1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cctype>
40 
41 using namespace llvm;
42 
43 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
44     SourceMgr &SM, const SlotMapping &IRSlots)
45   : MF(MF), SM(&SM), IRSlots(IRSlots) {
46 }
47 
48 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
49   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
50   if (I.second) {
51     MachineRegisterInfo &MRI = MF.getRegInfo();
52     VRegInfo *Info = new (Allocator) VRegInfo;
53     Info->VReg = MRI.createIncompleteVirtualRegister();
54     I.first->second = Info;
55   }
56   return *I.first->second;
57 }
58 
59 namespace {
60 
61 /// A wrapper struct around the 'MachineOperand' struct that includes a source
62 /// range and other attributes.
63 struct ParsedMachineOperand {
64   MachineOperand Operand;
65   StringRef::iterator Begin;
66   StringRef::iterator End;
67   Optional<unsigned> TiedDefIdx;
68 
69   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
70                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
71       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
72     if (TiedDefIdx)
73       assert(Operand.isReg() && Operand.isUse() &&
74              "Only used register operands can be tied");
75   }
76 };
77 
78 class MIParser {
79   MachineFunction &MF;
80   SMDiagnostic &Error;
81   StringRef Source, CurrentSource;
82   MIToken Token;
83   PerFunctionMIParsingState &PFS;
84   /// Maps from instruction names to op codes.
85   StringMap<unsigned> Names2InstrOpCodes;
86   /// Maps from register names to registers.
87   StringMap<unsigned> Names2Regs;
88   /// Maps from register mask names to register masks.
89   StringMap<const uint32_t *> Names2RegMasks;
90   /// Maps from subregister names to subregister indices.
91   StringMap<unsigned> Names2SubRegIndices;
92   /// Maps from slot numbers to function's unnamed basic blocks.
93   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
94   /// Maps from slot numbers to function's unnamed values.
95   DenseMap<unsigned, const Value *> Slots2Values;
96   /// Maps from target index names to target indices.
97   StringMap<int> Names2TargetIndices;
98   /// Maps from direct target flag names to the direct target flag values.
99   StringMap<unsigned> Names2DirectTargetFlags;
100   /// Maps from direct target flag names to the bitmask target flag values.
101   StringMap<unsigned> Names2BitmaskTargetFlags;
102 
103 public:
104   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
105            StringRef Source);
106 
107   /// \p SkipChar gives the number of characters to skip before looking
108   /// for the next token.
109   void lex(unsigned SkipChar = 0);
110 
111   /// Report an error at the current location with the given message.
112   ///
113   /// This function always return true.
114   bool error(const Twine &Msg);
115 
116   /// Report an error at the given location with the given message.
117   ///
118   /// This function always return true.
119   bool error(StringRef::iterator Loc, const Twine &Msg);
120 
121   bool
122   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
123   bool parseBasicBlocks();
124   bool parse(MachineInstr *&MI);
125   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
126   bool parseStandaloneNamedRegister(unsigned &Reg);
127   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
128   bool parseStandaloneRegister(unsigned &Reg);
129   bool parseStandaloneStackObject(int &FI);
130   bool parseStandaloneMDNode(MDNode *&Node);
131 
132   bool
133   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
134   bool parseBasicBlock(MachineBasicBlock &MBB);
135   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
136   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
137 
138   bool parseNamedRegister(unsigned &Reg);
139   bool parseVirtualRegister(VRegInfo *&Info);
140   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
141   bool parseRegisterFlag(unsigned &Flags);
142   bool parseSubRegisterIndex(unsigned &SubReg);
143   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
144   bool parseRegisterOperand(MachineOperand &Dest,
145                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
146   bool parseImmediateOperand(MachineOperand &Dest);
147   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
148                        const Constant *&C);
149   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
150   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
151   bool parseTypedImmediateOperand(MachineOperand &Dest);
152   bool parseFPImmediateOperand(MachineOperand &Dest);
153   bool parseMBBReference(MachineBasicBlock *&MBB);
154   bool parseMBBOperand(MachineOperand &Dest);
155   bool parseStackFrameIndex(int &FI);
156   bool parseStackObjectOperand(MachineOperand &Dest);
157   bool parseFixedStackFrameIndex(int &FI);
158   bool parseFixedStackObjectOperand(MachineOperand &Dest);
159   bool parseGlobalValue(GlobalValue *&GV);
160   bool parseGlobalAddressOperand(MachineOperand &Dest);
161   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
162   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
163   bool parseJumpTableIndexOperand(MachineOperand &Dest);
164   bool parseExternalSymbolOperand(MachineOperand &Dest);
165   bool parseMDNode(MDNode *&Node);
166   bool parseMetadataOperand(MachineOperand &Dest);
167   bool parseCFIOffset(int &Offset);
168   bool parseCFIRegister(unsigned &Reg);
169   bool parseCFIOperand(MachineOperand &Dest);
170   bool parseIRBlock(BasicBlock *&BB, const Function &F);
171   bool parseBlockAddressOperand(MachineOperand &Dest);
172   bool parseIntrinsicOperand(MachineOperand &Dest);
173   bool parsePredicateOperand(MachineOperand &Dest);
174   bool parseTargetIndexOperand(MachineOperand &Dest);
175   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
176   bool parseMachineOperand(MachineOperand &Dest,
177                            Optional<unsigned> &TiedDefIdx);
178   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
179                                          Optional<unsigned> &TiedDefIdx);
180   bool parseOffset(int64_t &Offset);
181   bool parseAlignment(unsigned &Alignment);
182   bool parseOperandsOffset(MachineOperand &Op);
183   bool parseIRValue(const Value *&V);
184   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
185   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
186   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
187   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
188 
189 private:
190   /// Convert the integer literal in the current token into an unsigned integer.
191   ///
192   /// Return true if an error occurred.
193   bool getUnsigned(unsigned &Result);
194 
195   /// Convert the integer literal in the current token into an uint64.
196   ///
197   /// Return true if an error occurred.
198   bool getUint64(uint64_t &Result);
199 
200   /// If the current token is of the given kind, consume it and return false.
201   /// Otherwise report an error and return true.
202   bool expectAndConsume(MIToken::TokenKind TokenKind);
203 
204   /// If the current token is of the given kind, consume it and return true.
205   /// Otherwise return false.
206   bool consumeIfPresent(MIToken::TokenKind TokenKind);
207 
208   void initNames2InstrOpCodes();
209 
210   /// Try to convert an instruction name to an opcode. Return true if the
211   /// instruction name is invalid.
212   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
213 
214   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
215 
216   bool assignRegisterTies(MachineInstr &MI,
217                           ArrayRef<ParsedMachineOperand> Operands);
218 
219   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
220                               const MCInstrDesc &MCID);
221 
222   void initNames2Regs();
223 
224   /// Try to convert a register name to a register number. Return true if the
225   /// register name is invalid.
226   bool getRegisterByName(StringRef RegName, unsigned &Reg);
227 
228   void initNames2RegMasks();
229 
230   /// Check if the given identifier is a name of a register mask.
231   ///
232   /// Return null if the identifier isn't a register mask.
233   const uint32_t *getRegMask(StringRef Identifier);
234 
235   void initNames2SubRegIndices();
236 
237   /// Check if the given identifier is a name of a subregister index.
238   ///
239   /// Return 0 if the name isn't a subregister index class.
240   unsigned getSubRegIndex(StringRef Name);
241 
242   const BasicBlock *getIRBlock(unsigned Slot);
243   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
244 
245   const Value *getIRValue(unsigned Slot);
246 
247   void initNames2TargetIndices();
248 
249   /// Try to convert a name of target index to the corresponding target index.
250   ///
251   /// Return true if the name isn't a name of a target index.
252   bool getTargetIndex(StringRef Name, int &Index);
253 
254   void initNames2DirectTargetFlags();
255 
256   /// Try to convert a name of a direct target flag to the corresponding
257   /// target flag.
258   ///
259   /// Return true if the name isn't a name of a direct flag.
260   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
261 
262   void initNames2BitmaskTargetFlags();
263 
264   /// Try to convert a name of a bitmask target flag to the corresponding
265   /// target flag.
266   ///
267   /// Return true if the name isn't a name of a bitmask target flag.
268   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
269 };
270 
271 } // end anonymous namespace
272 
273 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
274                    StringRef Source)
275     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
276 {}
277 
278 void MIParser::lex(unsigned SkipChar) {
279   CurrentSource = lexMIToken(
280       CurrentSource.data() + SkipChar, Token,
281       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
282 }
283 
284 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
285 
286 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
287   const SourceMgr &SM = *PFS.SM;
288   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
289   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
290   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
291     // Create an ordinary diagnostic when the source manager's buffer is the
292     // source string.
293     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
294     return true;
295   }
296   // Create a diagnostic for a YAML string literal.
