1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 
39 namespace {
40 
41 /// A wrapper struct around the 'MachineOperand' struct that includes a source
42 /// range and other attributes.
43 struct ParsedMachineOperand {
44   MachineOperand Operand;
45   StringRef::iterator Begin;
46   StringRef::iterator End;
47   Optional<unsigned> TiedDefIdx;
48 
49   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
50                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
51       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
52     if (TiedDefIdx)
53       assert(Operand.isReg() && Operand.isUse() &&
54              "Only used register operands can be tied");
55   }
56 };
57 
58 class MIParser {
59   SourceMgr &SM;
60   MachineFunction &MF;
61   SMDiagnostic &Error;
62   StringRef Source, CurrentSource;
63   MIToken Token;
64   const PerFunctionMIParsingState &PFS;
65   /// Maps from indices to unnamed global values and metadata nodes.
66   const SlotMapping &IRSlots;
67   /// Maps from instruction names to op codes.
68   StringMap<unsigned> Names2InstrOpCodes;
69   /// Maps from register names to registers.
70   StringMap<unsigned> Names2Regs;
71   /// Maps from register mask names to register masks.
72   StringMap<const uint32_t *> Names2RegMasks;
73   /// Maps from subregister names to subregister indices.
74   StringMap<unsigned> Names2SubRegIndices;
75   /// Maps from slot numbers to function's unnamed basic blocks.
76   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
77   /// Maps from slot numbers to function's unnamed values.
78   DenseMap<unsigned, const Value *> Slots2Values;
79   /// Maps from target index names to target indices.
80   StringMap<int> Names2TargetIndices;
81   /// Maps from direct target flag names to the direct target flag values.
82   StringMap<unsigned> Names2DirectTargetFlags;
83   /// Maps from direct target flag names to the bitmask target flag values.
84   StringMap<unsigned> Names2BitmaskTargetFlags;
85 
86 public:
87   MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
88            StringRef Source, const PerFunctionMIParsingState &PFS,
89            const SlotMapping &IRSlots);
90 
91   /// \p SkipChar gives the number of characters to skip before looking
92   /// for the next token.
93   void lex(unsigned SkipChar = 0);
94 
95   /// Report an error at the current location with the given message.
96   ///
97   /// This function always return true.
98   bool error(const Twine &Msg);
99 
100   /// Report an error at the given location with the given message.
101   ///
102   /// This function always return true.
103   bool error(StringRef::iterator Loc, const Twine &Msg);
104 
105   bool
106   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
107   bool parseBasicBlocks();
108   bool parse(MachineInstr *&MI);
109   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
110   bool parseStandaloneNamedRegister(unsigned &Reg);
111   bool parseStandaloneVirtualRegister(unsigned &Reg);
112   bool parseStandaloneStackObject(int &FI);
113   bool parseStandaloneMDNode(MDNode *&Node);
114 
115   bool
116   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
117   bool parseBasicBlock(MachineBasicBlock &MBB);
118   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
119   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
120 
121   bool parseRegister(unsigned &Reg);
122   bool parseRegisterFlag(unsigned &Flags);
123   bool parseSubRegisterIndex(unsigned &SubReg);
124   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
125   bool parseSize(unsigned &Size);
126   bool parseRegisterOperand(MachineOperand &Dest,
127                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
128   bool parseImmediateOperand(MachineOperand &Dest);
129   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
130                        const Constant *&C);
131   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
132   bool parseIRType(StringRef::iterator Loc, StringRef Source, unsigned &Read,
133                    Type *&Ty);
134   // \p MustBeSized defines whether or not \p Ty must be sized.
135   bool parseIRType(StringRef::iterator Loc, Type *&Ty, bool MustBeSized = true);
136   bool parseTypedImmediateOperand(MachineOperand &Dest);
137   bool parseFPImmediateOperand(MachineOperand &Dest);
138   bool parseMBBReference(MachineBasicBlock *&MBB);
139   bool parseMBBOperand(MachineOperand &Dest);
140   bool parseStackFrameIndex(int &FI);
141   bool parseStackObjectOperand(MachineOperand &Dest);
142   bool parseFixedStackFrameIndex(int &FI);
143   bool parseFixedStackObjectOperand(MachineOperand &Dest);
144   bool parseGlobalValue(GlobalValue *&GV);
145   bool parseGlobalAddressOperand(MachineOperand &Dest);
146   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
147   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
148   bool parseJumpTableIndexOperand(MachineOperand &Dest);
149   bool parseExternalSymbolOperand(MachineOperand &Dest);
150   bool parseMDNode(MDNode *&Node);
151   bool parseMetadataOperand(MachineOperand &Dest);
152   bool parseCFIOffset(int &Offset);
153   bool parseCFIRegister(unsigned &Reg);
154   bool parseCFIOperand(MachineOperand &Dest);
155   bool parseIRBlock(BasicBlock *&BB, const Function &F);
156   bool parseBlockAddressOperand(MachineOperand &Dest);
157   bool parseTargetIndexOperand(MachineOperand &Dest);
158   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
159   bool parseMachineOperand(MachineOperand &Dest,
160                            Optional<unsigned> &TiedDefIdx);
161   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
162                                          Optional<unsigned> &TiedDefIdx);
163   bool parseOffset(int64_t &Offset);
164   bool parseAlignment(unsigned &Alignment);
165   bool parseOperandsOffset(MachineOperand &Op);
166   bool parseIRValue(const Value *&V);
167   bool parseMemoryOperandFlag(unsigned &Flags);
168   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
169   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
170   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
171 
172 private:
173   /// Convert the integer literal in the current token into an unsigned integer.
174   ///
175   /// Return true if an error occurred.
176   bool getUnsigned(unsigned &Result);
177 
178   /// Convert the integer literal in the current token into an uint64.
179   ///
180   /// Return true if an error occurred.
181   bool getUint64(uint64_t &Result);
182 
183   /// If the current token is of the given kind, consume it and return false.
184   /// Otherwise report an error and return true.
185   bool expectAndConsume(MIToken::TokenKind TokenKind);
186 
187   /// If the current token is of the given kind, consume it and return true.
188   /// Otherwise return false.
189   bool consumeIfPresent(MIToken::TokenKind TokenKind);
190 
191   void initNames2InstrOpCodes();
192 
193   /// Try to convert an instruction name to an opcode. Return true if the
194   /// instruction name is invalid.
195   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
196 
197   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
198 
199   bool assignRegisterTies(MachineInstr &MI,
200                           ArrayRef<ParsedMachineOperand> Operands);
201 
202   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
203                               const MCInstrDesc &MCID);
204 
205   void initNames2Regs();
206 
207   /// Try to convert a register name to a register number. Return true if the
208   /// register name is invalid.
209   bool getRegisterByName(StringRef RegName, unsigned &Reg);
210 
211   void initNames2RegMasks();
212 
213   /// Check if the given identifier is a name of a register mask.
214   ///
215   /// Return null if the identifier isn't a register mask.
216   const uint32_t *getRegMask(StringRef Identifier);
217 
218   void initNames2SubRegIndices();
219 
220   /// Check if the given identifier is a name of a subregister index.
221   ///
222   /// Return 0 if the name isn't a subregister index class.
223   unsigned getSubRegIndex(StringRef Name);
224 
225   const BasicBlock *getIRBlock(unsigned Slot);
226   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
227 
228   const Value *getIRValue(unsigned Slot);
229 
230   void initNames2TargetIndices();
231 
232   /// Try to convert a name of target index to the corresponding target index.
