1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/IR/ValueSymbolTable.h"
33 #include "llvm/Support/SourceMgr.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetIntrinsicInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 
39 using namespace llvm;
40 
41 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
42     SourceMgr &SM, const SlotMapping &IRSlots)
43   : MF(MF), SM(&SM), IRSlots(IRSlots) {
44 }
45 
46 namespace {
47 
48 /// A wrapper struct around the 'MachineOperand' struct that includes a source
49 /// range and other attributes.
50 struct ParsedMachineOperand {
51   MachineOperand Operand;
52   StringRef::iterator Begin;
53   StringRef::iterator End;
54   Optional<unsigned> TiedDefIdx;
55 
56   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
57                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
58       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
59     if (TiedDefIdx)
60       assert(Operand.isReg() && Operand.isUse() &&
61              "Only used register operands can be tied");
62   }
63 };
64 
65 class MIParser {
66   MachineFunction &MF;
67   SMDiagnostic &Error;
68   StringRef Source, CurrentSource;
69   MIToken Token;
70   const PerFunctionMIParsingState &PFS;
71   /// Maps from instruction names to op codes.
72   StringMap<unsigned> Names2InstrOpCodes;
73   /// Maps from register names to registers.
74   StringMap<unsigned> Names2Regs;
75   /// Maps from register mask names to register masks.
76   StringMap<const uint32_t *> Names2RegMasks;
77   /// Maps from subregister names to subregister indices.
78   StringMap<unsigned> Names2SubRegIndices;
79   /// Maps from slot numbers to function's unnamed basic blocks.
80   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
81   /// Maps from slot numbers to function's unnamed values.
82   DenseMap<unsigned, const Value *> Slots2Values;
83   /// Maps from target index names to target indices.
84   StringMap<int> Names2TargetIndices;
85   /// Maps from direct target flag names to the direct target flag values.
86   StringMap<unsigned> Names2DirectTargetFlags;
87   /// Maps from direct target flag names to the bitmask target flag values.
88   StringMap<unsigned> Names2BitmaskTargetFlags;
89 
90 public:
91   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
92            StringRef Source);
93 
94   /// \p SkipChar gives the number of characters to skip before looking
95   /// for the next token.
96   void lex(unsigned SkipChar = 0);
97 
98   /// Report an error at the current location with the given message.
99   ///
100   /// This function always return true.
101   bool error(const Twine &Msg);
102 
103   /// Report an error at the given location with the given message.
104   ///
105   /// This function always return true.
106   bool error(StringRef::iterator Loc, const Twine &Msg);
107 
108   bool
109   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
110   bool parseBasicBlocks();
111   bool parse(MachineInstr *&MI);
112   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
113   bool parseStandaloneNamedRegister(unsigned &Reg);
114   bool parseStandaloneVirtualRegister(unsigned &Reg);
115   bool parseStandaloneStackObject(int &FI);
116   bool parseStandaloneMDNode(MDNode *&Node);
117 
118   bool
119   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
120   bool parseBasicBlock(MachineBasicBlock &MBB);
121   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
122   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
123 
124   bool parseRegister(unsigned &Reg);
125   bool parseRegisterFlag(unsigned &Flags);
126   bool parseSubRegisterIndex(unsigned &SubReg);
127   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
128   bool parseSize(unsigned &Size);
129   bool parseRegisterOperand(MachineOperand &Dest,
130                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
131   bool parseImmediateOperand(MachineOperand &Dest);
132   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
133                        const Constant *&C);
134   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
135   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
136   bool parseTypedImmediateOperand(MachineOperand &Dest);
137   bool parseFPImmediateOperand(MachineOperand &Dest);
138   bool parseMBBReference(MachineBasicBlock *&MBB);
139   bool parseMBBOperand(MachineOperand &Dest);
140   bool parseStackFrameIndex(int &FI);
141   bool parseStackObjectOperand(MachineOperand &Dest);
142   bool parseFixedStackFrameIndex(int &FI);
143   bool parseFixedStackObjectOperand(MachineOperand &Dest);
144   bool parseGlobalValue(GlobalValue *&GV);
145   bool parseGlobalAddressOperand(MachineOperand &Dest);
146   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
147   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
148   bool parseJumpTableIndexOperand(MachineOperand &Dest);
149   bool parseExternalSymbolOperand(MachineOperand &Dest);
150   bool parseMDNode(MDNode *&Node);
151   bool parseMetadataOperand(MachineOperand &Dest);
152   bool parseCFIOffset(int &Offset);
153   bool parseCFIRegister(unsigned &Reg);
154   bool parseCFIOperand(MachineOperand &Dest);
155   bool parseIRBlock(BasicBlock *&BB, const Function &F);
156   bool parseBlockAddressOperand(MachineOperand &Dest);
157   bool parseIntrinsicOperand(MachineOperand &Dest);
158   bool parsePredicateOperand(MachineOperand &Dest);
159   bool parseTargetIndexOperand(MachineOperand &Dest);
160   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
161   bool parseMachineOperand(MachineOperand &Dest,
162                            Optional<unsigned> &TiedDefIdx);
163   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
164                                          Optional<unsigned> &TiedDefIdx);
165   bool parseOffset(int64_t &Offset);
166   bool parseAlignment(unsigned &Alignment);
167   bool parseOperandsOffset(MachineOperand &Op);
168   bool parseIRValue(const Value *&V);
169   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
170   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
171   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
172   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
173 
174 private:
175   /// Convert the integer literal in the current token into an unsigned integer.
176   ///
177   /// Return true if an error occurred.
178   bool getUnsigned(unsigned &Result);
179 
180   /// Convert the integer literal in the current token into an uint64.
181   ///
182   /// Return true if an error occurred.
183   bool getUint64(uint64_t &Result);
184 
185   /// If the current token is of the given kind, consume it and return false.
186   /// Otherwise report an error and return true.
187   bool expectAndConsume(MIToken::TokenKind TokenKind);
188 
189   /// If the current token is of the given kind, consume it and return true.
190   /// Otherwise return false.
191   bool consumeIfPresent(MIToken::TokenKind TokenKind);
192 
193   void initNames2InstrOpCodes();
194 
195   /// Try to convert an instruction name to an opcode. Return true if the
196   /// instruction name is invalid.
197   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
198 
199   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
200 
201   bool assignRegisterTies(MachineInstr &MI,
202                           ArrayRef<ParsedMachineOperand> Operands);
203 
204   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
205                               const MCInstrDesc &MCID);
206 
207   void initNames2Regs();
208 
209   /// Try to convert a register name to a register number. Return true if the
210   /// register name is invalid.
211   bool getRegisterByName(StringRef RegName, unsigned &Reg);
212 
213   void initNames2RegMasks();
214 
215   /// Check if the given identifier is a name of a register mask.
216   ///
217   /// Return null if the identifier isn't a register mask.
218   const uint32_t *getRegMask(StringRef Identifier);
219 
220   void initNames2SubRegIndices();
221 
222   /// Check if the given identifier is a name of a subregister index.
223   ///
224   /// Return 0 if the name isn't a subregister index class.
225   unsigned getSubRegIndex(StringRef Name);
226 
227   const BasicBlock *getIRBlock(unsigned Slot);
228   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
229 
230   const Value *getIRValue(unsigned Slot);
231 
232   void initNames2TargetIndices();
233 
234   /// Try to convert a name of target index to the corresponding target index.
235   ///
236   /// Return true if the name isn't a name of a target index.
237   bool getTargetIndex(StringRef Name, int &Index);
238 
239   void initNames2DirectTargetFlags();
240 
241   /// Try to convert a name of a direct target flag to the corresponding
242   /// target flag.
243   ///
244   /// Return true if the name isn't a name of a direct flag.
245   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
246 
247   void initNames2BitmaskTargetFlags();
248 
249   /// Try to convert a name of a bitmask target flag to the corresponding
250   /// target flag.
251   ///
252   /// Return true if the name isn't a name of a bitmask target flag.
253   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
254 };
255 
256 } // end anonymous namespace
257 
258 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
259                    StringRef Source)
260     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
261 {}
262 
263 void MIParser::lex(unsigned SkipChar) {
264   CurrentSource = lexMIToken(
265       CurrentSource.data() + SkipChar, Token,
266       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
267 }
268 
269 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
270 
271 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
272   const SourceMgr &SM = *PFS.SM;
273   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
274   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
275   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
276     // Create an ordinary diagnostic when the source manager's buffer is the
277     // source string.
278     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
279     return true;
280   }
281   // Create a diagnostic for a YAML string literal.