297   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
298                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
299                        Source, None, None);
300   return true;
301 }
302 
303 static const char *toString(MIToken::TokenKind TokenKind) {
304   switch (TokenKind) {
305   case MIToken::comma:
306     return "','";
307   case MIToken::equal:
308     return "'='";
309   case MIToken::colon:
310     return "':'";
311   case MIToken::lparen:
312     return "'('";
313   case MIToken::rparen:
314     return "')'";
315   default:
316     return "<unknown token>";
317   }
318 }
319 
320 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
321   if (Token.isNot(TokenKind))
322     return error(Twine("expected ") + toString(TokenKind));
323   lex();
324   return false;
325 }
326 
327 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
328   if (Token.isNot(TokenKind))
329     return false;
330   lex();
331   return true;
332 }
333 
334 bool MIParser::parseBasicBlockDefinition(
335     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
336   assert(Token.is(MIToken::MachineBasicBlockLabel));
337   unsigned ID = 0;
338   if (getUnsigned(ID))
339     return true;
340   auto Loc = Token.location();
341   auto Name = Token.stringValue();
342   lex();
343   bool HasAddressTaken = false;
344   bool IsLandingPad = false;
345   unsigned Alignment = 0;
346   BasicBlock *BB = nullptr;
347   if (consumeIfPresent(MIToken::lparen)) {
348     do {
349       // TODO: Report an error when multiple same attributes are specified.
350       switch (Token.kind()) {
351       case MIToken::kw_address_taken:
352         HasAddressTaken = true;
353         lex();
354         break;
355       case MIToken::kw_landing_pad:
356         IsLandingPad = true;
357         lex();
358         break;
359       case MIToken::kw_align:
360         if (parseAlignment(Alignment))
361           return true;
362         break;
363       case MIToken::IRBlock:
364         // TODO: Report an error when both name and ir block are specified.
365         if (parseIRBlock(BB, *MF.getFunction()))
366           return true;
367         lex();
368         break;
369       default:
370         break;
371       }
372     } while (consumeIfPresent(MIToken::comma));
373     if (expectAndConsume(MIToken::rparen))
374       return true;
375   }
376   if (expectAndConsume(MIToken::colon))
377     return true;
378 
379   if (!Name.empty()) {
380     BB = dyn_cast_or_null<BasicBlock>(
381         MF.getFunction()->getValueSymbolTable()->lookup(Name));
382     if (!BB)
383       return error(Loc, Twine("basic block '") + Name +
384                             "' is not defined in the function '" +
385                             MF.getName() + "'");
386   }
387   auto *MBB = MF.CreateMachineBasicBlock(BB);
388   MF.insert(MF.end(), MBB);
389   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
390   if (!WasInserted)
391     return error(Loc, Twine("redefinition of machine basic block with id #") +
392                           Twine(ID));
393   if (Alignment)
394     MBB->setAlignment(Alignment);
395   if (HasAddressTaken)
396     MBB->setHasAddressTaken();
397   MBB->setIsEHPad(IsLandingPad);
398   return false;
399 }
400 
401 bool MIParser::parseBasicBlockDefinitions(
402     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
403   lex();
404   // Skip until the first machine basic block.
405   while (Token.is(MIToken::Newline))
406     lex();
407   if (Token.isErrorOrEOF())
408     return Token.isError();
409   if (Token.isNot(MIToken::MachineBasicBlockLabel))
410     return error("expected a basic block definition before instructions");
411   unsigned BraceDepth = 0;
412   do {
413     if (parseBasicBlockDefinition(MBBSlots))
414       return true;
415     bool IsAfterNewline = false;
416     // Skip until the next machine basic block.
417     while (true) {
418       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
419           Token.isErrorOrEOF())
420         break;
421       else if (Token.is(MIToken::MachineBasicBlockLabel))
422         return error("basic block definition should be located at the start of "
423                      "the line");
424       else if (consumeIfPresent(MIToken::Newline)) {
425         IsAfterNewline = true;
426         continue;
427       }
428       IsAfterNewline = false;
429       if (Token.is(MIToken::lbrace))
430         ++BraceDepth;
431       if (Token.is(MIToken::rbrace)) {
432         if (!BraceDepth)
433           return error("extraneous closing brace ('}')");
434         --BraceDepth;
435       }
436       lex();
437     }
438     // Verify that we closed all of the '{' at the end of a file or a block.
439     if (!Token.isError() && BraceDepth)
440       return error("expected '}'"); // FIXME: Report a note that shows '{'.
441   } while (!Token.isErrorOrEOF());
442   return Token.isError();
443 }
444 
445 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
446   assert(Token.is(MIToken::kw_liveins));
447   lex();
448   if (expectAndConsume(MIToken::colon))
449     return true;
450   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
451     return false;
452   do {
453     if (Token.isNot(MIToken::NamedRegister))
454       return error("expected a named register");
455     unsigned Reg = 0;
456     if (parseNamedRegister(Reg))
457       return true;
458     lex();
459     LaneBitmask Mask = ~LaneBitmask(0);
460     if (consumeIfPresent(MIToken::colon)) {
461       // Parse lane mask.
462       if (Token.isNot(MIToken::IntegerLiteral) &&
463           Token.isNot(MIToken::HexLiteral))
464         return error("expected a lane mask");
465       static_assert(sizeof(LaneBitmask) == sizeof(unsigned), "");
466       if (getUnsigned(Mask))
467         return error("invalid lane mask value");
468       lex();
469     }
470     MBB.addLiveIn(Reg, Mask);
471   } while (consumeIfPresent(MIToken::comma));
472   return false;
473 }
474 
475 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
476   assert(Token.is(MIToken::kw_successors));
477   lex();
478   if (expectAndConsume(MIToken::colon))
479     return true;
480   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
481     return false;
482   do {
483     if (Token.isNot(MIToken::MachineBasicBlock))
484       return error("expected a machine basic block reference");
485     MachineBasicBlock *SuccMBB = nullptr;
486     if (parseMBBReference(SuccMBB))
487       return true;
488     lex();
489     unsigned Weight = 0;
490     if (consumeIfPresent(MIToken::lparen)) {
491       if (Token.isNot(MIToken::IntegerLiteral) &&
492           Token.isNot(MIToken::HexLiteral))
493         return error("expected an integer literal after '('");
494       if (getUnsigned(Weight))
495         return true;
496       lex();
497       if (expectAndConsume(MIToken::rparen))
498         return true;
499     }
500     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
501   } while (consumeIfPresent(MIToken::comma));
502   MBB.normalizeSuccProbs();
503   return false;
504 }
505 
506 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
507   // Skip the definition.
508   assert(Token.is(MIToken::MachineBasicBlockLabel));
509   lex();
510   if (consumeIfPresent(MIToken::lparen)) {
511     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
512       lex();
513     consumeIfPresent(MIToken::rparen);
514   }
515   consumeIfPresent(MIToken::colon);
516 
517   // Parse the liveins and successors.
518   // N.B: Multiple lists of successors and liveins are allowed and they're
519   // merged into one.
520   // Example:
521   //   liveins: %edi
522   //   liveins: %esi
523   //
524   // is equivalent to
525   //   liveins: %edi, %esi
526   while (true) {
527     if (Token.is(MIToken::kw_successors)) {
528       if (parseBasicBlockSuccessors(MBB))
529         return true;
530     } else if (Token.is(MIToken::kw_liveins)) {
531       if (parseBasicBlockLiveins(MBB))
532         return true;
533     } else if (consumeIfPresent(MIToken::Newline)) {
534       continue;
535     } else
536       break;
537     if (!Token.isNewlineOrEOF())
538       return error("expected line break at the end of a list");
539     lex();
540   }
541 
542   // Parse the instructions.
543   bool IsInBundle = false;
544   MachineInstr *PrevMI = nullptr;
545   while (true) {
546     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
547       return false;
548     else if (consumeIfPresent(MIToken::Newline))
549       continue;
550     if (consumeIfPresent(MIToken::rbrace)) {
551       // The first parsing pass should verify that all closing '}' have an
552       // opening '{'.
553       assert(IsInBundle);
554       IsInBundle = false;
555       continue;
556     }
557     MachineInstr *MI = nullptr;
558     if (parse(MI))
559       return true;
560     MBB.insert(MBB.end(), MI);
561     if (IsInBundle) {
562       PrevMI->setFlag(MachineInstr::BundledSucc);
563       MI->setFlag(MachineInstr::BundledPred);
564     }
565     PrevMI = MI;
566     if (Token.is(MIToken::lbrace)) {
567       if (IsInBundle)
568         return error("nested instruction bundles are not allowed");
569       lex();
570       // This instruction is the start of the bundle.
571       MI->setFlag(MachineInstr::BundledSucc);
572       IsInBundle = true;
573       if (!Token.is(MIToken::Newline))
574         // The next instruction can be on the same line.
575         continue;
576     }
577     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
578     lex();
579   }
580   return false;
581 }
582 
583 bool MIParser::parseBasicBlocks() {
584   lex();
585   // Skip until the first machine basic block.
586   while (Token.is(MIToken::Newline))
587     lex();
588   if (Token.isErrorOrEOF())
589     return Token.isError();
590   // The first parsing pass should have verified that this token is a MBB label
591   // in the 'parseBasicBlockDefinitions' method.
