1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/AsmParser/Parser.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Intrinsics.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/ModuleSlotTracker.h" 32 #include "llvm/IR/ValueSymbolTable.h" 33 #include "llvm/Support/SourceMgr.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetIntrinsicInfo.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 39 using namespace llvm; 40 41 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 42 SourceMgr &SM, const SlotMapping &IRSlots) 43 : MF(MF), SM(&SM), IRSlots(IRSlots) { 44 } 45 46 namespace { 47 48 /// A wrapper struct around the 'MachineOperand' struct that includes a source 49 /// range and other attributes. 50 struct ParsedMachineOperand { 51 MachineOperand Operand; 52 StringRef::iterator Begin; 53 StringRef::iterator End; 54 Optional<unsigned> TiedDefIdx; 55 56 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 57 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 58 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 59 if (TiedDefIdx) 60 assert(Operand.isReg() && Operand.isUse() && 61 "Only used register operands can be tied"); 62 } 63 }; 64 65 class MIParser { 66 MachineFunction &MF; 67 SMDiagnostic &Error; 68 StringRef Source, CurrentSource; 69 MIToken Token; 70 const PerFunctionMIParsingState &PFS; 71 /// Maps from instruction names to op codes. 72 StringMap<unsigned> Names2InstrOpCodes; 73 /// Maps from register names to registers. 74 StringMap<unsigned> Names2Regs; 75 /// Maps from register mask names to register masks. 76 StringMap<const uint32_t *> Names2RegMasks; 77 /// Maps from subregister names to subregister indices. 78 StringMap<unsigned> Names2SubRegIndices; 79 /// Maps from slot numbers to function's unnamed basic blocks. 80 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 81 /// Maps from slot numbers to function's unnamed values. 82 DenseMap<unsigned, const Value *> Slots2Values; 83 /// Maps from target index names to target indices. 84 StringMap<int> Names2TargetIndices; 85 /// Maps from direct target flag names to the direct target flag values. 86 StringMap<unsigned> Names2DirectTargetFlags; 87 /// Maps from direct target flag names to the bitmask target flag values. 88 StringMap<unsigned> Names2BitmaskTargetFlags; 89 90 public: 91 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 92 StringRef Source); 93 94 /// \p SkipChar gives the number of characters to skip before looking 95 /// for the next token. 96 void lex(unsigned SkipChar = 0); 97 98 /// Report an error at the current location with the given message. 99 /// 100 /// This function always return true. 101 bool error(const Twine &Msg); 102 103 /// Report an error at the given location with the given message. 104 /// 105 /// This function always return true. 106 bool error(StringRef::iterator Loc, const Twine &Msg); 107 108 bool 109 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 110 bool parseBasicBlocks(); 111 bool parse(MachineInstr *&MI); 112 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 113 bool parseStandaloneNamedRegister(unsigned &Reg); 114 bool parseStandaloneVirtualRegister(unsigned &Reg); 115 bool parseStandaloneStackObject(int &FI); 116 bool parseStandaloneMDNode(MDNode *&Node); 117 118 bool 119 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 120 bool parseBasicBlock(MachineBasicBlock &MBB); 121 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 122 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 123 124 bool parseRegister(unsigned &Reg); 125 bool parseRegisterFlag(unsigned &Flags); 126 bool parseSubRegisterIndex(unsigned &SubReg); 127 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 128 bool parseSize(unsigned &Size); 129 bool parseRegisterOperand(MachineOperand &Dest, 130 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 131 bool parseImmediateOperand(MachineOperand &Dest); 132 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 133 const Constant *&C); 134 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 135 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 136 bool parseTypedImmediateOperand(MachineOperand &Dest); 137 bool parseFPImmediateOperand(MachineOperand &Dest); 138 bool parseMBBReference(MachineBasicBlock *&MBB); 139 bool parseMBBOperand(MachineOperand &Dest); 140 bool parseStackFrameIndex(int &FI); 141 bool parseStackObjectOperand(MachineOperand &Dest); 142 bool parseFixedStackFrameIndex(int &FI); 143 bool parseFixedStackObjectOperand(MachineOperand &Dest); 144 bool parseGlobalValue(GlobalValue *&GV); 145 bool parseGlobalAddressOperand(MachineOperand &Dest); 146 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 147 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 148 bool parseJumpTableIndexOperand(MachineOperand &Dest); 149 bool parseExternalSymbolOperand(MachineOperand &Dest); 150 bool parseMDNode(MDNode *&Node); 151 bool parseMetadataOperand(MachineOperand &Dest); 152 bool parseCFIOffset(int &Offset); 153 bool parseCFIRegister(unsigned &Reg); 154 bool parseCFIOperand(MachineOperand &Dest); 155 bool parseIRBlock(BasicBlock *&BB, const Function &F); 156 bool parseBlockAddressOperand(MachineOperand &Dest); 157 bool parseIntrinsicOperand(MachineOperand &Dest); 158 bool parsePredicateOperand(MachineOperand &Dest); 159 bool parseTargetIndexOperand(MachineOperand &Dest); 160 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 161 bool parseMachineOperand(MachineOperand &Dest, 162 Optional<unsigned> &TiedDefIdx); 163 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 164 Optional<unsigned> &TiedDefIdx); 165 bool parseOffset(int64_t &Offset); 166 bool parseAlignment(unsigned &Alignment); 167 bool parseOperandsOffset(MachineOperand &Op); 168 bool parseIRValue(const Value *&V); 169 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 170 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 171 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 172 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 173 174 private: 175 /// Convert the integer literal in the current token into an unsigned integer. 176 /// 177 /// Return true if an error occurred. 178 bool getUnsigned(unsigned &Result); 179 180 /// Convert the integer literal in the current token into an uint64. 181 /// 182 /// Return true if an error occurred. 183 bool getUint64(uint64_t &Result); 184 185 /// If the current token is of the given kind, consume it and return false. 186 /// Otherwise report an error and return true. 187 bool expectAndConsume(MIToken::TokenKind TokenKind); 188 189 /// If the current token is of the given kind, consume it and return true. 190 /// Otherwise return false. 191 bool consumeIfPresent(MIToken::TokenKind TokenKind); 192 193 void initNames2InstrOpCodes(); 194 195 /// Try to convert an instruction name to an opcode. Return true if the 196 /// instruction name is invalid. 197 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 198 199 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 200 201 bool assignRegisterTies(MachineInstr &MI, 202 ArrayRef<ParsedMachineOperand> Operands); 203 204 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 205 const MCInstrDesc &MCID); 206 207 void initNames2Regs(); 208 209 /// Try to convert a register name to a register number. Return true if the 210 /// register name is invalid. 211 bool getRegisterByName(StringRef RegName, unsigned &Reg); 212 213 void initNames2RegMasks(); 214 215 /// Check if the given identifier is a name of a register mask. 216 /// 217 /// Return null if the identifier isn't a register mask. 218 const uint32_t *getRegMask(StringRef Identifier); 219 220 void initNames2SubRegIndices(); 221 222 /// Check if the given identifier is a name of a subregister index. 223 /// 224 /// Return 0 if the name isn't a subregister index class. 225 unsigned getSubRegIndex(StringRef Name); 226 227 const BasicBlock *getIRBlock(unsigned Slot); 228 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 229 230 const Value *getIRValue(unsigned Slot); 231 232 void initNames2TargetIndices(); 233 234 /// Try to convert a name of target index to the corresponding target index. 235 /// 236 /// Return true if the name isn't a name of a target index. 237 bool getTargetIndex(StringRef Name, int &Index); 238 239 void initNames2DirectTargetFlags(); 240 241 /// Try to convert a name of a direct target flag to the corresponding 242 /// target flag. 243 /// 244 /// Return true if the name isn't a name of a direct flag. 245 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 246 247 void initNames2BitmaskTargetFlags(); 248 249 /// Try to convert a name of a bitmask target flag to the corresponding 250 /// target flag. 251 /// 252 /// Return true if the name isn't a name of a bitmask target flag. 253 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 254 }; 255 256 } // end anonymous namespace 257 258 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 259 StringRef Source) 260 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 261 {} 262 263 void MIParser::lex(unsigned SkipChar) { 264 CurrentSource = lexMIToken( 265 CurrentSource.data() + SkipChar, Token, 266 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 267 } 268 269 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 270 271 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 272 const SourceMgr &SM = *PFS.SM; 273 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 274 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 275 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 276 // Create an ordinary diagnostic when the source manager's buffer is the 277 // source string. 