1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/AsmParser/Parser.h" 29 #include "llvm/AsmParser/SlotMapping.h" 30 #include "llvm/CodeGen/MIRPrinter.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstr.h" 35 #include "llvm/CodeGen/MachineInstrBuilder.h" 36 #include "llvm/CodeGen/MachineMemOperand.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DataLayout.h" 45 #include "llvm/IR/DebugInfoMetadata.h" 46 #include "llvm/IR/DebugLoc.h" 47 #include "llvm/IR/Function.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/ModuleSlotTracker.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Value.h" 56 #include "llvm/IR/ValueSymbolTable.h" 57 #include "llvm/MC/LaneBitmask.h" 58 #include "llvm/MC/MCContext.h" 59 #include "llvm/MC/MCDwarf.h" 60 #include "llvm/MC/MCInstrDesc.h" 61 #include "llvm/MC/MCRegisterInfo.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/LowLevelTypeImpl.h" 67 #include "llvm/Support/MemoryBuffer.h" 68 #include "llvm/Support/SMLoc.h" 69 #include "llvm/Support/SourceMgr.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Target/TargetIntrinsicInfo.h" 72 #include "llvm/Target/TargetMachine.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cctype> 76 #include <cstddef> 77 #include <cstdint> 78 #include <limits> 79 #include <string> 80 #include <utility> 81 82 using namespace llvm; 83 84 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 85 SourceMgr &SM, const SlotMapping &IRSlots, 86 const Name2RegClassMap &Names2RegClasses, 87 const Name2RegBankMap &Names2RegBanks) 88 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 89 Names2RegBanks(Names2RegBanks) { 90 } 91 92 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 93 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 94 if (I.second) { 95 MachineRegisterInfo &MRI = MF.getRegInfo(); 96 VRegInfo *Info = new (Allocator) VRegInfo; 97 Info->VReg = MRI.createIncompleteVirtualRegister(); 98 I.first->second = Info; 99 } 100 return *I.first->second; 101 } 102 103 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 104 assert(RegName != "" && "Expected named reg."); 105 106 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 107 if (I.second) { 108 VRegInfo *Info = new (Allocator) VRegInfo; 109 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 110 I.first->second = Info; 111 } 112 return *I.first->second; 113 } 114 115 namespace { 116 117 /// A wrapper struct around the 'MachineOperand' struct that includes a source 118 /// range and other attributes. 119 struct ParsedMachineOperand { 120 MachineOperand Operand; 121 StringRef::iterator Begin; 122 StringRef::iterator End; 123 Optional<unsigned> TiedDefIdx; 124 125 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 126 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 127 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 128 if (TiedDefIdx) 129 assert(Operand.isReg() && Operand.isUse() && 130 "Only used register operands can be tied"); 131 } 132 }; 133 134 class MIParser { 135 MachineFunction &MF; 136 SMDiagnostic &Error; 137 StringRef Source, CurrentSource; 138 MIToken Token; 139 PerFunctionMIParsingState &PFS; 140 /// Maps from instruction names to op codes. 141 StringMap<unsigned> Names2InstrOpCodes; 142 /// Maps from register names to registers. 143 StringMap<unsigned> Names2Regs; 144 /// Maps from register mask names to register masks. 145 StringMap<const uint32_t *> Names2RegMasks; 146 /// Maps from subregister names to subregister indices. 147 StringMap<unsigned> Names2SubRegIndices; 148 /// Maps from slot numbers to function's unnamed basic blocks. 149 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 150 /// Maps from slot numbers to function's unnamed values. 151 DenseMap<unsigned, const Value *> Slots2Values; 152 /// Maps from target index names to target indices. 153 StringMap<int> Names2TargetIndices; 154 /// Maps from direct target flag names to the direct target flag values. 155 StringMap<unsigned> Names2DirectTargetFlags; 156 /// Maps from direct target flag names to the bitmask target flag values. 157 StringMap<unsigned> Names2BitmaskTargetFlags; 158 /// Maps from MMO target flag names to MMO target flag values. 159 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 160 161 public: 162 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 163 StringRef Source); 164 165 /// \p SkipChar gives the number of characters to skip before looking 166 /// for the next token. 167 void lex(unsigned SkipChar = 0); 168 169 /// Report an error at the current location with the given message. 170 /// 171 /// This function always return true. 172 bool error(const Twine &Msg); 173 174 /// Report an error at the given location with the given message. 175 /// 176 /// This function always return true. 177 bool error(StringRef::iterator Loc, const Twine &Msg); 178 179 bool 180 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 181 bool parseBasicBlocks(); 182 bool parse(MachineInstr *&MI); 183 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 184 bool parseStandaloneNamedRegister(unsigned &Reg); 185 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 186 bool parseStandaloneRegister(unsigned &Reg); 187 bool parseStandaloneStackObject(int &FI); 188 bool parseStandaloneMDNode(MDNode *&Node); 189 190 bool 191 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 192 bool parseBasicBlock(MachineBasicBlock &MBB, 193 MachineBasicBlock *&AddFalthroughFrom); 194 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 195 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 196 197 bool parseNamedRegister(unsigned &Reg); 198 bool parseVirtualRegister(VRegInfo *&Info); 199 bool parseNamedVirtualRegister(VRegInfo *&Info); 200 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 201 bool parseRegisterFlag(unsigned &Flags); 202 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 203 bool parseSubRegisterIndex(unsigned &SubReg); 204 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 205 bool parseRegisterOperand(MachineOperand &Dest, 206 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 207 bool parseImmediateOperand(MachineOperand &Dest); 208 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 209 const Constant *&C); 210 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 211 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 212 bool parseTypedImmediateOperand(MachineOperand &Dest); 213 bool parseFPImmediateOperand(MachineOperand &Dest); 214 bool parseMBBReference(MachineBasicBlock *&MBB); 215 bool parseMBBOperand(MachineOperand &Dest); 216 bool parseStackFrameIndex(int &FI); 217 bool parseStackObjectOperand(MachineOperand &Dest); 218 bool parseFixedStackFrameIndex(int &FI); 219 bool parseFixedStackObjectOperand(MachineOperand &Dest); 220 bool parseGlobalValue(GlobalValue *&GV); 221 bool parseGlobalAddressOperand(MachineOperand &Dest); 222 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 223 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 224 bool parseJumpTableIndexOperand(MachineOperand &Dest); 225 bool parseExternalSymbolOperand(MachineOperand &Dest); 226 bool parseMCSymbolOperand(MachineOperand &Dest); 227 bool parseMDNode(MDNode *&Node); 228 bool parseDIExpression(MDNode *&Expr); 229 bool parseMetadataOperand(MachineOperand &Dest); 230 bool parseCFIOffset(int &Offset); 231 bool parseCFIRegister(unsigned &Reg); 232 bool parseCFIEscapeValues(std::string& Values); 233 bool parseCFIOperand(MachineOperand &Dest); 234 bool parseIRBlock(BasicBlock *&BB, const Function &F); 235 bool parseBlockAddressOperand(MachineOperand &Dest); 236 bool parseIntrinsicOperand(MachineOperand &Dest); 237 bool parsePredicateOperand(MachineOperand &Dest); 238 bool parseTargetIndexOperand(MachineOperand &Dest); 239 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 240 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 241 bool parseMachineOperand(MachineOperand &Dest, 242 Optional<unsigned> &TiedDefIdx); 243 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 244 Optional<unsigned> &TiedDefIdx); 245 bool parseOffset(int64_t &Offset); 246 bool parseAlignment(unsigned &Alignment); 247 bool parseAddrspace(unsigned &Addrspace); 248 bool parseOperandsOffset(MachineOperand &Op); 249 bool parseIRValue(const Value *&V); 250 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 251 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 252 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 253 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 254 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 255 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 256 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 257 258 private: 259 /// Convert the integer literal in the current token into an unsigned integer. 260 /// 261 /// Return true if an error occurred. 262 bool getUnsigned(unsigned &Result); 263 264 /// Convert the integer literal in the current token into an uint64. 265 /// 266 /// Return true if an error occurred. 267 bool getUint64(uint64_t &Result); 268 269 /// Convert the hexadecimal literal in the current token into an unsigned 270 /// APInt with a minimum bitwidth required to represent the value. 271 /// 272 /// Return true if the literal does not represent an integer value. 273 bool getHexUint(APInt &Result); 274 275 /// If the current token is of the given kind, consume it and return false. 276 /// Otherwise report an error and return true. 277 bool expectAndConsume(MIToken::TokenKind TokenKind); 278 279 /// If the current token is of the given kind, consume it and return true. 280 /// Otherwise return false. 281 bool consumeIfPresent(MIToken::TokenKind TokenKind); 282 283 void initNames2InstrOpCodes(); 284 285 /// Try to convert an instruction name to an opcode. Return true if the 286 /// instruction name is invalid. 287 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 288 289 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 290 291 bool assignRegisterTies(MachineInstr &MI, 292 ArrayRef<ParsedMachineOperand> Operands); 293 294 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 295 const MCInstrDesc &MCID); 296 297 void initNames2Regs(); 298 299 /// Try to convert a register name to a register number. Return true if the 300 /// register name is invalid. 301 bool getRegisterByName(StringRef RegName, unsigned &Reg); 302 303 void initNames2RegMasks(); 304 305 /// Check if the given identifier is a name of a register mask. 306 /// 307 /// Return null if the identifier isn't a register mask. 308 const uint32_t *getRegMask(StringRef Identifier); 309 310 void initNames2SubRegIndices(); 311 312 /// Check if the given identifier is a name of a subregister index. 313 /// 314 /// Return 0 if the name isn't a subregister index class. 315 unsigned getSubRegIndex(StringRef Name); 316 317 const BasicBlock *getIRBlock(unsigned Slot); 318 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 319 320 const Value *getIRValue(unsigned Slot); 321 322 void initNames2TargetIndices(); 323 324 /// Try to convert a name of target index to the corresponding target index. 325 /// 326 /// Return true if the name isn't a name of a target index. 