592   assert(Token.is(MIToken::MachineBasicBlockLabel));
593   do {
594     MachineBasicBlock *MBB = nullptr;
595     if (parseMBBReference(MBB))
596       return true;
597     if (parseBasicBlock(*MBB))
598       return true;
599     // The method 'parseBasicBlock' should parse the whole block until the next
600     // block or the end of file.
601     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
602   } while (Token.isNot(MIToken::Eof));
603   return false;
604 }
605 
606 bool MIParser::parse(MachineInstr *&MI) {
607   // Parse any register operands before '='
608   MachineOperand MO = MachineOperand::CreateImm(0);
609   SmallVector<ParsedMachineOperand, 8> Operands;
610   while (Token.isRegister() || Token.isRegisterFlag()) {
611     auto Loc = Token.location();
612     Optional<unsigned> TiedDefIdx;
613     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
614       return true;
615     Operands.push_back(
616         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
617     if (Token.isNot(MIToken::comma))
618       break;
619     lex();
620   }
621   if (!Operands.empty() && expectAndConsume(MIToken::equal))
622     return true;
623 
624   unsigned OpCode, Flags = 0;
625   if (Token.isError() || parseInstruction(OpCode, Flags))
626     return true;
627 
628   // Parse the remaining machine operands.
629   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
630          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
631     auto Loc = Token.location();
632     Optional<unsigned> TiedDefIdx;
633     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
634       return true;
635     Operands.push_back(
636         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
637     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
638         Token.is(MIToken::lbrace))
639       break;
640     if (Token.isNot(MIToken::comma))
641       return error("expected ',' before the next machine operand");
642     lex();
643   }
644 
645   DebugLoc DebugLocation;
646   if (Token.is(MIToken::kw_debug_location)) {
647     lex();
648     if (Token.isNot(MIToken::exclaim))
649       return error("expected a metadata node after 'debug-location'");
650     MDNode *Node = nullptr;
651     if (parseMDNode(Node))
652       return true;
653     DebugLocation = DebugLoc(Node);
654   }
655 
656   // Parse the machine memory operands.
657   SmallVector<MachineMemOperand *, 2> MemOperands;
658   if (Token.is(MIToken::coloncolon)) {
659     lex();
660     while (!Token.isNewlineOrEOF()) {
661       MachineMemOperand *MemOp = nullptr;
662       if (parseMachineMemoryOperand(MemOp))
663         return true;
664       MemOperands.push_back(MemOp);
665       if (Token.isNewlineOrEOF())
666         break;
667       if (Token.isNot(MIToken::comma))
668         return error("expected ',' before the next machine memory operand");
669       lex();
670     }
671   }
672 
673   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
674   if (!MCID.isVariadic()) {
675     // FIXME: Move the implicit operand verification to the machine verifier.
676     if (verifyImplicitOperands(Operands, MCID))
677       return true;
678   }
679 
680   // TODO: Check for extraneous machine operands.
681   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
682   MI->setFlags(Flags);
683   for (const auto &Operand : Operands)
684     MI->addOperand(MF, Operand.Operand);
685   if (assignRegisterTies(*MI, Operands))
686     return true;
687   if (MemOperands.empty())
688     return false;
689   MachineInstr::mmo_iterator MemRefs =
690       MF.allocateMemRefsArray(MemOperands.size());
691   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
692   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
693   return false;
694 }
695 
696 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
697   lex();
698   if (Token.isNot(MIToken::MachineBasicBlock))
699     return error("expected a machine basic block reference");
700   if (parseMBBReference(MBB))
701     return true;
702   lex();
703   if (Token.isNot(MIToken::Eof))
704     return error(
705         "expected end of string after the machine basic block reference");
706   return false;
707 }
708 
709 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
710   lex();
711   if (Token.isNot(MIToken::NamedRegister))
712     return error("expected a named register");
713   if (parseNamedRegister(Reg))
714     return true;
715   lex();
716   if (Token.isNot(MIToken::Eof))
717     return error("expected end of string after the register reference");
718   return false;
719 }
720 
721 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
722   lex();
723   if (Token.isNot(MIToken::VirtualRegister))
724     return error("expected a virtual register");
725   if (parseVirtualRegister(Info))
726     return true;
727   lex();
728   if (Token.isNot(MIToken::Eof))
729     return error("expected end of string after the register reference");
730   return false;
731 }
732 
733 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
734   lex();
735   if (Token.isNot(MIToken::NamedRegister) &&
736       Token.isNot(MIToken::VirtualRegister))
737     return error("expected either a named or virtual register");
738 
739   VRegInfo *Info;
740   if (parseRegister(Reg, Info))
741     return true;
742 
743   lex();
744   if (Token.isNot(MIToken::Eof))
745     return error("expected end of string after the register reference");
746   return false;
747 }
748 
749 bool MIParser::parseStandaloneStackObject(int &FI) {
750   lex();
751   if (Token.isNot(MIToken::StackObject))
752     return error("expected a stack object");
753   if (parseStackFrameIndex(FI))
754     return true;
755   if (Token.isNot(MIToken::Eof))
756     return error("expected end of string after the stack object reference");
757   return false;
758 }
759 
760 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
761   lex();
762   if (Token.isNot(MIToken::exclaim))
763     return error("expected a metadata node");
764   if (parseMDNode(Node))
765     return true;
766   if (Token.isNot(MIToken::Eof))
767     return error("expected end of string after the metadata node");
768   return false;
769 }
770 
771 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
772   assert(MO.isImplicit());
773   return MO.isDef() ? "implicit-def" : "implicit";
774 }
775 
776 static std::string getRegisterName(const TargetRegisterInfo *TRI,
777                                    unsigned Reg) {
778   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
779   return StringRef(TRI->getName(Reg)).lower();
780 }
781 
782 /// Return true if the parsed machine operands contain a given machine operand.
783 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
784                                 ArrayRef<ParsedMachineOperand> Operands) {
785   for (const auto &I : Operands) {
786     if (ImplicitOperand.isIdenticalTo(I.Operand))
787       return true;
788   }
789   return false;
790 }
791 
792 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
793                                       const MCInstrDesc &MCID) {
794   if (MCID.isCall())
795     // We can't verify call instructions as they can contain arbitrary implicit
796     // register and register mask operands.
797     return false;
798 
799   // Gather all the expected implicit operands.
800   SmallVector<MachineOperand, 4> ImplicitOperands;
801   if (MCID.ImplicitDefs)
802     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
803       ImplicitOperands.push_back(
804           MachineOperand::CreateReg(*ImpDefs, true, true));
805   if (MCID.ImplicitUses)
806     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
807       ImplicitOperands.push_back(
808           MachineOperand::CreateReg(*ImpUses, false, true));
809 
810   const auto *TRI = MF.getSubtarget().getRegisterInfo();
811   assert(TRI && "Expected target register info");
812   for (const auto &I : ImplicitOperands) {
813     if (isImplicitOperandIn(I, Operands))
814       continue;
815     return error(Operands.empty() ? Token.location() : Operands.back().End,
816                  Twine("missing implicit register operand '") +
817                      printImplicitRegisterFlag(I) + " %" +
818                      getRegisterName(TRI, I.getReg()) + "'");
819   }
820   return false;
821 }
822 
823 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
824   if (Token.is(MIToken::kw_frame_setup)) {
825     Flags |= MachineInstr::FrameSetup;
826     lex();
827   }
828   if (Token.isNot(MIToken::Identifier))
829     return error("expected a machine instruction");
830   StringRef InstrName = Token.stringValue();
831   if (parseInstrName(InstrName, OpCode))
832     return error(Twine("unknown machine instruction name '") + InstrName + "'");
833   lex();
834   return false;
835 }
836 
837 bool MIParser::parseNamedRegister(unsigned &Reg) {
838   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
839   StringRef Name = Token.stringValue();
840   if (getRegisterByName(Name, Reg))
841     return error(Twine("unknown register name '") + Name + "'");
842   return false;
843 }
844 
845 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
846   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
847   unsigned ID;
848   if (getUnsigned(ID))
849     return true;
850   Info = &PFS.getVRegInfo(ID);
851   return false;
852 }
853 
854 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
855   switch (Token.kind()) {
856   case MIToken::underscore:
857     Reg = 0;
858     return false;
859   case MIToken::NamedRegister:
860     return parseNamedRegister(Reg);
861   case MIToken::VirtualRegister:
862     if (parseVirtualRegister(Info))
863       return true;
864     Reg = Info->VReg;
865     return false;
866   // TODO: Parse other register kinds.