282   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
283                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
284                        Source, None, None);
285   return true;
286 }
287 
288 static const char *toString(MIToken::TokenKind TokenKind) {
289   switch (TokenKind) {
290   case MIToken::comma:
291     return "','";
292   case MIToken::equal:
293     return "'='";
294   case MIToken::colon:
295     return "':'";
296   case MIToken::lparen:
297     return "'('";
298   case MIToken::rparen:
299     return "')'";
300   default:
301     return "<unknown token>";
302   }
303 }
304 
305 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
306   if (Token.isNot(TokenKind))
307     return error(Twine("expected ") + toString(TokenKind));
308   lex();
309   return false;
310 }
311 
312 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
313   if (Token.isNot(TokenKind))
314     return false;
315   lex();
316   return true;
317 }
318 
319 bool MIParser::parseBasicBlockDefinition(
320     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
321   assert(Token.is(MIToken::MachineBasicBlockLabel));
322   unsigned ID = 0;
323   if (getUnsigned(ID))
324     return true;
325   auto Loc = Token.location();
326   auto Name = Token.stringValue();
327   lex();
328   bool HasAddressTaken = false;
329   bool IsLandingPad = false;
330   unsigned Alignment = 0;
331   BasicBlock *BB = nullptr;
332   if (consumeIfPresent(MIToken::lparen)) {
333     do {
334       // TODO: Report an error when multiple same attributes are specified.
335       switch (Token.kind()) {
336       case MIToken::kw_address_taken:
337         HasAddressTaken = true;
338         lex();
339         break;
340       case MIToken::kw_landing_pad:
341         IsLandingPad = true;
342         lex();
343         break;
344       case MIToken::kw_align:
345         if (parseAlignment(Alignment))
346           return true;
347         break;
348       case MIToken::IRBlock:
349         // TODO: Report an error when both name and ir block are specified.
350         if (parseIRBlock(BB, *MF.getFunction()))
351           return true;
352         lex();
353         break;
354       default:
355         break;
356       }
357     } while (consumeIfPresent(MIToken::comma));
358     if (expectAndConsume(MIToken::rparen))
359       return true;
360   }
361   if (expectAndConsume(MIToken::colon))
362     return true;
363 
364   if (!Name.empty()) {
365     BB = dyn_cast_or_null<BasicBlock>(
366         MF.getFunction()->getValueSymbolTable().lookup(Name));
367     if (!BB)
368       return error(Loc, Twine("basic block '") + Name +
369                             "' is not defined in the function '" +
370                             MF.getName() + "'");
371   }
372   auto *MBB = MF.CreateMachineBasicBlock(BB);
373   MF.insert(MF.end(), MBB);
374   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
375   if (!WasInserted)
376     return error(Loc, Twine("redefinition of machine basic block with id #") +
377                           Twine(ID));
378   if (Alignment)
379     MBB->setAlignment(Alignment);
380   if (HasAddressTaken)
381     MBB->setHasAddressTaken();
382   MBB->setIsEHPad(IsLandingPad);
383   return false;
384 }
385 
386 bool MIParser::parseBasicBlockDefinitions(
387     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
388   lex();
389   // Skip until the first machine basic block.
390   while (Token.is(MIToken::Newline))
391     lex();
392   if (Token.isErrorOrEOF())
393     return Token.isError();
394   if (Token.isNot(MIToken::MachineBasicBlockLabel))
395     return error("expected a basic block definition before instructions");
396   unsigned BraceDepth = 0;
397   do {
398     if (parseBasicBlockDefinition(MBBSlots))
399       return true;
400     bool IsAfterNewline = false;
401     // Skip until the next machine basic block.
402     while (true) {
403       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
404           Token.isErrorOrEOF())
405         break;
406       else if (Token.is(MIToken::MachineBasicBlockLabel))
407         return error("basic block definition should be located at the start of "
408                      "the line");
409       else if (consumeIfPresent(MIToken::Newline)) {
410         IsAfterNewline = true;
411         continue;
412       }
413       IsAfterNewline = false;
414       if (Token.is(MIToken::lbrace))
415         ++BraceDepth;
416       if (Token.is(MIToken::rbrace)) {
417         if (!BraceDepth)
418           return error("extraneous closing brace ('}')");
419         --BraceDepth;
420       }
421       lex();
422     }
423     // Verify that we closed all of the '{' at the end of a file or a block.
424     if (!Token.isError() && BraceDepth)
425       return error("expected '}'"); // FIXME: Report a note that shows '{'.
426   } while (!Token.isErrorOrEOF());
427   return Token.isError();
428 }
429 
430 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
431   assert(Token.is(MIToken::kw_liveins));
432   lex();
433   if (expectAndConsume(MIToken::colon))
434     return true;
435   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
436     return false;
437   do {
438     if (Token.isNot(MIToken::NamedRegister))
439       return error("expected a named register");
440     unsigned Reg = 0;
441     if (parseRegister(Reg))
442       return true;
443     MBB.addLiveIn(Reg);
444     lex();
445   } while (consumeIfPresent(MIToken::comma));
446   return false;
447 }
448 
449 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
450   assert(Token.is(MIToken::kw_successors));
451   lex();
452   if (expectAndConsume(MIToken::colon))
453     return true;
454   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
455     return false;
456   do {
457     if (Token.isNot(MIToken::MachineBasicBlock))
458       return error("expected a machine basic block reference");
459     MachineBasicBlock *SuccMBB = nullptr;
460     if (parseMBBReference(SuccMBB))
461       return true;
462     lex();
463     unsigned Weight = 0;
464     if (consumeIfPresent(MIToken::lparen)) {
465       if (Token.isNot(MIToken::IntegerLiteral))
466         return error("expected an integer literal after '('");
467       if (getUnsigned(Weight))
468         return true;
469       lex();
470       if (expectAndConsume(MIToken::rparen))
471         return true;
472     }
473     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
474   } while (consumeIfPresent(MIToken::comma));
475   MBB.normalizeSuccProbs();
476   return false;
477 }
478 
479 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
480   // Skip the definition.
481   assert(Token.is(MIToken::MachineBasicBlockLabel));
482   lex();
483   if (consumeIfPresent(MIToken::lparen)) {
484     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
485       lex();
486     consumeIfPresent(MIToken::rparen);
487   }
488   consumeIfPresent(MIToken::colon);
489 
490   // Parse the liveins and successors.
491   // N.B: Multiple lists of successors and liveins are allowed and they're
492   // merged into one.
493   // Example:
494   //   liveins: %edi
495   //   liveins: %esi
496   //
497   // is equivalent to
498   //   liveins: %edi, %esi
499   while (true) {
500     if (Token.is(MIToken::kw_successors)) {
501       if (parseBasicBlockSuccessors(MBB))
502         return true;
503     } else if (Token.is(MIToken::kw_liveins)) {
504       if (parseBasicBlockLiveins(MBB))
505         return true;
506     } else if (consumeIfPresent(MIToken::Newline)) {
507       continue;
508     } else
509       break;
510     if (!Token.isNewlineOrEOF())
511       return error("expected line break at the end of a list");
512     lex();
513   }
514 
515   // Parse the instructions.
516   bool IsInBundle = false;
517   MachineInstr *PrevMI = nullptr;
518   while (true) {
519     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
520       return false;
521     else if (consumeIfPresent(MIToken::Newline))
522       continue;
523     if (consumeIfPresent(MIToken::rbrace)) {
524       // The first parsing pass should verify that all closing '}' have an
525       // opening '{'.
526       assert(IsInBundle);
527       IsInBundle = false;
528       continue;
529     }
530     MachineInstr *MI = nullptr;
531     if (parse(MI))
532       return true;
533     MBB.insert(MBB.end(), MI);
534     if (IsInBundle) {
535       PrevMI->setFlag(MachineInstr::BundledSucc);
536       MI->setFlag(MachineInstr::BundledPred);
537     }
538     PrevMI = MI;
539     if (Token.is(MIToken::lbrace)) {
540       if (IsInBundle)
541         return error("nested instruction bundles are not allowed");
542       lex();
543       // This instruction is the start of the bundle.
544       MI->setFlag(MachineInstr::BundledSucc);
545       IsInBundle = true;
546       if (!Token.is(MIToken::Newline))
547         // The next instruction can be on the same line.
548         continue;
549     }
550     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
551     lex();
552   }
553   return false;
554 }
555 
556 bool MIParser::parseBasicBlocks() {
557   lex();
558   // Skip until the first machine basic block.
559   while (Token.is(MIToken::Newline))
560     lex();
561   if (Token.isErrorOrEOF())
562     return Token.isError();
563   // The first parsing pass should have verified that this token is a MBB label
564   // in the 'parseBasicBlockDefinitions' method.
565   assert(Token.is(MIToken::MachineBasicBlockLabel));
566   do {
567     MachineBasicBlock *MBB = nullptr;
568     if (parseMBBReference(MBB))
569       return true;
570     if (parseBasicBlock(*MBB))
571       return true;
572     // The method 'parseBasicBlock' should parse the whole block until the next
573     // block or the end of file.