327 bool getTargetIndex(StringRef Name, int &Index); 328 329 void initNames2DirectTargetFlags(); 330 331 /// Try to convert a name of a direct target flag to the corresponding 332 /// target flag. 333 /// 334 /// Return true if the name isn't a name of a direct flag. 335 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 336 337 void initNames2BitmaskTargetFlags(); 338 339 /// Try to convert a name of a bitmask target flag to the corresponding 340 /// target flag. 341 /// 342 /// Return true if the name isn't a name of a bitmask target flag. 343 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 344 345 void initNames2MMOTargetFlags(); 346 347 /// Try to convert a name of a MachineMemOperand target flag to the 348 /// corresponding target flag. 349 /// 350 /// Return true if the name isn't a name of a target MMO flag. 351 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 352 353 /// Get or create an MCSymbol for a given name. 354 MCSymbol *getOrCreateMCSymbol(StringRef Name); 355 356 /// parseStringConstant 357 /// ::= StringConstant 358 bool parseStringConstant(std::string &Result); 359 }; 360 361 } // end anonymous namespace 362 363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 364 StringRef Source) 365 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 366 {} 367 368 void MIParser::lex(unsigned SkipChar) { 369 CurrentSource = lexMIToken( 370 CurrentSource.data() + SkipChar, Token, 371 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 372 } 373 374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 375 376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 377 const SourceMgr &SM = *PFS.SM; 378 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 379 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 380 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 381 // Create an ordinary diagnostic when the source manager's buffer is the 382 // source string. 383 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 384 return true; 385 } 386 // Create a diagnostic for a YAML string literal. 387 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 388 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 389 Source, None, None); 390 return true; 391 } 392 393 static const char *toString(MIToken::TokenKind TokenKind) { 394 switch (TokenKind) { 395 case MIToken::comma: 396 return "','"; 397 case MIToken::equal: 398 return "'='"; 399 case MIToken::colon: 400 return "':'"; 401 case MIToken::lparen: 402 return "'('"; 403 case MIToken::rparen: 404 return "')'"; 405 default: 406 return "<unknown token>"; 407 } 408 } 409 410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return error(Twine("expected ") + toString(TokenKind)); 413 lex(); 414 return false; 415 } 416 417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 418 if (Token.isNot(TokenKind)) 419 return false; 420 lex(); 421 return true; 422 } 423 424 bool MIParser::parseBasicBlockDefinition( 425 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 426 assert(Token.is(MIToken::MachineBasicBlockLabel)); 427 unsigned ID = 0; 428 if (getUnsigned(ID)) 429 return true; 430 auto Loc = Token.location(); 431 auto Name = Token.stringValue(); 432 lex(); 433 bool HasAddressTaken = false; 434 bool IsLandingPad = false; 435 unsigned Alignment = 0; 436 BasicBlock *BB = nullptr; 437 if (consumeIfPresent(MIToken::lparen)) { 438 do { 439 // TODO: Report an error when multiple same attributes are specified. 440 switch (Token.kind()) { 441 case MIToken::kw_address_taken: 442 HasAddressTaken = true; 443 lex(); 444 break; 445 case MIToken::kw_landing_pad: 446 IsLandingPad = true; 447 lex(); 448 break; 449 case MIToken::kw_align: 450 if (parseAlignment(Alignment)) 451 return true; 452 break; 453 case MIToken::IRBlock: 454 // TODO: Report an error when both name and ir block are specified. 455 if (parseIRBlock(BB, MF.getFunction())) 456 return true; 457 lex(); 458 break; 459 default: 460 break; 461 } 462 } while (consumeIfPresent(MIToken::comma)); 463 if (expectAndConsume(MIToken::rparen)) 464 return true; 465 } 466 if (expectAndConsume(MIToken::colon)) 467 return true; 468 469 if (!Name.empty()) { 470 BB = dyn_cast_or_null<BasicBlock>( 471 MF.getFunction().getValueSymbolTable()->lookup(Name)); 472 if (!BB) 473 return error(Loc, Twine("basic block '") + Name + 474 "' is not defined in the function '" + 475 MF.getName() + "'"); 476 } 477 auto *MBB = MF.CreateMachineBasicBlock(BB); 478 MF.insert(MF.end(), MBB); 479 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 480 if (!WasInserted) 481 return error(Loc, Twine("redefinition of machine basic block with id #") + 482 Twine(ID)); 483 if (Alignment) 484 MBB->setAlignment(Alignment); 485 if (HasAddressTaken) 486 MBB->setHasAddressTaken(); 487 MBB->setIsEHPad(IsLandingPad); 488 return false; 489 } 490 491 bool MIParser::parseBasicBlockDefinitions( 492 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 493 lex(); 494 // Skip until the first machine basic block. 495 while (Token.is(MIToken::Newline)) 496 lex(); 497 if (Token.isErrorOrEOF()) 498 return Token.isError(); 499 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 500 return error("expected a basic block definition before instructions"); 501 unsigned BraceDepth = 0; 502 do { 503 if (parseBasicBlockDefinition(MBBSlots)) 504 return true; 505 bool IsAfterNewline = false; 506 // Skip until the next machine basic block. 507 while (true) { 508 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 509 Token.isErrorOrEOF()) 510 break; 511 else if (Token.is(MIToken::MachineBasicBlockLabel)) 512 return error("basic block definition should be located at the start of " 513 "the line"); 514 else if (consumeIfPresent(MIToken::Newline)) { 515 IsAfterNewline = true; 516 continue; 517 } 518 IsAfterNewline = false; 519 if (Token.is(MIToken::lbrace)) 520 ++BraceDepth; 521 if (Token.is(MIToken::rbrace)) { 522 if (!BraceDepth) 523 return error("extraneous closing brace ('}')"); 524 --BraceDepth; 525 } 526 lex(); 527 } 528 // Verify that we closed all of the '{' at the end of a file or a block. 529 if (!Token.isError() && BraceDepth) 530 return error("expected '}'"); // FIXME: Report a note that shows '{'. 531 } while (!Token.isErrorOrEOF()); 532 return Token.isError(); 533 } 534 535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 536 assert(Token.is(MIToken::kw_liveins)); 537 lex(); 538 if (expectAndConsume(MIToken::colon)) 539 return true; 540 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 541 return false; 542 do { 543 if (Token.isNot(MIToken::NamedRegister)) 544 return error("expected a named register"); 545 unsigned Reg = 0; 546 if (parseNamedRegister(Reg)) 547 return true; 548 lex(); 549 LaneBitmask Mask = LaneBitmask::getAll(); 550 if (consumeIfPresent(MIToken::colon)) { 551 // Parse lane mask. 552 if (Token.isNot(MIToken::IntegerLiteral) && 553 Token.isNot(MIToken::HexLiteral)) 554 return error("expected a lane mask"); 555 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 556 "Use correct get-function for lane mask"); 557 LaneBitmask::Type V; 558 if (getUnsigned(V)) 559 return error("invalid lane mask value"); 560 Mask = LaneBitmask(V); 561 lex(); 562 } 563 MBB.addLiveIn(Reg, Mask); 564 } while (consumeIfPresent(MIToken::comma)); 565 return false; 566 } 567 568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 569 assert(Token.is(MIToken::kw_successors)); 570 lex(); 571 if (expectAndConsume(MIToken::colon)) 572 return true; 573 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 574 return false; 575 do { 576 if (Token.isNot(MIToken::MachineBasicBlock)) 577 return error("expected a machine basic block reference"); 578 MachineBasicBlock *SuccMBB = nullptr; 579 if (parseMBBReference(SuccMBB)) 580 return true; 581 lex(); 582 unsigned Weight = 0; 583 if (consumeIfPresent(MIToken::lparen)) { 584 if (Token.isNot(MIToken::IntegerLiteral) && 585 Token.isNot(MIToken::HexLiteral)) 586 return error("expected an integer literal after '('"); 587 if (getUnsigned(Weight)) 588 return true; 589 lex(); 590 if (expectAndConsume(MIToken::rparen)) 591 return true; 592 } 593 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 594 } while (consumeIfPresent(MIToken::comma)); 595 MBB.normalizeSuccProbs(); 596 return false; 597 } 598 599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 600 MachineBasicBlock *&AddFalthroughFrom) { 601 // Skip the definition. 602 assert(Token.is(MIToken::MachineBasicBlockLabel)); 603 lex(); 604 if (consumeIfPresent(MIToken::lparen)) { 605 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 606 lex(); 607 consumeIfPresent(MIToken::rparen); 608 } 609 consumeIfPresent(MIToken::colon); 610 611 // Parse the liveins and successors. 612 // N.B: Multiple lists of successors and liveins are allowed and they're 613 // merged into one. 614 // Example: 615 // liveins: %edi 616 // liveins: %esi 617 // 618 // is equivalent to 619 // liveins: %edi, %esi 620 bool ExplicitSuccessors = false; 621 while (true) { 622 if (Token.is(MIToken::kw_successors)) { 623 if (parseBasicBlockSuccessors(MBB)) 624 return true; 625 ExplicitSuccessors = true; 626 } else if (Token.is(MIToken::kw_liveins)) { 627 if (parseBasicBlockLiveins(MBB)) 628 return true; 629 } else if (consumeIfPresent(MIToken::Newline)) { 630 continue; 631 } else 632 break; 633 if (!Token.isNewlineOrEOF()) 634 return error("expected line break at the end of a list"); 635 lex(); 636 } 637 638 // Parse the instructions. 639 bool IsInBundle = false; 640 MachineInstr *PrevMI = nullptr; 641 while (!Token.is(MIToken::MachineBasicBlockLabel) && 642 !Token.is(MIToken::Eof)) { 643 if (consumeIfPresent(MIToken::Newline)) 644 continue; 645 if (consumeIfPresent(MIToken::rbrace)) { 646 // The first parsing pass should verify that all closing '}' have an 647 // opening '{'. 648 assert(IsInBundle); 649 IsInBundle = false; 650 continue; 651 } 652 MachineInstr *MI = nullptr; 653 if (parse(MI)) 654 return true; 655 MBB.insert(MBB.end(), MI); 656 if (IsInBundle) { 657 PrevMI->setFlag(MachineInstr::BundledSucc); 658 MI->setFlag(MachineInstr::BundledPred); 659 } 660 PrevMI = MI; 661 if (Token.is(MIToken::lbrace)) { 662 if (IsInBundle) 663 return error("nested instruction bundles are not allowed"); 664 lex(); 665 // This instruction is the start of the bundle. 666 MI->setFlag(MachineInstr::BundledSucc); 667 IsInBundle = true; 668 if (!Token.is(MIToken::Newline)) 669 // The next instruction can be on the same line. 670 continue; 671 } 672 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 673 lex(); 674 } 675 676 // Construct successor list by searching for basic block machine operands. 677 if (!ExplicitSuccessors) { 678 SmallVector<MachineBasicBlock*,4> Successors; 679 bool IsFallthrough; 680 guessSuccessors(MBB, Successors, IsFallthrough); 681 for (MachineBasicBlock *Succ : Successors) 682 MBB.addSuccessor(Succ); 683 684 if (IsFallthrough) { 685 AddFalthroughFrom = &MBB; 686 } else { 687 MBB.normalizeSuccProbs(); 688 } 689 } 690 691 return false; 692 } 693 694 bool MIParser::parseBasicBlocks() { 695 lex(); 696 // Skip until the first machine basic block. 697 while (Token.is(MIToken::Newline)) 698 lex(); 699 if (Token.isErrorOrEOF()) 700 return Token.isError(); 701 // The first parsing pass should have verified that this token is a MBB label 702 // in the 'parseBasicBlockDefinitions' method. 703 assert(Token.is(MIToken::MachineBasicBlockLabel)); 704 MachineBasicBlock *AddFalthroughFrom = nullptr; 705 do { 706 MachineBasicBlock *MBB = nullptr; 707 if (parseMBBReference(MBB)) 708 return true; 709 if (AddFalthroughFrom) { 710 if (!AddFalthroughFrom->isSuccessor(MBB)) 711 AddFalthroughFrom->addSuccessor(MBB); 712 AddFalthroughFrom->normalizeSuccProbs(); 713 AddFalthroughFrom = nullptr; 714 } 715 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 716 return true; 717 // The method 'parseBasicBlock' should parse the whole block until the next 718 // block or the end of file. 719 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 720 } while (Token.isNot(MIToken::Eof)); 721 return false; 722 } 723 724 bool MIParser::parse(MachineInstr *&MI) { 725 // Parse any register operands before '=' 726 MachineOperand MO = MachineOperand::CreateImm(0); 727 SmallVector<ParsedMachineOperand, 8> Operands; 728 while (Token.isRegister() || Token.isRegisterFlag()) { 729 auto Loc = Token.location(); 730 Optional<unsigned> TiedDefIdx; 731 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 732 return true; 733 Operands.push_back( 734 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 735 if (Token.isNot(MIToken::comma)) 736 break; 737 lex(); 738 } 739 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 740 return true; 741 742 unsigned OpCode, Flags = 0; 743 if (Token.isError() || parseInstruction(OpCode, Flags)) 744 return true; 745 746 // Parse the remaining machine operands. 