233   ///
234   /// Return true if the name isn't a name of a target index.
235   bool getTargetIndex(StringRef Name, int &Index);
236 
237   void initNames2DirectTargetFlags();
238 
239   /// Try to convert a name of a direct target flag to the corresponding
240   /// target flag.
241   ///
242   /// Return true if the name isn't a name of a direct flag.
243   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
244 
245   void initNames2BitmaskTargetFlags();
246 
247   /// Try to convert a name of a bitmask target flag to the corresponding
248   /// target flag.
249   ///
250   /// Return true if the name isn't a name of a bitmask target flag.
251   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
252 };
253 
254 } // end anonymous namespace
255 
256 MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
257                    StringRef Source, const PerFunctionMIParsingState &PFS,
258                    const SlotMapping &IRSlots)
259     : SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source),
260       PFS(PFS), IRSlots(IRSlots) {}
261 
262 void MIParser::lex(unsigned SkipChar) {
263   CurrentSource = lexMIToken(
264       CurrentSource.data() + SkipChar, Token,
265       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
266 }
267 
268 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
269 
270 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
271   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
272   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
273   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
274     // Create an ordinary diagnostic when the source manager's buffer is the
275     // source string.
276     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
277     return true;
278   }
279   // Create a diagnostic for a YAML string literal.
280   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
281                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
282                        Source, None, None);
283   return true;
284 }
285 
286 static const char *toString(MIToken::TokenKind TokenKind) {
287   switch (TokenKind) {
288   case MIToken::comma:
289     return "','";
290   case MIToken::equal:
291     return "'='";
292   case MIToken::colon:
293     return "':'";
294   case MIToken::lparen:
295     return "'('";
296   case MIToken::rparen:
297     return "')'";
298   default:
299     return "<unknown token>";
300   }
301 }
302 
303 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
304   if (Token.isNot(TokenKind))
305     return error(Twine("expected ") + toString(TokenKind));
306   lex();
307   return false;
308 }
309 
310 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
311   if (Token.isNot(TokenKind))
312     return false;
313   lex();
314   return true;
315 }
316 
317 bool MIParser::parseBasicBlockDefinition(
318     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
319   assert(Token.is(MIToken::MachineBasicBlockLabel));
320   unsigned ID = 0;
321   if (getUnsigned(ID))
322     return true;
323   auto Loc = Token.location();
324   auto Name = Token.stringValue();
325   lex();
326   bool HasAddressTaken = false;
327   bool IsLandingPad = false;
328   unsigned Alignment = 0;
329   BasicBlock *BB = nullptr;
330   if (consumeIfPresent(MIToken::lparen)) {
331     do {
332       // TODO: Report an error when multiple same attributes are specified.
333       switch (Token.kind()) {
334       case MIToken::kw_address_taken:
335         HasAddressTaken = true;
336         lex();
337         break;
338       case MIToken::kw_landing_pad:
339         IsLandingPad = true;
340         lex();
341         break;
342       case MIToken::kw_align:
343         if (parseAlignment(Alignment))
344           return true;
345         break;
346       case MIToken::IRBlock:
347         // TODO: Report an error when both name and ir block are specified.
348         if (parseIRBlock(BB, *MF.getFunction()))
349           return true;
350         lex();
351         break;
352       default:
353         break;
354       }
355     } while (consumeIfPresent(MIToken::comma));
356     if (expectAndConsume(MIToken::rparen))
357       return true;
358   }
359   if (expectAndConsume(MIToken::colon))
360     return true;
361 
362   if (!Name.empty()) {
363     BB = dyn_cast_or_null<BasicBlock>(
364         MF.getFunction()->getValueSymbolTable().lookup(Name));
365     if (!BB)
366       return error(Loc, Twine("basic block '") + Name +
367                             "' is not defined in the function '" +
368                             MF.getName() + "'");
369   }
370   auto *MBB = MF.CreateMachineBasicBlock(BB);
371   MF.insert(MF.end(), MBB);
372   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
373   if (!WasInserted)
374     return error(Loc, Twine("redefinition of machine basic block with id #") +
375                           Twine(ID));
376   if (Alignment)
377     MBB->setAlignment(Alignment);
378   if (HasAddressTaken)
379     MBB->setHasAddressTaken();
380   MBB->setIsEHPad(IsLandingPad);
381   return false;
382 }
383 
384 bool MIParser::parseBasicBlockDefinitions(
385     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
386   lex();
387   // Skip until the first machine basic block.
388   while (Token.is(MIToken::Newline))
389     lex();
390   if (Token.isErrorOrEOF())
391     return Token.isError();
392   if (Token.isNot(MIToken::MachineBasicBlockLabel))
393     return error("expected a basic block definition before instructions");
394   unsigned BraceDepth = 0;
395   do {
396     if (parseBasicBlockDefinition(MBBSlots))
397       return true;
398     bool IsAfterNewline = false;
399     // Skip until the next machine basic block.
400     while (true) {
401       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
402           Token.isErrorOrEOF())
403         break;
404       else if (Token.is(MIToken::MachineBasicBlockLabel))
405         return error("basic block definition should be located at the start of "
406                      "the line");
407       else if (consumeIfPresent(MIToken::Newline)) {
408         IsAfterNewline = true;
409         continue;
410       }
411       IsAfterNewline = false;
412       if (Token.is(MIToken::lbrace))
413         ++BraceDepth;
414       if (Token.is(MIToken::rbrace)) {
415         if (!BraceDepth)
416           return error("extraneous closing brace ('}')");
417         --BraceDepth;
418       }
419       lex();
420     }
421     // Verify that we closed all of the '{' at the end of a file or a block.
422     if (!Token.isError() && BraceDepth)
423       return error("expected '}'"); // FIXME: Report a note that shows '{'.
424   } while (!Token.isErrorOrEOF());
425   return Token.isError();
426 }
427 
428 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
429   assert(Token.is(MIToken::kw_liveins));
430   lex();
431   if (expectAndConsume(MIToken::colon))
432     return true;
433   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
434     return false;
435   do {
436     if (Token.isNot(MIToken::NamedRegister))
437       return error("expected a named register");
438     unsigned Reg = 0;
439     if (parseRegister(Reg))
440       return true;
441     MBB.addLiveIn(Reg);
442     lex();
443   } while (consumeIfPresent(MIToken::comma));
444   return false;
445 }
446 
447 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
448   assert(Token.is(MIToken::kw_successors));
449   lex();
450   if (expectAndConsume(MIToken::colon))
451     return true;
452   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
453     return false;
454   do {
455     if (Token.isNot(MIToken::MachineBasicBlock))
456       return error("expected a machine basic block reference");
457     MachineBasicBlock *SuccMBB = nullptr;
458     if (parseMBBReference(SuccMBB))
459       return true;
460     lex();
461     unsigned Weight = 0;
462     if (consumeIfPresent(MIToken::lparen)) {
463       if (Token.isNot(MIToken::IntegerLiteral))
464         return error("expected an integer literal after '('");
465       if (getUnsigned(Weight))
466         return true;
467       lex();
468       if (expectAndConsume(MIToken::rparen))
469         return true;
470     }
471     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
472   } while (consumeIfPresent(MIToken::comma));
473   MBB.normalizeSuccProbs();
474   return false;
475 }
476 
477 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
478   // Skip the definition.