278 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 279 return true; 280 } 281 // Create a diagnostic for a YAML string literal. 282 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 283 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 284 Source, None, None); 285 return true; 286 } 287 288 static const char *toString(MIToken::TokenKind TokenKind) { 289 switch (TokenKind) { 290 case MIToken::comma: 291 return "','"; 292 case MIToken::equal: 293 return "'='"; 294 case MIToken::colon: 295 return "':'"; 296 case MIToken::lparen: 297 return "'('"; 298 case MIToken::rparen: 299 return "')'"; 300 default: 301 return "<unknown token>"; 302 } 303 } 304 305 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 306 if (Token.isNot(TokenKind)) 307 return error(Twine("expected ") + toString(TokenKind)); 308 lex(); 309 return false; 310 } 311 312 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 313 if (Token.isNot(TokenKind)) 314 return false; 315 lex(); 316 return true; 317 } 318 319 bool MIParser::parseBasicBlockDefinition( 320 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 321 assert(Token.is(MIToken::MachineBasicBlockLabel)); 322 unsigned ID = 0; 323 if (getUnsigned(ID)) 324 return true; 325 auto Loc = Token.location(); 326 auto Name = Token.stringValue(); 327 lex(); 328 bool HasAddressTaken = false; 329 bool IsLandingPad = false; 330 unsigned Alignment = 0; 331 BasicBlock *BB = nullptr; 332 if (consumeIfPresent(MIToken::lparen)) { 333 do { 334 // TODO: Report an error when multiple same attributes are specified. 335 switch (Token.kind()) { 336 case MIToken::kw_address_taken: 337 HasAddressTaken = true; 338 lex(); 339 break; 340 case MIToken::kw_landing_pad: 341 IsLandingPad = true; 342 lex(); 343 break; 344 case MIToken::kw_align: 345 if (parseAlignment(Alignment)) 346 return true; 347 break; 348 case MIToken::IRBlock: 349 // TODO: Report an error when both name and ir block are specified. 350 if (parseIRBlock(BB, *MF.getFunction())) 351 return true; 352 lex(); 353 break; 354 default: 355 break; 356 } 357 } while (consumeIfPresent(MIToken::comma)); 358 if (expectAndConsume(MIToken::rparen)) 359 return true; 360 } 361 if (expectAndConsume(MIToken::colon)) 362 return true; 363 364 if (!Name.empty()) { 365 BB = dyn_cast_or_null<BasicBlock>( 366 MF.getFunction()->getValueSymbolTable().lookup(Name)); 367 if (!BB) 368 return error(Loc, Twine("basic block '") + Name + 369 "' is not defined in the function '" + 370 MF.getName() + "'"); 371 } 372 auto *MBB = MF.CreateMachineBasicBlock(BB); 373 MF.insert(MF.end(), MBB); 374 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 375 if (!WasInserted) 376 return error(Loc, Twine("redefinition of machine basic block with id #") + 377 Twine(ID)); 378 if (Alignment) 379 MBB->setAlignment(Alignment); 380 if (HasAddressTaken) 381 MBB->setHasAddressTaken(); 382 MBB->setIsEHPad(IsLandingPad); 383 return false; 384 } 385 386 bool MIParser::parseBasicBlockDefinitions( 387 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 388 lex(); 389 // Skip until the first machine basic block. 390 while (Token.is(MIToken::Newline)) 391 lex(); 392 if (Token.isErrorOrEOF()) 393 return Token.isError(); 394 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 395 return error("expected a basic block definition before instructions"); 396 unsigned BraceDepth = 0; 397 do { 398 if (parseBasicBlockDefinition(MBBSlots)) 399 return true; 400 bool IsAfterNewline = false; 401 // Skip until the next machine basic block. 402 while (true) { 403 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 404 Token.isErrorOrEOF()) 405 break; 406 else if (Token.is(MIToken::MachineBasicBlockLabel)) 407 return error("basic block definition should be located at the start of " 408 "the line"); 409 else if (consumeIfPresent(MIToken::Newline)) { 410 IsAfterNewline = true; 411 continue; 412 } 413 IsAfterNewline = false; 414 if (Token.is(MIToken::lbrace)) 415 ++BraceDepth; 416 if (Token.is(MIToken::rbrace)) { 417 if (!BraceDepth) 418 return error("extraneous closing brace ('}')"); 419 --BraceDepth; 420 } 421 lex(); 422 } 423 // Verify that we closed all of the '{' at the end of a file or a block. 424 if (!Token.isError() && BraceDepth) 425 return error("expected '}'"); // FIXME: Report a note that shows '{'. 426 } while (!Token.isErrorOrEOF()); 427 return Token.isError(); 428 } 429 430 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 431 assert(Token.is(MIToken::kw_liveins)); 432 lex(); 433 if (expectAndConsume(MIToken::colon)) 434 return true; 435 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 436 return false; 437 do { 438 if (Token.isNot(MIToken::NamedRegister)) 439 return error("expected a named register"); 440 unsigned Reg = 0; 441 if (parseRegister(Reg)) 442 return true; 443 MBB.addLiveIn(Reg); 444 lex(); 445 } while (consumeIfPresent(MIToken::comma)); 446 return false; 447 } 448 449 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 450 assert(Token.is(MIToken::kw_successors)); 451 lex(); 452 if (expectAndConsume(MIToken::colon)) 453 return true; 454 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 455 return false; 456 do { 457 if (Token.isNot(MIToken::MachineBasicBlock)) 458 return error("expected a machine basic block reference"); 459 MachineBasicBlock *SuccMBB = nullptr; 460 if (parseMBBReference(SuccMBB)) 461 return true; 462 lex(); 463 unsigned Weight = 0; 464 if (consumeIfPresent(MIToken::lparen)) { 465 if (Token.isNot(MIToken::IntegerLiteral)) 466 return error("expected an integer literal after '('"); 467 if (getUnsigned(Weight)) 468 return true; 469 lex(); 470 if (expectAndConsume(MIToken::rparen)) 471 return true; 472 } 473 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 474 } while (consumeIfPresent(MIToken::comma)); 475 MBB.normalizeSuccProbs(); 476 return false; 477 } 478 479 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 480 // Skip the definition. 481 assert(Token.is(MIToken::MachineBasicBlockLabel)); 482 lex(); 483 if (consumeIfPresent(MIToken::lparen)) { 484 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 485 lex(); 486 consumeIfPresent(MIToken::rparen); 487 } 488 consumeIfPresent(MIToken::colon); 489 490 // Parse the liveins and successors. 491 // N.B: Multiple lists of successors and liveins are allowed and they're 492 // merged into one. 493 // Example: 494 // liveins: %edi 495 // liveins: %esi 496 // 497 // is equivalent to 498 // liveins: %edi, %esi 499 while (true) { 500 if (Token.is(MIToken::kw_successors)) { 501 if (parseBasicBlockSuccessors(MBB)) 502 return true; 503 } else if (Token.is(MIToken::kw_liveins)) { 504 if (parseBasicBlockLiveins(MBB)) 505 return true; 506 } else if (consumeIfPresent(MIToken::Newline)) { 507 continue; 508 } else 509 break; 510 if (!Token.isNewlineOrEOF()) 511 return error("expected line break at the end of a list"); 512 lex(); 513 } 514 515 // Parse the instructions. 516 bool IsInBundle = false; 517 MachineInstr *PrevMI = nullptr; 518 while (true) { 519 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 520 return false; 521 else if (consumeIfPresent(MIToken::Newline)) 522 continue; 523 if (consumeIfPresent(MIToken::rbrace)) { 524 // The first parsing pass should verify that all closing '}' have an 525 // opening '{'. 526 assert(IsInBundle); 527 IsInBundle = false; 528 continue; 529 } 530 MachineInstr *MI = nullptr; 531 if (parse(MI)) 532 return true; 533 MBB.insert(MBB.end(), MI); 534 if (IsInBundle) { 535 PrevMI->setFlag(MachineInstr::BundledSucc); 536 MI->setFlag(MachineInstr::BundledPred); 537 } 538 PrevMI = MI; 539 if (Token.is(MIToken::lbrace)) { 540 if (IsInBundle) 541 return error("nested instruction bundles are not allowed"); 542 lex(); 543 // This instruction is the start of the bundle. 544 MI->setFlag(MachineInstr::BundledSucc); 545 IsInBundle = true; 546 if (!Token.is(MIToken::Newline)) 547 // The next instruction can be on the same line. 548 continue; 549 } 550 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 551 lex(); 552 } 553 return false; 554 } 555 556 bool MIParser::parseBasicBlocks() { 557 lex(); 558 // Skip until the first machine basic block. 