867   default:
868     llvm_unreachable("The current token should be a register");
869   }
870 }
871 
872 bool MIParser::parseRegisterFlag(unsigned &Flags) {
873   const unsigned OldFlags = Flags;
874   switch (Token.kind()) {
875   case MIToken::kw_implicit:
876     Flags |= RegState::Implicit;
877     break;
878   case MIToken::kw_implicit_define:
879     Flags |= RegState::ImplicitDefine;
880     break;
881   case MIToken::kw_def:
882     Flags |= RegState::Define;
883     break;
884   case MIToken::kw_dead:
885     Flags |= RegState::Dead;
886     break;
887   case MIToken::kw_killed:
888     Flags |= RegState::Kill;
889     break;
890   case MIToken::kw_undef:
891     Flags |= RegState::Undef;
892     break;
893   case MIToken::kw_internal:
894     Flags |= RegState::InternalRead;
895     break;
896   case MIToken::kw_early_clobber:
897     Flags |= RegState::EarlyClobber;
898     break;
899   case MIToken::kw_debug_use:
900     Flags |= RegState::Debug;
901     break;
902   default:
903     llvm_unreachable("The current token should be a register flag");
904   }
905   if (OldFlags == Flags)
906     // We know that the same flag is specified more than once when the flags
907     // weren't modified.
908     return error("duplicate '" + Token.stringValue() + "' register flag");
909   lex();
910   return false;
911 }
912 
913 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
914   assert(Token.is(MIToken::dot));
915   lex();
916   if (Token.isNot(MIToken::Identifier))
917     return error("expected a subregister index after '.'");
918   auto Name = Token.stringValue();
919   SubReg = getSubRegIndex(Name);
920   if (!SubReg)
921     return error(Twine("use of unknown subregister index '") + Name + "'");
922   lex();
923   return false;
924 }
925 
926 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
927   if (!consumeIfPresent(MIToken::kw_tied_def))
928     return true;
929   if (Token.isNot(MIToken::IntegerLiteral))
930     return error("expected an integer literal after 'tied-def'");
931   if (getUnsigned(TiedDefIdx))
932     return true;
933   lex();
934   if (expectAndConsume(MIToken::rparen))
935     return true;
936   return false;
937 }
938 
939 bool MIParser::assignRegisterTies(MachineInstr &MI,
940                                   ArrayRef<ParsedMachineOperand> Operands) {
941   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
942   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
943     if (!Operands[I].TiedDefIdx)
944       continue;
945     // The parser ensures that this operand is a register use, so we just have
946     // to check the tied-def operand.
947     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
948     if (DefIdx >= E)
949       return error(Operands[I].Begin,
950                    Twine("use of invalid tied-def operand index '" +
951                          Twine(DefIdx) + "'; instruction has only ") +
952                        Twine(E) + " operands");
953     const auto &DefOperand = Operands[DefIdx].Operand;
954     if (!DefOperand.isReg() || !DefOperand.isDef())
955       // FIXME: add note with the def operand.
956       return error(Operands[I].Begin,
957                    Twine("use of invalid tied-def operand index '") +
958                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
959                        " isn't a defined register");
960     // Check that the tied-def operand wasn't tied elsewhere.
961     for (const auto &TiedPair : TiedRegisterPairs) {
962       if (TiedPair.first == DefIdx)
963         return error(Operands[I].Begin,
964                      Twine("the tied-def operand #") + Twine(DefIdx) +
965                          " is already tied with another register operand");
966     }
967     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
968   }
969   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
970   // indices must be less than tied max.
971   for (const auto &TiedPair : TiedRegisterPairs)
972     MI.tieOperands(TiedPair.first, TiedPair.second);
973   return false;
974 }
975 
976 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
977                                     Optional<unsigned> &TiedDefIdx,
978                                     bool IsDef) {
979   unsigned Flags = IsDef ? RegState::Define : 0;
980   while (Token.isRegisterFlag()) {
981     if (parseRegisterFlag(Flags))
982       return true;
983   }
984   if (!Token.isRegister())
985     return error("expected a register after register flags");
986   unsigned Reg;
987   VRegInfo *RegInfo;
988   if (parseRegister(Reg, RegInfo))
989     return true;
990   lex();
991   unsigned SubReg = 0;
992   if (Token.is(MIToken::dot)) {
993     if (parseSubRegisterIndex(SubReg))
994       return true;
995     if (!TargetRegisterInfo::isVirtualRegister(Reg))
996       return error("subregister index expects a virtual register");
997   }
998   MachineRegisterInfo &MRI = MF.getRegInfo();
999   if ((Flags & RegState::Define) == 0) {
1000     if (consumeIfPresent(MIToken::lparen)) {
1001       unsigned Idx;
1002       if (!parseRegisterTiedDefIndex(Idx))
1003         TiedDefIdx = Idx;
1004       else {
1005         // Try a redundant low-level type.
1006         LLT Ty;
1007         if (parseLowLevelType(Token.location(), Ty))
1008           return error("expected tied-def or low-level type after '('");
1009 
1010         if (expectAndConsume(MIToken::rparen))
1011           return true;
1012 
1013         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1014           return error("inconsistent type for generic virtual register");
1015 
1016         MRI.setType(Reg, Ty);
1017       }
1018     }
1019   } else if (consumeIfPresent(MIToken::lparen)) {
1020     // Virtual registers may have a size with GlobalISel.
1021     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1022       return error("unexpected size on physical register");
1023     if (RegInfo->Kind != VRegInfo::GENERIC &&
1024         RegInfo->Kind != VRegInfo::REGBANK)
1025       return error("unexpected size on non-generic virtual register");
1026 
1027     LLT Ty;
1028     if (parseLowLevelType(Token.location(), Ty))
1029       return true;
1030 
1031     if (expectAndConsume(MIToken::rparen))
1032       return true;
1033 
1034     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1035       return error("inconsistent type for generic virtual register");
1036 
1037     MRI.setType(Reg, Ty);
1038   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1039     // Generic virtual registers must have a size.
1040     // If we end up here this means the size hasn't been specified and
1041     // this is bad!
1042     if (RegInfo->Kind == VRegInfo::GENERIC ||
1043         RegInfo->Kind == VRegInfo::REGBANK)
1044       return error("generic virtual registers must have a size");
1045   }
1046   Dest = MachineOperand::CreateReg(
1047       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1048       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1049       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1050       Flags & RegState::InternalRead);
1051   return false;
1052 }
1053 
1054 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1055   assert(Token.is(MIToken::IntegerLiteral));
1056   const APSInt &Int = Token.integerValue();
1057   if (Int.getMinSignedBits() > 64)
1058     return error("integer literal is too large to be an immediate operand");
1059   Dest = MachineOperand::CreateImm(Int.getExtValue());
1060   lex();
1061   return false;
1062 }
1063 
1064 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1065                                const Constant *&C) {
1066   auto Source = StringValue.str(); // The source has to be null terminated.
1067   SMDiagnostic Err;
1068   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1069                          &PFS.IRSlots);
1070   if (!C)
1071     return error(Loc + Err.getColumnNo(), Err.getMessage());
1072   return false;
1073 }
1074 
1075 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1076   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1077     return true;
1078   lex();
1079   return false;
1080 }
1081 
1082 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1083   if (Token.is(MIToken::ScalarType)) {
1084     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1085     lex();
1086     return false;
1087   } else if (Token.is(MIToken::PointerType)) {
1088     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1089     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1090     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1091     lex();
1092     return false;
1093   }
1094 
1095   // Now we're looking for a vector.
1096   if (Token.isNot(MIToken::less))
1097     return error(Loc,
1098                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1099 
1100   lex();
1101 
1102   if (Token.isNot(MIToken::IntegerLiteral))
1103     return error(Loc, "expected <N x sM> for vctor type");
1104   uint64_t NumElements = Token.integerValue().getZExtValue();
1105   lex();
1106 
1107   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1108     return error(Loc, "expected '<N x sM>' for vector type");
1109   lex();
1110 
1111   if (Token.isNot(MIToken::ScalarType))
1112     return error(Loc, "expected '<N x sM>' for vector type");
1113   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1114   lex();
1115 
1116   if (Token.isNot(MIToken::greater))
1117     return error(Loc, "expected '<N x sM>' for vector type");
1118   lex();
1119 
1120   Ty = LLT::vector(NumElements, ScalarSize);
1121   return false;
1122 }
1123 
1124 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1125   assert(Token.is(MIToken::IntegerType));
1126   auto Loc = Token.location();
1127   lex();
1128   if (Token.isNot(MIToken::IntegerLiteral))
1129     return error("expected an integer literal");
1130   const Constant *C = nullptr;
1131   if (parseIRConstant(Loc, C))
1132     return true;
1133   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1134   return false;
1135 }
1136 
1137 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1138   auto Loc = Token.location();
1139   lex();
1140   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1141       Token.isNot(MIToken::HexLiteral))
1142     return error("expected a floating point literal");
1143   const Constant *C = nullptr;
1144   if (parseIRConstant(Loc, C))
1145     return true;
1146   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1147   return false;
1148 }
1149 
1150 bool MIParser::getUnsigned(unsigned &Result) {
1151   if (Token.hasIntegerValue()) {
1152     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1153     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1154     if (Val64 == Limit)
1155       return error("expected 32-bit integer (too large)");
1156     Result = Val64;
1157     return false;
1158   }
1159   if (Token.is(MIToken::HexLiteral)) {
1160     StringRef S = Token.range();
1161     assert(S[0] == '0' && tolower(S[1]) == 'x');
1162     // This could be a floating point literal with a special prefix.