479   assert(Token.is(MIToken::MachineBasicBlockLabel));
480   lex();
481   if (consumeIfPresent(MIToken::lparen)) {
482     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
483       lex();
484     consumeIfPresent(MIToken::rparen);
485   }
486   consumeIfPresent(MIToken::colon);
487 
488   // Parse the liveins and successors.
489   // N.B: Multiple lists of successors and liveins are allowed and they're
490   // merged into one.
491   // Example:
492   //   liveins: %edi
493   //   liveins: %esi
494   //
495   // is equivalent to
496   //   liveins: %edi, %esi
497   while (true) {
498     if (Token.is(MIToken::kw_successors)) {
499       if (parseBasicBlockSuccessors(MBB))
500         return true;
501     } else if (Token.is(MIToken::kw_liveins)) {
502       if (parseBasicBlockLiveins(MBB))
503         return true;
504     } else if (consumeIfPresent(MIToken::Newline)) {
505       continue;
506     } else
507       break;
508     if (!Token.isNewlineOrEOF())
509       return error("expected line break at the end of a list");
510     lex();
511   }
512 
513   // Parse the instructions.
514   bool IsInBundle = false;
515   MachineInstr *PrevMI = nullptr;
516   while (true) {
517     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
518       return false;
519     else if (consumeIfPresent(MIToken::Newline))
520       continue;
521     if (consumeIfPresent(MIToken::rbrace)) {
522       // The first parsing pass should verify that all closing '}' have an
523       // opening '{'.
524       assert(IsInBundle);
525       IsInBundle = false;
526       continue;
527     }
528     MachineInstr *MI = nullptr;
529     if (parse(MI))
530       return true;
531     MBB.insert(MBB.end(), MI);
532     if (IsInBundle) {
533       PrevMI->setFlag(MachineInstr::BundledSucc);
534       MI->setFlag(MachineInstr::BundledPred);
535     }
536     PrevMI = MI;
537     if (Token.is(MIToken::lbrace)) {
538       if (IsInBundle)
539         return error("nested instruction bundles are not allowed");
540       lex();
541       // This instruction is the start of the bundle.
542       MI->setFlag(MachineInstr::BundledSucc);
543       IsInBundle = true;
544       if (!Token.is(MIToken::Newline))
545         // The next instruction can be on the same line.
546         continue;
547     }
548     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
549     lex();
550   }
551   return false;
552 }
553 
554 bool MIParser::parseBasicBlocks() {
555   lex();
556   // Skip until the first machine basic block.
557   while (Token.is(MIToken::Newline))
558     lex();
559   if (Token.isErrorOrEOF())
560     return Token.isError();
561   // The first parsing pass should have verified that this token is a MBB label
562   // in the 'parseBasicBlockDefinitions' method.
563   assert(Token.is(MIToken::MachineBasicBlockLabel));
564   do {
565     MachineBasicBlock *MBB = nullptr;
566     if (parseMBBReference(MBB))
567       return true;
568     if (parseBasicBlock(*MBB))
569       return true;
570     // The method 'parseBasicBlock' should parse the whole block until the next
571     // block or the end of file.
572     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
573   } while (Token.isNot(MIToken::Eof));
574   return false;
575 }
576 
577 bool MIParser::parse(MachineInstr *&MI) {
578   // Parse any register operands before '='
579   MachineOperand MO = MachineOperand::CreateImm(0);
580   SmallVector<ParsedMachineOperand, 8> Operands;
581   while (Token.isRegister() || Token.isRegisterFlag()) {
582     auto Loc = Token.location();
583     Optional<unsigned> TiedDefIdx;
584     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
585       return true;
586     Operands.push_back(
587         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
588     if (Token.isNot(MIToken::comma))
589       break;
590     lex();
591   }
592   if (!Operands.empty() && expectAndConsume(MIToken::equal))
593     return true;
594 
595   unsigned OpCode, Flags = 0;
596   if (Token.isError() || parseInstruction(OpCode, Flags))
597     return true;
598 
599   Type *Ty = nullptr;
600   if (isPreISelGenericOpcode(OpCode)) {
601     // For generic opcode, a type is mandatory.
602     auto Loc = Token.location();
603     if (parseIRType(Loc, Ty))
604       return true;
605   }
606 
607   // Parse the remaining machine operands.
608   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
609          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
610     auto Loc = Token.location();
611     Optional<unsigned> TiedDefIdx;
612     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
613       return true;
614     Operands.push_back(
615         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
616     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
617         Token.is(MIToken::lbrace))
618       break;
619     if (Token.isNot(MIToken::comma))
620       return error("expected ',' before the next machine operand");
621     lex();
622   }
623 
624   DebugLoc DebugLocation;
625   if (Token.is(MIToken::kw_debug_location)) {
626     lex();
627     if (Token.isNot(MIToken::exclaim))
628       return error("expected a metadata node after 'debug-location'");
629     MDNode *Node = nullptr;
630     if (parseMDNode(Node))
631       return true;
632     DebugLocation = DebugLoc(Node);
633   }
634 
635   // Parse the machine memory operands.
636   SmallVector<MachineMemOperand *, 2> MemOperands;
637   if (Token.is(MIToken::coloncolon)) {
638     lex();
639     while (!Token.isNewlineOrEOF()) {
640       MachineMemOperand *MemOp = nullptr;
641       if (parseMachineMemoryOperand(MemOp))
642         return true;
643       MemOperands.push_back(MemOp);
644       if (Token.isNewlineOrEOF())
645         break;
646       if (Token.isNot(MIToken::comma))
647         return error("expected ',' before the next machine memory operand");
648       lex();
649     }
650   }
651 
652   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
653   if (!MCID.isVariadic()) {
654     // FIXME: Move the implicit operand verification to the machine verifier.
655     if (verifyImplicitOperands(Operands, MCID))
656       return true;
657   }
658 
659   // TODO: Check for extraneous machine operands.
660   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
661   MI->setFlags(Flags);
662   if (Ty)
663     MI->setType(Ty);
664   for (const auto &Operand : Operands)
665     MI->addOperand(MF, Operand.Operand);
666   if (assignRegisterTies(*MI, Operands))
667     return true;
668   if (MemOperands.empty())
669     return false;
670   MachineInstr::mmo_iterator MemRefs =
671       MF.allocateMemRefsArray(MemOperands.size());
672   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
673   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
674   return false;
675 }
676 
677 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
678   lex();
679   if (Token.isNot(MIToken::MachineBasicBlock))
680     return error("expected a machine basic block reference");
681   if (parseMBBReference(MBB))
682     return true;
683   lex();
684   if (Token.isNot(MIToken::Eof))
685     return error(
686         "expected end of string after the machine basic block reference");
687   return false;
688 }
689 
690 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
691   lex();
692   if (Token.isNot(MIToken::NamedRegister))
693     return error("expected a named register");
694   if (parseRegister(Reg))
695     return true;
696   lex();
697   if (Token.isNot(MIToken::Eof))
698     return error("expected end of string after the register reference");
699   return false;
700 }
701 
702 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
703   lex();
704   if (Token.isNot(MIToken::VirtualRegister))
705     return error("expected a virtual register");
706   if (parseRegister(Reg))
707     return true;
708   lex();
709   if (Token.isNot(MIToken::Eof))
710     return error("expected end of string after the register reference");
711   return false;
712 }
713 
714 bool MIParser::parseStandaloneStackObject(int &FI) {
715   lex();
716   if (Token.isNot(MIToken::StackObject))
717     return error("expected a stack object");
718   if (parseStackFrameIndex(FI))
719     return true;
720   if (Token.isNot(MIToken::Eof))
721     return error("expected end of string after the stack object reference");
722   return false;
723 }
724 
725 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
726   lex();
727   if (Token.isNot(MIToken::exclaim))
728     return error("expected a metadata node");
729   if (parseMDNode(Node))
730     return true;
731   if (Token.isNot(MIToken::Eof))
732     return error("expected end of string after the metadata node");
733   return false;
734 }
735 
736 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
737   assert(MO.isImplicit());
738   return MO.isDef() ? "implicit-def" : "implicit";
739 }
740 
741 static std::string getRegisterName(const TargetRegisterInfo *TRI,
742                                    unsigned Reg) {
743   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
744   return StringRef(TRI->getName(Reg)).lower();
745 }
746 
747 /// Return true if the parsed machine operands contain a given machine operand.