747 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 748 Token.isNot(MIToken::kw_post_instr_symbol) && 749 Token.isNot(MIToken::kw_debug_location) && 750 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 751 auto Loc = Token.location(); 752 Optional<unsigned> TiedDefIdx; 753 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 754 return true; 755 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 756 MO.setIsDebug(); 757 Operands.push_back( 758 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 759 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 760 Token.is(MIToken::lbrace)) 761 break; 762 if (Token.isNot(MIToken::comma)) 763 return error("expected ',' before the next machine operand"); 764 lex(); 765 } 766 767 MCSymbol *PreInstrSymbol = nullptr; 768 if (Token.is(MIToken::kw_pre_instr_symbol)) 769 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 770 return true; 771 MCSymbol *PostInstrSymbol = nullptr; 772 if (Token.is(MIToken::kw_post_instr_symbol)) 773 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 774 return true; 775 776 DebugLoc DebugLocation; 777 if (Token.is(MIToken::kw_debug_location)) { 778 lex(); 779 if (Token.isNot(MIToken::exclaim)) 780 return error("expected a metadata node after 'debug-location'"); 781 MDNode *Node = nullptr; 782 if (parseMDNode(Node)) 783 return true; 784 if (!isa<DILocation>(Node)) 785 return error("referenced metadata is not a DILocation"); 786 DebugLocation = DebugLoc(Node); 787 } 788 789 // Parse the machine memory operands. 790 SmallVector<MachineMemOperand *, 2> MemOperands; 791 if (Token.is(MIToken::coloncolon)) { 792 lex(); 793 while (!Token.isNewlineOrEOF()) { 794 MachineMemOperand *MemOp = nullptr; 795 if (parseMachineMemoryOperand(MemOp)) 796 return true; 797 MemOperands.push_back(MemOp); 798 if (Token.isNewlineOrEOF()) 799 break; 800 if (Token.isNot(MIToken::comma)) 801 return error("expected ',' before the next machine memory operand"); 802 lex(); 803 } 804 } 805 806 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 807 if (!MCID.isVariadic()) { 808 // FIXME: Move the implicit operand verification to the machine verifier. 809 if (verifyImplicitOperands(Operands, MCID)) 810 return true; 811 } 812 813 // TODO: Check for extraneous machine operands. 814 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 815 MI->setFlags(Flags); 816 for (const auto &Operand : Operands) 817 MI->addOperand(MF, Operand.Operand); 818 if (assignRegisterTies(*MI, Operands)) 819 return true; 820 if (PreInstrSymbol) 821 MI->setPreInstrSymbol(MF, PreInstrSymbol); 822 if (PostInstrSymbol) 823 MI->setPostInstrSymbol(MF, PostInstrSymbol); 824 if (!MemOperands.empty()) 825 MI->setMemRefs(MF, MemOperands); 826 return false; 827 } 828 829 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 830 lex(); 831 if (Token.isNot(MIToken::MachineBasicBlock)) 832 return error("expected a machine basic block reference"); 833 if (parseMBBReference(MBB)) 834 return true; 835 lex(); 836 if (Token.isNot(MIToken::Eof)) 837 return error( 838 "expected end of string after the machine basic block reference"); 839 return false; 840 } 841 842 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 843 lex(); 844 if (Token.isNot(MIToken::NamedRegister)) 845 return error("expected a named register"); 846 if (parseNamedRegister(Reg)) 847 return true; 848 lex(); 849 if (Token.isNot(MIToken::Eof)) 850 return error("expected end of string after the register reference"); 851 return false; 852 } 853 854 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 855 lex(); 856 if (Token.isNot(MIToken::VirtualRegister)) 857 return error("expected a virtual register"); 858 if (parseVirtualRegister(Info)) 859 return true; 860 lex(); 861 if (Token.isNot(MIToken::Eof)) 862 return error("expected end of string after the register reference"); 863 return false; 864 } 865 866 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 867 lex(); 868 if (Token.isNot(MIToken::NamedRegister) && 869 Token.isNot(MIToken::VirtualRegister)) 870 return error("expected either a named or virtual register"); 871 872 VRegInfo *Info; 873 if (parseRegister(Reg, Info)) 874 return true; 875 876 lex(); 877 if (Token.isNot(MIToken::Eof)) 878 return error("expected end of string after the register reference"); 879 return false; 880 } 881 882 bool MIParser::parseStandaloneStackObject(int &FI) { 883 lex(); 884 if (Token.isNot(MIToken::StackObject)) 885 return error("expected a stack object"); 886 if (parseStackFrameIndex(FI)) 887 return true; 888 if (Token.isNot(MIToken::Eof)) 889 return error("expected end of string after the stack object reference"); 890 return false; 891 } 892 893 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 894 lex(); 895 if (Token.is(MIToken::exclaim)) { 896 if (parseMDNode(Node)) 897 return true; 898 } else if (Token.is(MIToken::md_diexpr)) { 899 if (parseDIExpression(Node)) 900 return true; 901 } else 902 return error("expected a metadata node"); 903 if (Token.isNot(MIToken::Eof)) 904 return error("expected end of string after the metadata node"); 905 return false; 906 } 907 908 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 909 assert(MO.isImplicit()); 910 return MO.isDef() ? "implicit-def" : "implicit"; 911 } 912 913 static std::string getRegisterName(const TargetRegisterInfo *TRI, 914 unsigned Reg) { 915 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 916 return StringRef(TRI->getName(Reg)).lower(); 917 } 918 919 /// Return true if the parsed machine operands contain a given machine operand. 920 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 921 ArrayRef<ParsedMachineOperand> Operands) { 922 for (const auto &I : Operands) { 923 if (ImplicitOperand.isIdenticalTo(I.Operand)) 924 return true; 925 } 926 return false; 927 } 928 929 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 930 const MCInstrDesc &MCID) { 931 if (MCID.isCall()) 932 // We can't verify call instructions as they can contain arbitrary implicit 933 // register and register mask operands. 934 return false; 935 936 // Gather all the expected implicit operands. 937 SmallVector<MachineOperand, 4> ImplicitOperands; 938 if (MCID.ImplicitDefs) 939 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 940 ImplicitOperands.push_back( 941 MachineOperand::CreateReg(*ImpDefs, true, true)); 942 if (MCID.ImplicitUses) 943 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 944 ImplicitOperands.push_back( 945 MachineOperand::CreateReg(*ImpUses, false, true)); 946 947 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 948 assert(TRI && "Expected target register info"); 949 for (const auto &I : ImplicitOperands) { 950 if (isImplicitOperandIn(I, Operands)) 951 continue; 952 return error(Operands.empty() ? Token.location() : Operands.back().End, 953 Twine("missing implicit register operand '") + 954 printImplicitRegisterFlag(I) + " $" + 955 getRegisterName(TRI, I.getReg()) + "'"); 956 } 957 return false; 958 } 959 960 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 961 // Allow frame and fast math flags for OPCODE 962 while (Token.is(MIToken::kw_frame_setup) || 963 Token.is(MIToken::kw_frame_destroy) || 964 Token.is(MIToken::kw_nnan) || 965 Token.is(MIToken::kw_ninf) || 966 Token.is(MIToken::kw_nsz) || 967 Token.is(MIToken::kw_arcp) || 968 Token.is(MIToken::kw_contract) || 969 Token.is(MIToken::kw_afn) || 970 Token.is(MIToken::kw_reassoc) || 971 Token.is(MIToken::kw_nuw) || 972 Token.is(MIToken::kw_nsw) || 973 Token.is(MIToken::kw_exact)) { 974 // Mine frame and fast math flags 975 if (Token.is(MIToken::kw_frame_setup)) 976 Flags |= MachineInstr::FrameSetup; 977 if (Token.is(MIToken::kw_frame_destroy)) 978 Flags |= MachineInstr::FrameDestroy; 979 if (Token.is(MIToken::kw_nnan)) 980 Flags |= MachineInstr::FmNoNans; 981 if (Token.is(MIToken::kw_ninf)) 982 Flags |= MachineInstr::FmNoInfs; 983 if (Token.is(MIToken::kw_nsz)) 984 Flags |= MachineInstr::FmNsz; 985 if (Token.is(MIToken::kw_arcp)) 986 Flags |= MachineInstr::FmArcp; 987 if (Token.is(MIToken::kw_contract)) 988 Flags |= MachineInstr::FmContract; 989 if (Token.is(MIToken::kw_afn)) 990 Flags |= MachineInstr::FmAfn; 991 if (Token.is(MIToken::kw_reassoc)) 992 Flags |= MachineInstr::FmReassoc; 993 if (Token.is(MIToken::kw_nuw)) 994 Flags |= MachineInstr::NoUWrap; 995 if (Token.is(MIToken::kw_nsw)) 996 Flags |= MachineInstr::NoSWrap; 997 if (Token.is(MIToken::kw_exact)) 998 Flags |= MachineInstr::IsExact; 999 1000 lex(); 1001 } 1002 if (Token.isNot(MIToken::Identifier)) 1003 return error("expected a machine instruction"); 1004 StringRef InstrName = Token.stringValue(); 1005 if (parseInstrName(InstrName, OpCode)) 1006 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1007 lex(); 1008 return false; 1009 } 1010 1011 bool MIParser::parseNamedRegister(unsigned &Reg) { 1012 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1013 StringRef Name = Token.stringValue(); 1014 if (getRegisterByName(Name, Reg)) 1015 return error(Twine("unknown register name '") + Name + "'"); 1016 return false; 1017 } 1018 1019 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1020 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1021 StringRef Name = Token.stringValue(); 1022 // TODO: Check that the VReg name is not the same as a physical register name. 1023 // If it is, then print a warning (when warnings are implemented). 1024 Info = &PFS.getVRegInfoNamed(Name); 1025 return false; 1026 } 1027 1028 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1029 if (Token.is(MIToken::NamedVirtualRegister)) 1030 return parseNamedVirtualRegister(Info); 1031 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1032 unsigned ID; 1033 if (getUnsigned(ID)) 1034 return true; 1035 Info = &PFS.getVRegInfo(ID); 1036 return false; 1037 } 1038 1039 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1040 switch (Token.kind()) { 1041 case MIToken::underscore: 1042 Reg = 0; 1043 return false; 1044 case MIToken::NamedRegister: 1045 return parseNamedRegister(Reg); 1046 case MIToken::NamedVirtualRegister: 1047 case MIToken::VirtualRegister: 1048 if (parseVirtualRegister(Info)) 1049 return true; 1050 Reg = Info->VReg; 1051 return false; 1052 // TODO: Parse other register kinds. 1053 default: 1054 llvm_unreachable("The current token should be a register"); 1055 } 1056 } 1057 1058 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1059 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1060 return error("expected '_', register class, or register bank name"); 1061 StringRef::iterator Loc = Token.location(); 1062 StringRef Name = Token.stringValue(); 1063 1064 // Was it a register class? 1065 auto RCNameI = PFS.Names2RegClasses.find(Name); 1066 if (RCNameI != PFS.Names2RegClasses.end()) { 1067 lex(); 1068 const TargetRegisterClass &RC = *RCNameI->getValue(); 1069 1070 switch (RegInfo.Kind) { 1071 case VRegInfo::UNKNOWN: 1072 case VRegInfo::NORMAL: 1073 RegInfo.Kind = VRegInfo::NORMAL; 1074 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1075 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1076 return error(Loc, Twine("conflicting register classes, previously: ") + 1077 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1078 } 1079 RegInfo.D.RC = &RC; 1080 RegInfo.Explicit = true; 1081 return false; 1082 1083 case VRegInfo::GENERIC: 1084 case VRegInfo::REGBANK: 1085 return error(Loc, "register class specification on generic register"); 1086 } 1087 llvm_unreachable("Unexpected register kind"); 1088 } 1089 1090 // Should be a register bank or a generic register. 