1163     if (!isxdigit(S[2]))
1164       return true;
1165     StringRef V = S.substr(2);
1166     unsigned BW = std::min<unsigned>(V.size()*4, 32);
1167     APInt A(BW, V, 16);
1168     APInt Limit = APInt(BW, std::numeric_limits<unsigned>::max());
1169     if (A.ugt(Limit))
1170       return error("expected 32-bit integer (too large)");
1171     Result = A.getZExtValue();
1172     return false;
1173   }
1174   return true;
1175 }
1176 
1177 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1178   assert(Token.is(MIToken::MachineBasicBlock) ||
1179          Token.is(MIToken::MachineBasicBlockLabel));
1180   unsigned Number;
1181   if (getUnsigned(Number))
1182     return true;
1183   auto MBBInfo = PFS.MBBSlots.find(Number);
1184   if (MBBInfo == PFS.MBBSlots.end())
1185     return error(Twine("use of undefined machine basic block #") +
1186                  Twine(Number));
1187   MBB = MBBInfo->second;
1188   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1189     return error(Twine("the name of machine basic block #") + Twine(Number) +
1190                  " isn't '" + Token.stringValue() + "'");
1191   return false;
1192 }
1193 
1194 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1195   MachineBasicBlock *MBB;
1196   if (parseMBBReference(MBB))
1197     return true;
1198   Dest = MachineOperand::CreateMBB(MBB);
1199   lex();
1200   return false;
1201 }
1202 
1203 bool MIParser::parseStackFrameIndex(int &FI) {
1204   assert(Token.is(MIToken::StackObject));
1205   unsigned ID;
1206   if (getUnsigned(ID))
1207     return true;
1208   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1209   if (ObjectInfo == PFS.StackObjectSlots.end())
1210     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1211                  "'");
1212   StringRef Name;
1213   if (const auto *Alloca =
1214           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1215     Name = Alloca->getName();
1216   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1217     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1218                  "' isn't '" + Token.stringValue() + "'");
1219   lex();
1220   FI = ObjectInfo->second;
1221   return false;
1222 }
1223 
1224 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1225   int FI;
1226   if (parseStackFrameIndex(FI))
1227     return true;
1228   Dest = MachineOperand::CreateFI(FI);
1229   return false;
1230 }
1231 
1232 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1233   assert(Token.is(MIToken::FixedStackObject));
1234   unsigned ID;
1235   if (getUnsigned(ID))
1236     return true;
1237   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1238   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1239     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1240                  Twine(ID) + "'");
1241   lex();
1242   FI = ObjectInfo->second;
1243   return false;
1244 }
1245 
1246 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1247   int FI;
1248   if (parseFixedStackFrameIndex(FI))
1249     return true;
1250   Dest = MachineOperand::CreateFI(FI);
1251   return false;
1252 }
1253 
1254 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1255   switch (Token.kind()) {
1256   case MIToken::NamedGlobalValue: {
1257     const Module *M = MF.getFunction()->getParent();
1258     GV = M->getNamedValue(Token.stringValue());
1259     if (!GV)
1260       return error(Twine("use of undefined global value '") + Token.range() +
1261                    "'");
1262     break;
1263   }
1264   case MIToken::GlobalValue: {
1265     unsigned GVIdx;
1266     if (getUnsigned(GVIdx))
1267       return true;
1268     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1269       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1270                    "'");
1271     GV = PFS.IRSlots.GlobalValues[GVIdx];
1272     break;
1273   }
1274   default:
1275     llvm_unreachable("The current token should be a global value");
1276   }
1277   return false;
1278 }
1279 
1280 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1281   GlobalValue *GV = nullptr;
1282   if (parseGlobalValue(GV))
1283     return true;
1284   lex();
1285   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1286   if (parseOperandsOffset(Dest))
1287     return true;
1288   return false;
1289 }
1290 
1291 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1292   assert(Token.is(MIToken::ConstantPoolItem));
1293   unsigned ID;
1294   if (getUnsigned(ID))
1295     return true;
1296   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1297   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1298     return error("use of undefined constant '%const." + Twine(ID) + "'");
1299   lex();
1300   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1301   if (parseOperandsOffset(Dest))
1302     return true;
1303   return false;
1304 }
1305 
1306 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1307   assert(Token.is(MIToken::JumpTableIndex));
1308   unsigned ID;
1309   if (getUnsigned(ID))
1310     return true;
1311   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1312   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1313     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1314   lex();
1315   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1316   return false;
1317 }
1318 
1319 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1320   assert(Token.is(MIToken::ExternalSymbol));
1321   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1322   lex();
1323   Dest = MachineOperand::CreateES(Symbol);
1324   if (parseOperandsOffset(Dest))
1325     return true;
1326   return false;
1327 }
1328 
1329 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1330   assert(Token.is(MIToken::SubRegisterIndex));
1331   StringRef Name = Token.stringValue();
1332   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1333   if (SubRegIndex == 0)
1334     return error(Twine("unknown subregister index '") + Name + "'");
1335   lex();
1336   Dest = MachineOperand::CreateImm(SubRegIndex);
1337   return false;
1338 }
1339 
1340 bool MIParser::parseMDNode(MDNode *&Node) {
1341   assert(Token.is(MIToken::exclaim));
1342   auto Loc = Token.location();
1343   lex();
1344   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1345     return error("expected metadata id after '!'");
1346   unsigned ID;
1347   if (getUnsigned(ID))
1348     return true;
1349   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1350   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1351     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1352   lex();
1353   Node = NodeInfo->second.get();
1354   return false;
1355 }
1356 
1357 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1358   MDNode *Node = nullptr;
1359   if (parseMDNode(Node))
1360     return true;
1361   Dest = MachineOperand::CreateMetadata(Node);
1362   return false;
1363 }
1364 
1365 bool MIParser::parseCFIOffset(int &Offset) {
1366   if (Token.isNot(MIToken::IntegerLiteral))
1367     return error("expected a cfi offset");
1368   if (Token.integerValue().getMinSignedBits() > 32)
1369     return error("expected a 32 bit integer (the cfi offset is too large)");
1370   Offset = (int)Token.integerValue().getExtValue();
1371   lex();
1372   return false;
1373 }
1374 
1375 bool MIParser::parseCFIRegister(unsigned &Reg) {
1376   if (Token.isNot(MIToken::NamedRegister))
1377     return error("expected a cfi register");
1378   unsigned LLVMReg;
1379   if (parseNamedRegister(LLVMReg))
1380     return true;
1381   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1382   assert(TRI && "Expected target register info");
1383   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1384   if (DwarfReg < 0)
1385     return error("invalid DWARF register");
1386   Reg = (unsigned)DwarfReg;
1387   lex();
1388   return false;
1389 }
1390 
1391 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1392   auto Kind = Token.kind();
1393   lex();
1394   int Offset;
1395   unsigned Reg;
1396   unsigned CFIIndex;
1397   switch (Kind) {
1398   case MIToken::kw_cfi_same_value:
1399     if (parseCFIRegister(Reg))
1400       return true;
1401     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1402     break;
1403   case MIToken::kw_cfi_offset:
1404     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1405         parseCFIOffset(Offset))
1406       return true;
1407     CFIIndex =
1408         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1409     break;
1410   case MIToken::kw_cfi_def_cfa_register:
1411     if (parseCFIRegister(Reg))
1412       return true;
1413     CFIIndex =
1414         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1415     break;
1416   case MIToken::kw_cfi_def_cfa_offset:
1417     if (parseCFIOffset(Offset))
1418       return true;
1419     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1420     CFIIndex = MF.addFrameInst(
1421         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1422     break;
1423   case MIToken::kw_cfi_def_cfa:
1424     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1425         parseCFIOffset(Offset))
1426       return true;
1427     // NB: MCCFIInstruction::createDefCfa negates the offset.
1428     CFIIndex =
1429         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1430     break;
1431   default:
1432     // TODO: Parse the other CFI operands.