574     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
575   } while (Token.isNot(MIToken::Eof));
576   return false;
577 }
578 
579 bool MIParser::parse(MachineInstr *&MI) {
580   // Parse any register operands before '='
581   MachineOperand MO = MachineOperand::CreateImm(0);
582   SmallVector<ParsedMachineOperand, 8> Operands;
583   while (Token.isRegister() || Token.isRegisterFlag()) {
584     auto Loc = Token.location();
585     Optional<unsigned> TiedDefIdx;
586     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
587       return true;
588     Operands.push_back(
589         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
590     if (Token.isNot(MIToken::comma))
591       break;
592     lex();
593   }
594   if (!Operands.empty() && expectAndConsume(MIToken::equal))
595     return true;
596 
597   unsigned OpCode, Flags = 0;
598   if (Token.isError() || parseInstruction(OpCode, Flags))
599     return true;
600 
601   SmallVector<LLT, 1> Tys;
602   if (isPreISelGenericOpcode(OpCode)) {
603     // For generic opcode, at least one type is mandatory.
604     auto Loc = Token.location();
605     bool ManyTypes = Token.is(MIToken::lbrace);
606     if (ManyTypes)
607       lex();
608 
609     // Now actually parse the type(s).
610     do {
611       Tys.resize(Tys.size() + 1);
612       if (parseLowLevelType(Loc, Tys[Tys.size() - 1]))
613         return true;
614     } while (ManyTypes && consumeIfPresent(MIToken::comma));
615 
616     if (ManyTypes)
617       expectAndConsume(MIToken::rbrace);
618   }
619 
620   // Parse the remaining machine operands.
621   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
622          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
623     auto Loc = Token.location();
624     Optional<unsigned> TiedDefIdx;
625     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
626       return true;
627     Operands.push_back(
628         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
629     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
630         Token.is(MIToken::lbrace))
631       break;
632     if (Token.isNot(MIToken::comma))
633       return error("expected ',' before the next machine operand");
634     lex();
635   }
636 
637   DebugLoc DebugLocation;
638   if (Token.is(MIToken::kw_debug_location)) {
639     lex();
640     if (Token.isNot(MIToken::exclaim))
641       return error("expected a metadata node after 'debug-location'");
642     MDNode *Node = nullptr;
643     if (parseMDNode(Node))
644       return true;
645     DebugLocation = DebugLoc(Node);
646   }
647 
648   // Parse the machine memory operands.
649   SmallVector<MachineMemOperand *, 2> MemOperands;
650   if (Token.is(MIToken::coloncolon)) {
651     lex();
652     while (!Token.isNewlineOrEOF()) {
653       MachineMemOperand *MemOp = nullptr;
654       if (parseMachineMemoryOperand(MemOp))
655         return true;
656       MemOperands.push_back(MemOp);
657       if (Token.isNewlineOrEOF())
658         break;
659       if (Token.isNot(MIToken::comma))
660         return error("expected ',' before the next machine memory operand");
661       lex();
662     }
663   }
664 
665   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
666   if (!MCID.isVariadic()) {
667     // FIXME: Move the implicit operand verification to the machine verifier.
668     if (verifyImplicitOperands(Operands, MCID))
669       return true;
670   }
671 
672   // TODO: Check for extraneous machine operands.
673   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
674   MI->setFlags(Flags);
675   if (Tys.size() > 0) {
676     for (unsigned i = 0; i < Tys.size(); ++i)
677       MI->setType(Tys[i], i);
678   }
679   for (const auto &Operand : Operands)
680     MI->addOperand(MF, Operand.Operand);
681   if (assignRegisterTies(*MI, Operands))
682     return true;
683   if (MemOperands.empty())
684     return false;
685   MachineInstr::mmo_iterator MemRefs =
686       MF.allocateMemRefsArray(MemOperands.size());
687   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
688   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
689   return false;
690 }
691 
692 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
693   lex();
694   if (Token.isNot(MIToken::MachineBasicBlock))
695     return error("expected a machine basic block reference");
696   if (parseMBBReference(MBB))
697     return true;
698   lex();
699   if (Token.isNot(MIToken::Eof))
700     return error(
701         "expected end of string after the machine basic block reference");
702   return false;
703 }
704 
705 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
706   lex();
707   if (Token.isNot(MIToken::NamedRegister))
708     return error("expected a named register");
709   if (parseRegister(Reg))
710     return true;
711   lex();
712   if (Token.isNot(MIToken::Eof))
713     return error("expected end of string after the register reference");
714   return false;
715 }
716 
717 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
718   lex();
719   if (Token.isNot(MIToken::VirtualRegister))
720     return error("expected a virtual register");
721   if (parseRegister(Reg))
722     return true;
723   lex();
724   if (Token.isNot(MIToken::Eof))
725     return error("expected end of string after the register reference");
726   return false;
727 }
728 
729 bool MIParser::parseStandaloneStackObject(int &FI) {
730   lex();
731   if (Token.isNot(MIToken::StackObject))
732     return error("expected a stack object");
733   if (parseStackFrameIndex(FI))
734     return true;
735   if (Token.isNot(MIToken::Eof))
736     return error("expected end of string after the stack object reference");
737   return false;
738 }
739 
740 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
741   lex();
742   if (Token.isNot(MIToken::exclaim))
743     return error("expected a metadata node");
744   if (parseMDNode(Node))
745     return true;
746   if (Token.isNot(MIToken::Eof))
747     return error("expected end of string after the metadata node");
748   return false;
749 }
750 
751 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
752   assert(MO.isImplicit());
753   return MO.isDef() ? "implicit-def" : "implicit";
754 }
755 
756 static std::string getRegisterName(const TargetRegisterInfo *TRI,
757                                    unsigned Reg) {
758   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
759   return StringRef(TRI->getName(Reg)).lower();
760 }
761 
762 /// Return true if the parsed machine operands contain a given machine operand.
763 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
764                                 ArrayRef<ParsedMachineOperand> Operands) {
765   for (const auto &I : Operands) {
766     if (ImplicitOperand.isIdenticalTo(I.Operand))
767       return true;
768   }
769   return false;
770 }
771 
772 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
773                                       const MCInstrDesc &MCID) {
774   if (MCID.isCall())
775     // We can't verify call instructions as they can contain arbitrary implicit
776     // register and register mask operands.
777     return false;
778 
779   // Gather all the expected implicit operands.
780   SmallVector<MachineOperand, 4> ImplicitOperands;
781   if (MCID.ImplicitDefs)
782     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
783       ImplicitOperands.push_back(
784           MachineOperand::CreateReg(*ImpDefs, true, true));
785   if (MCID.ImplicitUses)
786     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
787       ImplicitOperands.push_back(
788           MachineOperand::CreateReg(*ImpUses, false, true));
789 
790   const auto *TRI = MF.getSubtarget().getRegisterInfo();
791   assert(TRI && "Expected target register info");
792   for (const auto &I : ImplicitOperands) {
793     if (isImplicitOperandIn(I, Operands))
794       continue;
795     return error(Operands.empty() ? Token.location() : Operands.back().End,
796                  Twine("missing implicit register operand '") +
797                      printImplicitRegisterFlag(I) + " %" +
798                      getRegisterName(TRI, I.getReg()) + "'");
799   }
800   return false;
801 }
802 
803 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
804   if (Token.is(MIToken::kw_frame_setup)) {
805     Flags |= MachineInstr::FrameSetup;
806     lex();
807   }
808   if (Token.isNot(MIToken::Identifier))
809     return error("expected a machine instruction");
810   StringRef InstrName = Token.stringValue();
811   if (parseInstrName(InstrName, OpCode))
812     return error(Twine("unknown machine instruction name '") + InstrName + "'");
813   lex();
814   return false;
815 }
816 
817 bool MIParser::parseRegister(unsigned &Reg) {
818   switch (Token.kind()) {
819   case MIToken::underscore:
820     Reg = 0;
821     break;
822   case MIToken::NamedRegister: {
823     StringRef Name = Token.stringValue();
824     if (getRegisterByName(Name, Reg))
825       return error(Twine("unknown register name '") + Name + "'");
826     break;
827   }
828   case MIToken::VirtualRegister: {
829     unsigned ID;
830     if (getUnsigned(ID))
831       return true;
832     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
833     if (RegInfo == PFS.VirtualRegisterSlots.end())
834       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
835                    "'");
836     Reg = RegInfo->second;
837     break;
838   }
839   // TODO: Parse other register kinds.