748 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
749                                 ArrayRef<ParsedMachineOperand> Operands) {
750   for (const auto &I : Operands) {
751     if (ImplicitOperand.isIdenticalTo(I.Operand))
752       return true;
753   }
754   return false;
755 }
756 
757 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
758                                       const MCInstrDesc &MCID) {
759   if (MCID.isCall())
760     // We can't verify call instructions as they can contain arbitrary implicit
761     // register and register mask operands.
762     return false;
763 
764   // Gather all the expected implicit operands.
765   SmallVector<MachineOperand, 4> ImplicitOperands;
766   if (MCID.ImplicitDefs)
767     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
768       ImplicitOperands.push_back(
769           MachineOperand::CreateReg(*ImpDefs, true, true));
770   if (MCID.ImplicitUses)
771     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
772       ImplicitOperands.push_back(
773           MachineOperand::CreateReg(*ImpUses, false, true));
774 
775   const auto *TRI = MF.getSubtarget().getRegisterInfo();
776   assert(TRI && "Expected target register info");
777   for (const auto &I : ImplicitOperands) {
778     if (isImplicitOperandIn(I, Operands))
779       continue;
780     return error(Operands.empty() ? Token.location() : Operands.back().End,
781                  Twine("missing implicit register operand '") +
782                      printImplicitRegisterFlag(I) + " %" +
783                      getRegisterName(TRI, I.getReg()) + "'");
784   }
785   return false;
786 }
787 
788 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
789   if (Token.is(MIToken::kw_frame_setup)) {
790     Flags |= MachineInstr::FrameSetup;
791     lex();
792   }
793   if (Token.isNot(MIToken::Identifier))
794     return error("expected a machine instruction");
795   StringRef InstrName = Token.stringValue();
796   if (parseInstrName(InstrName, OpCode))
797     return error(Twine("unknown machine instruction name '") + InstrName + "'");
798   lex();
799   return false;
800 }
801 
802 bool MIParser::parseRegister(unsigned &Reg) {
803   switch (Token.kind()) {
804   case MIToken::underscore:
805     Reg = 0;
806     break;
807   case MIToken::NamedRegister: {
808     StringRef Name = Token.stringValue();
809     if (getRegisterByName(Name, Reg))
810       return error(Twine("unknown register name '") + Name + "'");
811     break;
812   }
813   case MIToken::VirtualRegister: {
814     unsigned ID;
815     if (getUnsigned(ID))
816       return true;
817     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
818     if (RegInfo == PFS.VirtualRegisterSlots.end())
819       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
820                    "'");
821     Reg = RegInfo->second;
822     break;
823   }
824   // TODO: Parse other register kinds.
825   default:
826     llvm_unreachable("The current token should be a register");
827   }
828   return false;
829 }
830 
831 bool MIParser::parseRegisterFlag(unsigned &Flags) {
832   const unsigned OldFlags = Flags;
833   switch (Token.kind()) {
834   case MIToken::kw_implicit:
835     Flags |= RegState::Implicit;
836     break;
837   case MIToken::kw_implicit_define:
838     Flags |= RegState::ImplicitDefine;
839     break;
840   case MIToken::kw_def:
841     Flags |= RegState::Define;
842     break;
843   case MIToken::kw_dead:
844     Flags |= RegState::Dead;
845     break;
846   case MIToken::kw_killed:
847     Flags |= RegState::Kill;
848     break;
849   case MIToken::kw_undef:
850     Flags |= RegState::Undef;
851     break;
852   case MIToken::kw_internal:
853     Flags |= RegState::InternalRead;
854     break;
855   case MIToken::kw_early_clobber:
856     Flags |= RegState::EarlyClobber;
857     break;
858   case MIToken::kw_debug_use:
859     Flags |= RegState::Debug;
860     break;
861   default:
862     llvm_unreachable("The current token should be a register flag");
863   }
864   if (OldFlags == Flags)
865     // We know that the same flag is specified more than once when the flags
866     // weren't modified.
867     return error("duplicate '" + Token.stringValue() + "' register flag");
868   lex();
869   return false;
870 }
871 
872 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
873   assert(Token.is(MIToken::colon));
874   lex();
875   if (Token.isNot(MIToken::Identifier))
876     return error("expected a subregister index after ':'");
877   auto Name = Token.stringValue();
878   SubReg = getSubRegIndex(Name);
879   if (!SubReg)
880     return error(Twine("use of unknown subregister index '") + Name + "'");
881   lex();
882   return false;
883 }
884 
885 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
886   if (!consumeIfPresent(MIToken::kw_tied_def))
887     return error("expected 'tied-def' after '('");
888   if (Token.isNot(MIToken::IntegerLiteral))
889     return error("expected an integer literal after 'tied-def'");
890   if (getUnsigned(TiedDefIdx))
891     return true;
892   lex();
893   if (expectAndConsume(MIToken::rparen))
894     return true;
895   return false;
896 }
897 
898 bool MIParser::parseSize(unsigned &Size) {
899   if (Token.isNot(MIToken::IntegerLiteral))
900     return error("expected an integer literal for the size");
901   if (getUnsigned(Size))
902     return true;
903   lex();
904   if (expectAndConsume(MIToken::rparen))
905     return true;
906   return false;
907 }
908 
909 bool MIParser::assignRegisterTies(MachineInstr &MI,
910                                   ArrayRef<ParsedMachineOperand> Operands) {
911   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
912   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
913     if (!Operands[I].TiedDefIdx)
914       continue;
915     // The parser ensures that this operand is a register use, so we just have
916     // to check the tied-def operand.
917     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
918     if (DefIdx >= E)
919       return error(Operands[I].Begin,
920                    Twine("use of invalid tied-def operand index '" +
921                          Twine(DefIdx) + "'; instruction has only ") +
922                        Twine(E) + " operands");
923     const auto &DefOperand = Operands[DefIdx].Operand;
924     if (!DefOperand.isReg() || !DefOperand.isDef())
925       // FIXME: add note with the def operand.
926       return error(Operands[I].Begin,
927                    Twine("use of invalid tied-def operand index '") +
928                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
929                        " isn't a defined register");
930     // Check that the tied-def operand wasn't tied elsewhere.
931     for (const auto &TiedPair : TiedRegisterPairs) {
932       if (TiedPair.first == DefIdx)
933         return error(Operands[I].Begin,
934                      Twine("the tied-def operand #") + Twine(DefIdx) +
935                          " is already tied with another register operand");
936     }
937     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
938   }
939   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
940   // indices must be less than tied max.