559 while (Token.is(MIToken::Newline)) 560 lex(); 561 if (Token.isErrorOrEOF()) 562 return Token.isError(); 563 // The first parsing pass should have verified that this token is a MBB label 564 // in the 'parseBasicBlockDefinitions' method. 565 assert(Token.is(MIToken::MachineBasicBlockLabel)); 566 do { 567 MachineBasicBlock *MBB = nullptr; 568 if (parseMBBReference(MBB)) 569 return true; 570 if (parseBasicBlock(*MBB)) 571 return true; 572 // The method 'parseBasicBlock' should parse the whole block until the next 573 // block or the end of file. 574 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 575 } while (Token.isNot(MIToken::Eof)); 576 return false; 577 } 578 579 bool MIParser::parse(MachineInstr *&MI) { 580 // Parse any register operands before '=' 581 MachineOperand MO = MachineOperand::CreateImm(0); 582 SmallVector<ParsedMachineOperand, 8> Operands; 583 while (Token.isRegister() || Token.isRegisterFlag()) { 584 auto Loc = Token.location(); 585 Optional<unsigned> TiedDefIdx; 586 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 587 return true; 588 Operands.push_back( 589 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 590 if (Token.isNot(MIToken::comma)) 591 break; 592 lex(); 593 } 594 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 595 return true; 596 597 unsigned OpCode, Flags = 0; 598 if (Token.isError() || parseInstruction(OpCode, Flags)) 599 return true; 600 601 SmallVector<LLT, 1> Tys; 602 if (isPreISelGenericOpcode(OpCode)) { 603 // For generic opcode, at least one type is mandatory. 604 auto Loc = Token.location(); 605 bool ManyTypes = Token.is(MIToken::lbrace); 606 if (ManyTypes) 607 lex(); 608 609 // Now actually parse the type(s). 610 do { 611 Tys.resize(Tys.size() + 1); 612 if (parseLowLevelType(Loc, Tys[Tys.size() - 1])) 613 return true; 614 } while (ManyTypes && consumeIfPresent(MIToken::comma)); 615 616 if (ManyTypes) 617 expectAndConsume(MIToken::rbrace); 618 } 619 620 // Parse the remaining machine operands. 621 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 622 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 623 auto Loc = Token.location(); 624 Optional<unsigned> TiedDefIdx; 625 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 626 return true; 627 Operands.push_back( 628 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 629 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 630 Token.is(MIToken::lbrace)) 631 break; 632 if (Token.isNot(MIToken::comma)) 633 return error("expected ',' before the next machine operand"); 634 lex(); 635 } 636 637 DebugLoc DebugLocation; 638 if (Token.is(MIToken::kw_debug_location)) { 639 lex(); 640 if (Token.isNot(MIToken::exclaim)) 641 return error("expected a metadata node after 'debug-location'"); 642 MDNode *Node = nullptr; 643 if (parseMDNode(Node)) 644 return true; 645 DebugLocation = DebugLoc(Node); 646 } 647 648 // Parse the machine memory operands. 649 SmallVector<MachineMemOperand *, 2> MemOperands; 650 if (Token.is(MIToken::coloncolon)) { 651 lex(); 652 while (!Token.isNewlineOrEOF()) { 653 MachineMemOperand *MemOp = nullptr; 654 if (parseMachineMemoryOperand(MemOp)) 655 return true; 656 MemOperands.push_back(MemOp); 657 if (Token.isNewlineOrEOF()) 658 break; 659 if (Token.isNot(MIToken::comma)) 660 return error("expected ',' before the next machine memory operand"); 661 lex(); 662 } 663 } 664 665 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 666 if (!MCID.isVariadic()) { 667 // FIXME: Move the implicit operand verification to the machine verifier. 668 if (verifyImplicitOperands(Operands, MCID)) 669 return true; 670 } 671 672 // TODO: Check for extraneous machine operands. 673 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 674 MI->setFlags(Flags); 675 if (Tys.size() > 0) { 676 for (unsigned i = 0; i < Tys.size(); ++i) 677 MI->setType(Tys[i], i); 678 } 679 for (const auto &Operand : Operands) 680 MI->addOperand(MF, Operand.Operand); 681 if (assignRegisterTies(*MI, Operands)) 682 return true; 683 if (MemOperands.empty()) 684 return false; 685 MachineInstr::mmo_iterator MemRefs = 686 MF.allocateMemRefsArray(MemOperands.size()); 687 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 688 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 689 return false; 690 } 691 692 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 693 lex(); 694 if (Token.isNot(MIToken::MachineBasicBlock)) 695 return error("expected a machine basic block reference"); 696 if (parseMBBReference(MBB)) 697 return true; 698 lex(); 699 if (Token.isNot(MIToken::Eof)) 700 return error( 701 "expected end of string after the machine basic block reference"); 702 return false; 703 } 704 705 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 706 lex(); 707 if (Token.isNot(MIToken::NamedRegister)) 708 return error("expected a named register"); 709 if (parseRegister(Reg)) 710 return true; 711 lex(); 712 if (Token.isNot(MIToken::Eof)) 713 return error("expected end of string after the register reference"); 714 return false; 715 } 716 717 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 718 lex(); 719 if (Token.isNot(MIToken::VirtualRegister)) 720 return error("expected a virtual register"); 721 if (parseRegister(Reg)) 722 return true; 723 lex(); 724 if (Token.isNot(MIToken::Eof)) 725 return error("expected end of string after the register reference"); 726 return false; 727 } 728 729 bool MIParser::parseStandaloneStackObject(int &FI) { 730 lex(); 731 if (Token.isNot(MIToken::StackObject)) 732 return error("expected a stack object"); 733 if (parseStackFrameIndex(FI)) 734 return true; 735 if (Token.isNot(MIToken::Eof)) 736 return error("expected end of string after the stack object reference"); 737 return false; 738 } 739 740 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 741 lex(); 742 if (Token.isNot(MIToken::exclaim)) 743 return error("expected a metadata node"); 744 if (parseMDNode(Node)) 745 return true; 746 if (Token.isNot(MIToken::Eof)) 747 return error("expected end of string after the metadata node"); 748 return false; 749 } 750 751 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 752 assert(MO.isImplicit()); 753 return MO.isDef() ? "implicit-def" : "implicit"; 754 } 755 756 static std::string getRegisterName(const TargetRegisterInfo *TRI, 757 unsigned Reg) { 758 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 759 return StringRef(TRI->getName(Reg)).lower(); 760 } 761 762 /// Return true if the parsed machine operands contain a given machine operand. 763 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 764 ArrayRef<ParsedMachineOperand> Operands) { 765 for (const auto &I : Operands) { 766 if (ImplicitOperand.isIdenticalTo(I.Operand)) 767 return true; 768 } 769 return false; 770 } 771 772 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 773 const MCInstrDesc &MCID) { 774 if (MCID.isCall()) 775 // We can't verify call instructions as they can contain arbitrary implicit 776 // register and register mask operands. 777 return false; 778 779 // Gather all the expected implicit operands. 780 SmallVector<MachineOperand, 4> ImplicitOperands; 781 if (MCID.ImplicitDefs) 782 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 783 ImplicitOperands.push_back( 784 MachineOperand::CreateReg(*ImpDefs, true, true)); 785 if (MCID.ImplicitUses) 786 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 787 ImplicitOperands.push_back( 788 MachineOperand::CreateReg(*ImpUses, false, true)); 789 790 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 791 assert(TRI && "Expected target register info"); 792 for (const auto &I : ImplicitOperands) { 793 if (isImplicitOperandIn(I, Operands)) 794 continue; 795 return error(Operands.empty() ? Token.location() : Operands.back().End, 796 Twine("missing implicit register operand '") + 797 printImplicitRegisterFlag(I) + " %" + 798 getRegisterName(TRI, I.getReg()) + "'"); 799 } 800 return false; 801 } 802 803 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 804 if (Token.is(MIToken::kw_frame_setup)) { 805 Flags |= MachineInstr::FrameSetup; 806 lex(); 807 } 808 if (Token.isNot(MIToken::Identifier)) 809 return error("expected a machine instruction"); 810 StringRef InstrName = Token.stringValue(); 811 if (parseInstrName(InstrName, OpCode)) 812 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 813 lex(); 814 return false; 815 } 816 817 bool MIParser::parseRegister(unsigned &Reg) { 818 switch (Token.kind()) { 819 case MIToken::underscore: 820 Reg = 0; 821 break; 822 case MIToken::NamedRegister: { 823 StringRef Name = Token.stringValue(); 824 if (getRegisterByName(Name, Reg)) 825 return error(Twine("unknown register name '") + Name + "'"); 826 break; 827 } 828 case MIToken::VirtualRegister: { 829 unsigned ID; 830 if (getUnsigned(ID)) 831 return true; 832 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 833 if (RegInfo == PFS.VirtualRegisterSlots.end()) 834 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 835 "'"); 836 Reg = RegInfo->second; 837 break; 838 } 839 // TODO: Parse other register kinds. 