840   default:
841     llvm_unreachable("The current token should be a register");
842   }
843   return false;
844 }
845 
846 bool MIParser::parseRegisterFlag(unsigned &Flags) {
847   const unsigned OldFlags = Flags;
848   switch (Token.kind()) {
849   case MIToken::kw_implicit:
850     Flags |= RegState::Implicit;
851     break;
852   case MIToken::kw_implicit_define:
853     Flags |= RegState::ImplicitDefine;
854     break;
855   case MIToken::kw_def:
856     Flags |= RegState::Define;
857     break;
858   case MIToken::kw_dead:
859     Flags |= RegState::Dead;
860     break;
861   case MIToken::kw_killed:
862     Flags |= RegState::Kill;
863     break;
864   case MIToken::kw_undef:
865     Flags |= RegState::Undef;
866     break;
867   case MIToken::kw_internal:
868     Flags |= RegState::InternalRead;
869     break;
870   case MIToken::kw_early_clobber:
871     Flags |= RegState::EarlyClobber;
872     break;
873   case MIToken::kw_debug_use:
874     Flags |= RegState::Debug;
875     break;
876   default:
877     llvm_unreachable("The current token should be a register flag");
878   }
879   if (OldFlags == Flags)
880     // We know that the same flag is specified more than once when the flags
881     // weren't modified.
882     return error("duplicate '" + Token.stringValue() + "' register flag");
883   lex();
884   return false;
885 }
886 
887 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
888   assert(Token.is(MIToken::dot));
889   lex();
890   if (Token.isNot(MIToken::Identifier))
891     return error("expected a subregister index after '.'");
892   auto Name = Token.stringValue();
893   SubReg = getSubRegIndex(Name);
894   if (!SubReg)
895     return error(Twine("use of unknown subregister index '") + Name + "'");
896   lex();
897   return false;
898 }
899 
900 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
901   if (!consumeIfPresent(MIToken::kw_tied_def))
902     return error("expected 'tied-def' after '('");
903   if (Token.isNot(MIToken::IntegerLiteral))
904     return error("expected an integer literal after 'tied-def'");
905   if (getUnsigned(TiedDefIdx))
906     return true;
907   lex();
908   if (expectAndConsume(MIToken::rparen))
909     return true;
910   return false;
911 }
912 
913 bool MIParser::parseSize(unsigned &Size) {
914   if (Token.isNot(MIToken::IntegerLiteral))
915     return error("expected an integer literal for the size");
916   if (getUnsigned(Size))
917     return true;
918   lex();
919   if (expectAndConsume(MIToken::rparen))
920     return true;
921   return false;
922 }
923 
924 bool MIParser::assignRegisterTies(MachineInstr &MI,
925                                   ArrayRef<ParsedMachineOperand> Operands) {
926   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
927   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
928     if (!Operands[I].TiedDefIdx)
929       continue;
930     // The parser ensures that this operand is a register use, so we just have
931     // to check the tied-def operand.
932     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
933     if (DefIdx >= E)
934       return error(Operands[I].Begin,
935                    Twine("use of invalid tied-def operand index '" +
936                          Twine(DefIdx) + "'; instruction has only ") +
937                        Twine(E) + " operands");
938     const auto &DefOperand = Operands[DefIdx].Operand;
939     if (!DefOperand.isReg() || !DefOperand.isDef())
940       // FIXME: add note with the def operand.
941       return error(Operands[I].Begin,
942                    Twine("use of invalid tied-def operand index '") +
943                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
944                        " isn't a defined register");
945     // Check that the tied-def operand wasn't tied elsewhere.
946     for (const auto &TiedPair : TiedRegisterPairs) {
947       if (TiedPair.first == DefIdx)
948         return error(Operands[I].Begin,
949                      Twine("the tied-def operand #") + Twine(DefIdx) +
950                          " is already tied with another register operand");
951     }
952     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
953   }
954   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
955   // indices must be less than tied max.
956   for (const auto &TiedPair : TiedRegisterPairs)
957     MI.tieOperands(TiedPair.first, TiedPair.second);
958   return false;
959 }
960 
961 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
962                                     Optional<unsigned> &TiedDefIdx,
963                                     bool IsDef) {
964   unsigned Reg;
965   unsigned Flags = IsDef ? RegState::Define : 0;
966   while (Token.isRegisterFlag()) {
967     if (parseRegisterFlag(Flags))
968       return true;
969   }
970   if (!Token.isRegister())
971     return error("expected a register after register flags");
972   if (parseRegister(Reg))
973     return true;
974   lex();
975   unsigned SubReg = 0;
976   if (Token.is(MIToken::dot)) {
977     if (parseSubRegisterIndex(SubReg))
978       return true;
979     if (!TargetRegisterInfo::isVirtualRegister(Reg))
980       return error("subregister index expects a virtual register");
981   }
982   if ((Flags & RegState::Define) == 0) {
983     if (consumeIfPresent(MIToken::lparen)) {
984       unsigned Idx;
985       if (parseRegisterTiedDefIndex(Idx))
986         return true;
987       TiedDefIdx = Idx;
988     }
989   } else if (consumeIfPresent(MIToken::lparen)) {
990     MachineRegisterInfo &MRI = MF.getRegInfo();
991 
992     // Virtual registers may have a size with GlobalISel.
993     if (!TargetRegisterInfo::isVirtualRegister(Reg))
994       return error("unexpected size on physical register");
995     if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>())
996       return error("unexpected size on non-generic virtual register");
997 
998     unsigned Size;
999     if (parseSize(Size))
1000       return true;
1001 
1002     MRI.setSize(Reg, Size);
1003   } else if (PFS.GenericVRegs.count(Reg)) {
1004     // Generic virtual registers must have a size.
1005     // If we end up here this means the size hasn't been specified and
1006     // this is bad!
1007     return error("generic virtual registers must have a size");
1008   }
1009   Dest = MachineOperand::CreateReg(
1010       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1011       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1012       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1013       Flags & RegState::InternalRead);
1014   return false;
1015 }
1016 
1017 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1018   assert(Token.is(MIToken::IntegerLiteral));
1019   const APSInt &Int = Token.integerValue();
1020   if (Int.getMinSignedBits() > 64)
1021     return error("integer literal is too large to be an immediate operand");
1022   Dest = MachineOperand::CreateImm(Int.getExtValue());
1023   lex();
1024   return false;
1025 }
1026 
1027 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1028                                const Constant *&C) {
1029   auto Source = StringValue.str(); // The source has to be null terminated.
1030   SMDiagnostic Err;
1031   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1032                          &PFS.IRSlots);
1033   if (!C)
1034     return error(Loc + Err.getColumnNo(), Err.getMessage());
1035   return false;
1036 }
1037 
1038 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1039   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1040     return true;
1041   lex();
1042   return false;
1043 }
1044 
1045 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1046   if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") {
1047     lex();
1048     Ty = LLT::unsized();
1049     return false;
1050   } else if (Token.is(MIToken::ScalarType)) {
1051     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1052     lex();
1053     return false;
1054   } else if (Token.is(MIToken::PointerType)) {
1055     Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue());
1056     lex();
1057     return false;
1058   }
1059 
1060   // Now we're looking for a vector.