941   for (const auto &TiedPair : TiedRegisterPairs)
942     MI.tieOperands(TiedPair.first, TiedPair.second);
943   return false;
944 }
945 
946 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
947                                     Optional<unsigned> &TiedDefIdx,
948                                     bool IsDef) {
949   unsigned Reg;
950   unsigned Flags = IsDef ? RegState::Define : 0;
951   while (Token.isRegisterFlag()) {
952     if (parseRegisterFlag(Flags))
953       return true;
954   }
955   if (!Token.isRegister())
956     return error("expected a register after register flags");
957   if (parseRegister(Reg))
958     return true;
959   lex();
960   unsigned SubReg = 0;
961   if (Token.is(MIToken::colon)) {
962     if (parseSubRegisterIndex(SubReg))
963       return true;
964   }
965   if ((Flags & RegState::Define) == 0) {
966     if (consumeIfPresent(MIToken::lparen)) {
967       unsigned Idx;
968       if (parseRegisterTiedDefIndex(Idx))
969         return true;
970       TiedDefIdx = Idx;
971     }
972   } else if (consumeIfPresent(MIToken::lparen)) {
973     // Generic virtual registers must have a size.
974     // The "must" part will be verify by the machine verifier,
975     // because at this point we actually do not know if Reg is
976     // a generic virtual register.
977     if (!TargetRegisterInfo::isVirtualRegister(Reg))
978       return error("unexpected size on physical register");
979     unsigned Size;
980     if (parseSize(Size))
981       return true;
982 
983     MachineRegisterInfo &MRI = MF.getRegInfo();
984     MRI.setSize(Reg, Size);
985   }
986   Dest = MachineOperand::CreateReg(
987       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
988       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
989       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
990       Flags & RegState::InternalRead);
991   return false;
992 }
993 
994 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
995   assert(Token.is(MIToken::IntegerLiteral));
996   const APSInt &Int = Token.integerValue();
997   if (Int.getMinSignedBits() > 64)
998     return error("integer literal is too large to be an immediate operand");
999   Dest = MachineOperand::CreateImm(Int.getExtValue());
1000   lex();
1001   return false;
1002 }
1003 
1004 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1005                                const Constant *&C) {
1006   auto Source = StringValue.str(); // The source has to be null terminated.
1007   SMDiagnostic Err;
1008   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1009                          &IRSlots);
1010   if (!C)
1011     return error(Loc + Err.getColumnNo(), Err.getMessage());
1012   return false;
1013 }
1014 
1015 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1016   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1017     return true;
1018   lex();
1019   return false;
1020 }
1021 
1022 bool MIParser::parseIRType(StringRef::iterator Loc, StringRef StringValue,
1023                            unsigned &Read, Type *&Ty) {
1024   auto Source = StringValue.str(); // The source has to be null terminated.
1025   SMDiagnostic Err;
1026   Ty = parseTypeAtBeginning(Source.c_str(), Read, Err,
1027                             *MF.getFunction()->getParent(), &IRSlots);
1028   if (!Ty)
1029     return error(Loc + Err.getColumnNo(), Err.getMessage());
1030   return false;
1031 }
1032 
1033 bool MIParser::parseIRType(StringRef::iterator Loc, Type *&Ty,
1034                            bool MustBeSized) {
1035   // At this point we enter in the IR world, i.e., to get the correct type,
1036   // we need to hand off the whole string, not just the current token.
1037   // E.g., <4 x i64> would give '<' as a token and there is not much
1038   // the IR parser can do with that.
1039   unsigned Read = 0;
1040   if (parseIRType(Loc, StringRef(Loc), Read, Ty))
1041     return true;
1042   // The type must be sized, otherwise there is not much the backend
1043   // can do with it.
1044   if (MustBeSized && !Ty->isSized())
1045     return error("expected a sized type");
1046   // The next token is Read characters from the Loc.
1047   // However, the current location is not Loc, but Loc + the length of Token.
1048   // Therefore, subtract the length of Token (range().end() - Loc) to the
1049   // number of characters to skip before the next token.
1050   lex(Read - (Token.range().end() - Loc));
1051   return false;
1052 }
1053 
1054 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1055   assert(Token.is(MIToken::IntegerType));
1056   auto Loc = Token.location();
1057   lex();
1058   if (Token.isNot(MIToken::IntegerLiteral))
1059     return error("expected an integer literal");
1060   const Constant *C = nullptr;
1061   if (parseIRConstant(Loc, C))
1062     return true;
1063   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1064   return false;
1065 }
1066 
1067 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1068   auto Loc = Token.location();
1069   lex();
1070   if (Token.isNot(MIToken::FloatingPointLiteral))
1071     return error("expected a floating point literal");
1072   const Constant *C = nullptr;
1073   if (parseIRConstant(Loc, C))
1074     return true;
1075   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1076   return false;
1077 }
1078 
1079 bool MIParser::getUnsigned(unsigned &Result) {
1080   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1081   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1082   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1083   if (Val64 == Limit)
1084     return error("expected 32-bit integer (too large)");
1085   Result = Val64;
1086   return false;
1087 }
1088 
1089 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1090   assert(Token.is(MIToken::MachineBasicBlock) ||
1091          Token.is(MIToken::MachineBasicBlockLabel));
1092   unsigned Number;
1093   if (getUnsigned(Number))
1094     return true;
1095   auto MBBInfo = PFS.MBBSlots.find(Number);
1096   if (MBBInfo == PFS.MBBSlots.end())
1097     return error(Twine("use of undefined machine basic block #") +
1098                  Twine(Number));
1099   MBB = MBBInfo->second;
1100   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1101     return error(Twine("the name of machine basic block #") + Twine(Number) +
1102                  " isn't '" + Token.stringValue() + "'");
1103   return false;
1104 }
1105 
1106 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1107   MachineBasicBlock *MBB;
1108   if (parseMBBReference(MBB))
1109     return true;
1110   Dest = MachineOperand::CreateMBB(MBB);
1111   lex();
1112   return false;
1113 }
1114 
1115 bool MIParser::parseStackFrameIndex(int &FI) {
1116   assert(Token.is(MIToken::StackObject));
1117   unsigned ID;
1118   if (getUnsigned(ID))
1119     return true;
1120   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1121   if (ObjectInfo == PFS.StackObjectSlots.end())
1122     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1123                  "'");
1124   StringRef Name;
1125   if (const auto *Alloca =
1126           MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1127     Name = Alloca->getName();
1128   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1129     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1130                  "' isn't '" + Token.stringValue() + "'");
1131   lex();
1132   FI = ObjectInfo->second;
1133   return false;
1134 }
1135 
1136 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1137   int FI;
1138   if (parseStackFrameIndex(FI))
1139     return true;
1140   Dest = MachineOperand::CreateFI(FI);
1141   return false;
1142 }
1143 
1144 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1145   assert(Token.is(MIToken::FixedStackObject));
1146   unsigned ID;
1147   if (getUnsigned(ID))
1148     return true;
1149   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1150   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1151     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1152                  Twine(ID) + "'");
1153   lex();
1154   FI = ObjectInfo->second;
1155   return false;
1156 }
1157 
1158 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1159   int FI;
1160   if (parseFixedStackFrameIndex(FI))
1161     return true;
1162   Dest = MachineOperand::CreateFI(FI);
1163   return false;
1164 }
1165 
1166 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1167   switch (Token.kind()) {
1168   case MIToken::NamedGlobalValue: {
1169     const Module *M = MF.getFunction()->getParent();
1170     GV = M->getNamedValue(Token.stringValue());
1171     if (!GV)
1172       return error(Twine("use of undefined global value '") + Token.range() +
1173                    "'");
1174     break;
1175   }
1176   case MIToken::GlobalValue: {
1177     unsigned GVIdx;
1178     if (getUnsigned(GVIdx))
1179       return true;
1180     if (GVIdx >= IRSlots.GlobalValues.size())
1181       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1182                    "'");
1183     GV = IRSlots.GlobalValues[GVIdx];