840 default: 841 llvm_unreachable("The current token should be a register"); 842 } 843 return false; 844 } 845 846 bool MIParser::parseRegisterFlag(unsigned &Flags) { 847 const unsigned OldFlags = Flags; 848 switch (Token.kind()) { 849 case MIToken::kw_implicit: 850 Flags |= RegState::Implicit; 851 break; 852 case MIToken::kw_implicit_define: 853 Flags |= RegState::ImplicitDefine; 854 break; 855 case MIToken::kw_def: 856 Flags |= RegState::Define; 857 break; 858 case MIToken::kw_dead: 859 Flags |= RegState::Dead; 860 break; 861 case MIToken::kw_killed: 862 Flags |= RegState::Kill; 863 break; 864 case MIToken::kw_undef: 865 Flags |= RegState::Undef; 866 break; 867 case MIToken::kw_internal: 868 Flags |= RegState::InternalRead; 869 break; 870 case MIToken::kw_early_clobber: 871 Flags |= RegState::EarlyClobber; 872 break; 873 case MIToken::kw_debug_use: 874 Flags |= RegState::Debug; 875 break; 876 default: 877 llvm_unreachable("The current token should be a register flag"); 878 } 879 if (OldFlags == Flags) 880 // We know that the same flag is specified more than once when the flags 881 // weren't modified. 882 return error("duplicate '" + Token.stringValue() + "' register flag"); 883 lex(); 884 return false; 885 } 886 887 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 888 assert(Token.is(MIToken::dot)); 889 lex(); 890 if (Token.isNot(MIToken::Identifier)) 891 return error("expected a subregister index after '.'"); 892 auto Name = Token.stringValue(); 893 SubReg = getSubRegIndex(Name); 894 if (!SubReg) 895 return error(Twine("use of unknown subregister index '") + Name + "'"); 896 lex(); 897 return false; 898 } 899 900 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 901 if (!consumeIfPresent(MIToken::kw_tied_def)) 902 return error("expected 'tied-def' after '('"); 903 if (Token.isNot(MIToken::IntegerLiteral)) 904 return error("expected an integer literal after 'tied-def'"); 905 if (getUnsigned(TiedDefIdx)) 906 return true; 907 lex(); 908 if (expectAndConsume(MIToken::rparen)) 909 return true; 910 return false; 911 } 912 913 bool MIParser::parseSize(unsigned &Size) { 914 if (Token.isNot(MIToken::IntegerLiteral)) 915 return error("expected an integer literal for the size"); 916 if (getUnsigned(Size)) 917 return true; 918 lex(); 919 if (expectAndConsume(MIToken::rparen)) 920 return true; 921 return false; 922 } 923 924 bool MIParser::assignRegisterTies(MachineInstr &MI, 925 ArrayRef<ParsedMachineOperand> Operands) { 926 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 927 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 928 if (!Operands[I].TiedDefIdx) 929 continue; 930 // The parser ensures that this operand is a register use, so we just have 931 // to check the tied-def operand. 932 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 933 if (DefIdx >= E) 934 return error(Operands[I].Begin, 935 Twine("use of invalid tied-def operand index '" + 936 Twine(DefIdx) + "'; instruction has only ") + 937 Twine(E) + " operands"); 938 const auto &DefOperand = Operands[DefIdx].Operand; 939 if (!DefOperand.isReg() || !DefOperand.isDef()) 940 // FIXME: add note with the def operand. 941 return error(Operands[I].Begin, 942 Twine("use of invalid tied-def operand index '") + 943 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 944 " isn't a defined register"); 945 // Check that the tied-def operand wasn't tied elsewhere. 946 for (const auto &TiedPair : TiedRegisterPairs) { 947 if (TiedPair.first == DefIdx) 948 return error(Operands[I].Begin, 949 Twine("the tied-def operand #") + Twine(DefIdx) + 950 " is already tied with another register operand"); 951 } 952 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 953 } 954 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 955 // indices must be less than tied max. 956 for (const auto &TiedPair : TiedRegisterPairs) 957 MI.tieOperands(TiedPair.first, TiedPair.second); 958 return false; 959 } 960 961 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 962 Optional<unsigned> &TiedDefIdx, 963 bool IsDef) { 964 unsigned Reg; 965 unsigned Flags = IsDef ? RegState::Define : 0; 966 while (Token.isRegisterFlag()) { 967 if (parseRegisterFlag(Flags)) 968 return true; 969 } 970 if (!Token.isRegister()) 971 return error("expected a register after register flags"); 972 if (parseRegister(Reg)) 973 return true; 974 lex(); 975 unsigned SubReg = 0; 976 if (Token.is(MIToken::dot)) { 977 if (parseSubRegisterIndex(SubReg)) 978 return true; 979 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 980 return error("subregister index expects a virtual register"); 981 } 982 if ((Flags & RegState::Define) == 0) { 983 if (consumeIfPresent(MIToken::lparen)) { 984 unsigned Idx; 985 if (parseRegisterTiedDefIndex(Idx)) 986 return true; 987 TiedDefIdx = Idx; 988 } 989 } else if (consumeIfPresent(MIToken::lparen)) { 990 MachineRegisterInfo &MRI = MF.getRegInfo(); 991 992 // Virtual registers may have a size with GlobalISel. 993 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 994 return error("unexpected size on physical register"); 995 if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>()) 996 return error("unexpected size on non-generic virtual register"); 997 998 unsigned Size; 999 if (parseSize(Size)) 1000 return true; 1001 1002 MRI.setSize(Reg, Size); 1003 } else if (PFS.GenericVRegs.count(Reg)) { 1004 // Generic virtual registers must have a size. 1005 // If we end up here this means the size hasn't been specified and 1006 // this is bad! 1007 return error("generic virtual registers must have a size"); 1008 } 1009 Dest = MachineOperand::CreateReg( 1010 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1011 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1012 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1013 Flags & RegState::InternalRead); 1014 return false; 1015 } 1016 1017 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1018 assert(Token.is(MIToken::IntegerLiteral)); 1019 const APSInt &Int = Token.integerValue(); 1020 if (Int.getMinSignedBits() > 64) 1021 return error("integer literal is too large to be an immediate operand"); 1022 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1023 lex(); 1024 return false; 1025 } 1026 1027 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1028 const Constant *&C) { 1029 auto Source = StringValue.str(); // The source has to be null terminated. 1030 SMDiagnostic Err; 1031 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1032 &PFS.IRSlots); 1033 if (!C) 1034 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1035 return false; 1036 } 1037 1038 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1039 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1040 return true; 1041 lex(); 1042 return false; 1043 } 1044 1045 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1046 if (Token.is(MIToken::Identifier) && Token.stringValue() == "unsized") { 1047 lex(); 1048 Ty = LLT::unsized(); 1049 return false; 1050 } else if (Token.is(MIToken::ScalarType)) { 1051 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1052 lex(); 1053 return false; 1054 } else if (Token.is(MIToken::PointerType)) { 1055 Ty = LLT::pointer(APSInt(Token.range().drop_front()).getZExtValue()); 1056 lex(); 1057 return false; 1058 } 1059 1060 // Now we're looking for a vector. 1061 if (Token.isNot(MIToken::less)) 1062 return error(Loc, 1063 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1064 1065 lex(); 1066 1067 if (Token.isNot(MIToken::IntegerLiteral)) 1068 return error(Loc, "expected <N x sM> for vctor type"); 1069 uint64_t NumElements = Token.integerValue().getZExtValue(); 1070 lex(); 1071 1072 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1073 return error(Loc, "expected '<N x sM>' for vector type"); 1074 lex(); 1075 1076 if (Token.isNot(MIToken::ScalarType)) 1077 return error(Loc, "expected '<N x sM>' for vector type"); 1078 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1079 lex(); 1080 1081 if (Token.isNot(MIToken::greater)) 1082 return error(Loc, "expected '<N x sM>' for vector type"); 1083 lex(); 1084 1085 Ty = LLT::vector(NumElements, ScalarSize); 1086 return false; 1087 } 1088 1089 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1090 assert(Token.is(MIToken::IntegerType)); 1091 auto Loc = Token.location(); 1092 lex(); 1093 if (Token.isNot(MIToken::IntegerLiteral)) 1094 return error("expected an integer literal"); 1095 const Constant *C = nullptr; 1096 if (parseIRConstant(Loc, C)) 1097 return true; 1098 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1099 return false; 1100 } 1101 1102 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1103 auto Loc = Token.location(); 1104 lex(); 1105 if (Token.isNot(MIToken::FloatingPointLiteral)) 1106 return error("expected a floating point literal"); 1107 const Constant *C = nullptr; 1108 if (parseIRConstant(Loc, C)) 1109 return true; 1110 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1111 return false; 1112 } 1113 1114 bool