1091 const RegisterBank *RegBank = nullptr; 1092 if (Name != "_") { 1093 auto RBNameI = PFS.Names2RegBanks.find(Name); 1094 if (RBNameI == PFS.Names2RegBanks.end()) 1095 return error(Loc, "expected '_', register class, or register bank name"); 1096 RegBank = RBNameI->getValue(); 1097 } 1098 1099 lex(); 1100 1101 switch (RegInfo.Kind) { 1102 case VRegInfo::UNKNOWN: 1103 case VRegInfo::GENERIC: 1104 case VRegInfo::REGBANK: 1105 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1106 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1107 return error(Loc, "conflicting generic register banks"); 1108 RegInfo.D.RegBank = RegBank; 1109 RegInfo.Explicit = true; 1110 return false; 1111 1112 case VRegInfo::NORMAL: 1113 return error(Loc, "register bank specification on normal register"); 1114 } 1115 llvm_unreachable("Unexpected register kind"); 1116 } 1117 1118 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1119 const unsigned OldFlags = Flags; 1120 switch (Token.kind()) { 1121 case MIToken::kw_implicit: 1122 Flags |= RegState::Implicit; 1123 break; 1124 case MIToken::kw_implicit_define: 1125 Flags |= RegState::ImplicitDefine; 1126 break; 1127 case MIToken::kw_def: 1128 Flags |= RegState::Define; 1129 break; 1130 case MIToken::kw_dead: 1131 Flags |= RegState::Dead; 1132 break; 1133 case MIToken::kw_killed: 1134 Flags |= RegState::Kill; 1135 break; 1136 case MIToken::kw_undef: 1137 Flags |= RegState::Undef; 1138 break; 1139 case MIToken::kw_internal: 1140 Flags |= RegState::InternalRead; 1141 break; 1142 case MIToken::kw_early_clobber: 1143 Flags |= RegState::EarlyClobber; 1144 break; 1145 case MIToken::kw_debug_use: 1146 Flags |= RegState::Debug; 1147 break; 1148 case MIToken::kw_renamable: 1149 Flags |= RegState::Renamable; 1150 break; 1151 default: 1152 llvm_unreachable("The current token should be a register flag"); 1153 } 1154 if (OldFlags == Flags) 1155 // We know that the same flag is specified more than once when the flags 1156 // weren't modified. 1157 return error("duplicate '" + Token.stringValue() + "' register flag"); 1158 lex(); 1159 return false; 1160 } 1161 1162 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1163 assert(Token.is(MIToken::dot)); 1164 lex(); 1165 if (Token.isNot(MIToken::Identifier)) 1166 return error("expected a subregister index after '.'"); 1167 auto Name = Token.stringValue(); 1168 SubReg = getSubRegIndex(Name); 1169 if (!SubReg) 1170 return error(Twine("use of unknown subregister index '") + Name + "'"); 1171 lex(); 1172 return false; 1173 } 1174 1175 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1176 if (!consumeIfPresent(MIToken::kw_tied_def)) 1177 return true; 1178 if (Token.isNot(MIToken::IntegerLiteral)) 1179 return error("expected an integer literal after 'tied-def'"); 1180 if (getUnsigned(TiedDefIdx)) 1181 return true; 1182 lex(); 1183 if (expectAndConsume(MIToken::rparen)) 1184 return true; 1185 return false; 1186 } 1187 1188 bool MIParser::assignRegisterTies(MachineInstr &MI, 1189 ArrayRef<ParsedMachineOperand> Operands) { 1190 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1191 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1192 if (!Operands[I].TiedDefIdx) 1193 continue; 1194 // The parser ensures that this operand is a register use, so we just have 1195 // to check the tied-def operand. 1196 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1197 if (DefIdx >= E) 1198 return error(Operands[I].Begin, 1199 Twine("use of invalid tied-def operand index '" + 1200 Twine(DefIdx) + "'; instruction has only ") + 1201 Twine(E) + " operands"); 1202 const auto &DefOperand = Operands[DefIdx].Operand; 1203 if (!DefOperand.isReg() || !DefOperand.isDef()) 1204 // FIXME: add note with the def operand. 1205 return error(Operands[I].Begin, 1206 Twine("use of invalid tied-def operand index '") + 1207 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1208 " isn't a defined register"); 1209 // Check that the tied-def operand wasn't tied elsewhere. 1210 for (const auto &TiedPair : TiedRegisterPairs) { 1211 if (TiedPair.first == DefIdx) 1212 return error(Operands[I].Begin, 1213 Twine("the tied-def operand #") + Twine(DefIdx) + 1214 " is already tied with another register operand"); 1215 } 1216 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1217 } 1218 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1219 // indices must be less than tied max. 1220 for (const auto &TiedPair : TiedRegisterPairs) 1221 MI.tieOperands(TiedPair.first, TiedPair.second); 1222 return false; 1223 } 1224 1225 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1226 Optional<unsigned> &TiedDefIdx, 1227 bool IsDef) { 1228 unsigned Flags = IsDef ? RegState::Define : 0; 1229 while (Token.isRegisterFlag()) { 1230 if (parseRegisterFlag(Flags)) 1231 return true; 1232 } 1233 if (!Token.isRegister()) 1234 return error("expected a register after register flags"); 1235 unsigned Reg; 1236 VRegInfo *RegInfo; 1237 if (parseRegister(Reg, RegInfo)) 1238 return true; 1239 lex(); 1240 unsigned SubReg = 0; 1241 if (Token.is(MIToken::dot)) { 1242 if (parseSubRegisterIndex(SubReg)) 1243 return true; 1244 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1245 return error("subregister index expects a virtual register"); 1246 } 1247 if (Token.is(MIToken::colon)) { 1248 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1249 return error("register class specification expects a virtual register"); 1250 lex(); 1251 if (parseRegisterClassOrBank(*RegInfo)) 1252 return true; 1253 } 1254 MachineRegisterInfo &MRI = MF.getRegInfo(); 1255 if ((Flags & RegState::Define) == 0) { 1256 if (consumeIfPresent(MIToken::lparen)) { 1257 unsigned Idx; 1258 if (!parseRegisterTiedDefIndex(Idx)) 1259 TiedDefIdx = Idx; 1260 else { 1261 // Try a redundant low-level type. 1262 LLT Ty; 1263 if (parseLowLevelType(Token.location(), Ty)) 1264 return error("expected tied-def or low-level type after '('"); 1265 1266 if (expectAndConsume(MIToken::rparen)) 1267 return true; 1268 1269 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1270 return error("inconsistent type for generic virtual register"); 1271 1272 MRI.setType(Reg, Ty); 1273 } 1274 } 1275 } else if (consumeIfPresent(MIToken::lparen)) { 1276 // Virtual registers may have a tpe with GlobalISel. 1277 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1278 return error("unexpected type on physical register"); 1279 1280 LLT Ty; 1281 if (parseLowLevelType(Token.location(), Ty)) 1282 return true; 1283 1284 if (expectAndConsume(MIToken::rparen)) 1285 return true; 1286 1287 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1288 return error("inconsistent type for generic virtual register"); 1289 1290 MRI.setType(Reg, Ty); 1291 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1292 // Generic virtual registers must have a type. 1293 // If we end up here this means the type hasn't been specified and 1294 // this is bad! 1295 if (RegInfo->Kind == VRegInfo::GENERIC || 1296 RegInfo->Kind == VRegInfo::REGBANK) 1297 return error("generic virtual registers must have a type"); 1298 } 1299 Dest = MachineOperand::CreateReg( 1300 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1301 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1302 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1303 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1304 1305 return false; 1306 } 1307 1308 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1309 assert(Token.is(MIToken::IntegerLiteral)); 1310 const APSInt &Int = Token.integerValue(); 1311 if (Int.getMinSignedBits() > 64) 1312 return error("integer literal is too large to be an immediate operand"); 1313 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1314 lex(); 1315 return false; 1316 } 1317 1318 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1319 const Constant *&C) { 1320 auto Source = StringValue.str(); // The source has to be null terminated. 1321 SMDiagnostic Err; 1322 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1323 &PFS.IRSlots); 1324 if (!C) 1325 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1326 return false; 1327 } 1328 1329 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1330 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1331 return true; 1332 lex(); 1333 return false; 1334 } 1335 1336 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1337 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1338 StringRef SizeStr = Token.range().drop_front(); 1339 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1340 return error("expected integers after 's'/'p' type character"); 1341 } 1342 1343 if (Token.range().front() == 's') { 1344 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1345 lex(); 1346 return false; 1347 } else if (Token.range().front() == 'p') { 1348 const DataLayout &DL = MF.getDataLayout(); 1349 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1350 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1351 lex(); 1352 return false; 1353 } 1354 1355 // Now we're looking for a vector. 1356 if (Token.isNot(MIToken::less)) 1357 return error(Loc, 1358 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1359 lex(); 1360 1361 if (Token.isNot(MIToken::IntegerLiteral)) 1362 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1363 uint64_t NumElements = Token.integerValue().getZExtValue(); 1364 lex(); 1365 1366 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1367 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1368 lex(); 1369 1370 if (Token.range().front() != 's' && Token.range().front() != 'p') 1371 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1372 StringRef SizeStr = Token.range().drop_front(); 1373 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1374 return error("expected integers after 's'/'p' type character"); 1375 1376 if (Token.range().front() == 's') 1377 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1378 else if (Token.range().front() == 'p') { 1379 const DataLayout &DL = MF.getDataLayout(); 1380 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1381 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1382 } else 1383 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1384 lex(); 1385 1386 if (Token.isNot(MIToken::greater)) 1387 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1388 lex(); 1389 1390 Ty = LLT::vector(NumElements, Ty); 1391 return false; 1392 } 1393 1394 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1395 assert(Token.is(MIToken::Identifier)); 1396 StringRef TypeStr = Token.range(); 1397 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1398 TypeStr.front() != 'p') 1399 return error( 1400 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1401 StringRef SizeStr = Token.range().drop_front(); 1402 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1403 return error("expected integers after 'i'/'s'/'p' type character"); 1404 1405 auto Loc = Token.location(); 1406 lex(); 1407 if (Token.isNot(MIToken::IntegerLiteral)) { 1408 if (Token.isNot(MIToken::Identifier) || 1409 !