1184     break;
1185   }
1186   default:
1187     llvm_unreachable("The current token should be a global value");
1188   }
1189   return false;
1190 }
1191 
1192 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1193   GlobalValue *GV = nullptr;
1194   if (parseGlobalValue(GV))
1195     return true;
1196   lex();
1197   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1198   if (parseOperandsOffset(Dest))
1199     return true;
1200   return false;
1201 }
1202 
1203 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1204   assert(Token.is(MIToken::ConstantPoolItem));
1205   unsigned ID;
1206   if (getUnsigned(ID))
1207     return true;
1208   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1209   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1210     return error("use of undefined constant '%const." + Twine(ID) + "'");
1211   lex();
1212   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1213   if (parseOperandsOffset(Dest))
1214     return true;
1215   return false;
1216 }
1217 
1218 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1219   assert(Token.is(MIToken::JumpTableIndex));
1220   unsigned ID;
1221   if (getUnsigned(ID))
1222     return true;
1223   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1224   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1225     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1226   lex();
1227   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1228   return false;
1229 }
1230 
1231 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1232   assert(Token.is(MIToken::ExternalSymbol));
1233   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1234   lex();
1235   Dest = MachineOperand::CreateES(Symbol);
1236   if (parseOperandsOffset(Dest))
1237     return true;
1238   return false;
1239 }
1240 
1241 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1242   assert(Token.is(MIToken::SubRegisterIndex));
1243   StringRef Name = Token.stringValue();
1244   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1245   if (SubRegIndex == 0)
1246     return error(Twine("unknown subregister index '") + Name + "'");
1247   lex();
1248   Dest = MachineOperand::CreateImm(SubRegIndex);
1249   return false;
1250 }
1251 
1252 bool MIParser::parseMDNode(MDNode *&Node) {
1253   assert(Token.is(MIToken::exclaim));
1254   auto Loc = Token.location();
1255   lex();
1256   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1257     return error("expected metadata id after '!'");
1258   unsigned ID;
1259   if (getUnsigned(ID))
1260     return true;
1261   auto NodeInfo = IRSlots.MetadataNodes.find(ID);
1262   if (NodeInfo == IRSlots.MetadataNodes.end())
1263     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1264   lex();
1265   Node = NodeInfo->second.get();
1266   return false;
1267 }
1268 
1269 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1270   MDNode *Node = nullptr;
1271   if (parseMDNode(Node))
1272     return true;
1273   Dest = MachineOperand::CreateMetadata(Node);
1274   return false;
1275 }
1276 
1277 bool MIParser::parseCFIOffset(int &Offset) {
1278   if (Token.isNot(MIToken::IntegerLiteral))
1279     return error("expected a cfi offset");
1280   if (Token.integerValue().getMinSignedBits() > 32)
1281     return error("expected a 32 bit integer (the cfi offset is too large)");
1282   Offset = (int)Token.integerValue().getExtValue();
1283   lex();
1284   return false;
1285 }
1286 
1287 bool MIParser::parseCFIRegister(unsigned &Reg) {
1288   if (Token.isNot(MIToken::NamedRegister))
1289     return error("expected a cfi register");
1290   unsigned LLVMReg;
1291   if (parseRegister(LLVMReg))
1292     return true;
1293   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1294   assert(TRI && "Expected target register info");
1295   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1296   if (DwarfReg < 0)
1297     return error("invalid DWARF register");
1298   Reg = (unsigned)DwarfReg;
1299   lex();
1300   return false;
1301 }
1302 
1303 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1304   auto Kind = Token.kind();
1305   lex();
1306   auto &MMI = MF.getMMI();
1307   int Offset;
1308   unsigned Reg;
1309   unsigned CFIIndex;
1310   switch (Kind) {
1311   case MIToken::kw_cfi_same_value:
1312     if (parseCFIRegister(Reg))
1313       return true;
1314     CFIIndex =
1315         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1316     break;
1317   case MIToken::kw_cfi_offset:
1318     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1319         parseCFIOffset(Offset))
1320       return true;
1321     CFIIndex =
1322         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1323     break;
1324   case MIToken::kw_cfi_def_cfa_register:
1325     if (parseCFIRegister(Reg))
1326       return true;
1327     CFIIndex =
1328         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1329     break;
1330   case MIToken::kw_cfi_def_cfa_offset:
1331     if (parseCFIOffset(Offset))
1332       return true;
1333     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1334     CFIIndex = MMI.addFrameInst(
1335         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1336     break;
1337   case MIToken::kw_cfi_def_cfa:
1338     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1339         parseCFIOffset(Offset))
1340       return true;
1341     // NB: MCCFIInstruction::createDefCfa negates the offset.
1342     CFIIndex =
1343         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1344     break;
1345   default:
1346     // TODO: Parse the other CFI operands.
1347     llvm_unreachable("The current token should be a cfi operand");
1348   }
1349   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1350   return false;
1351 }
1352 
1353 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1354   switch (Token.kind()) {
1355   case MIToken::NamedIRBlock: {
1356     BB = dyn_cast_or_null<BasicBlock>(
1357         F.getValueSymbolTable().lookup(Token.stringValue()));
1358     if (!BB)
1359       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1360     break;
1361   }
1362   case MIToken::IRBlock: {
1363     unsigned SlotNumber = 0;
1364     if (getUnsigned(SlotNumber))
1365       return true;
1366     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1367     if (!BB)
1368       return error(Twine("use of undefined IR block '%ir-block.") +
1369                    Twine(SlotNumber) + "'");
1370     break;
1371   }
1372   default:
1373     llvm_unreachable("The current token should be an IR block reference");
1374   }
1375   return false;
1376 }
1377 
1378 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1379   assert(Token.is(MIToken::kw_blockaddress));
1380   lex();
1381   if (expectAndConsume(MIToken::lparen))
1382     return true;
1383   if (Token.isNot(MIToken::GlobalValue) &&
1384       Token.isNot(MIToken::NamedGlobalValue))
1385     return error("expected a global value");
1386   GlobalValue *GV = nullptr;
1387   if (parseGlobalValue(GV))
1388     return true;
1389   auto *F = dyn_cast<Function>(GV);
1390   if (!F)
1391     return error("expected an IR function reference");
1392   lex();
1393   if (expectAndConsume(MIToken::comma))
1394     return true;
1395   BasicBlock *BB = nullptr;
1396   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1397     return error("expected an IR block reference");
1398   if (parseIRBlock(BB, *F))
1399     return true;
1400   lex();
1401   if (expectAndConsume(MIToken::rparen))
1402     return true;
1403   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1404   if (parseOperandsOffset(Dest))
1405     return true;
1406   return false;
1407 }
1408 
1409 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1410   assert(Token.is(MIToken::kw_target_index));
1411   lex();
1412   if (expectAndConsume(MIToken::lparen))
1413     return true;
1414   if (Token.isNot(MIToken::Identifier))
1415     return error("expected the name of the target index");
1416   int Index = 0;
1417   if (getTargetIndex(Token.stringValue(), Index))
1418     return error("use of undefined target index '" + Token.stringValue() + "'");
1419   lex();
1420   if (expectAndConsume(MIToken::rparen))
1421     return true;
1422   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1423   if (parseOperandsOffset(Dest))
1424     return true;
1425   return false;
1426 }
1427 
1428 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1429   assert(Token.is(MIToken::kw_liveout));
1430   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1431   assert(TRI && "Expected target register info");
1432   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1433   lex();
1434   if (expectAndConsume(MIToken::lparen))
1435     return true;
1436   while (true) {
1437     if (Token.isNot(MIToken::NamedRegister))
1438       return error("expected a named register");
1439     unsigned Reg = 0;
1440     if (parseRegister(Reg))
1441       return true;
1442     lex();
1443     Mask[Reg / 32] |= 1U << (Reg % 32);
1444     // TODO: Report an error if the same register is used more than once.