MIParser::getUnsigned(unsigned &Result) { 1115 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1116 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1117 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1118 if (Val64 == Limit) 1119 return error("expected 32-bit integer (too large)"); 1120 Result = Val64; 1121 return false; 1122 } 1123 1124 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1125 assert(Token.is(MIToken::MachineBasicBlock) || 1126 Token.is(MIToken::MachineBasicBlockLabel)); 1127 unsigned Number; 1128 if (getUnsigned(Number)) 1129 return true; 1130 auto MBBInfo = PFS.MBBSlots.find(Number); 1131 if (MBBInfo == PFS.MBBSlots.end()) 1132 return error(Twine("use of undefined machine basic block #") + 1133 Twine(Number)); 1134 MBB = MBBInfo->second; 1135 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1136 return error(Twine("the name of machine basic block #") + Twine(Number) + 1137 " isn't '" + Token.stringValue() + "'"); 1138 return false; 1139 } 1140 1141 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1142 MachineBasicBlock *MBB; 1143 if (parseMBBReference(MBB)) 1144 return true; 1145 Dest = MachineOperand::CreateMBB(MBB); 1146 lex(); 1147 return false; 1148 } 1149 1150 bool MIParser::parseStackFrameIndex(int &FI) { 1151 assert(Token.is(MIToken::StackObject)); 1152 unsigned ID; 1153 if (getUnsigned(ID)) 1154 return true; 1155 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1156 if (ObjectInfo == PFS.StackObjectSlots.end()) 1157 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1158 "'"); 1159 StringRef Name; 1160 if (const auto *Alloca = 1161 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1162 Name = Alloca->getName(); 1163 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1164 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1165 "' isn't '" + Token.stringValue() + "'"); 1166 lex(); 1167 FI = ObjectInfo->second; 1168 return false; 1169 } 1170 1171 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1172 int FI; 1173 if (parseStackFrameIndex(FI)) 1174 return true; 1175 Dest = MachineOperand::CreateFI(FI); 1176 return false; 1177 } 1178 1179 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1180 assert(Token.is(MIToken::FixedStackObject)); 1181 unsigned ID; 1182 if (getUnsigned(ID)) 1183 return true; 1184 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1185 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1186 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1187 Twine(ID) + "'"); 1188 lex(); 1189 FI = ObjectInfo->second; 1190 return false; 1191 } 1192 1193 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1194 int FI; 1195 if (parseFixedStackFrameIndex(FI)) 1196 return true; 1197 Dest = MachineOperand::CreateFI(FI); 1198 return false; 1199 } 1200 1201 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1202 switch (Token.kind()) { 1203 case MIToken::NamedGlobalValue: { 1204 const Module *M = MF.getFunction()->getParent(); 1205 GV = M->getNamedValue(Token.stringValue()); 1206 if (!GV) 1207 return error(Twine("use of undefined global value '") + Token.range() + 1208 "'"); 1209 break; 1210 } 1211 case MIToken::GlobalValue: { 1212 unsigned GVIdx; 1213 if (getUnsigned(GVIdx)) 1214 return true; 1215 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1216 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1217 "'"); 1218 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1219 break; 1220 } 1221 default: 1222 llvm_unreachable("The current token should be a global value"); 1223 } 1224 return false; 1225 } 1226 1227 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1228 GlobalValue *GV = nullptr; 1229 if (parseGlobalValue(GV)) 1230 return true; 1231 lex(); 1232 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1233 if (parseOperandsOffset(Dest)) 1234 return true; 1235 return false; 1236 } 1237 1238 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1239 assert(Token.is(MIToken::ConstantPoolItem)); 1240 unsigned ID; 1241 if (getUnsigned(ID)) 1242 return true; 1243 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1244 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1245 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1246 lex(); 1247 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1248 if (parseOperandsOffset(Dest)) 1249 return true; 1250 return false; 1251 } 1252 1253 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1254 assert(Token.is(MIToken::JumpTableIndex)); 1255 unsigned ID; 1256 if (getUnsigned(ID)) 1257 return true; 1258 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1259 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1260 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1261 lex(); 1262 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1263 return false; 1264 } 1265 1266 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1267 assert(Token.is(MIToken::ExternalSymbol)); 1268 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1269 lex(); 1270 Dest = MachineOperand::CreateES(Symbol); 1271 if (parseOperandsOffset(Dest)) 1272 return true; 1273 return false; 1274 } 1275 1276 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1277 assert(Token.is(MIToken::SubRegisterIndex)); 1278 StringRef Name = Token.stringValue(); 1279 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1280 if (SubRegIndex == 0) 1281 return error(Twine("unknown subregister index '") + Name + "'"); 1282 lex(); 1283 Dest = MachineOperand::CreateImm(SubRegIndex); 1284 return false; 1285 } 1286 1287 bool MIParser::parseMDNode(MDNode *&Node) { 1288 assert(Token.is(MIToken::exclaim)); 1289 auto Loc = Token.location(); 1290 lex(); 1291 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1292 return error("expected metadata id after '!'"); 1293 unsigned ID; 1294 if (getUnsigned(ID)) 1295 return true; 1296 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1297 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1298 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1299 lex(); 1300 Node = NodeInfo->second.get(); 1301 return false; 1302 } 1303 1304 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1305 MDNode *Node = nullptr; 1306 if (parseMDNode(Node)) 1307 return true; 1308 Dest = MachineOperand::CreateMetadata(Node); 1309 return false; 1310 } 1311 1312 bool MIParser::parseCFIOffset(int &Offset) { 1313 if (Token.isNot(MIToken::IntegerLiteral)) 1314 return error("expected a cfi offset"); 1315 if (Token.integerValue().getMinSignedBits() > 32) 1316 return error("expected a 32 bit integer (the cfi offset is too large)"); 1317 Offset = (int)Token.integerValue().getExtValue(); 1318 lex(); 1319 return false; 1320 } 1321 1322 bool MIParser::parseCFIRegister(unsigned &Reg) { 1323 if (Token.isNot(MIToken::NamedRegister)) 1324 return error("expected a cfi register"); 1325 unsigned LLVMReg; 1326 if (parseRegister(LLVMReg)) 1327 return true; 1328 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1329 assert(TRI && "Expected target register info"); 1330 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1331 if (DwarfReg < 0) 1332 return error("invalid DWARF register"); 1333 Reg = (unsigned)DwarfReg; 1334 lex(); 1335 return false; 1336 } 1337 1338 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1339 auto Kind = Token.kind(); 1340 lex(); 1341 auto &MMI = MF.getMMI(); 1342 int Offset; 1343 unsigned Reg; 1344 unsigned CFIIndex; 1345 switch (Kind) { 1346 case MIToken::kw_cfi_same_value: 1347 if (parseCFIRegister(Reg)) 1348 return true; 1349 CFIIndex = 1350 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1351 break; 1352 case MIToken::kw_cfi_offset: 1353 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1354 parseCFIOffset(Offset)) 1355 return true; 1356 CFIIndex = 1357 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1358 break; 1359 case MIToken::kw_cfi_def_cfa_register: 1360 if (parseCFIRegister(Reg)) 1361 return true; 1362 CFIIndex = 1363 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1364 break; 1365 case MIToken::kw_cfi_def_cfa_offset: 1366 if (parseCFIOffset(Offset)) 1367 return true; 1368 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1369 CFIIndex = MMI.addFrameInst( 1370 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1371 break; 1372 case MIToken::kw_cfi_def_cfa: 1373 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1374 parseCFIOffset(Offset)) 1375 return true; 1376 // NB: MCCFIInstruction::createDefCfa negates the offset. 1377 CFIIndex = 1378 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1379 break; 1380 default: 1381 // TODO: Parse the other CFI operands. 