(Token.range() == "true" || Token.range() == "false")) 1410 return error("expected an integer literal"); 1411 } 1412 const Constant *C = nullptr; 1413 if (parseIRConstant(Loc, C)) 1414 return true; 1415 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1416 return false; 1417 } 1418 1419 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1420 auto Loc = Token.location(); 1421 lex(); 1422 if (Token.isNot(MIToken::FloatingPointLiteral) && 1423 Token.isNot(MIToken::HexLiteral)) 1424 return error("expected a floating point literal"); 1425 const Constant *C = nullptr; 1426 if (parseIRConstant(Loc, C)) 1427 return true; 1428 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1429 return false; 1430 } 1431 1432 bool MIParser::getUnsigned(unsigned &Result) { 1433 if (Token.hasIntegerValue()) { 1434 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1435 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1436 if (Val64 == Limit) 1437 return error("expected 32-bit integer (too large)"); 1438 Result = Val64; 1439 return false; 1440 } 1441 if (Token.is(MIToken::HexLiteral)) { 1442 APInt A; 1443 if (getHexUint(A)) 1444 return true; 1445 if (A.getBitWidth() > 32) 1446 return error("expected 32-bit integer (too large)"); 1447 Result = A.getZExtValue(); 1448 return false; 1449 } 1450 return true; 1451 } 1452 1453 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1454 assert(Token.is(MIToken::MachineBasicBlock) || 1455 Token.is(MIToken::MachineBasicBlockLabel)); 1456 unsigned Number; 1457 if (getUnsigned(Number)) 1458 return true; 1459 auto MBBInfo = PFS.MBBSlots.find(Number); 1460 if (MBBInfo == PFS.MBBSlots.end()) 1461 return error(Twine("use of undefined machine basic block #") + 1462 Twine(Number)); 1463 MBB = MBBInfo->second; 1464 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1465 // we drop the <irname> from the bb.<id>.<irname> format. 1466 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1467 return error(Twine("the name of machine basic block #") + Twine(Number) + 1468 " isn't '" + Token.stringValue() + "'"); 1469 return false; 1470 } 1471 1472 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1473 MachineBasicBlock *MBB; 1474 if (parseMBBReference(MBB)) 1475 return true; 1476 Dest = MachineOperand::CreateMBB(MBB); 1477 lex(); 1478 return false; 1479 } 1480 1481 bool MIParser::parseStackFrameIndex(int &FI) { 1482 assert(Token.is(MIToken::StackObject)); 1483 unsigned ID; 1484 if (getUnsigned(ID)) 1485 return true; 1486 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1487 if (ObjectInfo == PFS.StackObjectSlots.end()) 1488 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1489 "'"); 1490 StringRef Name; 1491 if (const auto *Alloca = 1492 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1493 Name = Alloca->getName(); 1494 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1495 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1496 "' isn't '" + Token.stringValue() + "'"); 1497 lex(); 1498 FI = ObjectInfo->second; 1499 return false; 1500 } 1501 1502 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1503 int FI; 1504 if (parseStackFrameIndex(FI)) 1505 return true; 1506 Dest = MachineOperand::CreateFI(FI); 1507 return false; 1508 } 1509 1510 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1511 assert(Token.is(MIToken::FixedStackObject)); 1512 unsigned ID; 1513 if (getUnsigned(ID)) 1514 return true; 1515 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1516 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1517 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1518 Twine(ID) + "'"); 1519 lex(); 1520 FI = ObjectInfo->second; 1521 return false; 1522 } 1523 1524 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1525 int FI; 1526 if (parseFixedStackFrameIndex(FI)) 1527 return true; 1528 Dest = MachineOperand::CreateFI(FI); 1529 return false; 1530 } 1531 1532 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1533 switch (Token.kind()) { 1534 case MIToken::NamedGlobalValue: { 1535 const Module *M = MF.getFunction().getParent(); 1536 GV = M->getNamedValue(Token.stringValue()); 1537 if (!GV) 1538 return error(Twine("use of undefined global value '") + Token.range() + 1539 "'"); 1540 break; 1541 } 1542 case MIToken::GlobalValue: { 1543 unsigned GVIdx; 1544 if (getUnsigned(GVIdx)) 1545 return true; 1546 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1547 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1548 "'"); 1549 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1550 break; 1551 } 1552 default: 1553 llvm_unreachable("The current token should be a global value"); 1554 } 1555 return false; 1556 } 1557 1558 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1559 GlobalValue *GV = nullptr; 1560 if (parseGlobalValue(GV)) 1561 return true; 1562 lex(); 1563 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1564 if (parseOperandsOffset(Dest)) 1565 return true; 1566 return false; 1567 } 1568 1569 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1570 assert(Token.is(MIToken::ConstantPoolItem)); 1571 unsigned ID; 1572 if (getUnsigned(ID)) 1573 return true; 1574 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1575 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1576 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1577 lex(); 1578 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1579 if (parseOperandsOffset(Dest)) 1580 return true; 1581 return false; 1582 } 1583 1584 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1585 assert(Token.is(MIToken::JumpTableIndex)); 1586 unsigned ID; 1587 if (getUnsigned(ID)) 1588 return true; 1589 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1590 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1591 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1592 lex(); 1593 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1594 return false; 1595 } 1596 1597 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1598 assert(Token.is(MIToken::ExternalSymbol)); 1599 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1600 lex(); 1601 Dest = MachineOperand::CreateES(Symbol); 1602 if (parseOperandsOffset(Dest)) 1603 return true; 1604 return false; 1605 } 1606 1607 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1608 assert(Token.is(MIToken::MCSymbol)); 1609 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1610 lex(); 1611 Dest = MachineOperand::CreateMCSymbol(Symbol); 1612 if (parseOperandsOffset(Dest)) 1613 return true; 1614 return false; 1615 } 1616 1617 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1618 assert(Token.is(MIToken::SubRegisterIndex)); 1619 StringRef Name = Token.stringValue(); 1620 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1621 if (SubRegIndex == 0) 1622 return error(Twine("unknown subregister index '") + Name + "'"); 1623 lex(); 1624 Dest = MachineOperand::CreateImm(SubRegIndex); 1625 return false; 1626 } 1627 1628 bool MIParser::parseMDNode(MDNode *&Node) { 1629 assert(Token.is(MIToken::exclaim)); 1630 1631 auto Loc = Token.location(); 1632 lex(); 1633 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1634 return error("expected metadata id after '!'"); 1635 unsigned ID; 1636 if (getUnsigned(ID)) 1637 return true; 1638 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1639 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1640 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1641 lex(); 1642 Node = NodeInfo->second.get(); 1643 return false; 1644 } 1645 1646 bool MIParser::parseDIExpression(MDNode *&Expr) { 1647 assert(Token.is(MIToken::md_diexpr)); 1648 lex(); 1649 1650 // FIXME: Share this parsing with the IL parser. 1651 SmallVector<uint64_t, 8> Elements; 1652 1653 if (expectAndConsume(MIToken::lparen)) 1654 return true; 1655 1656 if (Token.isNot(MIToken::rparen)) { 1657 do { 1658 if (Token.is(MIToken::Identifier)) { 1659 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1660 lex(); 1661 Elements.push_back(Op); 1662 continue; 1663 } 1664 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1665 } 1666 1667 if (Token.isNot(MIToken::IntegerLiteral) || 1668 Token.integerValue().isSigned()) 1669 return error("expected unsigned integer"); 1670 1671 auto &U = Token.integerValue(); 1672 if (U.ugt(UINT64_MAX)) 1673 return error("element too large, limit is " + Twine(UINT64_MAX)); 1674 Elements.push_back(U.getZExtValue()); 1675 lex(); 1676 1677 } while (consumeIfPresent(MIToken::comma)); 1678 } 1679 1680 if (expectAndConsume(MIToken::rparen)) 1681 return true; 1682 1683 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1684 return false; 1685 } 1686 1687 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1688 MDNode *Node = nullptr; 1689 if (Token.is(MIToken::exclaim)) { 1690 if (parseMDNode(Node)) 1691 return true; 1692 } else if (Token.is(MIToken::md_diexpr)) { 1693 if (parseDIExpression(Node)) 1694 return true; 1695 } 1696 Dest = MachineOperand::CreateMetadata(Node); 1697 return false; 1698 } 1699 1700 bool MIParser::parseCFIOffset(int &Offset) { 1701 if (Token.isNot(MIToken::IntegerLiteral)) 1702 return error("expected a cfi offset"); 1703 if (Token.integerValue().getMinSignedBits() > 32) 1704 return error("expected a 32 bit integer (the cfi offset is too large)"); 1705 Offset = (int)Token.integerValue().getExtValue(); 1706 lex(); 1707 return false; 1708 } 1709 1710 bool MIParser::parseCFIRegister(unsigned &Reg) { 1711 if (Token.isNot(MIToken::NamedRegister)) 1712 return error("expected a cfi register"); 1713 unsigned LLVMReg; 1714 if (parseNamedRegister(LLVMReg)) 1715 return true; 1716 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1717 assert(TRI && "Expected target register info"); 1718 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1719 if (DwarfReg < 0) 1720 return error("invalid DWARF register"); 1721 Reg = (unsigned)DwarfReg; 1722 lex(); 1723 return false; 1724 } 1725 1726 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1727 do { 1728 if (Token.isNot(MIToken::HexLiteral)) 1729 return error("expected a hexadecimal literal"); 1730 unsigned Value; 1731 if (getUnsigned(Value)) 1732 return true; 1733 if (Value > UINT8_MAX) 1734 return error("expected a 8-bit integer (too large)"); 1735 Values.push_back(static_cast<uint8_t>(Value)); 1736 lex(); 1737 } while (consumeIfPresent(MIToken::comma)); 1738 return false; 1739 } 1740 1741 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1742 auto Kind = Token.kind(); 1743 lex(); 1744 int Offset; 1745 unsigned Reg; 1746 unsigned CFIIndex; 1747 switch (Kind) { 1748 case MIToken::kw_cfi_same_value: 1749 if (parseCFIRegister(Reg)) 1750 return true; 1751 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1752 break; 1753 case MIToken::kw_cfi_offset: 1754 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1755 parseCFIOffset(Offset)) 1756 return true; 1757 CFIIndex = 1758 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1759 break; 1760 case MIToken::kw_cfi_rel_offset: 1761 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1762 parseCFIOffset(Offset)) 1763 return true; 1764 CFIIndex = MF.addFrameInst( 1765 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1766 break; 1767 case MIToken::kw_cfi_def_cfa_register: 1768 if (parseCFIRegister(Reg)) 1769 return true; 1770 CFIIndex = 1771 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1772 break; 1773 case MIToken::kw_cfi_def_cfa_offset: 1774 if (parseCFIOffset(Offset)) 1775 return true; 1776 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1777 CFIIndex = MF.addFrameInst( 1778 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1779 break; 1780 case MIToken::kw_cfi_adjust_cfa_offset: 1781 if (parseCFIOffset(Offset)) 1782 return true; 1783 CFIIndex = MF.addFrameInst( 1784 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1785 break; 1786 case MIToken::kw_cfi_def_cfa: 1787 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1788 parseCFIOffset(Offset)) 1789 return true; 1790 // NB: MCCFIInstruction::createDefCfa negates the offset. 