1061   if (Token.isNot(MIToken::less))
1062     return error(Loc,
1063                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1064 
1065   lex();
1066 
1067   if (Token.isNot(MIToken::IntegerLiteral))
1068     return error(Loc, "expected <N x sM> for vctor type");
1069   uint64_t NumElements = Token.integerValue().getZExtValue();
1070   lex();
1071 
1072   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1073     return error(Loc, "expected '<N x sM>' for vector type");
1074   lex();
1075 
1076   if (Token.isNot(MIToken::ScalarType))
1077     return error(Loc, "expected '<N x sM>' for vector type");
1078   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1079   lex();
1080 
1081   if (Token.isNot(MIToken::greater))
1082     return error(Loc, "expected '<N x sM>' for vector type");
1083   lex();
1084 
1085   Ty = LLT::vector(NumElements, ScalarSize);
1086   return false;
1087 }
1088 
1089 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1090   assert(Token.is(MIToken::IntegerType));
1091   auto Loc = Token.location();
1092   lex();
1093   if (Token.isNot(MIToken::IntegerLiteral))
1094     return error("expected an integer literal");
1095   const Constant *C = nullptr;
1096   if (parseIRConstant(Loc, C))
1097     return true;
1098   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1099   return false;
1100 }
1101 
1102 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1103   auto Loc = Token.location();
1104   lex();
1105   if (Token.isNot(MIToken::FloatingPointLiteral))
1106     return error("expected a floating point literal");
1107   const Constant *C = nullptr;
1108   if (parseIRConstant(Loc, C))
1109     return true;
1110   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1111   return false;
1112 }
1113 
1114 bool MIParser::getUnsigned(unsigned &Result) {
1115   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1116   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1117   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1118   if (Val64 == Limit)
1119     return error("expected 32-bit integer (too large)");
1120   Result = Val64;
1121   return false;
1122 }
1123 
1124 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1125   assert(Token.is(MIToken::MachineBasicBlock) ||
1126          Token.is(MIToken::MachineBasicBlockLabel));
1127   unsigned Number;
1128   if (getUnsigned(Number))
1129     return true;
1130   auto MBBInfo = PFS.MBBSlots.find(Number);
1131   if (MBBInfo == PFS.MBBSlots.end())
1132     return error(Twine("use of undefined machine basic block #") +
1133                  Twine(Number));
1134   MBB = MBBInfo->second;
1135   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1136     return error(Twine("the name of machine basic block #") + Twine(Number) +
1137                  " isn't '" + Token.stringValue() + "'");
1138   return false;
1139 }
1140 
1141 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1142   MachineBasicBlock *MBB;
1143   if (parseMBBReference(MBB))
1144     return true;
1145   Dest = MachineOperand::CreateMBB(MBB);
1146   lex();
1147   return false;
1148 }
1149 
1150 bool MIParser::parseStackFrameIndex(int &FI) {
1151   assert(Token.is(MIToken::StackObject));
1152   unsigned ID;
1153   if (getUnsigned(ID))
1154     return true;
1155   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1156   if (ObjectInfo == PFS.StackObjectSlots.end())
1157     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1158                  "'");
1159   StringRef Name;
1160   if (const auto *Alloca =
1161           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1162     Name = Alloca->getName();
1163   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1164     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1165                  "' isn't '" + Token.stringValue() + "'");
1166   lex();
1167   FI = ObjectInfo->second;
1168   return false;
1169 }
1170 
1171 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1172   int FI;
1173   if (parseStackFrameIndex(FI))
1174     return true;
1175   Dest = MachineOperand::CreateFI(FI);
1176   return false;
1177 }
1178 
1179 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1180   assert(Token.is(MIToken::FixedStackObject));
1181   unsigned ID;
1182   if (getUnsigned(ID))
1183     return true;
1184   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1185   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1186     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1187                  Twine(ID) + "'");
1188   lex();
1189   FI = ObjectInfo->second;
1190   return false;
1191 }
1192 
1193 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1194   int FI;
1195   if (parseFixedStackFrameIndex(FI))
1196     return true;
1197   Dest = MachineOperand::CreateFI(FI);
1198   return false;
1199 }
1200 
1201 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1202   switch (Token.kind()) {
1203   case MIToken::NamedGlobalValue: {
1204     const Module *M = MF.getFunction()->getParent();
1205     GV = M->getNamedValue(Token.stringValue());
1206     if (!GV)
1207       return error(Twine("use of undefined global value '") + Token.range() +
1208                    "'");
1209     break;
1210   }
1211   case MIToken::GlobalValue: {
1212     unsigned GVIdx;
1213     if (getUnsigned(GVIdx))
1214       return true;
1215     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1216       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1217                    "'");
1218     GV = PFS.IRSlots.GlobalValues[GVIdx];
1219     break;
1220   }
1221   default:
1222     llvm_unreachable("The current token should be a global value");
1223   }
1224   return false;
1225 }
1226 
1227 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1228   GlobalValue *GV = nullptr;
1229   if (parseGlobalValue(GV))
1230     return true;
1231   lex();
1232   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1233   if (parseOperandsOffset(Dest))
1234     return true;
1235   return false;
1236 }
1237 
1238 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1239   assert(Token.is(MIToken::ConstantPoolItem));
1240   unsigned ID;
1241   if (getUnsigned(ID))
1242     return true;
1243   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1244   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1245     return error("use of undefined constant '%const." + Twine(ID) + "'");
1246   lex();
1247   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1248   if (parseOperandsOffset(Dest))
1249     return true;
1250   return false;
1251 }
1252 
1253 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1254   assert(Token.is(MIToken::JumpTableIndex));
1255   unsigned ID;
1256   if (getUnsigned(ID))
1257     return true;
1258   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1259   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1260     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1261   lex();
1262   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1263   return false;
1264 }
1265 
1266 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1267   assert(Token.is(MIToken::ExternalSymbol));
1268   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1269   lex();
1270   Dest = MachineOperand::CreateES(Symbol);
1271   if (parseOperandsOffset(Dest))
1272     return true;
1273   return false;
1274 }
1275 
1276 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1277   assert(Token.is(MIToken::SubRegisterIndex));
1278   StringRef Name = Token.stringValue();
1279   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1280   if (SubRegIndex == 0)
1281     return error(Twine("unknown subregister index '") + Name + "'");
1282   lex();
1283   Dest = MachineOperand::CreateImm(SubRegIndex);
1284   return false;
1285 }
1286 
1287 bool MIParser::parseMDNode(MDNode *&Node) {
1288   assert(Token.is(MIToken::exclaim));
1289   auto Loc = Token.location();
1290   lex();
1291   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1292     return error("expected metadata id after '!'");
1293   unsigned ID;
1294   if (getUnsigned(ID))
1295     return true;
1296   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1297   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1298     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1299   lex();
1300   Node = NodeInfo->second.get();
1301   return false;
1302 }
1303 
1304 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1305   MDNode *Node = nullptr;
1306   if (parseMDNode(Node))
1307     return true;
1308   Dest = MachineOperand::CreateMetadata(Node);
1309   return false;
1310 }
1311 
1312 bool MIParser::parseCFIOffset(int &Offset) {
1313   if (Token.isNot(MIToken::IntegerLiteral))
1314     return error("expected a cfi offset");
1315   if (Token.integerValue().getMinSignedBits() > 32)
1316     return error("expected a 32 bit integer (the cfi offset is too large)");
1317   Offset = (int)Token.integerValue().getExtValue();
1318   lex();
1319   return false;
1320 }
1321 
1322 bool MIParser::parseCFIRegister(unsigned &Reg) {
1323   if (Token.isNot(MIToken::NamedRegister))
1324     return error("expected a cfi register");
1325   unsigned LLVMReg;
1326   if (parseRegister(LLVMReg))
1327     return true;
1328   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1329   assert(TRI && "Expected target register info");
1330   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1331   if (DwarfReg < 0)
1332     return error("invalid DWARF register");
1333   Reg = (unsigned)DwarfReg;
1334   lex();
1335   return false;
1336 }
1337 
1338 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1339   auto Kind = Token.kind();
1340   lex();
1341   auto &MMI = MF.getMMI();
1342   int Offset;
1343   unsigned Reg;
1344   unsigned CFIIndex;
1345   switch (Kind) {
1346   case MIToken::kw_cfi_same_value:
1347     if (parseCFIRegister(Reg))
1348       return true;
1349     CFIIndex =
1350         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1351     break;
1352   case MIToken::kw_cfi_offset:
1353     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1354         parseCFIOffset(Offset))
1355       return true;
1356     CFIIndex =
1357         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1358     break;
1359   case MIToken::kw_cfi_def_cfa_register:
1360     if (parseCFIRegister(Reg))
1361       return true;
1362     CFIIndex =
1363         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1364     break;
1365   case MIToken::kw_cfi_def_cfa_offset:
1366     if (parseCFIOffset(Offset))
1367       return true;
1368     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1369     CFIIndex = MMI.addFrameInst(
1370         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1371     break;
1372   case MIToken::kw_cfi_def_cfa:
1373     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1374         parseCFIOffset(Offset))
1375       return true;
1376     // NB: MCCFIInstruction::createDefCfa negates the offset.
1377     CFIIndex =
1378         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1379     break;
1380   default:
1381     // TODO: Parse the other CFI operands.
1382     llvm_unreachable("The current token should be a cfi operand");
1383   }
1384   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1385   return false;
1386 }
1387 
1388 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1389   switch (Token.kind()) {
1390   case MIToken::NamedIRBlock: {
1391     BB = dyn_cast_or_null<BasicBlock>(
1392         F.getValueSymbolTable().lookup(Token.stringValue()));
1393     if (!BB)
1394       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1395     break;
1396   }
1397   case MIToken::IRBlock: {
1398     unsigned SlotNumber = 0;
1399     if (getUnsigned(SlotNumber))
1400       return true;
1401     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1402     if (!BB)
1403       return error(Twine("use of undefined IR block '%ir-block.") +
1404                    Twine(SlotNumber) + "'");
1405     break;
1406   }
1407   default:
1408     llvm_unreachable("The current token should be an IR block reference");
1409   }
1410   return false;
1411 }
1412 
1413 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1414   assert(Token.is(MIToken::kw_blockaddress));
1415   lex();
1416   if (expectAndConsume(MIToken::lparen))
1417     return true;
1418   if (Token.isNot(MIToken::GlobalValue) &&
1419       Token.isNot(MIToken::NamedGlobalValue))
1420     return error("expected a global value");
1421   GlobalValue *GV = nullptr;
1422   if (parseGlobalValue(GV))
1423     return true;
1424   auto *F = dyn_cast<Function>(GV);
1425   if (!F)
1426     return error("expected an IR function reference");
1427   lex();
1428   if (expectAndConsume(MIToken::comma))
1429     return true;
1430   BasicBlock *BB = nullptr;
1431   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1432     return error("expected an IR block reference");
1433   if (parseIRBlock(BB, *F))
1434     return true;
1435   lex();
1436   if (expectAndConsume(MIToken::rparen))
1437     return true;
1438   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1439   if (parseOperandsOffset(Dest))
1440     return true;
1441   return false;
1442 }
1443 
1444 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1445   assert(Token.is(MIToken::kw_intrinsic));
1446   lex();
1447   if (expectAndConsume(MIToken::lparen))
1448     return error("expected syntax intrinsic(@llvm.whatever)");
1449 
1450   if (Token.isNot(MIToken::NamedGlobalValue))
1451     return error("expected syntax intrinsic(@llvm.whatever)");
1452 
1453   std::string Name = Token.stringValue();
1454   lex();
1455 
1456   if (expectAndConsume(MIToken::rparen))
1457     return error("expected ')' to terminate intrinsic name");
1458 
1459   // Find out what intrinsic we're dealing with, first try the global namespace
1460   // and then the target's private intrinsics if that fails.