1382 llvm_unreachable("The current token should be a cfi operand"); 1383 } 1384 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1385 return false; 1386 } 1387 1388 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1389 switch (Token.kind()) { 1390 case MIToken::NamedIRBlock: { 1391 BB = dyn_cast_or_null<BasicBlock>( 1392 F.getValueSymbolTable().lookup(Token.stringValue())); 1393 if (!BB) 1394 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1395 break; 1396 } 1397 case MIToken::IRBlock: { 1398 unsigned SlotNumber = 0; 1399 if (getUnsigned(SlotNumber)) 1400 return true; 1401 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1402 if (!BB) 1403 return error(Twine("use of undefined IR block '%ir-block.") + 1404 Twine(SlotNumber) + "'"); 1405 break; 1406 } 1407 default: 1408 llvm_unreachable("The current token should be an IR block reference"); 1409 } 1410 return false; 1411 } 1412 1413 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1414 assert(Token.is(MIToken::kw_blockaddress)); 1415 lex(); 1416 if (expectAndConsume(MIToken::lparen)) 1417 return true; 1418 if (Token.isNot(MIToken::GlobalValue) && 1419 Token.isNot(MIToken::NamedGlobalValue)) 1420 return error("expected a global value"); 1421 GlobalValue *GV = nullptr; 1422 if (parseGlobalValue(GV)) 1423 return true; 1424 auto *F = dyn_cast<Function>(GV); 1425 if (!F) 1426 return error("expected an IR function reference"); 1427 lex(); 1428 if (expectAndConsume(MIToken::comma)) 1429 return true; 1430 BasicBlock *BB = nullptr; 1431 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1432 return error("expected an IR block reference"); 1433 if (parseIRBlock(BB, *F)) 1434 return true; 1435 lex(); 1436 if (expectAndConsume(MIToken::rparen)) 1437 return true; 1438 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1439 if (parseOperandsOffset(Dest)) 1440 return true; 1441 return false; 1442 } 1443 1444 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1445 assert(Token.is(MIToken::kw_intrinsic)); 1446 lex(); 1447 if (expectAndConsume(MIToken::lparen)) 1448 return error("expected syntax intrinsic(@llvm.whatever)"); 1449 1450 if (Token.isNot(MIToken::NamedGlobalValue)) 1451 return error("expected syntax intrinsic(@llvm.whatever)"); 1452 1453 std::string Name = Token.stringValue(); 1454 lex(); 1455 1456 if (expectAndConsume(MIToken::rparen)) 1457 return error("expected ')' to terminate intrinsic name"); 1458 1459 // Find out what intrinsic we're dealing with, first try the global namespace 1460 // and then the target's private intrinsics if that fails. 1461 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1462 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1463 if (ID == Intrinsic::not_intrinsic && TII) 1464 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1465 1466 if (ID == Intrinsic::not_intrinsic) 1467 return error("unknown intrinsic name"); 1468 Dest = MachineOperand::CreateIntrinsicID(ID); 1469 1470 return false; 1471 } 1472 1473 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1474 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1475 bool IsFloat = Token.is(MIToken::kw_floatpred); 1476 lex(); 1477 1478 if (expectAndConsume(MIToken::lparen)) 1479 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1480 1481 if (Token.isNot(MIToken::Identifier)) 1482 return error("whatever"); 1483 1484 CmpInst::Predicate Pred; 1485 if (IsFloat) { 1486 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1487 .Case("false", CmpInst::FCMP_FALSE) 1488 .Case("oeq", CmpInst::FCMP_OEQ) 1489 .Case("ogt", CmpInst::FCMP_OGT) 1490 .Case("oge", CmpInst::FCMP_OGE) 1491 .Case("olt", CmpInst::FCMP_OLT) 1492 .Case("ole", CmpInst::FCMP_OLE) 1493 .Case("one", CmpInst::FCMP_ONE) 1494 .Case("ord", CmpInst::FCMP_ORD) 1495 .Case("uno", CmpInst::FCMP_UNO) 1496 .Case("ueq", CmpInst::FCMP_UEQ) 1497 .Case("ugt", CmpInst::FCMP_UGT) 1498 .Case("uge", CmpInst::FCMP_UGE) 1499 .Case("ult", CmpInst::FCMP_ULT) 1500 .Case("ule", CmpInst::FCMP_ULE) 1501 .Case("une", CmpInst::FCMP_UNE) 1502 .Case("true", CmpInst::FCMP_TRUE) 1503 .Default(CmpInst::BAD_FCMP_PREDICATE); 1504 if (!CmpInst::isFPPredicate(Pred)) 1505 return error("invalid floating-point predicate"); 1506 } else { 1507 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1508 .Case("eq", CmpInst::ICMP_EQ) 1509 .Case("ne", CmpInst::ICMP_NE) 1510 .Case("sgt", CmpInst::ICMP_SGT) 1511 .Case("sge", CmpInst::ICMP_SGE) 1512 .Case("slt", CmpInst::ICMP_SLT) 1513 .Case("sle", CmpInst::ICMP_SLE) 1514 .Case("ugt", CmpInst::ICMP_UGT) 1515 .Case("uge", CmpInst::ICMP_UGE) 1516 .Case("ult", CmpInst::ICMP_ULT) 1517 .Case("ule", CmpInst::ICMP_ULE) 1518 .Default(CmpInst::BAD_ICMP_PREDICATE); 1519 if (!CmpInst::isIntPredicate(Pred)) 1520 return error("invalid integer predicate"); 1521 } 1522 1523 lex(); 1524 Dest = MachineOperand::CreatePredicate(Pred); 1525 if (expectAndConsume(MIToken::rparen)) 1526 return error("predicate should be terminated by ')'."); 1527 1528 return false; 1529 } 1530 1531 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1532 assert(Token.is(MIToken::kw_target_index)); 1533 lex(); 1534 if (expectAndConsume(MIToken::lparen)) 1535 return true; 1536 if (Token.isNot(MIToken::Identifier)) 1537 return error("expected the name of the target index"); 1538 int Index = 0; 1539 if (getTargetIndex(Token.stringValue(), Index)) 1540 return error("use of undefined target index '" + Token.stringValue() + "'"); 1541 lex(); 1542 if (expectAndConsume(MIToken::rparen)) 1543 return true; 1544 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1545 if (parseOperandsOffset(Dest)) 1546 return true; 1547 return false; 1548 } 1549 1550 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1551 assert(Token.is(MIToken::kw_liveout)); 1552 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1553 assert(TRI && "Expected target register info"); 1554 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1555 lex(); 1556 if (expectAndConsume(MIToken::lparen)) 1557 return true; 1558 while (true) { 1559 if (Token.isNot(MIToken::NamedRegister)) 1560 return error("expected a named register"); 1561 unsigned Reg = 0; 1562 if (parseRegister(Reg)) 1563 return true; 1564 lex(); 1565 Mask[Reg / 32] |= 1U << (Reg % 32); 1566 // TODO: Report an error if the same register is used more than once. 1567 if (Token.isNot(MIToken::comma)) 1568 break; 1569 lex(); 1570 } 1571 if (expectAndConsume(MIToken::rparen)) 1572 return true; 1573 Dest = MachineOperand::CreateRegLiveOut(Mask); 1574 return false; 1575 } 1576 1577 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1578 Optional<unsigned> &TiedDefIdx) { 1579 switch (Token.kind()) { 1580 case MIToken::kw_implicit: 1581 case MIToken::kw_implicit_define: 1582 case MIToken::kw_def: 1583 case MIToken::kw_dead: 1584 case MIToken::kw_killed: 1585 case MIToken::kw_undef: 1586 case MIToken::kw_internal: 1587 case MIToken::kw_early_clobber: 1588 case MIToken::kw_debug_use: 1589 case MIToken::underscore: 1590 case MIToken::NamedRegister: 1591 case MIToken::VirtualRegister: 1592 return parseRegisterOperand(Dest, TiedDefIdx); 1593 case MIToken::IntegerLiteral: 1594 return parseImmediateOperand(Dest); 1595 case MIToken::IntegerType: 1596 return parseTypedImmediateOperand(Dest); 1597 case MIToken::kw_half: 1598 case MIToken::kw_float: 1599 case MIToken::kw_double: 1600 case MIToken::kw_x86_fp80: 1601 case MIToken::kw_fp128: 1602 case MIToken::kw_ppc_fp128: 1603 return parseFPImmediateOperand(Dest); 1604 case MIToken::MachineBasicBlock: 1605 return parseMBBOperand(Dest); 1606 case MIToken::StackObject: 1607 return parseStackObjectOperand(Dest); 1608 case MIToken::FixedStackObject: 1609 return parseFixedStackObjectOperand(Dest); 1610 case MIToken::GlobalValue: 1611 case MIToken::NamedGlobalValue: 1612 return parseGlobalAddressOperand(Dest); 1613 case MIToken::ConstantPoolItem: 1614 return parseConstantPoolIndexOperand(Dest); 1615 case MIToken::JumpTableIndex: 1616 return parseJumpTableIndexOperand(Dest); 1617 case MIToken::ExternalSymbol: 1618 return parseExternalSymbolOperand(Dest); 1619 case MIToken::SubRegisterIndex: 1620 return parseSubRegisterIndexOperand(Dest); 1621 case MIToken::exclaim: 1622 return parseMetadataOperand(Dest); 1623 case MIToken::kw_cfi_same_value: 1624 case MIToken::kw_cfi_offset: 1625 case MIToken::kw_cfi_def_cfa_register: 1626 case MIToken::kw_cfi_def_cfa_offset: 1627 case MIToken::kw_cfi_def_cfa: 1628 return parseCFIOperand(Dest); 1629 case MIToken::kw_blockaddress: 1630 return parseBlockAddressOperand(Dest); 1631 case MIToken::kw_intrinsic: 1632 return parseIntrinsicOperand(Dest); 1633 case MIToken::kw_target_index: 1634 return parseTargetIndexOperand(Dest); 1635 case MIToken::kw_liveout: 1636 return parseLiveoutRegisterMaskOperand(Dest); 1637 case MIToken::kw_floatpred: 1638 case MIToken::kw_intpred: 1639 return parsePredicateOperand(Dest); 1640 case MIToken::Error: 1641 return true; 1642 case MIToken::Identifier: 1643 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1644 Dest = MachineOperand::CreateRegMask(RegMask); 1645 lex(); 1646 break; 1647 } 1648 LLVM_FALLTHROUGH; 1649 default: 1650 // FIXME: Parse the MCSymbol machine operand. 