1791 CFIIndex = 1792 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1793 break; 1794 case MIToken::kw_cfi_remember_state: 1795 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1796 break; 1797 case MIToken::kw_cfi_restore: 1798 if (parseCFIRegister(Reg)) 1799 return true; 1800 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1801 break; 1802 case MIToken::kw_cfi_restore_state: 1803 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1804 break; 1805 case MIToken::kw_cfi_undefined: 1806 if (parseCFIRegister(Reg)) 1807 return true; 1808 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1809 break; 1810 case MIToken::kw_cfi_register: { 1811 unsigned Reg2; 1812 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1813 parseCFIRegister(Reg2)) 1814 return true; 1815 1816 CFIIndex = 1817 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1818 break; 1819 } 1820 case MIToken::kw_cfi_window_save: 1821 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1822 break; 1823 case MIToken::kw_cfi_escape: { 1824 std::string Values; 1825 if (parseCFIEscapeValues(Values)) 1826 return true; 1827 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1828 break; 1829 } 1830 default: 1831 // TODO: Parse the other CFI operands. 1832 llvm_unreachable("The current token should be a cfi operand"); 1833 } 1834 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1835 return false; 1836 } 1837 1838 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1839 switch (Token.kind()) { 1840 case MIToken::NamedIRBlock: { 1841 BB = dyn_cast_or_null<BasicBlock>( 1842 F.getValueSymbolTable()->lookup(Token.stringValue())); 1843 if (!BB) 1844 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1845 break; 1846 } 1847 case MIToken::IRBlock: { 1848 unsigned SlotNumber = 0; 1849 if (getUnsigned(SlotNumber)) 1850 return true; 1851 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1852 if (!BB) 1853 return error(Twine("use of undefined IR block '%ir-block.") + 1854 Twine(SlotNumber) + "'"); 1855 break; 1856 } 1857 default: 1858 llvm_unreachable("The current token should be an IR block reference"); 1859 } 1860 return false; 1861 } 1862 1863 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1864 assert(Token.is(MIToken::kw_blockaddress)); 1865 lex(); 1866 if (expectAndConsume(MIToken::lparen)) 1867 return true; 1868 if (Token.isNot(MIToken::GlobalValue) && 1869 Token.isNot(MIToken::NamedGlobalValue)) 1870 return error("expected a global value"); 1871 GlobalValue *GV = nullptr; 1872 if (parseGlobalValue(GV)) 1873 return true; 1874 auto *F = dyn_cast<Function>(GV); 1875 if (!F) 1876 return error("expected an IR function reference"); 1877 lex(); 1878 if (expectAndConsume(MIToken::comma)) 1879 return true; 1880 BasicBlock *BB = nullptr; 1881 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1882 return error("expected an IR block reference"); 1883 if (parseIRBlock(BB, *F)) 1884 return true; 1885 lex(); 1886 if (expectAndConsume(MIToken::rparen)) 1887 return true; 1888 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1889 if (parseOperandsOffset(Dest)) 1890 return true; 1891 return false; 1892 } 1893 1894 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1895 assert(Token.is(MIToken::kw_intrinsic)); 1896 lex(); 1897 if (expectAndConsume(MIToken::lparen)) 1898 return error("expected syntax intrinsic(@llvm.whatever)"); 1899 1900 if (Token.isNot(MIToken::NamedGlobalValue)) 1901 return error("expected syntax intrinsic(@llvm.whatever)"); 1902 1903 std::string Name = Token.stringValue(); 1904 lex(); 1905 1906 if (expectAndConsume(MIToken::rparen)) 1907 return error("expected ')' to terminate intrinsic name"); 1908 1909 // Find out what intrinsic we're dealing with, first try the global namespace 1910 // and then the target's private intrinsics if that fails. 1911 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1912 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1913 if (ID == Intrinsic::not_intrinsic && TII) 1914 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1915 1916 if (ID == Intrinsic::not_intrinsic) 1917 return error("unknown intrinsic name"); 1918 Dest = MachineOperand::CreateIntrinsicID(ID); 1919 1920 return false; 1921 } 1922 1923 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1924 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1925 bool IsFloat = Token.is(MIToken::kw_floatpred); 1926 lex(); 1927 1928 if (expectAndConsume(MIToken::lparen)) 1929 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1930 1931 if (Token.isNot(MIToken::Identifier)) 1932 return error("whatever"); 1933 1934 CmpInst::Predicate Pred; 1935 if (IsFloat) { 1936 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1937 .Case("false", CmpInst::FCMP_FALSE) 1938 .Case("oeq", CmpInst::FCMP_OEQ) 1939 .Case("ogt", CmpInst::FCMP_OGT) 1940 .Case("oge", CmpInst::FCMP_OGE) 1941 .Case("olt", CmpInst::FCMP_OLT) 1942 .Case("ole", CmpInst::FCMP_OLE) 1943 .Case("one", CmpInst::FCMP_ONE) 1944 .Case("ord", CmpInst::FCMP_ORD) 1945 .Case("uno", CmpInst::FCMP_UNO) 1946 .Case("ueq", CmpInst::FCMP_UEQ) 1947 .Case("ugt", CmpInst::FCMP_UGT) 1948 .Case("uge", CmpInst::FCMP_UGE) 1949 .Case("ult", CmpInst::FCMP_ULT) 1950 .Case("ule", CmpInst::FCMP_ULE) 1951 .Case("une", CmpInst::FCMP_UNE) 1952 .Case("true", CmpInst::FCMP_TRUE) 1953 .Default(CmpInst::BAD_FCMP_PREDICATE); 1954 if (!CmpInst::isFPPredicate(Pred)) 1955 return error("invalid floating-point predicate"); 1956 } else { 1957 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1958 .Case("eq", CmpInst::ICMP_EQ) 1959 .Case("ne", CmpInst::ICMP_NE) 1960 .Case("sgt", CmpInst::ICMP_SGT) 1961 .Case("sge", CmpInst::ICMP_SGE) 1962 .Case("slt", CmpInst::ICMP_SLT) 1963 .Case("sle", CmpInst::ICMP_SLE) 1964 .Case("ugt", CmpInst::ICMP_UGT) 1965 .Case("uge", CmpInst::ICMP_UGE) 1966 .Case("ult", CmpInst::ICMP_ULT) 1967 .Case("ule", CmpInst::ICMP_ULE) 1968 .Default(CmpInst::BAD_ICMP_PREDICATE); 1969 if (!CmpInst::isIntPredicate(Pred)) 1970 return error("invalid integer predicate"); 1971 } 1972 1973 lex(); 1974 Dest = MachineOperand::CreatePredicate(Pred); 1975 if (expectAndConsume(MIToken::rparen)) 1976 return error("predicate should be terminated by ')'."); 1977 1978 return false; 1979 } 1980 1981 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1982 assert(Token.is(MIToken::kw_target_index)); 1983 lex(); 1984 if (expectAndConsume(MIToken::lparen)) 1985 return true; 1986 if (Token.isNot(MIToken::Identifier)) 1987 return error("expected the name of the target index"); 1988 int Index = 0; 1989 if (getTargetIndex(Token.stringValue(), Index)) 1990 return error("use of undefined target index '" + Token.stringValue() + "'"); 1991 lex(); 1992 if (expectAndConsume(MIToken::rparen)) 1993 return true; 1994 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1995 if (parseOperandsOffset(Dest)) 1996 return true; 1997 return false; 1998 } 1999 2000 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2001 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2002 lex(); 2003 if (expectAndConsume(MIToken::lparen)) 2004 return true; 2005 2006 uint32_t *Mask = MF.allocateRegMask(); 2007 while (true) { 2008 if (Token.isNot(MIToken::NamedRegister)) 2009 return error("expected a named register"); 2010 unsigned Reg; 2011 if (parseNamedRegister(Reg)) 2012 return true; 2013 lex(); 2014 Mask[Reg / 32] |= 1U << (Reg % 32); 2015 // TODO: Report an error if the same register is used more than once. 2016 if (Token.isNot(MIToken::comma)) 2017 break; 2018 lex(); 2019 } 2020 2021 if (expectAndConsume(MIToken::rparen)) 2022 return true; 2023 Dest = MachineOperand::CreateRegMask(Mask); 2024 return false; 2025 } 2026 2027 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2028 assert(Token.is(MIToken::kw_liveout)); 2029 uint32_t *Mask = MF.allocateRegMask(); 2030 lex(); 2031 if (expectAndConsume(MIToken::lparen)) 2032 return true; 2033 while (true) { 2034 if (Token.isNot(MIToken::NamedRegister)) 2035 return error("expected a named register"); 2036 unsigned Reg; 2037 if (parseNamedRegister(Reg)) 2038 return true; 2039 lex(); 2040 Mask[Reg / 32] |= 1U << (Reg % 32); 2041 // TODO: Report an error if the same register is used more than once. 2042 if (Token.isNot(MIToken::comma)) 2043 break; 2044 lex(); 2045 } 2046 if (expectAndConsume(MIToken::rparen)) 2047 return true; 2048 Dest = MachineOperand::CreateRegLiveOut(Mask); 2049 return false; 2050 } 2051 2052 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2053 Optional<unsigned> &TiedDefIdx) { 2054 switch (Token.kind()) { 2055 case MIToken::kw_implicit: 2056 case MIToken::kw_implicit_define: 2057 case MIToken::kw_def: 2058 case MIToken::kw_dead: 2059 case MIToken::kw_killed: 2060 case MIToken::kw_undef: 2061 case MIToken::kw_internal: 2062 case MIToken::kw_early_clobber: 2063 case MIToken::kw_debug_use: 2064 case MIToken::kw_renamable: 2065 case MIToken::underscore: 2066 case MIToken::NamedRegister: 2067 case MIToken::VirtualRegister: 2068 case MIToken::NamedVirtualRegister: 2069 return parseRegisterOperand(Dest, TiedDefIdx); 2070 case MIToken::IntegerLiteral: 2071 return parseImmediateOperand(Dest); 2072 case MIToken::kw_half: 2073 case MIToken::kw_float: 2074 case MIToken::kw_double: 2075 case MIToken::kw_x86_fp80: 2076 case MIToken::kw_fp128: 2077 case MIToken::kw_ppc_fp128: 2078 return parseFPImmediateOperand(Dest); 2079 case MIToken::MachineBasicBlock: 2080 return parseMBBOperand(Dest); 2081 case MIToken::StackObject: 2082 return parseStackObjectOperand(Dest); 2083 case MIToken::FixedStackObject: 2084 return parseFixedStackObjectOperand(Dest); 2085 case MIToken::GlobalValue: 2086 case MIToken::NamedGlobalValue: 2087 return parseGlobalAddressOperand(Dest); 2088 case MIToken::ConstantPoolItem: 2089 return parseConstantPoolIndexOperand(Dest); 2090 case MIToken::JumpTableIndex: 2091 return parseJumpTableIndexOperand(Dest); 2092 case MIToken::ExternalSymbol: 2093 return parseExternalSymbolOperand(Dest); 2094 case MIToken::MCSymbol: 2095 return parseMCSymbolOperand(Dest); 2096 case MIToken::SubRegisterIndex: 2097 return parseSubRegisterIndexOperand(Dest); 2098 case MIToken::md_diexpr: 2099 case MIToken::exclaim: 2100 return parseMetadataOperand(Dest); 2101 case MIToken::kw_cfi_same_value: 2102 case MIToken::kw_cfi_offset: 2103 case MIToken::kw_cfi_rel_offset: 2104 case MIToken::kw_cfi_def_cfa_register: 2105 case MIToken::kw_cfi_def_cfa_offset: 2106 case MIToken::kw_cfi_adjust_cfa_offset: 2107 case MIToken::kw_cfi_escape: 2108 case MIToken::kw_cfi_def_cfa: 2109 case MIToken::kw_cfi_register: 2110 case MIToken::kw_cfi_remember_state: 2111 case MIToken::kw_cfi_restore: 2112 case MIToken::kw_cfi_restore_state: 2113 case MIToken::kw_cfi_undefined: 2114 case MIToken::kw_cfi_window_save: 2115 return parseCFIOperand(Dest); 2116 case MIToken::kw_blockaddress: 2117 return parseBlockAddressOperand(Dest); 2118 case MIToken::kw_intrinsic: 2119 return parseIntrinsicOperand(Dest); 2120 case MIToken::kw_target_index: 2121 return parseTargetIndexOperand(Dest); 2122 case MIToken::kw_liveout: 2123 return parseLiveoutRegisterMaskOperand(Dest); 2124 case MIToken::kw_floatpred: 2125 case MIToken::kw_intpred: 2126 return parsePredicateOperand(Dest); 2127 case MIToken::Error: 2128 return true; 2129 case MIToken::Identifier: 2130 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2131 Dest = MachineOperand::CreateRegMask(RegMask); 2132 lex(); 2133 break; 2134 } else if (Token.stringValue() == "CustomRegMask") { 2135 return parseCustomRegisterMaskOperand(Dest); 2136 } else 2137 return parseTypedImmediateOperand(Dest); 2138 default: 2139 // FIXME: Parse the MCSymbol machine operand. 