1433     llvm_unreachable("The current token should be a cfi operand");
1434   }
1435   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1436   return false;
1437 }
1438 
1439 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1440   switch (Token.kind()) {
1441   case MIToken::NamedIRBlock: {
1442     BB = dyn_cast_or_null<BasicBlock>(
1443         F.getValueSymbolTable()->lookup(Token.stringValue()));
1444     if (!BB)
1445       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1446     break;
1447   }
1448   case MIToken::IRBlock: {
1449     unsigned SlotNumber = 0;
1450     if (getUnsigned(SlotNumber))
1451       return true;
1452     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1453     if (!BB)
1454       return error(Twine("use of undefined IR block '%ir-block.") +
1455                    Twine(SlotNumber) + "'");
1456     break;
1457   }
1458   default:
1459     llvm_unreachable("The current token should be an IR block reference");
1460   }
1461   return false;
1462 }
1463 
1464 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1465   assert(Token.is(MIToken::kw_blockaddress));
1466   lex();
1467   if (expectAndConsume(MIToken::lparen))
1468     return true;
1469   if (Token.isNot(MIToken::GlobalValue) &&
1470       Token.isNot(MIToken::NamedGlobalValue))
1471     return error("expected a global value");
1472   GlobalValue *GV = nullptr;
1473   if (parseGlobalValue(GV))
1474     return true;
1475   auto *F = dyn_cast<Function>(GV);
1476   if (!F)
1477     return error("expected an IR function reference");
1478   lex();
1479   if (expectAndConsume(MIToken::comma))
1480     return true;
1481   BasicBlock *BB = nullptr;
1482   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1483     return error("expected an IR block reference");
1484   if (parseIRBlock(BB, *F))
1485     return true;
1486   lex();
1487   if (expectAndConsume(MIToken::rparen))
1488     return true;
1489   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1490   if (parseOperandsOffset(Dest))
1491     return true;
1492   return false;
1493 }
1494 
1495 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1496   assert(Token.is(MIToken::kw_intrinsic));
1497   lex();
1498   if (expectAndConsume(MIToken::lparen))
1499     return error("expected syntax intrinsic(@llvm.whatever)");
1500 
1501   if (Token.isNot(MIToken::NamedGlobalValue))
1502     return error("expected syntax intrinsic(@llvm.whatever)");
1503 
1504   std::string Name = Token.stringValue();
1505   lex();
1506 
1507   if (expectAndConsume(MIToken::rparen))
1508     return error("expected ')' to terminate intrinsic name");
1509 
1510   // Find out what intrinsic we're dealing with, first try the global namespace
1511   // and then the target's private intrinsics if that fails.
1512   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1513   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1514   if (ID == Intrinsic::not_intrinsic && TII)
1515     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1516 
1517   if (ID == Intrinsic::not_intrinsic)
1518     return error("unknown intrinsic name");
1519   Dest = MachineOperand::CreateIntrinsicID(ID);
1520 
1521   return false;
1522 }
1523 
1524 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1525   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1526   bool IsFloat = Token.is(MIToken::kw_floatpred);
1527   lex();
1528 
1529   if (expectAndConsume(MIToken::lparen))
1530     return error("expected syntax intpred(whatever) or floatpred(whatever");
1531 
1532   if (Token.isNot(MIToken::Identifier))
1533     return error("whatever");
1534 
1535   CmpInst::Predicate Pred;
1536   if (IsFloat) {
1537     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1538                .Case("false", CmpInst::FCMP_FALSE)
1539                .Case("oeq", CmpInst::FCMP_OEQ)
1540                .Case("ogt", CmpInst::FCMP_OGT)
1541                .Case("oge", CmpInst::FCMP_OGE)
1542                .Case("olt", CmpInst::FCMP_OLT)
1543                .Case("ole", CmpInst::FCMP_OLE)
1544                .Case("one", CmpInst::FCMP_ONE)
1545                .Case("ord", CmpInst::FCMP_ORD)
1546                .Case("uno", CmpInst::FCMP_UNO)
1547                .Case("ueq", CmpInst::FCMP_UEQ)
1548                .Case("ugt", CmpInst::FCMP_UGT)
1549                .Case("uge", CmpInst::FCMP_UGE)
1550                .Case("ult", CmpInst::FCMP_ULT)
1551                .Case("ule", CmpInst::FCMP_ULE)
1552                .Case("une", CmpInst::FCMP_UNE)
1553                .Case("true", CmpInst::FCMP_TRUE)
1554                .Default(CmpInst::BAD_FCMP_PREDICATE);
1555     if (!CmpInst::isFPPredicate(Pred))
1556       return error("invalid floating-point predicate");
1557   } else {
1558     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1559                .Case("eq", CmpInst::ICMP_EQ)
1560                .Case("ne", CmpInst::ICMP_NE)
1561                .Case("sgt", CmpInst::ICMP_SGT)
1562                .Case("sge", CmpInst::ICMP_SGE)
1563                .Case("slt", CmpInst::ICMP_SLT)
1564                .Case("sle", CmpInst::ICMP_SLE)
1565                .Case("ugt", CmpInst::ICMP_UGT)
1566                .Case("uge", CmpInst::ICMP_UGE)
1567                .Case("ult", CmpInst::ICMP_ULT)
1568                .Case("ule", CmpInst::ICMP_ULE)
1569                .Default(CmpInst::BAD_ICMP_PREDICATE);
1570     if (!CmpInst::isIntPredicate(Pred))
1571       return error("invalid integer predicate");
1572   }
1573 
1574   lex();
1575   Dest = MachineOperand::CreatePredicate(Pred);
1576   if (expectAndConsume(MIToken::rparen))
1577     return error("predicate should be terminated by ')'.");
1578 
1579   return false;
1580 }
1581 
1582 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1583   assert(Token.is(MIToken::kw_target_index));
1584   lex();
1585   if (expectAndConsume(MIToken::lparen))
1586     return true;
1587   if (Token.isNot(MIToken::Identifier))
1588     return error("expected the name of the target index");
1589   int Index = 0;
1590   if (getTargetIndex(Token.stringValue(), Index))
1591     return error("use of undefined target index '" + Token.stringValue() + "'");
1592   lex();
1593   if (expectAndConsume(MIToken::rparen))
1594     return true;
1595   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1596   if (parseOperandsOffset(Dest))
1597     return true;
1598   return false;
1599 }
1600 
1601 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1602   assert(Token.is(MIToken::kw_liveout));
1603   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1604   assert(TRI && "Expected target register info");
1605   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1606   lex();
1607   if (expectAndConsume(MIToken::lparen))
1608     return true;
1609   while (true) {
1610     if (Token.isNot(MIToken::NamedRegister))
1611       return error("expected a named register");
1612     unsigned Reg;
1613     if (parseNamedRegister(Reg))
1614       return true;
1615     lex();
1616     Mask[Reg / 32] |= 1U << (Reg % 32);
1617     // TODO: Report an error if the same register is used more than once.
1618     if (Token.isNot(MIToken::comma))
1619       break;
1620     lex();
1621   }
1622   if (expectAndConsume(MIToken::rparen))
1623     return true;
1624   Dest = MachineOperand::CreateRegLiveOut(Mask);
1625   return false;
1626 }
1627 
1628 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1629                                    Optional<unsigned> &TiedDefIdx) {
1630   switch (Token.kind()) {
1631   case MIToken::kw_implicit:
1632   case MIToken::kw_implicit_define:
1633   case MIToken::kw_def:
1634   case MIToken::kw_dead:
1635   case MIToken::kw_killed:
1636   case MIToken::kw_undef:
1637   case MIToken::kw_internal:
1638   case MIToken::kw_early_clobber:
1639   case MIToken::kw_debug_use:
1640   case MIToken::underscore:
1641   case MIToken::NamedRegister:
1642   case MIToken::VirtualRegister:
1643     return parseRegisterOperand(Dest, TiedDefIdx);
1644   case MIToken::IntegerLiteral:
1645     return parseImmediateOperand(Dest);
1646   case MIToken::IntegerType:
1647     return parseTypedImmediateOperand(Dest);
1648   case MIToken::kw_half:
1649   case MIToken::kw_float:
1650   case MIToken::kw_double:
1651   case MIToken::kw_x86_fp80:
1652   case MIToken::kw_fp128:
1653   case MIToken::kw_ppc_fp128:
1654     return parseFPImmediateOperand(Dest);
1655   case MIToken::MachineBasicBlock:
1656     return parseMBBOperand(Dest);
1657   case MIToken::StackObject:
1658     return parseStackObjectOperand(Dest);
1659   case MIToken::FixedStackObject:
1660     return parseFixedStackObjectOperand(Dest);
1661   case MIToken::GlobalValue:
1662   case MIToken::NamedGlobalValue:
1663     return parseGlobalAddressOperand(Dest);
1664   case MIToken::ConstantPoolItem:
1665     return parseConstantPoolIndexOperand(Dest);
1666   case MIToken::JumpTableIndex:
1667     return parseJumpTableIndexOperand(Dest);
1668   case MIToken::ExternalSymbol:
1669     return parseExternalSymbolOperand(Dest);
1670   case MIToken::SubRegisterIndex:
1671     return parseSubRegisterIndexOperand(Dest);
1672   case MIToken::exclaim:
1673     return parseMetadataOperand(Dest);
1674   case MIToken::kw_cfi_same_value:
1675   case MIToken::kw_cfi_offset:
1676   case MIToken::kw_cfi_def_cfa_register:
1677   case MIToken::kw_cfi_def_cfa_offset:
1678   case MIToken::kw_cfi_def_cfa:
1679     return parseCFIOperand(Dest);
1680   case MIToken::kw_blockaddress:
1681     return parseBlockAddressOperand(Dest);
1682   case MIToken::kw_intrinsic:
1683     return parseIntrinsicOperand(Dest);
1684   case MIToken::kw_target_index:
1685     return parseTargetIndexOperand(Dest);
1686   case MIToken::kw_liveout:
1687     return parseLiveoutRegisterMaskOperand(Dest);
1688   case MIToken::kw_floatpred:
1689   case MIToken::kw_intpred:
1690     return parsePredicateOperand(Dest);
1691   case MIToken::Error:
1692     return true;
1693   case MIToken::Identifier:
1694     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1695       Dest = MachineOperand::CreateRegMask(RegMask);
1696       lex();
1697       break;
1698     }
1699     LLVM_FALLTHROUGH;
1700   default:
1701     // FIXME: Parse the MCSymbol machine operand.