1461   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1462   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1463   if (ID == Intrinsic::not_intrinsic && TII)
1464     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1465 
1466   if (ID == Intrinsic::not_intrinsic)
1467     return error("unknown intrinsic name");
1468   Dest = MachineOperand::CreateIntrinsicID(ID);
1469 
1470   return false;
1471 }
1472 
1473 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1474   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1475   bool IsFloat = Token.is(MIToken::kw_floatpred);
1476   lex();
1477 
1478   if (expectAndConsume(MIToken::lparen))
1479     return error("expected syntax intpred(whatever) or floatpred(whatever");
1480 
1481   if (Token.isNot(MIToken::Identifier))
1482     return error("whatever");
1483 
1484   CmpInst::Predicate Pred;
1485   if (IsFloat) {
1486     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1487                .Case("false", CmpInst::FCMP_FALSE)
1488                .Case("oeq", CmpInst::FCMP_OEQ)
1489                .Case("ogt", CmpInst::FCMP_OGT)
1490                .Case("oge", CmpInst::FCMP_OGE)
1491                .Case("olt", CmpInst::FCMP_OLT)
1492                .Case("ole", CmpInst::FCMP_OLE)
1493                .Case("one", CmpInst::FCMP_ONE)
1494                .Case("ord", CmpInst::FCMP_ORD)
1495                .Case("uno", CmpInst::FCMP_UNO)
1496                .Case("ueq", CmpInst::FCMP_UEQ)
1497                .Case("ugt", CmpInst::FCMP_UGT)
1498                .Case("uge", CmpInst::FCMP_UGE)
1499                .Case("ult", CmpInst::FCMP_ULT)
1500                .Case("ule", CmpInst::FCMP_ULE)
1501                .Case("une", CmpInst::FCMP_UNE)
1502                .Case("true", CmpInst::FCMP_TRUE)
1503                .Default(CmpInst::BAD_FCMP_PREDICATE);
1504     if (!CmpInst::isFPPredicate(Pred))
1505       return error("invalid floating-point predicate");
1506   } else {
1507     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1508                .Case("eq", CmpInst::ICMP_EQ)
1509                .Case("ne", CmpInst::ICMP_NE)
1510                .Case("sgt", CmpInst::ICMP_SGT)
1511                .Case("sge", CmpInst::ICMP_SGE)
1512                .Case("slt", CmpInst::ICMP_SLT)
1513                .Case("sle", CmpInst::ICMP_SLE)
1514                .Case("ugt", CmpInst::ICMP_UGT)
1515                .Case("uge", CmpInst::ICMP_UGE)
1516                .Case("ult", CmpInst::ICMP_ULT)
1517                .Case("ule", CmpInst::ICMP_ULE)
1518                .Default(CmpInst::BAD_ICMP_PREDICATE);
1519     if (!CmpInst::isIntPredicate(Pred))
1520       return error("invalid integer predicate");
1521   }
1522 
1523   lex();
1524   Dest = MachineOperand::CreatePredicate(Pred);
1525   if (expectAndConsume(MIToken::rparen))
1526     return error("predicate should be terminated by ')'.");
1527 
1528   return false;
1529 }
1530 
1531 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1532   assert(Token.is(MIToken::kw_target_index));
1533   lex();
1534   if (expectAndConsume(MIToken::lparen))
1535     return true;
1536   if (Token.isNot(MIToken::Identifier))
1537     return error("expected the name of the target index");
1538   int Index = 0;
1539   if (getTargetIndex(Token.stringValue(), Index))
1540     return error("use of undefined target index '" + Token.stringValue() + "'");
1541   lex();
1542   if (expectAndConsume(MIToken::rparen))
1543     return true;
1544   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1545   if (parseOperandsOffset(Dest))
1546     return true;
1547   return false;
1548 }
1549 
1550 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1551   assert(Token.is(MIToken::kw_liveout));
1552   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1553   assert(TRI && "Expected target register info");
1554   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1555   lex();
1556   if (expectAndConsume(MIToken::lparen))
1557     return true;
1558   while (true) {
1559     if (Token.isNot(MIToken::NamedRegister))
1560       return error("expected a named register");
1561     unsigned Reg = 0;
1562     if (parseRegister(Reg))
1563       return true;
1564     lex();
1565     Mask[Reg / 32] |= 1U << (Reg % 32);
1566     // TODO: Report an error if the same register is used more than once.
1567     if (Token.isNot(MIToken::comma))
1568       break;
1569     lex();
1570   }
1571   if (expectAndConsume(MIToken::rparen))
1572     return true;
1573   Dest = MachineOperand::CreateRegLiveOut(Mask);
1574   return false;
1575 }
1576 
1577 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1578                                    Optional<unsigned> &TiedDefIdx) {
1579   switch (Token.kind()) {
1580   case MIToken::kw_implicit:
1581   case MIToken::kw_implicit_define:
1582   case MIToken::kw_def:
1583   case MIToken::kw_dead:
1584   case MIToken::kw_killed:
1585   case MIToken::kw_undef:
1586   case MIToken::kw_internal:
1587   case MIToken::kw_early_clobber:
1588   case MIToken::kw_debug_use:
1589   case MIToken::underscore:
1590   case MIToken::NamedRegister:
1591   case MIToken::VirtualRegister:
1592     return parseRegisterOperand(Dest, TiedDefIdx);
1593   case MIToken::IntegerLiteral:
1594     return parseImmediateOperand(Dest);
1595   case MIToken::IntegerType:
1596     return parseTypedImmediateOperand(Dest);
1597   case MIToken::kw_half:
1598   case MIToken::kw_float:
1599   case MIToken::kw_double:
1600   case MIToken::kw_x86_fp80:
1601   case MIToken::kw_fp128:
1602   case MIToken::kw_ppc_fp128:
1603     return parseFPImmediateOperand(Dest);
1604   case MIToken::MachineBasicBlock:
1605     return parseMBBOperand(Dest);
1606   case MIToken::StackObject:
1607     return parseStackObjectOperand(Dest);
1608   case MIToken::FixedStackObject:
1609     return parseFixedStackObjectOperand(Dest);
1610   case MIToken::GlobalValue:
1611   case MIToken::NamedGlobalValue:
1612     return parseGlobalAddressOperand(Dest);
1613   case MIToken::ConstantPoolItem:
1614     return parseConstantPoolIndexOperand(Dest);
1615   case MIToken::JumpTableIndex:
1616     return parseJumpTableIndexOperand(Dest);
1617   case MIToken::ExternalSymbol:
1618     return parseExternalSymbolOperand(Dest);
1619   case MIToken::SubRegisterIndex:
1620     return parseSubRegisterIndexOperand(Dest);
1621   case MIToken::exclaim:
1622     return parseMetadataOperand(Dest);
1623   case MIToken::kw_cfi_same_value:
1624   case MIToken::kw_cfi_offset:
1625   case MIToken::kw_cfi_def_cfa_register:
1626   case MIToken::kw_cfi_def_cfa_offset:
1627   case MIToken::kw_cfi_def_cfa:
1628     return parseCFIOperand(Dest);
1629   case MIToken::kw_blockaddress:
1630     return parseBlockAddressOperand(Dest);
1631   case MIToken::kw_intrinsic:
1632     return parseIntrinsicOperand(Dest);
1633   case MIToken::kw_target_index:
1634     return parseTargetIndexOperand(Dest);
1635   case MIToken::kw_liveout:
1636     return parseLiveoutRegisterMaskOperand(Dest);
1637   case MIToken::kw_floatpred:
1638   case MIToken::kw_intpred:
1639     return parsePredicateOperand(Dest);
1640   case MIToken::Error:
1641     return true;
1642   case MIToken::Identifier:
1643     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1644       Dest = MachineOperand::CreateRegMask(RegMask);
1645       lex();
1646       break;
1647     }
1648     LLVM_FALLTHROUGH;
1649   default:
1650     // FIXME: Parse the MCSymbol machine operand.