1445     if (Token.isNot(MIToken::comma))
1446       break;
1447     lex();
1448   }
1449   if (expectAndConsume(MIToken::rparen))
1450     return true;
1451   Dest = MachineOperand::CreateRegLiveOut(Mask);
1452   return false;
1453 }
1454 
1455 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1456                                    Optional<unsigned> &TiedDefIdx) {
1457   switch (Token.kind()) {
1458   case MIToken::kw_implicit:
1459   case MIToken::kw_implicit_define:
1460   case MIToken::kw_def:
1461   case MIToken::kw_dead:
1462   case MIToken::kw_killed:
1463   case MIToken::kw_undef:
1464   case MIToken::kw_internal:
1465   case MIToken::kw_early_clobber:
1466   case MIToken::kw_debug_use:
1467   case MIToken::underscore:
1468   case MIToken::NamedRegister:
1469   case MIToken::VirtualRegister:
1470     return parseRegisterOperand(Dest, TiedDefIdx);
1471   case MIToken::IntegerLiteral:
1472     return parseImmediateOperand(Dest);
1473   case MIToken::IntegerType:
1474     return parseTypedImmediateOperand(Dest);
1475   case MIToken::kw_half:
1476   case MIToken::kw_float:
1477   case MIToken::kw_double:
1478   case MIToken::kw_x86_fp80:
1479   case MIToken::kw_fp128:
1480   case MIToken::kw_ppc_fp128:
1481     return parseFPImmediateOperand(Dest);
1482   case MIToken::MachineBasicBlock:
1483     return parseMBBOperand(Dest);
1484   case MIToken::StackObject:
1485     return parseStackObjectOperand(Dest);
1486   case MIToken::FixedStackObject:
1487     return parseFixedStackObjectOperand(Dest);
1488   case MIToken::GlobalValue:
1489   case MIToken::NamedGlobalValue:
1490     return parseGlobalAddressOperand(Dest);
1491   case MIToken::ConstantPoolItem:
1492     return parseConstantPoolIndexOperand(Dest);
1493   case MIToken::JumpTableIndex:
1494     return parseJumpTableIndexOperand(Dest);
1495   case MIToken::ExternalSymbol:
1496     return parseExternalSymbolOperand(Dest);
1497   case MIToken::SubRegisterIndex:
1498     return parseSubRegisterIndexOperand(Dest);
1499   case MIToken::exclaim:
1500     return parseMetadataOperand(Dest);
1501   case MIToken::kw_cfi_same_value:
1502   case MIToken::kw_cfi_offset:
1503   case MIToken::kw_cfi_def_cfa_register:
1504   case MIToken::kw_cfi_def_cfa_offset:
1505   case MIToken::kw_cfi_def_cfa:
1506     return parseCFIOperand(Dest);
1507   case MIToken::kw_blockaddress:
1508     return parseBlockAddressOperand(Dest);
1509   case MIToken::kw_target_index:
1510     return parseTargetIndexOperand(Dest);
1511   case MIToken::kw_liveout:
1512     return parseLiveoutRegisterMaskOperand(Dest);
1513   case MIToken::Error:
1514     return true;
1515   case MIToken::Identifier:
1516     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1517       Dest = MachineOperand::CreateRegMask(RegMask);
1518       lex();
1519       break;
1520     }
1521   // fallthrough
1522   default:
1523     // FIXME: Parse the MCSymbol machine operand.
1524     return error("expected a machine operand");
1525   }
1526   return false;
1527 }
1528 
1529 bool MIParser::parseMachineOperandAndTargetFlags(
1530     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1531   unsigned TF = 0;
1532   bool HasTargetFlags = false;
1533   if (Token.is(MIToken::kw_target_flags)) {
1534     HasTargetFlags = true;
1535     lex();
1536     if (expectAndConsume(MIToken::lparen))
1537       return true;
1538     if (Token.isNot(MIToken::Identifier))
1539       return error("expected the name of the target flag");
1540     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1541       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1542         return error("use of undefined target flag '" + Token.stringValue() +
1543                      "'");
1544     }
1545     lex();
1546     while (Token.is(MIToken::comma)) {
1547       lex();
1548       if (Token.isNot(MIToken::Identifier))
1549         return error("expected the name of the target flag");
1550       unsigned BitFlag = 0;
1551       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1552         return error("use of undefined target flag '" + Token.stringValue() +
1553                      "'");
1554       // TODO: Report an error when using a duplicate bit target flag.
1555       TF |= BitFlag;
1556       lex();
1557     }
1558     if (expectAndConsume(MIToken::rparen))
1559       return true;
1560   }
1561   auto Loc = Token.location();
1562   if (parseMachineOperand(Dest, TiedDefIdx))
1563     return true;
1564   if (!HasTargetFlags)
1565     return false;
1566   if (Dest.isReg())
1567     return error(Loc, "register operands can't have target flags");
1568   Dest.setTargetFlags(TF);
1569   return false;
1570 }
1571 
1572 bool MIParser::parseOffset(int64_t &Offset) {
1573   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1574     return false;
1575   StringRef Sign = Token.range();
1576   bool IsNegative = Token.is(MIToken::minus);
1577   lex();
1578   if (Token.isNot(MIToken::IntegerLiteral))
1579     return error("expected an integer literal after '" + Sign + "'");
1580   if (Token.integerValue().getMinSignedBits() > 64)
1581     return error("expected 64-bit integer (too large)");
1582   Offset = Token.integerValue().getExtValue();
1583   if (IsNegative)
1584     Offset = -Offset;
1585   lex();
1586   return false;
1587 }
1588 
1589 bool MIParser::parseAlignment(unsigned &Alignment) {
1590   assert(Token.is(MIToken::kw_align));
1591   lex();
1592   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1593     return error("expected an integer literal after 'align'");
1594   if (getUnsigned(Alignment))
1595     return true;
1596   lex();
1597   return false;
1598 }
1599 
1600 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1601   int64_t Offset = 0;
1602   if (parseOffset(Offset))
1603     return true;
1604   Op.setOffset(Offset);
1605   return false;
1606 }
1607 
1608 bool MIParser::parseIRValue(const Value *&V) {
1609   switch (Token.kind()) {
1610   case MIToken::NamedIRValue: {
1611     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1612     break;
1613   }
1614   case MIToken::IRValue: {
1615     unsigned SlotNumber = 0;
1616     if (getUnsigned(SlotNumber))
1617       return true;
1618     V = getIRValue(SlotNumber);
1619     break;
1620   }
1621   case MIToken::NamedGlobalValue:
1622   case MIToken::GlobalValue: {
1623     GlobalValue *GV = nullptr;
1624     if (parseGlobalValue(GV))
1625       return true;
1626     V = GV;
1627     break;
1628   }
1629   case MIToken::QuotedIRValue: {
1630     const Constant *C = nullptr;
1631     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1632       return true;
1633     V = C;
1634     break;
1635   }
1636   default:
1637     llvm_unreachable("The current token should be an IR block reference");
1638   }
1639   if (!V)
1640     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1641   return false;
1642 }
1643 
1644 bool MIParser::getUint64(uint64_t &Result) {
1645   assert(Token.hasIntegerValue());
1646   if (Token.integerValue().getActiveBits() > 64)
1647     return error("expected 64-bit integer (too large)");
1648   Result = Token.integerValue().getZExtValue();
1649   return false;
1650 }
1651 
1652 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) {
1653   const unsigned OldFlags = Flags;
1654   switch (Token.kind()) {
1655   case MIToken::kw_volatile:
1656     Flags |= MachineMemOperand::MOVolatile;
1657     break;
1658   case MIToken::kw_non_temporal:
1659     Flags |= MachineMemOperand::MONonTemporal;
1660     break;
1661   case MIToken::kw_invariant:
1662     Flags |= MachineMemOperand::MOInvariant;
1663     break;
1664   // TODO: parse the target specific memory operand flags.