1702     return error("expected a machine operand");
1703   }
1704   return false;
1705 }
1706 
1707 bool MIParser::parseMachineOperandAndTargetFlags(
1708     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1709   unsigned TF = 0;
1710   bool HasTargetFlags = false;
1711   if (Token.is(MIToken::kw_target_flags)) {
1712     HasTargetFlags = true;
1713     lex();
1714     if (expectAndConsume(MIToken::lparen))
1715       return true;
1716     if (Token.isNot(MIToken::Identifier))
1717       return error("expected the name of the target flag");
1718     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1719       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1720         return error("use of undefined target flag '" + Token.stringValue() +
1721                      "'");
1722     }
1723     lex();
1724     while (Token.is(MIToken::comma)) {
1725       lex();
1726       if (Token.isNot(MIToken::Identifier))
1727         return error("expected the name of the target flag");
1728       unsigned BitFlag = 0;
1729       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1730         return error("use of undefined target flag '" + Token.stringValue() +
1731                      "'");
1732       // TODO: Report an error when using a duplicate bit target flag.
1733       TF |= BitFlag;
1734       lex();
1735     }
1736     if (expectAndConsume(MIToken::rparen))
1737       return true;
1738   }
1739   auto Loc = Token.location();
1740   if (parseMachineOperand(Dest, TiedDefIdx))
1741     return true;
1742   if (!HasTargetFlags)
1743     return false;
1744   if (Dest.isReg())
1745     return error(Loc, "register operands can't have target flags");
1746   Dest.setTargetFlags(TF);
1747   return false;
1748 }
1749 
1750 bool MIParser::parseOffset(int64_t &Offset) {
1751   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1752     return false;
1753   StringRef Sign = Token.range();
1754   bool IsNegative = Token.is(MIToken::minus);
1755   lex();
1756   if (Token.isNot(MIToken::IntegerLiteral))
1757     return error("expected an integer literal after '" + Sign + "'");
1758   if (Token.integerValue().getMinSignedBits() > 64)
1759     return error("expected 64-bit integer (too large)");
1760   Offset = Token.integerValue().getExtValue();
1761   if (IsNegative)
1762     Offset = -Offset;
1763   lex();
1764   return false;
1765 }
1766 
1767 bool MIParser::parseAlignment(unsigned &Alignment) {
1768   assert(Token.is(MIToken::kw_align));
1769   lex();
1770   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1771     return error("expected an integer literal after 'align'");
1772   if (getUnsigned(Alignment))
1773     return true;
1774   lex();
1775   return false;
1776 }
1777 
1778 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1779   int64_t Offset = 0;
1780   if (parseOffset(Offset))
1781     return true;
1782   Op.setOffset(Offset);
1783   return false;
1784 }
1785 
1786 bool MIParser::parseIRValue(const Value *&V) {
1787   switch (Token.kind()) {
1788   case MIToken::NamedIRValue: {
1789     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1790     break;
1791   }
1792   case MIToken::IRValue: {
1793     unsigned SlotNumber = 0;
1794     if (getUnsigned(SlotNumber))
1795       return true;
1796     V = getIRValue(SlotNumber);
1797     break;
1798   }
1799   case MIToken::NamedGlobalValue:
1800   case MIToken::GlobalValue: {
1801     GlobalValue *GV = nullptr;
1802     if (parseGlobalValue(GV))
1803       return true;
1804     V = GV;
1805     break;
1806   }
1807   case MIToken::QuotedIRValue: {
1808     const Constant *C = nullptr;
1809     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1810       return true;
1811     V = C;
1812     break;
1813   }
1814   default:
1815     llvm_unreachable("The current token should be an IR block reference");
1816   }
1817   if (!V)
1818     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1819   return false;
1820 }
1821 
1822 bool MIParser::getUint64(uint64_t &Result) {
1823   assert(Token.hasIntegerValue());
1824   if (Token.integerValue().getActiveBits() > 64)
1825     return error("expected 64-bit integer (too large)");
1826   Result = Token.integerValue().getZExtValue();
1827   return false;
1828 }
1829 
1830 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1831   const auto OldFlags = Flags;
1832   switch (Token.kind()) {
1833   case MIToken::kw_volatile:
1834     Flags |= MachineMemOperand::MOVolatile;
1835     break;
1836   case MIToken::kw_non_temporal:
1837     Flags |= MachineMemOperand::MONonTemporal;
1838     break;
1839   case MIToken::kw_dereferenceable:
1840     Flags |= MachineMemOperand::MODereferenceable;
1841     break;
1842   case MIToken::kw_invariant:
1843     Flags |= MachineMemOperand::MOInvariant;
1844     break;
1845   // TODO: parse the target specific memory operand flags.
1846   default:
1847     llvm_unreachable("The current token should be a memory operand flag");
1848   }
1849   if (OldFlags == Flags)
1850     // We know that the same flag is specified more than once when the flags
1851     // weren't modified.
1852     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1853   lex();
1854   return false;
1855 }
1856 
1857 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1858   switch (Token.kind()) {
1859   case MIToken::kw_stack:
1860     PSV = MF.getPSVManager().getStack();
1861     break;
1862   case MIToken::kw_got:
1863     PSV = MF.getPSVManager().getGOT();
1864     break;
1865   case MIToken::kw_jump_table:
1866     PSV = MF.getPSVManager().getJumpTable();
1867     break;
1868   case MIToken::kw_constant_pool:
1869     PSV = MF.getPSVManager().getConstantPool();
1870     break;
1871   case MIToken::FixedStackObject: {
1872     int FI;
1873     if (parseFixedStackFrameIndex(FI))
1874       return true;
1875     PSV = MF.getPSVManager().getFixedStack(FI);
1876     // The token was already consumed, so use return here instead of break.
1877     return false;
1878   }
1879   case MIToken::StackObject: {
1880     int FI;
1881     if (parseStackFrameIndex(FI))
1882       return true;
1883     PSV = MF.getPSVManager().getFixedStack(FI);
1884     // The token was already consumed, so use return here instead of break.
1885     return false;
1886   }
1887   case MIToken::kw_call_entry: {
1888     lex();
1889     switch (Token.kind()) {
1890     case MIToken::GlobalValue:
1891     case MIToken::NamedGlobalValue: {
1892       GlobalValue *GV = nullptr;
1893       if (parseGlobalValue(GV))
1894         return true;
1895       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1896       break;
1897     }
1898     case MIToken::ExternalSymbol:
1899       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1900           MF.createExternalSymbolName(Token.stringValue()));
1901       break;
1902     default:
1903       return error(
1904           "expected a global value or an external symbol after 'call-entry'");
1905     }
1906     break;
1907   }
1908   default:
1909     llvm_unreachable("The current token should be pseudo source value");
1910   }
1911   lex();
1912   return false;
1913 }
1914 
1915 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1916   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1917       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1918       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1919       Token.is(MIToken::kw_call_entry)) {
1920     const PseudoSourceValue *PSV = nullptr;
1921     if (parseMemoryPseudoSourceValue(PSV))
1922       return true;
1923     int64_t Offset = 0;
1924     if (parseOffset(Offset))
1925       return true;
1926     Dest = MachinePointerInfo(PSV, Offset);
1927     return false;
1928   }
1929   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1930       Token.isNot(MIToken::GlobalValue) &&
1931       Token.isNot(MIToken::NamedGlobalValue) &&
1932       Token.isNot(MIToken::QuotedIRValue))
1933     return error("expected an IR value reference");
1934   const Value *V = nullptr;
1935   if (parseIRValue(V))
1936     return true;
1937   if (!V->getType()->isPointerTy())
1938     return error("expected a pointer IR value");
1939   lex();
1940   int64_t Offset = 0;
1941   if (parseOffset(Offset))
1942     return true;
1943   Dest = MachinePointerInfo(V, Offset);
1944   return false;
1945 }
1946 
1947 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1948   if (expectAndConsume(MIToken::lparen))
1949     return true;
1950   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1951   while (Token.isMemoryOperandFlag()) {
1952     if (parseMemoryOperandFlag(Flags))
1953       return true;
1954   }
1955   if (Token.isNot(MIToken::Identifier) ||
1956       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1957     return error("expected 'load' or 'store' memory operation");
1958   if (Token.stringValue() == "load")
1959     Flags |= MachineMemOperand::MOLoad;
1960   else
1961     Flags |= MachineMemOperand::MOStore;
1962   lex();
1963 
1964   if (Token.isNot(MIToken::IntegerLiteral))
1965     return error("expected the size integer literal after memory operation");
1966   uint64_t Size;
1967   if (getUint64(Size))
1968     return true;
1969   lex();
1970 
1971   MachinePointerInfo Ptr = MachinePointerInfo();
1972   if (Token.is(MIToken::Identifier)) {
1973     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1974     if (Token.stringValue() != Word)
1975       return error(Twine("expected '") + Word + "'");
1976     lex();
1977 
1978     if (parseMachinePointerInfo(Ptr))
1979       return true;
1980   }
1981   unsigned BaseAlignment = Size;
1982   AAMDNodes AAInfo;
1983   MDNode *Range = nullptr;
1984   while (consumeIfPresent(MIToken::comma)) {
1985     switch (Token.kind()) {
1986     case MIToken::kw_align:
1987       if (parseAlignment(BaseAlignment))
1988         return true;
1989       break;
1990     case MIToken::md_tbaa:
1991       lex();
1992       if (parseMDNode(AAInfo.TBAA))
1993         return true;
1994       break;
1995     case MIToken::md_alias_scope:
1996       lex();
1997       if (parseMDNode(AAInfo.Scope))
1998         return true;
1999       break;
2000     case MIToken::md_noalias:
2001       lex();
2002       if (parseMDNode(AAInfo.NoAlias))
2003         return true;
2004       break;
2005     case MIToken::md_range:
2006       lex();
2007       if (parseMDNode(Range))
2008         return true;
2009       break;
2010     // TODO: Report an error on duplicate metadata nodes.
