr))
2533       return true;
2534   }
2535   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2536   AAMDNodes AAInfo;
2537   MDNode *Range = nullptr;
2538   while (consumeIfPresent(MIToken::comma)) {
2539     switch (Token.kind()) {
2540     case MIToken::kw_align:
2541       if (parseAlignment(BaseAlignment))
2542         return true;
2543       break;
2544     case MIToken::kw_addrspace:
2545       if (parseAddrspace(Ptr.AddrSpace))
2546         return true;
2547       break;
2548     case MIToken::md_tbaa:
2549       lex();
2550       if (parseMDNode(AAInfo.TBAA))
2551         return true;
2552       break;
2553     case MIToken::md_alias_scope:
2554       lex();
2555       if (parseMDNode(AAInfo.Scope))
2556         return true;
2557       break;
2558     case MIToken::md_noalias:
2559       lex();
2560       if (parseMDNode(AAInfo.NoAlias))
2561         return true;
2562       break;
2563     case MIToken::md_range:
2564       lex();
2565       if (parseMDNode(Range))
2566         return true;
2567       break;
2568     // TODO: Report an error on duplicate metadata nodes.
2569     default:
2570       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2571                    "'!noalias' or '!range'");
2572     }
2573   }
2574   if (expectAndConsume(MIToken::rparen))
2575     return true;
2576   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2577                                  SSID, Order, FailureOrder);
2578   return false;
2579 }
2580 
2581 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2582   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2583           Token.is(MIToken::kw_post_instr_symbol)) &&
2584          "Invalid token for a pre- post-instruction symbol!");
2585   lex();
2586   if (Token.isNot(MIToken::MCSymbol))
2587     return error("expected a symbol after 'pre-instr-symbol'");
2588   Symbol = getOrCreateMCSymbol(Token.stringValue());
2589   lex();
2590   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2591       Token.is(MIToken::lbrace))
2592     return false;
2593   if (Token.isNot(MIToken::comma))
2594     return error("expected ',' before the next machine operand");
2595   lex();
2596   return false;
2597 }
2598 
2599 void MIParser::initNames2InstrOpCodes() {
2600   if (!Names2InstrOpCodes.empty())
2601     return;
2602   const auto *TII = MF.getSubtarget().getInstrInfo();
2603   assert(TII && "Expected target instruction info");
2604   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2605     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2606 }
2607 
2608 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2609   initNames2InstrOpCodes();
2610   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2611   if (InstrInfo == Names2InstrOpCodes.end())
2612     return true;
2613   OpCode = InstrInfo->getValue();
2614   return false;
2615 }
2616 
2617 void MIParser::initNames2Regs() {
2618   if (!Names2Regs.empty())
2619     return;
2620   // The '%noreg' register is the register 0.
2621   Names2Regs.insert(std::make_pair("noreg", 0));
2622   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2623   assert(TRI && "Expected target register info");
2624   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2625     bool WasInserted =
2626         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2627             .second;
2628     (void)WasInserted;
2629     assert(WasInserted && "Expected registers to be unique case-insensitively");
2630   }
2631 }
2632 
2633 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2634   initNames2Regs();
2635   auto RegInfo = Names2Regs.find(RegName);
2636   if (RegInfo == Names2Regs.end())
2637     return true;
2638   Reg = RegInfo->getValue();
2639   return false;
2640 }
2641 
2642 void MIParser::initNames2RegMasks() {
2643   if (!Names2RegMasks.empty())
2644     return;
2645   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2646   assert(TRI && "Expected target register info");
2647   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2648   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2649   assert(RegMasks.size() == RegMaskNames.size());
2650   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2651     Names2RegMasks.insert(
2652         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2653 }
2654 
2655 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2656   initNames2RegMasks();
2657   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2658   if (RegMaskInfo == Names2RegMasks.end())
2659     return nullptr;
2660   return RegMaskInfo->getValue();
2661 }
2662 
2663 void MIParser::initNames2SubRegIndices() {
2664   if (!Names2SubRegIndices.empty())
2665     return;
2666   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2667   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2668     Names2SubRegIndices.insert(
2669         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2670 }
2671 
2672 unsigned MIParser::getSubRegIndex(StringRef Name) {
2673   initNames2SubRegIndices();
2674   auto SubRegInfo = Names2SubRegIndices.find(Name);
2675   if (SubRegInfo == Names2SubRegIndices.end())
2676     return 0;
2677   return SubRegInfo->getValue();
2678 }
2679 
2680 static void initSlots2BasicBlocks(
2681     const Function &F,
2682     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2683   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2684   MST.incorporateFunction(F);
2685   for (auto &BB : F) {
2686     if (BB.hasName())
2687       continue;
2688     int Slot = MST.getLocalSlot(&BB);
2689     if (Slot == -1)
2690       continue;
2691     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2692   }
2693 }
2694 
2695 static const BasicBlock *getIRBlockFromSlot(
2696     unsigned Slot,
2697     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2698   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2699   if (BlockInfo == Slots2BasicBlocks.end())
2700     return nullptr;
2701   return BlockInfo->second;
2702 }
2703 
2704 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2705   if (Slots2BasicBlocks.empty())
2706     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2707   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2708 }
2709 
2710 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2711   if (&F == &MF.getFunction())
2712     return getIRBlock(Slot);
2713   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2714   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2715   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2716 }
2717 
2718 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2719                            DenseMap<unsigned, const Value *> &Slots2Values) {
2720   int Slot = MST.getLocalSlot(V);
2721   if (Slot == -1)
2722     return;
2723   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2724 }
2725 
2726 /// Creates the mapping from slot numbers to function's unnamed IR values.