1651 return error("expected a machine operand"); 1652 } 1653 return false; 1654 } 1655 1656 bool MIParser::parseMachineOperandAndTargetFlags( 1657 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1658 unsigned TF = 0; 1659 bool HasTargetFlags = false; 1660 if (Token.is(MIToken::kw_target_flags)) { 1661 HasTargetFlags = true; 1662 lex(); 1663 if (expectAndConsume(MIToken::lparen)) 1664 return true; 1665 if (Token.isNot(MIToken::Identifier)) 1666 return error("expected the name of the target flag"); 1667 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1668 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1669 return error("use of undefined target flag '" + Token.stringValue() + 1670 "'"); 1671 } 1672 lex(); 1673 while (Token.is(MIToken::comma)) { 1674 lex(); 1675 if (Token.isNot(MIToken::Identifier)) 1676 return error("expected the name of the target flag"); 1677 unsigned BitFlag = 0; 1678 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1679 return error("use of undefined target flag '" + Token.stringValue() + 1680 "'"); 1681 // TODO: Report an error when using a duplicate bit target flag. 1682 TF |= BitFlag; 1683 lex(); 1684 } 1685 if (expectAndConsume(MIToken::rparen)) 1686 return true; 1687 } 1688 auto Loc = Token.location(); 1689 if (parseMachineOperand(Dest, TiedDefIdx)) 1690 return true; 1691 if (!HasTargetFlags) 1692 return false; 1693 if (Dest.isReg()) 1694 return error(Loc, "register operands can't have target flags"); 1695 Dest.setTargetFlags(TF); 1696 return false; 1697 } 1698 1699 bool MIParser::parseOffset(int64_t &Offset) { 1700 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1701 return false; 1702 StringRef Sign = Token.range(); 1703 bool IsNegative = Token.is(MIToken::minus); 1704 lex(); 1705 if (Token.isNot(MIToken::IntegerLiteral)) 1706 return error("expected an integer literal after '" + Sign + "'"); 1707 if (Token.integerValue().getMinSignedBits() > 64) 1708 return error("expected 64-bit integer (too large)"); 1709 Offset = Token.integerValue().getExtValue(); 1710 if (IsNegative) 1711 Offset = -Offset; 1712 lex(); 1713 return false; 1714 } 1715 1716 bool MIParser::parseAlignment(unsigned &Alignment) { 1717 assert(Token.is(MIToken::kw_align)); 1718 lex(); 1719 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1720 return error("expected an integer literal after 'align'"); 1721 if (getUnsigned(Alignment)) 1722 return true; 1723 lex(); 1724 return false; 1725 } 1726 1727 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1728 int64_t Offset = 0; 1729 if (parseOffset(Offset)) 1730 return true; 1731 Op.setOffset(Offset); 1732 return false; 1733 } 1734 1735 bool MIParser::parseIRValue(const Value *&V) { 1736 switch (Token.kind()) { 1737 case MIToken::NamedIRValue: { 1738 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1739 break; 1740 } 1741 case MIToken::IRValue: { 1742 unsigned SlotNumber = 0; 1743 if (getUnsigned(SlotNumber)) 1744 return true; 1745 V = getIRValue(SlotNumber); 1746 break; 1747 } 1748 case MIToken::NamedGlobalValue: 1749 case MIToken::GlobalValue: { 1750 GlobalValue *GV = nullptr; 1751 if (parseGlobalValue(GV)) 1752 return true; 1753 V = GV; 1754 break; 1755 } 1756 case MIToken::QuotedIRValue: { 1757 const Constant *C = nullptr; 1758 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1759 return true; 1760 V = C; 1761 break; 1762 } 1763 default: 1764 llvm_unreachable("The current token should be an IR block reference"); 1765 } 1766 if (!V) 1767 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1768 return false; 1769 } 1770 1771 bool MIParser::getUint64(uint64_t &Result) { 1772 assert(Token.hasIntegerValue()); 1773 if (Token.integerValue().getActiveBits() > 64) 1774 return error("expected 64-bit integer (too large)"); 1775 Result = Token.integerValue().getZExtValue(); 1776 return false; 1777 } 1778 1779 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1780 const auto OldFlags = Flags; 1781 switch (Token.kind()) { 1782 case MIToken::kw_volatile: 1783 Flags |= MachineMemOperand::MOVolatile; 1784 break; 1785 case MIToken::kw_non_temporal: 1786 Flags |= MachineMemOperand::MONonTemporal; 1787 break; 1788 case MIToken::kw_invariant: 1789 Flags |= MachineMemOperand::MOInvariant; 1790 break; 1791 // TODO: parse the target specific memory operand flags. 1792 default: 1793 llvm_unreachable("The current token should be a memory operand flag"); 1794 } 1795 if (OldFlags == Flags) 1796 // We know that the same flag is specified more than once when the flags 1797 // weren't modified. 1798 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1799 lex(); 1800 return false; 1801 } 1802 1803 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1804 switch (Token.kind()) { 1805 case MIToken::kw_stack: 1806 PSV = MF.getPSVManager().getStack(); 1807 break; 1808 case MIToken::kw_got: 1809 PSV = MF.getPSVManager().getGOT(); 1810 break; 1811 case MIToken::kw_jump_table: 1812 PSV = MF.getPSVManager().getJumpTable(); 1813 break; 1814 case MIToken::kw_constant_pool: 1815 PSV = MF.getPSVManager().getConstantPool(); 1816 break; 1817 case MIToken::FixedStackObject: { 1818 int FI; 1819 if (parseFixedStackFrameIndex(FI)) 1820 return true; 1821 PSV = MF.getPSVManager().getFixedStack(FI); 1822 // The token was already consumed, so use return here instead of break. 1823 return false; 1824 } 1825 case MIToken::StackObject: { 1826 int FI; 1827 if (parseStackFrameIndex(FI)) 1828 return true; 1829 PSV = MF.getPSVManager().getFixedStack(FI); 1830 // The token was already consumed, so use return here instead of break. 1831 return false; 1832 } 1833 case MIToken::kw_call_entry: { 1834 lex(); 1835 switch (Token.kind()) { 1836 case MIToken::GlobalValue: 1837 case MIToken::NamedGlobalValue: { 1838 GlobalValue *GV = nullptr; 1839 if (parseGlobalValue(GV)) 1840 return true; 1841 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1842 break; 1843 } 1844 case MIToken::ExternalSymbol: 1845 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1846 MF.createExternalSymbolName(Token.stringValue())); 1847 break; 1848 default: 1849 return error( 1850 "expected a global value or an external symbol after 'call-entry'"); 1851 } 1852 break; 1853 } 1854 default: 1855 llvm_unreachable("The current token should be pseudo source value"); 1856 } 1857 lex(); 1858 return false; 1859 } 1860 1861 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1862 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1863 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1864 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1865 Token.is(MIToken::kw_call_entry)) { 1866 const PseudoSourceValue *PSV = nullptr; 1867 if (parseMemoryPseudoSourceValue(PSV)) 1868 return true; 1869 int64_t Offset = 0; 1870 if (parseOffset(Offset)) 1871 return true; 1872 Dest = MachinePointerInfo(PSV, Offset); 1873 return false; 1874 } 1875 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1876 Token.isNot(MIToken::GlobalValue) && 1877 Token.isNot(MIToken::NamedGlobalValue) && 1878 Token.isNot(MIToken::QuotedIRValue)) 1879 return error("expected an IR value reference"); 1880 const Value *V = nullptr; 1881 if (parseIRValue(V)) 1882 return true; 1883 if (!V->getType()->isPointerTy()) 1884 return error("expected a pointer IR value"); 1885 lex(); 1886 int64_t Offset = 0; 1887 if (parseOffset(Offset)) 1888 return true; 1889 Dest = MachinePointerInfo(V, Offset); 1890 return false; 1891 } 1892 1893 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1894 if (expectAndConsume(MIToken::lparen)) 1895 return true; 1896 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1897 while (Token.isMemoryOperandFlag()) { 1898 if (parseMemoryOperandFlag(Flags)) 1899 return true; 1900 } 1901 if (Token.isNot(MIToken::Identifier) || 1902 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1903 return error("expected 'load' or 'store' memory operation"); 1904 if (Token.stringValue() == "load") 1905 Flags |= MachineMemOperand::MOLoad; 1906 else 1907 Flags |= MachineMemOperand::MOStore; 1908 lex(); 1909 1910 if (Token.isNot(MIToken::IntegerLiteral)) 1911 return error("expected the size integer literal after memory operation"); 1912 uint64_t Size; 1913 if (getUint64(Size)) 1914 return true; 1915 lex(); 1916 1917 MachinePointerInfo Ptr = MachinePointerInfo(); 1918 if (Token.is(MIToken::Identifier)) { 1919 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1920 if (Token.stringValue() != Word) 1921 return error(Twine("expected '") + Word + "'"); 1922 lex(); 1923 1924 if (parseMachinePointerInfo(Ptr)) 1925 return true; 1926 } 1927 unsigned BaseAlignment = Size; 1928 AAMDNodes AAInfo; 1929 MDNode *Range = nullptr; 1930 while (consumeIfPresent(MIToken::comma)) { 1931 switch (Token.kind()) { 1932 case MIToken::kw_align: 1933 if (parseAlignment(BaseAlignment)) 1934 return true; 1935 break; 1936 case MIToken::md_tbaa: 1937 lex(); 1938 if (parseMDNode(AAInfo.TBAA)) 1939 return true; 1940 break; 1941 case MIToken::md_alias_scope: 1942 lex(); 1943 if (parseMDNode(AAInfo.Scope)) 1944 return true; 1945 break; 1946 case MIToken::md_noalias: 1947 lex(); 1948 if (parseMDNode(AAInfo.NoAlias)) 1949 return true; 1950 break; 1951 case MIToken::md_range: 1952 lex(); 1953 if (parseMDNode(Range)) 1954 return true; 1955 break; 1956 // TODO: Report an error on duplicate metadata nodes. 