1651     return error("expected a machine operand");
1652   }
1653   return false;
1654 }
1655 
1656 bool MIParser::parseMachineOperandAndTargetFlags(
1657     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1658   unsigned TF = 0;
1659   bool HasTargetFlags = false;
1660   if (Token.is(MIToken::kw_target_flags)) {
1661     HasTargetFlags = true;
1662     lex();
1663     if (expectAndConsume(MIToken::lparen))
1664       return true;
1665     if (Token.isNot(MIToken::Identifier))
1666       return error("expected the name of the target flag");
1667     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1668       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1669         return error("use of undefined target flag '" + Token.stringValue() +
1670                      "'");
1671     }
1672     lex();
1673     while (Token.is(MIToken::comma)) {
1674       lex();
1675       if (Token.isNot(MIToken::Identifier))
1676         return error("expected the name of the target flag");
1677       unsigned BitFlag = 0;
1678       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1679         return error("use of undefined target flag '" + Token.stringValue() +
1680                      "'");
1681       // TODO: Report an error when using a duplicate bit target flag.
1682       TF |= BitFlag;
1683       lex();
1684     }
1685     if (expectAndConsume(MIToken::rparen))
1686       return true;
1687   }
1688   auto Loc = Token.location();
1689   if (parseMachineOperand(Dest, TiedDefIdx))
1690     return true;
1691   if (!HasTargetFlags)
1692     return false;
1693   if (Dest.isReg())
1694     return error(Loc, "register operands can't have target flags");
1695   Dest.setTargetFlags(TF);
1696   return false;
1697 }
1698 
1699 bool MIParser::parseOffset(int64_t &Offset) {
1700   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1701     return false;
1702   StringRef Sign = Token.range();
1703   bool IsNegative = Token.is(MIToken::minus);
1704   lex();
1705   if (Token.isNot(MIToken::IntegerLiteral))
1706     return error("expected an integer literal after '" + Sign + "'");
1707   if (Token.integerValue().getMinSignedBits() > 64)
1708     return error("expected 64-bit integer (too large)");
1709   Offset = Token.integerValue().getExtValue();
1710   if (IsNegative)
1711     Offset = -Offset;
1712   lex();
1713   return false;
1714 }
1715 
1716 bool MIParser::parseAlignment(unsigned &Alignment) {
1717   assert(Token.is(MIToken::kw_align));
1718   lex();
1719   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1720     return error("expected an integer literal after 'align'");
1721   if (getUnsigned(Alignment))
1722     return true;
1723   lex();
1724   return false;
1725 }
1726 
1727 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1728   int64_t Offset = 0;
1729   if (parseOffset(Offset))
1730     return true;
1731   Op.setOffset(Offset);
1732   return false;
1733 }
1734 
1735 bool MIParser::parseIRValue(const Value *&V) {
1736   switch (Token.kind()) {
1737   case MIToken::NamedIRValue: {
1738     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1739     break;
1740   }
1741   case MIToken::IRValue: {
1742     unsigned SlotNumber = 0;
1743     if (getUnsigned(SlotNumber))
1744       return true;
1745     V = getIRValue(SlotNumber);
1746     break;
1747   }
1748   case MIToken::NamedGlobalValue:
1749   case MIToken::GlobalValue: {
1750     GlobalValue *GV = nullptr;
1751     if (parseGlobalValue(GV))
1752       return true;
1753     V = GV;
1754     break;
1755   }
1756   case MIToken::QuotedIRValue: {
1757     const Constant *C = nullptr;
1758     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1759       return true;
1760     V = C;
1761     break;
1762   }
1763   default:
1764     llvm_unreachable("The current token should be an IR block reference");
1765   }
1766   if (!V)
1767     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1768   return false;
1769 }
1770 
1771 bool MIParser::getUint64(uint64_t &Result) {
1772   assert(Token.hasIntegerValue());
1773   if (Token.integerValue().getActiveBits() > 64)
1774     return error("expected 64-bit integer (too large)");
1775   Result = Token.integerValue().getZExtValue();
1776   return false;
1777 }
1778 
1779 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1780   const auto OldFlags = Flags;
1781   switch (Token.kind()) {
1782   case MIToken::kw_volatile:
1783     Flags |= MachineMemOperand::MOVolatile;
1784     break;
1785   case MIToken::kw_non_temporal:
1786     Flags |= MachineMemOperand::MONonTemporal;
1787     break;
1788   case MIToken::kw_invariant:
1789     Flags |= MachineMemOperand::MOInvariant;
1790     break;
1791   // TODO: parse the target specific memory operand flags.
1792   default:
1793     llvm_unreachable("The current token should be a memory operand flag");
1794   }
1795   if (OldFlags == Flags)
1796     // We know that the same flag is specified more than once when the flags
1797     // weren't modified.
1798     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1799   lex();
1800   return false;
1801 }
1802 
1803 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1804   switch (Token.kind()) {
1805   case MIToken::kw_stack:
1806     PSV = MF.getPSVManager().getStack();
1807     break;
1808   case MIToken::kw_got:
1809     PSV = MF.getPSVManager().getGOT();
1810     break;
1811   case MIToken::kw_jump_table:
1812     PSV = MF.getPSVManager().getJumpTable();
1813     break;
1814   case MIToken::kw_constant_pool:
1815     PSV = MF.getPSVManager().getConstantPool();
1816     break;
1817   case MIToken::FixedStackObject: {
1818     int FI;
1819     if (parseFixedStackFrameIndex(FI))
1820       return true;
1821     PSV = MF.getPSVManager().getFixedStack(FI);
1822     // The token was already consumed, so use return here instead of break.
1823     return false;
1824   }
1825   case MIToken::StackObject: {
1826     int FI;
1827     if (parseStackFrameIndex(FI))
1828       return true;
1829     PSV = MF.getPSVManager().getFixedStack(FI);
1830     // The token was already consumed, so use return here instead of break.
1831     return false;
1832   }
1833   case MIToken::kw_call_entry: {
1834     lex();
1835     switch (Token.kind()) {
1836     case MIToken::GlobalValue:
1837     case MIToken::NamedGlobalValue: {
1838       GlobalValue *GV = nullptr;
1839       if (parseGlobalValue(GV))
1840         return true;
1841       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1842       break;
1843     }
1844     case MIToken::ExternalSymbol:
1845       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1846           MF.createExternalSymbolName(Token.stringValue()));
1847       break;
1848     default:
1849       return error(
1850           "expected a global value or an external symbol after 'call-entry'");
1851     }
1852     break;
1853   }
1854   default:
1855     llvm_unreachable("The current token should be pseudo source value");
1856   }
1857   lex();
1858   return false;
1859 }
1860 
1861 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1862   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1863       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1864       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1865       Token.is(MIToken::kw_call_entry)) {
1866     const PseudoSourceValue *PSV = nullptr;
1867     if (parseMemoryPseudoSourceValue(PSV))
1868       return true;
1869     int64_t Offset = 0;
1870     if (parseOffset(Offset))
1871       return true;
1872     Dest = MachinePointerInfo(PSV, Offset);
1873     return false;
1874   }
1875   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1876       Token.isNot(MIToken::GlobalValue) &&
1877       Token.isNot(MIToken::NamedGlobalValue) &&
1878       Token.isNot(MIToken::QuotedIRValue))
1879     return error("expected an IR value reference");
1880   const Value *V = nullptr;
1881   if (parseIRValue(V))
1882     return true;
1883   if (!V->getType()->isPointerTy())
1884     return error("expected a pointer IR value");
1885   lex();
1886   int64_t Offset = 0;
1887   if (parseOffset(Offset))
1888     return true;
1889   Dest = MachinePointerInfo(V, Offset);
1890   return false;
1891 }
1892 
1893 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1894   if (expectAndConsume(MIToken::lparen))
1895     return true;
1896   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1897   while (Token.isMemoryOperandFlag()) {
1898     if (parseMemoryOperandFlag(Flags))
1899       return true;
1900   }
1901   if (Token.isNot(MIToken::Identifier) ||
1902       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1903     return error("expected 'load' or 'store' memory operation");
1904   if (Token.stringValue() == "load")
1905     Flags |= MachineMemOperand::MOLoad;
1906   else
1907     Flags |= MachineMemOperand::MOStore;
1908   lex();
1909 
1910   if (Token.isNot(MIToken::IntegerLiteral))
1911     return error("expected the size integer literal after memory operation");
1912   uint64_t Size;
1913   if (getUint64(Size))
1914     return true;
1915   lex();
1916 
1917   MachinePointerInfo Ptr = MachinePointerInfo();
1918   if (Token.is(MIToken::Identifier)) {
1919     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1920     if (Token.stringValue() != Word)
1921       return error(Twine("expected '") + Word + "'");
1922     lex();
1923 
1924     if (parseMachinePointerInfo(Ptr))
1925       return true;
1926   }
1927   unsigned BaseAlignment = Size;
1928   AAMDNodes AAInfo;
1929   MDNode *Range = nullptr;
1930   while (consumeIfPresent(MIToken::comma)) {
1931     switch (Token.kind()) {
1932     case MIToken::kw_align:
1933       if (parseAlignment(BaseAlignment))
1934         return true;
1935       break;
1936     case MIToken::md_tbaa:
1937       lex();
1938       if (parseMDNode(AAInfo.TBAA))
1939         return true;
1940       break;
1941     case MIToken::md_alias_scope:
1942       lex();
1943       if (parseMDNode(AAInfo.Scope))
1944         return true;
1945       break;
1946     case MIToken::md_noalias:
1947       lex();
1948       if (parseMDNode(AAInfo.NoAlias))
1949         return true;
1950       break;
1951     case MIToken::md_range:
1952       lex();
1953       if (parseMDNode(Range))
1954         return true;
1955       break;
1956     // TODO: Report an error on duplicate metadata nodes.