2727 static void initSlots2Values(const Function &F,
2728                              DenseMap<unsigned, const Value *> &Slots2Values) {
2729   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2730   MST.incorporateFunction(F);
2731   for (const auto &Arg : F.args())
2732     mapValueToSlot(&Arg, MST, Slots2Values);
2733   for (const auto &BB : F) {
2734     mapValueToSlot(&BB, MST, Slots2Values);
2735     for (const auto &I : BB)
2736       mapValueToSlot(&I, MST, Slots2Values);
2737   }
2738 }
2739 
2740 const Value *MIParser::getIRValue(unsigned Slot) {
2741   if (Slots2Values.empty())
2742     initSlots2Values(MF.getFunction(), Slots2Values);
2743   auto ValueInfo = Slots2Values.find(Slot);
2744   if (ValueInfo == Slots2Values.end())
2745     return nullptr;
2746   return ValueInfo->second;
2747 }
2748 
2749 void MIParser::initNames2TargetIndices() {
2750   if (!Names2TargetIndices.empty())
2751     return;
2752   const auto *TII = MF.getSubtarget().getInstrInfo();
2753   assert(TII && "Expected target instruction info");
2754   auto Indices = TII->getSerializableTargetIndices();
2755   for (const auto &I : Indices)
2756     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2757 }
2758 
2759 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2760   initNames2TargetIndices();
2761   auto IndexInfo = Names2TargetIndices.find(Name);
2762   if (IndexInfo == Names2TargetIndices.end())
2763     return true;
2764   Index = IndexInfo->second;
2765   return false;
2766 }
2767 
2768 void MIParser::initNames2DirectTargetFlags() {
2769   if (!Names2DirectTargetFlags.empty())
2770     return;
2771   const auto *TII = MF.getSubtarget().getInstrInfo();
2772   assert(TII && "Expected target instruction info");
2773   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2774   for (const auto &I : Flags)
2775     Names2DirectTargetFlags.insert(
2776         std::make_pair(StringRef(I.second), I.first));
2777 }
2778 
2779 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2780   initNames2DirectTargetFlags();
2781   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2782   if (FlagInfo == Names2DirectTargetFlags.end())
2783     return true;
2784   Flag = FlagInfo->second;
2785   return false;
2786 }
2787 
2788 void MIParser::initNames2BitmaskTargetFlags() {
2789   if (!Names2BitmaskTargetFlags.empty())
2790     return;
2791   const auto *TII = MF.getSubtarget().getInstrInfo();
2792   assert(TII && "Expected target instruction info");
2793   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2794   for (const auto &I : Flags)
2795     Names2BitmaskTargetFlags.insert(
2796         std::make_pair(StringRef(I.second), I.first));
2797 }
2798 
2799 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2800   initNames2BitmaskTargetFlags();
2801   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2802   if (FlagInfo == Names2BitmaskTargetFlags.end())
2803     return true;
2804   Flag = FlagInfo->second;
2805   return false;
2806 }
2807 
2808 void MIParser::initNames2MMOTargetFlags() {
2809   if (!Names2MMOTargetFlags.empty())
2810     return;
2811   const auto *TII = MF.getSubtarget().getInstrInfo();
2812   assert(TII && "Expected target instruction info");
2813   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2814   for (const auto &I : Flags)
2815     Names2MMOTargetFlags.insert(
2816         std::make_pair(StringRef(I.second), I.first));
2817 }
2818 
2819 bool MIParser::getMMOTargetFlag(StringRef Name,
2820                                 MachineMemOperand::Flags &Flag) {
2821   initNames2MMOTargetFlags();
2822   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2823   if (FlagInfo == Names2MMOTargetFlags.end())
2824     return true;
2825   Flag = FlagInfo->second;
2826   return false;
2827 }
2828 
2829 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
2830   // FIXME: Currently we can't recognize temporary or local symbols and call all
2831   // of the appropriate forms to create them. However, this handles basic cases
2832   // well as most of the special aspects are recognized by a prefix on their
2833   // name, and the input names should already be unique. For test cases, keeping
2834   // the symbol name out of the symbol table isn't terribly important.
2835   return MF.getContext().getOrCreateSymbol(Name);
2836 }
2837 
2838 bool MIParser::parseStringConstant(std::string &Result) {
2839   if (Token.isNot(MIToken::StringConstant))
2840     return error("expected string constant");
2841   Result = Token.stringValue();
2842   lex();
2843   return false;
2844 }
2845 
2846 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2847                                              StringRef Src,
2848                                              SMDiagnostic &Error) {
2849   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2850 }
2851 
2852 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2853                                     StringRef Src, SMDiagnostic &Error) {
2854   return MIParser(PFS, Error, Src).parseBasicBlocks();
2855 }
2856 
2857 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2858                              MachineBasicBlock *&MBB, StringRef Src,
2859                              SMDiagnostic &Error) {
2860   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2861 }
2862 
2863 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2864                                   unsigned &Reg, StringRef Src,
2865                                   SMDiagnostic &Error) {
2866   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2867 }
2868 
2869 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2870                                        unsigned &Reg, StringRef Src,
2871                                        SMDiagnostic &Error) {
2872   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2873 }
2874 
2875 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2876                                          VRegInfo *&Info, StringRef Src,
2877                                          SMDiagnostic &Error) {
2878   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2879 }
2880 
2881 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2882                                      int &FI, StringRef Src,
2883                                      SMDiagnostic &Error) {
2884   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2885 }
2886 
2887 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2888                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2889   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2890 }
2891