1957 default: 1958 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1959 "'!noalias' or '!range'"); 1960 } 1961 } 1962 if (expectAndConsume(MIToken::rparen)) 1963 return true; 1964 Dest = 1965 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1966 return false; 1967 } 1968 1969 void MIParser::initNames2InstrOpCodes() { 1970 if (!Names2InstrOpCodes.empty()) 1971 return; 1972 const auto *TII = MF.getSubtarget().getInstrInfo(); 1973 assert(TII && "Expected target instruction info"); 1974 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1975 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1976 } 1977 1978 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1979 initNames2InstrOpCodes(); 1980 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1981 if (InstrInfo == Names2InstrOpCodes.end()) 1982 return true; 1983 OpCode = InstrInfo->getValue(); 1984 return false; 1985 } 1986 1987 void MIParser::initNames2Regs() { 1988 if (!Names2Regs.empty()) 1989 return; 1990 // The '%noreg' register is the register 0. 1991 Names2Regs.insert(std::make_pair("noreg", 0)); 1992 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1993 assert(TRI && "Expected target register info"); 1994 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1995 bool WasInserted = 1996 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1997 .second; 1998 (void)WasInserted; 1999 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2000 } 2001 } 2002 2003 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2004 initNames2Regs(); 2005 auto RegInfo = Names2Regs.find(RegName); 2006 if (RegInfo == Names2Regs.end()) 2007 return true; 2008 Reg = RegInfo->getValue(); 2009 return false; 2010 } 2011 2012 void MIParser::initNames2RegMasks() { 2013 if (!Names2RegMasks.empty()) 2014 return; 2015 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2016 assert(TRI && "Expected target register info"); 2017 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2018 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2019 assert(RegMasks.size() == RegMaskNames.size()); 2020 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2021 Names2RegMasks.insert( 2022 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2023 } 2024 2025 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2026 initNames2RegMasks(); 2027 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2028 if (RegMaskInfo == Names2RegMasks.end()) 2029 return nullptr; 2030 return RegMaskInfo->getValue(); 2031 } 2032 2033 void MIParser::initNames2SubRegIndices() { 2034 if (!Names2SubRegIndices.empty()) 2035 return; 2036 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2037 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2038 Names2SubRegIndices.insert( 2039 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2040 } 2041 2042 unsigned MIParser::getSubRegIndex(StringRef Name) { 2043 initNames2SubRegIndices(); 2044 auto SubRegInfo = Names2SubRegIndices.find(Name); 2045 if (SubRegInfo == Names2SubRegIndices.end()) 2046 return 0; 2047 return SubRegInfo->getValue(); 2048 } 2049 2050 static void initSlots2BasicBlocks( 2051 const Function &F, 2052 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2053 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2054 MST.incorporateFunction(F); 2055 for (auto &BB : F) { 2056 if (BB.hasName()) 2057 continue; 2058 int Slot = MST.getLocalSlot(&BB); 2059 if (Slot == -1) 2060 continue; 2061 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2062 } 2063 } 2064 2065 static const BasicBlock *getIRBlockFromSlot( 2066 unsigned Slot, 2067 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2068 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2069 if (BlockInfo == Slots2BasicBlocks.end()) 2070 return nullptr; 2071 return BlockInfo->second; 2072 } 2073 2074 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2075 if (Slots2BasicBlocks.empty()) 2076 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2077 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2078 } 2079 2080 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2081 if (&F == MF.getFunction()) 2082 return getIRBlock(Slot); 2083 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2084 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2085 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2086 } 2087 2088 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2089 DenseMap<unsigned, const Value *> &Slots2Values) { 2090 int Slot = MST.getLocalSlot(V); 2091 if (Slot == -1) 2092 return; 2093 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2094 } 2095 2096 /// Creates the mapping from slot numbers to function's unnamed IR values. 2097 static void initSlots2Values(const Function &F, 2098 DenseMap<unsigned, const Value *> &Slots2Values) { 2099 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2100 MST.incorporateFunction(F); 2101 for (const auto &Arg : F.args()) 2102 mapValueToSlot(&Arg, MST, Slots2Values); 2103 for (const auto &BB : F) { 2104 mapValueToSlot(&BB, MST, Slots2Values); 2105 for (const auto &I : BB) 2106 mapValueToSlot(&I, MST, Slots2Values); 2107 } 2108 } 2109 2110 const Value *MIParser::getIRValue(unsigned Slot) { 2111 if (Slots2Values.empty()) 2112 initSlots2Values(*MF.getFunction(), Slots2Values); 2113 auto ValueInfo = Slots2Values.find(Slot); 2114 if (ValueInfo == Slots2Values.end()) 2115 return nullptr; 2116 return ValueInfo->second; 2117 } 2118 2119 void MIParser::initNames2TargetIndices() { 2120 if (!Names2TargetIndices.empty()) 2121 return; 2122 const auto *TII = MF.getSubtarget().getInstrInfo(); 2123 assert(TII && "Expected target instruction info"); 2124 auto Indices = TII->getSerializableTargetIndices(); 2125 for (const auto &I : Indices) 2126 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2127 } 2128 2129 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2130 initNames2TargetIndices(); 2131 auto IndexInfo = Names2TargetIndices.find(Name); 2132 if (IndexInfo == Names2TargetIndices.end()) 2133 return true; 2134 Index = IndexInfo->second; 2135 return false; 2136 } 2137 2138 void MIParser::initNames2DirectTargetFlags() { 2139 if (!Names2DirectTargetFlags.empty()) 2140 return; 2141 const auto *TII = MF.getSubtarget().getInstrInfo(); 2142 assert(TII && "Expected target instruction info"); 2143 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2144 for (const auto &I : Flags) 2145 Names2DirectTargetFlags.insert( 2146 std::make_pair(StringRef(I.second), I.first)); 2147 } 2148 2149 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2150 initNames2DirectTargetFlags(); 2151 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2152 if (FlagInfo == Names2DirectTargetFlags.end()) 2153 return true; 2154 Flag = FlagInfo->second; 2155 return false; 2156 } 2157 2158 void MIParser::initNames2BitmaskTargetFlags() { 2159 if (!Names2BitmaskTargetFlags.empty()) 2160 return; 2161 const auto *TII = MF.getSubtarget().getInstrInfo(); 2162 assert(TII && "Expected target instruction info"); 2163 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2164 for (const auto &I : Flags) 2165 Names2BitmaskTargetFlags.insert( 2166 std::make_pair(StringRef(I.second), I.first)); 2167 } 2168 2169 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2170 initNames2BitmaskTargetFlags(); 2171 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2172 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2173 return true; 2174 Flag = FlagInfo->second; 2175 return false; 2176 } 2177 2178 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2179 StringRef Src, 2180 SMDiagnostic &Error) { 2181 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2182 } 2183 2184 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS, 2185 StringRef Src, SMDiagnostic &Error) { 2186 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2187 } 2188 2189 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS, 2190 MachineBasicBlock *&MBB, StringRef Src, 2191 SMDiagnostic &Error) { 2192 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2193 } 2194 2195 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS, 2196 unsigned &Reg, StringRef Src, 2197 SMDiagnostic &Error) { 2198 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2199 } 2200 2201 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS, 2202 unsigned &Reg, StringRef Src, 2203 SMDiagnostic &Error) { 2204 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg); 2205 } 2206 2207 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS, 2208 int &FI, StringRef Src, 2209 SMDiagnostic &Error) { 2210 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2211 } 2212 2213 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS, 2214 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2215 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2216 } 2217