2140 return error("expected a machine operand"); 2141 } 2142 return false; 2143 } 2144 2145 bool MIParser::parseMachineOperandAndTargetFlags( 2146 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2147 unsigned TF = 0; 2148 bool HasTargetFlags = false; 2149 if (Token.is(MIToken::kw_target_flags)) { 2150 HasTargetFlags = true; 2151 lex(); 2152 if (expectAndConsume(MIToken::lparen)) 2153 return true; 2154 if (Token.isNot(MIToken::Identifier)) 2155 return error("expected the name of the target flag"); 2156 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2157 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2158 return error("use of undefined target flag '" + Token.stringValue() + 2159 "'"); 2160 } 2161 lex(); 2162 while (Token.is(MIToken::comma)) { 2163 lex(); 2164 if (Token.isNot(MIToken::Identifier)) 2165 return error("expected the name of the target flag"); 2166 unsigned BitFlag = 0; 2167 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2168 return error("use of undefined target flag '" + Token.stringValue() + 2169 "'"); 2170 // TODO: Report an error when using a duplicate bit target flag. 2171 TF |= BitFlag; 2172 lex(); 2173 } 2174 if (expectAndConsume(MIToken::rparen)) 2175 return true; 2176 } 2177 auto Loc = Token.location(); 2178 if (parseMachineOperand(Dest, TiedDefIdx)) 2179 return true; 2180 if (!HasTargetFlags) 2181 return false; 2182 if (Dest.isReg()) 2183 return error(Loc, "register operands can't have target flags"); 2184 Dest.setTargetFlags(TF); 2185 return false; 2186 } 2187 2188 bool MIParser::parseOffset(int64_t &Offset) { 2189 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2190 return false; 2191 StringRef Sign = Token.range(); 2192 bool IsNegative = Token.is(MIToken::minus); 2193 lex(); 2194 if (Token.isNot(MIToken::IntegerLiteral)) 2195 return error("expected an integer literal after '" + Sign + "'"); 2196 if (Token.integerValue().getMinSignedBits() > 64) 2197 return error("expected 64-bit integer (too large)"); 2198 Offset = Token.integerValue().getExtValue(); 2199 if (IsNegative) 2200 Offset = -Offset; 2201 lex(); 2202 return false; 2203 } 2204 2205 bool MIParser::parseAlignment(unsigned &Alignment) { 2206 assert(Token.is(MIToken::kw_align)); 2207 lex(); 2208 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2209 return error("expected an integer literal after 'align'"); 2210 if (getUnsigned(Alignment)) 2211 return true; 2212 lex(); 2213 return false; 2214 } 2215 2216 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2217 assert(Token.is(MIToken::kw_addrspace)); 2218 lex(); 2219 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2220 return error("expected an integer literal after 'addrspace'"); 2221 if (getUnsigned(Addrspace)) 2222 return true; 2223 lex(); 2224 return false; 2225 } 2226 2227 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2228 int64_t Offset = 0; 2229 if (parseOffset(Offset)) 2230 return true; 2231 Op.setOffset(Offset); 2232 return false; 2233 } 2234 2235 bool MIParser::parseIRValue(const Value *&V) { 2236 switch (Token.kind()) { 2237 case MIToken::NamedIRValue: { 2238 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2239 break; 2240 } 2241 case MIToken::IRValue: { 2242 unsigned SlotNumber = 0; 2243 if (getUnsigned(SlotNumber)) 2244 return true; 2245 V = getIRValue(SlotNumber); 2246 break; 2247 } 2248 case MIToken::NamedGlobalValue: 2249 case MIToken::GlobalValue: { 2250 GlobalValue *GV = nullptr; 2251 if (parseGlobalValue(GV)) 2252 return true; 2253 V = GV; 2254 break; 2255 } 2256 case MIToken::QuotedIRValue: { 2257 const Constant *C = nullptr; 2258 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2259 return true; 2260 V = C; 2261 break; 2262 } 2263 default: 2264 llvm_unreachable("The current token should be an IR block reference"); 2265 } 2266 if (!V) 2267 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2268 return false; 2269 } 2270 2271 bool MIParser::getUint64(uint64_t &Result) { 2272 if (Token.hasIntegerValue()) { 2273 if (Token.integerValue().getActiveBits() > 64) 2274 return error("expected 64-bit integer (too large)"); 2275 Result = Token.integerValue().getZExtValue(); 2276 return false; 2277 } 2278 if (Token.is(MIToken::HexLiteral)) { 2279 APInt A; 2280 if (getHexUint(A)) 2281 return true; 2282 if (A.getBitWidth() > 64) 2283 return error("expected 64-bit integer (too large)"); 2284 Result = A.getZExtValue(); 2285 return false; 2286 } 2287 return true; 2288 } 2289 2290 bool MIParser::getHexUint(APInt &Result) { 2291 assert(Token.is(MIToken::HexLiteral)); 2292 StringRef S = Token.range(); 2293 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2294 // This could be a floating point literal with a special prefix. 2295 if (!isxdigit(S[2])) 2296 return true; 2297 StringRef V = S.substr(2); 2298 APInt A(V.size()*4, V, 16); 2299 2300 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2301 // sure it isn't the case before constructing result. 2302 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2303 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2304 return false; 2305 } 2306 2307 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2308 const auto OldFlags = Flags; 2309 switch (Token.kind()) { 2310 case MIToken::kw_volatile: 2311 Flags |= MachineMemOperand::MOVolatile; 2312 break; 2313 case MIToken::kw_non_temporal: 2314 Flags |= MachineMemOperand::MONonTemporal; 2315 break; 2316 case MIToken::kw_dereferenceable: 2317 Flags |= MachineMemOperand::MODereferenceable; 2318 break; 2319 case MIToken::kw_invariant: 2320 Flags |= MachineMemOperand::MOInvariant; 2321 break; 2322 case MIToken::StringConstant: { 2323 MachineMemOperand::Flags TF; 2324 if (getMMOTargetFlag(Token.stringValue(), TF)) 2325 return error("use of undefined target MMO flag '" + Token.stringValue() + 2326 "'"); 2327 Flags |= TF; 2328 break; 2329 } 2330 default: 2331 llvm_unreachable("The current token should be a memory operand flag"); 2332 } 2333 if (OldFlags == Flags) 2334 // We know that the same flag is specified more than once when the flags 2335 // weren't modified. 2336 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2337 lex(); 2338 return false; 2339 } 2340 2341 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2342 switch (Token.kind()) { 2343 case MIToken::kw_stack: 2344 PSV = MF.getPSVManager().getStack(); 2345 break; 2346 case MIToken::kw_got: 2347 PSV = MF.getPSVManager().getGOT(); 2348 break; 2349 case MIToken::kw_jump_table: 2350 PSV = MF.getPSVManager().getJumpTable(); 2351 break; 2352 case MIToken::kw_constant_pool: 2353 PSV = MF.getPSVManager().getConstantPool(); 2354 break; 2355 case MIToken::FixedStackObject: { 2356 int FI; 2357 if (parseFixedStackFrameIndex(FI)) 2358 return true; 2359 PSV = MF.getPSVManager().getFixedStack(FI); 2360 // The token was already consumed, so use return here instead of break. 2361 return false; 2362 } 2363 case MIToken::StackObject: { 2364 int FI; 2365 if (parseStackFrameIndex(FI)) 2366 return true; 2367 PSV = MF.getPSVManager().getFixedStack(FI); 2368 // The token was already consumed, so use return here instead of break. 2369 return false; 2370 } 2371 case MIToken::kw_call_entry: 2372 lex(); 2373 switch (Token.kind()) { 2374 case MIToken::GlobalValue: 2375 case MIToken::NamedGlobalValue: { 2376 GlobalValue *GV = nullptr; 2377 if (parseGlobalValue(GV)) 2378 return true; 2379 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2380 break; 2381 } 2382 case MIToken::ExternalSymbol: 2383 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2384 MF.createExternalSymbolName(Token.stringValue())); 2385 break; 2386 default: 2387 return error( 2388 "expected a global value or an external symbol after 'call-entry'"); 2389 } 2390 break; 2391 default: 2392 llvm_unreachable("The current token should be pseudo source value"); 2393 } 2394 lex(); 2395 return false; 2396 } 2397 2398 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2399 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2400 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2401 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2402 Token.is(MIToken::kw_call_entry)) { 2403 const PseudoSourceValue *PSV = nullptr; 2404 if (parseMemoryPseudoSourceValue(PSV)) 2405 return true; 2406 int64_t Offset = 0; 2407 if (parseOffset(Offset)) 2408 return true; 2409 Dest = MachinePointerInfo(PSV, Offset); 2410 return false; 2411 } 2412 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2413 Token.isNot(MIToken::GlobalValue) && 2414 Token.isNot(MIToken::NamedGlobalValue) && 2415 Token.isNot(MIToken::QuotedIRValue)) 2416 return error("expected an IR value reference"); 2417 const Value *V = nullptr; 2418 if (parseIRValue(V)) 2419 return true; 2420 if (!V->getType()->isPointerTy()) 2421 return error("expected a pointer IR value"); 2422 lex(); 2423 int64_t Offset = 0; 2424 if (parseOffset(Offset)) 2425 return true; 2426 Dest = MachinePointerInfo(V, Offset); 2427 return false; 2428 } 2429 2430 bool MIParser::parseOptionalScope(LLVMContext &Context, 2431 SyncScope::ID &SSID) { 2432 SSID = SyncScope::System; 2433 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2434 lex(); 2435 if (expectAndConsume(MIToken::lparen)) 2436 return error("expected '(' in syncscope"); 2437 2438 std::string SSN; 2439 if (parseStringConstant(SSN)) 2440 return true; 2441 2442 SSID = Context.getOrInsertSyncScopeID(SSN); 2443 if (expectAndConsume(MIToken::rparen)) 2444 return error("expected ')' in syncscope"); 2445 } 2446 2447 return false; 2448 } 2449 2450 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2451 Order = AtomicOrdering::NotAtomic; 2452 if (Token.isNot(MIToken::Identifier)) 2453 return false; 2454 2455 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2456 .Case("unordered", AtomicOrdering::Unordered) 2457 .Case("monotonic", AtomicOrdering::Monotonic) 2458 .Case("acquire", AtomicOrdering::Acquire) 2459 .Case("release", AtomicOrdering::Release) 2460 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2461 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2462 .Default(AtomicOrdering::NotAtomic); 2463 2464 if (Order != AtomicOrdering::NotAtomic) { 2465 lex(); 2466 return false; 2467 } 2468 2469 return error("expected an atomic scope, ordering or a size specification"); 2470 } 2471 2472 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2473 if (expectAndConsume(MIToken::lparen)) 2474 return true; 2475 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2476 while (Token.isMemoryOperandFlag()) { 2477 if (parseMemoryOperandFlag(Flags)) 2478 return true; 2479 } 2480 if (Token.isNot(MIToken::Identifier) || 2481 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2482 return error("expected 'load' or 'store' memory operation"); 2483 if (Token.stringValue() == "load") 2484 Flags |= MachineMemOperand::MOLoad; 2485 else 2486 Flags |= MachineMemOperand::MOStore; 2487 lex(); 2488 2489 // Optional 'store' for operands that both load and store. 2490 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2491 Flags |= MachineMemOperand::MOStore; 2492 lex(); 2493 } 2494 2495 // Optional synchronization scope. 2496 SyncScope::ID SSID; 2497 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2498 return true; 2499 2500 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2501 AtomicOrdering Order, FailureOrder; 2502 if (parseOptionalAtomicOrdering(Order)) 2503 return true; 2504 2505 if (parseOptionalAtomicOrdering(FailureOrder)) 2506 return true; 2507 2508 if (Token.isNot(MIToken::IntegerLiteral) && 2509 Token.isNot(MIToken::kw_unknown_size)) 2510 return error("expected the size integer literal or 'unknown-size' after " 2511 "memory operation"); 2512 uint64_t Size; 2513 if (Token.is(MIToken::IntegerLiteral)) { 2514 if (getUint64(Size)) 2515 return true; 2516 } else if (Token.is(MIToken::kw_unknown_size)) { 2517 Size = MemoryLocation::UnknownSize; 2518 } 2519 lex(); 2520 2521 MachinePointerInfo Ptr = MachinePointerInfo(); 2522 if (Token.is(MIToken::Identifier)) { 2523 const char *Word = 2524 ((Flags & MachineMemOperand::MOLoad) && 2525 (Flags & MachineMemOperand::MOStore)) 2526 ? "on" 2527 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2528 if (Token.stringValue() != Word) 2529 return error(Twine("expected '") + Word + "'"); 2530 lex(); 2531 2532 if (parseMachinePointerInfo(Ptr)) 2533 return true; 2534 } 2535 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2536 AAMDNodes AAInfo; 2537 MDNode *Range = nullptr; 2538 while (consumeIfPresent(MIToken::comma)) { 2539 switch (Token.kind()) { 2540 case MIToken::kw_align: 2541 if (parseAlignment(BaseAlignment)) 2542 return true; 2543 break; 2544 case MIToken::kw_addrspace: 2545 if (parseAddrspace(Ptr.AddrSpace)) 2546 return true; 2547 break; 2548 case MIToken::md_tbaa: 2549 lex(); 2550 if (parseMDNode(AAInfo.TBAA)) 2551 return true; 2552 break; 2553 case MIToken::md_alias_scope: 2554 lex(); 2555 if (parseMDNode(AAInfo.Scope)) 2556 return true; 2557 break; 2558 case MIToken::md_noalias: 2559 lex(); 2560 if (parseMDNode(AAInfo.NoAlias)) 2561 return true; 2562 break; 2563 case MIToken::md_range: 2564 lex(); 2565 if (parseMDNode(Range)) 2566 return true; 2567 break; 2568 // TODO: Report an error on duplicate metadata nodes. 