2011     default:
2012       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2013                    "'!noalias' or '!range'");
2014     }
2015   }
2016   if (expectAndConsume(MIToken::rparen))
2017     return true;
2018   Dest =
2019       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
2020   return false;
2021 }
2022 
2023 void MIParser::initNames2InstrOpCodes() {
2024   if (!Names2InstrOpCodes.empty())
2025     return;
2026   const auto *TII = MF.getSubtarget().getInstrInfo();
2027   assert(TII && "Expected target instruction info");
2028   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2029     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2030 }
2031 
2032 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2033   initNames2InstrOpCodes();
2034   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2035   if (InstrInfo == Names2InstrOpCodes.end())
2036     return true;
2037   OpCode = InstrInfo->getValue();
2038   return false;
2039 }
2040 
2041 void MIParser::initNames2Regs() {
2042   if (!Names2Regs.empty())
2043     return;
2044   // The '%noreg' register is the register 0.
2045   Names2Regs.insert(std::make_pair("noreg", 0));
2046   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2047   assert(TRI && "Expected target register info");
2048   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2049     bool WasInserted =
2050         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2051             .second;
2052     (void)WasInserted;
2053     assert(WasInserted && "Expected registers to be unique case-insensitively");
2054   }
2055 }
2056 
2057 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2058   initNames2Regs();
2059   auto RegInfo = Names2Regs.find(RegName);
2060   if (RegInfo == Names2Regs.end())
2061     return true;
2062   Reg = RegInfo->getValue();
2063   return false;
2064 }
2065 
2066 void MIParser::initNames2RegMasks() {
2067   if (!Names2RegMasks.empty())
2068     return;
2069   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2070   assert(TRI && "Expected target register info");
2071   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2072   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2073   assert(RegMasks.size() == RegMaskNames.size());
2074   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2075     Names2RegMasks.insert(
2076         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2077 }
2078 
2079 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2080   initNames2RegMasks();
2081   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2082   if (RegMaskInfo == Names2RegMasks.end())
2083     return nullptr;
2084   return RegMaskInfo->getValue();
2085 }
2086 
2087 void MIParser::initNames2SubRegIndices() {
2088   if (!Names2SubRegIndices.empty())
2089     return;
2090   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2091   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2092     Names2SubRegIndices.insert(
2093         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2094 }
2095 
2096 unsigned MIParser::getSubRegIndex(StringRef Name) {
2097   initNames2SubRegIndices();
2098   auto SubRegInfo = Names2SubRegIndices.find(Name);
2099   if (SubRegInfo == Names2SubRegIndices.end())
2100     return 0;
2101   return SubRegInfo->getValue();
2102 }
2103 
2104 static void initSlots2BasicBlocks(
2105     const Function &F,
2106     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2107   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2108   MST.incorporateFunction(F);
2109   for (auto &BB : F) {
2110     if (BB.hasName())
2111       continue;
2112     int Slot = MST.getLocalSlot(&BB);
2113     if (Slot == -1)
2114       continue;
2115     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2116   }
2117 }
2118 
2119 static const BasicBlock *getIRBlockFromSlot(
2120     unsigned Slot,
2121     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2122   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2123   if (BlockInfo == Slots2BasicBlocks.end())
2124     return nullptr;
2125   return BlockInfo->second;
2126 }
2127 
2128 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2129   if (Slots2BasicBlocks.empty())
2130     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2131   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2132 }
2133 
2134 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2135   if (&F == MF.getFunction())
2136     return getIRBlock(Slot);
2137   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2138   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2139   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2140 }
2141 
2142 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2143                            DenseMap<unsigned, const Value *> &Slots2Values) {
2144   int Slot = MST.getLocalSlot(V);
2145   if (Slot == -1)
2146     return;
2147   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2148 }
2149 
2150 /// Creates the mapping from slot numbers to function's unnamed IR values.
2151 static void initSlots2Values(const Function &F,
2152                              DenseMap<unsigned, const Value *> &Slots2Values) {
2153   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2154   MST.incorporateFunction(F);
2155   for (const auto &Arg : F.args())
2156     mapValueToSlot(&Arg, MST, Slots2Values);
2157   for (const auto &BB : F) {
2158     mapValueToSlot(&BB, MST, Slots2Values);
2159     for (const auto &I : BB)
2160       mapValueToSlot(&I, MST, Slots2Values);
2161   }
2162 }
2163 
2164 const Value *MIParser::getIRValue(unsigned Slot) {
2165   if (Slots2Values.empty())
2166     initSlots2Values(*MF.getFunction(), Slots2Values);
2167   auto ValueInfo = Slots2Values.find(Slot);
2168   if (ValueInfo == Slots2Values.end())
2169     return nullptr;
2170   return ValueInfo->second;
2171 }
2172 
2173 void MIParser::initNames2TargetIndices() {
2174   if (!Names2TargetIndices.empty())
2175     return;
2176   const auto *TII = MF.getSubtarget().getInstrInfo();
2177   assert(TII && "Expected target instruction info");
2178   auto Indices = TII->getSerializableTargetIndices();
2179   for (const auto &I : Indices)
2180     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2181 }
2182 
2183 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2184   initNames2TargetIndices();
2185   auto IndexInfo = Names2TargetIndices.find(Name);
2186   if (IndexInfo == Names2TargetIndices.end())
2187     return true;
2188   Index = IndexInfo->second;
2189   return false;
2190 }
2191 
2192 void MIParser::initNames2DirectTargetFlags() {
2193   if (!Names2DirectTargetFlags.empty())
2194     return;
2195   const auto *TII = MF.getSubtarget().getInstrInfo();
2196   assert(TII && "Expected target instruction info");
2197   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2198   for (const auto &I : Flags)
2199     Names2DirectTargetFlags.insert(
2200         std::make_pair(StringRef(I.second), I.first));
2201 }
2202 
2203 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2204   initNames2DirectTargetFlags();
2205   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2206   if (FlagInfo == Names2DirectTargetFlags.end())
2207     return true;
2208   Flag = FlagInfo->second;
2209   return false;
2210 }
2211 
2212 void MIParser::initNames2BitmaskTargetFlags() {
2213   if (!Names2BitmaskTargetFlags.empty())
2214     return;
2215   const auto *TII = MF.getSubtarget().getInstrInfo();
2216   assert(TII && "Expected target instruction info");
2217   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2218   for (const auto &I : Flags)
2219     Names2BitmaskTargetFlags.insert(
2220         std::make_pair(StringRef(I.second), I.first));
2221 }
2222 
2223 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2224   initNames2BitmaskTargetFlags();
2225   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2226   if (FlagInfo == Names2BitmaskTargetFlags.end())
2227     return true;
2228   Flag = FlagInfo->second;
2229   return false;
2230 }
2231 
2232 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2233                                              StringRef Src,
2234                                              SMDiagnostic &Error) {
2235   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2236 }
2237 
2238 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2239                                     StringRef Src, SMDiagnostic &Error) {
2240   return MIParser(PFS, Error, Src).parseBasicBlocks();
2241 }
2242 
2243 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2244                              MachineBasicBlock *&MBB, StringRef Src,
2245                              SMDiagnostic &Error) {
2246   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2247 }
2248 
2249 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2250                                   unsigned &Reg, StringRef Src,
2251                                   SMDiagnostic &Error) {
2252   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2253 }
2254 
2255 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2256                                        unsigned &Reg, StringRef Src,
2257                                        SMDiagnostic &Error) {
2258   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2259 }
2260 
2261 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2262                                          VRegInfo *&Info, StringRef Src,
2263                                          SMDiagnostic &Error) {
2264   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2265 }
2266 
2267 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2268                                      int &FI, StringRef Src,
2269                                      SMDiagnostic &Error) {
2270   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2271 }
2272 
2273 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2274                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2275   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2276 }
2277