1957     default:
1958       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1959                    "'!noalias' or '!range'");
1960     }
1961   }
1962   if (expectAndConsume(MIToken::rparen))
1963     return true;
1964   Dest =
1965       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1966   return false;
1967 }
1968 
1969 void MIParser::initNames2InstrOpCodes() {
1970   if (!Names2InstrOpCodes.empty())
1971     return;
1972   const auto *TII = MF.getSubtarget().getInstrInfo();
1973   assert(TII && "Expected target instruction info");
1974   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1975     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1976 }
1977 
1978 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1979   initNames2InstrOpCodes();
1980   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1981   if (InstrInfo == Names2InstrOpCodes.end())
1982     return true;
1983   OpCode = InstrInfo->getValue();
1984   return false;
1985 }
1986 
1987 void MIParser::initNames2Regs() {
1988   if (!Names2Regs.empty())
1989     return;
1990   // The '%noreg' register is the register 0.
1991   Names2Regs.insert(std::make_pair("noreg", 0));
1992   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1993   assert(TRI && "Expected target register info");
1994   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1995     bool WasInserted =
1996         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1997             .second;
1998     (void)WasInserted;
1999     assert(WasInserted && "Expected registers to be unique case-insensitively");
2000   }
2001 }
2002 
2003 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2004   initNames2Regs();
2005   auto RegInfo = Names2Regs.find(RegName);
2006   if (RegInfo == Names2Regs.end())
2007     return true;
2008   Reg = RegInfo->getValue();
2009   return false;
2010 }
2011 
2012 void MIParser::initNames2RegMasks() {
2013   if (!Names2RegMasks.empty())
2014     return;
2015   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2016   assert(TRI && "Expected target register info");
2017   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2018   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2019   assert(RegMasks.size() == RegMaskNames.size());
2020   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2021     Names2RegMasks.insert(
2022         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2023 }
2024 
2025 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2026   initNames2RegMasks();
2027   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2028   if (RegMaskInfo == Names2RegMasks.end())
2029     return nullptr;
2030   return RegMaskInfo->getValue();
2031 }
2032 
2033 void MIParser::initNames2SubRegIndices() {
2034   if (!Names2SubRegIndices.empty())
2035     return;
2036   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2037   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2038     Names2SubRegIndices.insert(
2039         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2040 }
2041 
2042 unsigned MIParser::getSubRegIndex(StringRef Name) {
2043   initNames2SubRegIndices();
2044   auto SubRegInfo = Names2SubRegIndices.find(Name);
2045   if (SubRegInfo == Names2SubRegIndices.end())
2046     return 0;
2047   return SubRegInfo->getValue();
2048 }
2049 
2050 static void initSlots2BasicBlocks(
2051     const Function &F,
2052     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2053   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2054   MST.incorporateFunction(F);
2055   for (auto &BB : F) {
2056     if (BB.hasName())
2057       continue;
2058     int Slot = MST.getLocalSlot(&BB);
2059     if (Slot == -1)
2060       continue;
2061     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2062   }
2063 }
2064 
2065 static const BasicBlock *getIRBlockFromSlot(
2066     unsigned Slot,
2067     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2068   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2069   if (BlockInfo == Slots2BasicBlocks.end())
2070     return nullptr;
2071   return BlockInfo->second;
2072 }
2073 
2074 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2075   if (Slots2BasicBlocks.empty())
2076     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2077   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2078 }
2079 
2080 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2081   if (&F == MF.getFunction())
2082     return getIRBlock(Slot);
2083   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2084   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2085   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2086 }
2087 
2088 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2089                            DenseMap<unsigned, const Value *> &Slots2Values) {
2090   int Slot = MST.getLocalSlot(V);
2091   if (Slot == -1)
2092     return;
2093   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2094 }
2095 
2096 /// Creates the mapping from slot numbers to function's unnamed IR values.
2097 static void initSlots2Values(const Function &F,
2098                              DenseMap<unsigned, const Value *> &Slots2Values) {
2099   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2100   MST.incorporateFunction(F);
2101   for (const auto &Arg : F.args())
2102     mapValueToSlot(&Arg, MST, Slots2Values);
2103   for (const auto &BB : F) {
2104     mapValueToSlot(&BB, MST, Slots2Values);
2105     for (const auto &I : BB)
2106       mapValueToSlot(&I, MST, Slots2Values);
2107   }
2108 }
2109 
2110 const Value *MIParser::getIRValue(unsigned Slot) {
2111   if (Slots2Values.empty())
2112     initSlots2Values(*MF.getFunction(), Slots2Values);
2113   auto ValueInfo = Slots2Values.find(Slot);
2114   if (ValueInfo == Slots2Values.end())
2115     return nullptr;
2116   return ValueInfo->second;
2117 }
2118 
2119 void MIParser::initNames2TargetIndices() {
2120   if (!Names2TargetIndices.empty())
2121     return;
2122   const auto *TII = MF.getSubtarget().getInstrInfo();
2123   assert(TII && "Expected target instruction info");
2124   auto Indices = TII->getSerializableTargetIndices();
2125   for (const auto &I : Indices)
2126     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2127 }
2128 
2129 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2130   initNames2TargetIndices();
2131   auto IndexInfo = Names2TargetIndices.find(Name);
2132   if (IndexInfo == Names2TargetIndices.end())
2133     return true;
2134   Index = IndexInfo->second;
2135   return false;
2136 }
2137 
2138 void MIParser::initNames2DirectTargetFlags() {
2139   if (!Names2DirectTargetFlags.empty())
2140     return;
2141   const auto *TII = MF.getSubtarget().getInstrInfo();
2142   assert(TII && "Expected target instruction info");
2143   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2144   for (const auto &I : Flags)
2145     Names2DirectTargetFlags.insert(
2146         std::make_pair(StringRef(I.second), I.first));
2147 }
2148 
2149 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2150   initNames2DirectTargetFlags();
2151   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2152   if (FlagInfo == Names2DirectTargetFlags.end())
2153     return true;
2154   Flag = FlagInfo->second;
2155   return false;
2156 }
2157 
2158 void MIParser::initNames2BitmaskTargetFlags() {
2159   if (!Names2BitmaskTargetFlags.empty())
2160     return;
2161   const auto *TII = MF.getSubtarget().getInstrInfo();
2162   assert(TII && "Expected target instruction info");
2163   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2164   for (const auto &I : Flags)
2165     Names2BitmaskTargetFlags.insert(
2166         std::make_pair(StringRef(I.second), I.first));
2167 }
2168 
2169 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2170   initNames2BitmaskTargetFlags();
2171   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2172   if (FlagInfo == Names2BitmaskTargetFlags.end())
2173     return true;
2174   Flag = FlagInfo->second;
2175   return false;
2176 }
2177 
2178 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2179                                              StringRef Src,
2180                                              SMDiagnostic &Error) {
2181   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2182 }
2183 
2184 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2185                                     StringRef Src, SMDiagnostic &Error) {
2186   return MIParser(PFS, Error, Src).parseBasicBlocks();
2187 }
2188 
2189 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2190                              MachineBasicBlock *&MBB, StringRef Src,
2191                              SMDiagnostic &Error) {
2192   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2193 }
2194 
2195 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2196                                        unsigned &Reg, StringRef Src,
2197                                        SMDiagnostic &Error) {
2198   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2199 }
2200 
2201 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2202                                          unsigned &Reg, StringRef Src,
2203                                          SMDiagnostic &Error) {
2204   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2205 }
2206 
2207 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2208                                      int &FI, StringRef Src,
2209                                      SMDiagnostic &Error) {
2210   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2211 }
2212 
2213 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2214                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2215   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2216 }
2217