2569 default: 2570 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2571 "'!noalias' or '!range'"); 2572 } 2573 } 2574 if (expectAndConsume(MIToken::rparen)) 2575 return true; 2576 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2577 SSID, Order, FailureOrder); 2578 return false; 2579 } 2580 2581 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2582 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2583 Token.is(MIToken::kw_post_instr_symbol)) && 2584 "Invalid token for a pre- post-instruction symbol!"); 2585 lex(); 2586 if (Token.isNot(MIToken::MCSymbol)) 2587 return error("expected a symbol after 'pre-instr-symbol'"); 2588 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2589 lex(); 2590 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2591 Token.is(MIToken::lbrace)) 2592 return false; 2593 if (Token.isNot(MIToken::comma)) 2594 return error("expected ',' before the next machine operand"); 2595 lex(); 2596 return false; 2597 } 2598 2599 void MIParser::initNames2InstrOpCodes() { 2600 if (!Names2InstrOpCodes.empty()) 2601 return; 2602 const auto *TII = MF.getSubtarget().getInstrInfo(); 2603 assert(TII && "Expected target instruction info"); 2604 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2605 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2606 } 2607 2608 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2609 initNames2InstrOpCodes(); 2610 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2611 if (InstrInfo == Names2InstrOpCodes.end()) 2612 return true; 2613 OpCode = InstrInfo->getValue(); 2614 return false; 2615 } 2616 2617 void MIParser::initNames2Regs() { 2618 if (!Names2Regs.empty()) 2619 return; 2620 // The '%noreg' register is the register 0. 2621 Names2Regs.insert(std::make_pair("noreg", 0)); 2622 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2623 assert(TRI && "Expected target register info"); 2624 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2625 bool WasInserted = 2626 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2627 .second; 2628 (void)WasInserted; 2629 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2630 } 2631 } 2632 2633 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2634 initNames2Regs(); 2635 auto RegInfo = Names2Regs.find(RegName); 2636 if (RegInfo == Names2Regs.end()) 2637 return true; 2638 Reg = RegInfo->getValue(); 2639 return false; 2640 } 2641 2642 void MIParser::initNames2RegMasks() { 2643 if (!Names2RegMasks.empty()) 2644 return; 2645 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2646 assert(TRI && "Expected target register info"); 2647 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2648 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2649 assert(RegMasks.size() == RegMaskNames.size()); 2650 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2651 Names2RegMasks.insert( 2652 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2653 } 2654 2655 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2656 initNames2RegMasks(); 2657 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2658 if (RegMaskInfo == Names2RegMasks.end()) 2659 return nullptr; 2660 return RegMaskInfo->getValue(); 2661 } 2662 2663 void MIParser::initNames2SubRegIndices() { 2664 if (!Names2SubRegIndices.empty()) 2665 return; 2666 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2667 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2668 Names2SubRegIndices.insert( 2669 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2670 } 2671 2672 unsigned MIParser::getSubRegIndex(StringRef Name) { 2673 initNames2SubRegIndices(); 2674 auto SubRegInfo = Names2SubRegIndices.find(Name); 2675 if (SubRegInfo == Names2SubRegIndices.end()) 2676 return 0; 2677 return SubRegInfo->getValue(); 2678 } 2679 2680 static void initSlots2BasicBlocks( 2681 const Function &F, 2682 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2683 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2684 MST.incorporateFunction(F); 2685 for (auto &BB : F) { 2686 if (BB.hasName()) 2687 continue; 2688 int Slot = MST.getLocalSlot(&BB); 2689 if (Slot == -1) 2690 continue; 2691 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2692 } 2693 } 2694 2695 static const BasicBlock *getIRBlockFromSlot( 2696 unsigned Slot, 2697 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2698 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2699 if (BlockInfo == Slots2BasicBlocks.end()) 2700 return nullptr; 2701 return BlockInfo->second; 2702 } 2703 2704 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2705 if (Slots2BasicBlocks.empty()) 2706 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2707 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2708 } 2709 2710 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2711 if (&F == &MF.getFunction()) 2712 return getIRBlock(Slot); 2713 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2714 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2715 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2716 } 2717 2718 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2719 DenseMap<unsigned, const Value *> &Slots2Values) { 2720 int Slot = MST.getLocalSlot(V); 2721 if (Slot == -1) 2722 return; 2723 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2724 } 2725 2726 /// Creates the mapping from slot numbers to function's unnamed IR values. 2727 static void initSlots2Values(const Function &F, 2728 DenseMap<unsigned, const Value *> &Slots2Values) { 2729 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2730 MST.incorporateFunction(F); 2731 for (const auto &Arg : F.args()) 2732 mapValueToSlot(&Arg, MST, Slots2Values); 2733 for (const auto &BB : F) { 2734 mapValueToSlot(&BB, MST, Slots2Values); 2735 for (const auto &I : BB) 2736 mapValueToSlot(&I, MST, Slots2Values); 2737 } 2738 } 2739 2740 const Value *MIParser::getIRValue(unsigned Slot) { 2741 if (Slots2Values.empty()) 2742 initSlots2Values(MF.getFunction(), Slots2Values); 2743 auto ValueInfo = Slots2Values.find(Slot); 2744 if (ValueInfo == Slots2Values.end()) 2745 return nullptr; 2746 return ValueInfo->second; 2747 } 2748 2749 void MIParser::initNames2TargetIndices() { 2750 if (!Names2TargetIndices.empty()) 2751 return; 2752 const auto *TII = MF.getSubtarget().getInstrInfo(); 2753 assert(TII && "Expected target instruction info"); 2754 auto Indices = TII->getSerializableTargetIndices(); 2755 for (const auto &I : Indices) 2756 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2757 } 2758 2759 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2760 initNames2TargetIndices(); 2761 auto IndexInfo = Names2TargetIndices.find(Name); 2762 if (IndexInfo == Names2TargetIndices.end()) 2763 return true; 2764 Index = IndexInfo->second; 2765 return false; 2766 } 2767 2768 void MIParser::initNames2DirectTargetFlags() { 2769 if (!Names2DirectTargetFlags.empty()) 2770 return; 2771 const auto *TII = MF.getSubtarget().getInstrInfo(); 2772 assert(TII && "Expected target instruction info"); 2773 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2774 for (const auto &I : Flags) 2775 Names2DirectTargetFlags.insert( 2776 std::make_pair(StringRef(I.second), I.first)); 2777 } 2778 2779 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2780 initNames2DirectTargetFlags(); 2781 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2782 if (FlagInfo == Names2DirectTargetFlags.end()) 2783 return true; 2784 Flag = FlagInfo->second; 2785 return false; 2786 } 2787 2788 void MIParser::initNames2BitmaskTargetFlags() { 2789 if (!Names2BitmaskTargetFlags.empty()) 2790 return; 2791 const auto *TII = MF.getSubtarget().getInstrInfo(); 2792 assert(TII && "Expected target instruction info"); 2793 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2794 for (const auto &I : Flags) 2795 Names2BitmaskTargetFlags.insert( 2796 std::make_pair(StringRef(I.second), I.first)); 2797 } 2798 2799 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2800 initNames2BitmaskTargetFlags(); 2801 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2802 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2803 return true; 2804 Flag = FlagInfo->second; 2805 return false; 2806 } 2807 2808 void MIParser::initNames2MMOTargetFlags() { 2809 if (!Names2MMOTargetFlags.empty()) 2810 return; 2811 const auto *TII = MF.getSubtarget().getInstrInfo(); 2812 assert(TII && "Expected target instruction info"); 2813 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2814 for (const auto &I : Flags) 2815 Names2MMOTargetFlags.insert( 2816 std::make_pair(StringRef(I.second), I.first)); 2817 } 2818 2819 bool MIParser::getMMOTargetFlag(StringRef Name, 2820 MachineMemOperand::Flags &Flag) { 2821 initNames2MMOTargetFlags(); 2822 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2823 if (FlagInfo == Names2MMOTargetFlags.end()) 2824 return true; 2825 Flag = FlagInfo->second; 2826 return false; 2827 } 2828 2829 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2830 // FIXME: Currently we can't recognize temporary or local symbols and call all 2831 // of the appropriate forms to create them. However, this handles basic cases 2832 // well as most of the special aspects are recognized by a prefix on their 2833 // name, and the input names should already be unique. For test cases, keeping 2834 // the symbol name out of the symbol table isn't terribly important. 2835 return MF.getContext().getOrCreateSymbol(Name); 2836 } 2837 2838 bool MIParser::parseStringConstant(std::string &Result) { 2839 if (Token.isNot(MIToken::StringConstant)) 2840 return error("expected string constant"); 2841 Result = Token.stringValue(); 2842 lex(); 2843 return false; 2844 } 2845 2846 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2847 StringRef Src, 2848 SMDiagnostic &Error) { 2849 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2850 } 2851 2852 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2853 StringRef Src, SMDiagnostic &Error) { 2854 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2855 } 2856 2857 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2858 MachineBasicBlock *&MBB, StringRef Src, 2859 SMDiagnostic &Error) { 2860 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2861 } 2862 2863 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2864 unsigned &Reg, StringRef Src, 2865 SMDiagnostic &Error) { 2866 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2867 } 2868 2869 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2870 unsigned &Reg, StringRef Src, 2871 SMDiagnostic &Error) { 2872 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2873 } 2874 2875 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2876 VRegInfo *&Info, StringRef Src, 2877 SMDiagnostic &Error) { 2878 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2879 } 2880 2881 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2882 int &FI, StringRef Src, 2883 SMDiagnostic &Error) { 2884 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2885 } 2886 2887 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2888 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2889 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2890 } 2891