1665   default:
1666     llvm_unreachable("The current token should be a memory operand flag");
1667   }
1668   if (OldFlags == Flags)
1669     // We know that the same flag is specified more than once when the flags
1670     // weren't modified.
1671     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1672   lex();
1673   return false;
1674 }
1675 
1676 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1677   switch (Token.kind()) {
1678   case MIToken::kw_stack:
1679     PSV = MF.getPSVManager().getStack();
1680     break;
1681   case MIToken::kw_got:
1682     PSV = MF.getPSVManager().getGOT();
1683     break;
1684   case MIToken::kw_jump_table:
1685     PSV = MF.getPSVManager().getJumpTable();
1686     break;
1687   case MIToken::kw_constant_pool:
1688     PSV = MF.getPSVManager().getConstantPool();
1689     break;
1690   case MIToken::FixedStackObject: {
1691     int FI;
1692     if (parseFixedStackFrameIndex(FI))
1693       return true;
1694     PSV = MF.getPSVManager().getFixedStack(FI);
1695     // The token was already consumed, so use return here instead of break.
1696     return false;
1697   }
1698   case MIToken::kw_call_entry: {
1699     lex();
1700     switch (Token.kind()) {
1701     case MIToken::GlobalValue:
1702     case MIToken::NamedGlobalValue: {
1703       GlobalValue *GV = nullptr;
1704       if (parseGlobalValue(GV))
1705         return true;
1706       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1707       break;
1708     }
1709     case MIToken::ExternalSymbol:
1710       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1711           MF.createExternalSymbolName(Token.stringValue()));
1712       break;
1713     default:
1714       return error(
1715           "expected a global value or an external symbol after 'call-entry'");
1716     }
1717     break;
1718   }
1719   default:
1720     llvm_unreachable("The current token should be pseudo source value");
1721   }
1722   lex();
1723   return false;
1724 }
1725 
1726 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1727   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1728       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1729       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::kw_call_entry)) {
1730     const PseudoSourceValue *PSV = nullptr;
1731     if (parseMemoryPseudoSourceValue(PSV))
1732       return true;
1733     int64_t Offset = 0;
1734     if (parseOffset(Offset))
1735       return true;
1736     Dest = MachinePointerInfo(PSV, Offset);
1737     return false;
1738   }
1739   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1740       Token.isNot(MIToken::GlobalValue) &&
1741       Token.isNot(MIToken::NamedGlobalValue) &&
1742       Token.isNot(MIToken::QuotedIRValue))
1743     return error("expected an IR value reference");
1744   const Value *V = nullptr;
1745   if (parseIRValue(V))
1746     return true;
1747   if (!V->getType()->isPointerTy())
1748     return error("expected a pointer IR value");
1749   lex();
1750   int64_t Offset = 0;
1751   if (parseOffset(Offset))
1752     return true;
1753   Dest = MachinePointerInfo(V, Offset);
1754   return false;
1755 }
1756 
1757 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1758   if (expectAndConsume(MIToken::lparen))
1759     return true;
1760   unsigned Flags = 0;
1761   while (Token.isMemoryOperandFlag()) {
1762     if (parseMemoryOperandFlag(Flags))
1763       return true;
1764   }
1765   if (Token.isNot(MIToken::Identifier) ||
1766       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1767     return error("expected 'load' or 'store' memory operation");
1768   if (Token.stringValue() == "load")
1769     Flags |= MachineMemOperand::MOLoad;
1770   else
1771     Flags |= MachineMemOperand::MOStore;
1772   lex();
1773 
1774   if (Token.isNot(MIToken::IntegerLiteral))
1775     return error("expected the size integer literal after memory operation");
1776   uint64_t Size;
1777   if (getUint64(Size))
1778     return true;
1779   lex();
1780 
1781   const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1782   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != Word)
1783     return error(Twine("expected '") + Word + "'");
1784   lex();
1785 
1786   MachinePointerInfo Ptr = MachinePointerInfo();
1787   if (parseMachinePointerInfo(Ptr))
1788     return true;
1789   unsigned BaseAlignment = Size;
1790   AAMDNodes AAInfo;
1791   MDNode *Range = nullptr;
1792   while (consumeIfPresent(MIToken::comma)) {
1793     switch (Token.kind()) {
1794     case MIToken::kw_align:
1795       if (parseAlignment(BaseAlignment))
1796         return true;
1797       break;
1798     case MIToken::md_tbaa:
1799       lex();
1800       if (parseMDNode(AAInfo.TBAA))
1801         return true;
1802       break;
1803     case MIToken::md_alias_scope:
1804       lex();
1805       if (parseMDNode(AAInfo.Scope))
1806         return true;
1807       break;
1808     case MIToken::md_noalias:
1809       lex();
1810       if (parseMDNode(AAInfo.NoAlias))
1811         return true;
1812       break;
1813     case MIToken::md_range:
1814       lex();
1815       if (parseMDNode(Range))
1816         return true;
1817       break;
1818     // TODO: Report an error on duplicate metadata nodes.
1819     default:
1820       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1821                    "'!noalias' or '!range'");
1822     }
1823   }
1824   if (expectAndConsume(MIToken::rparen))
1825     return true;
1826   Dest =
1827       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1828   return false;
1829 }
1830 
1831 void MIParser::initNames2InstrOpCodes() {
1832   if (!Names2InstrOpCodes.empty())
1833     return;
1834   const auto *TII = MF.getSubtarget().getInstrInfo();
1835   assert(TII && "Expected target instruction info");
1836   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1837     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1838 }
1839 
1840 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1841   initNames2InstrOpCodes();
1842   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1843   if (InstrInfo == Names2InstrOpCodes.end())
1844     return true;
1845   OpCode = InstrInfo->getValue();
1846   return false;
1847 }
1848 
1849 void MIParser::initNames2Regs() {
1850   if (!Names2Regs.empty())
1851     return;
1852   // The '%noreg' register is the register 0.
1853   Names2Regs.insert(std::make_pair("noreg", 0));
1854   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1855   assert(TRI && "Expected target register info");
1856   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1857     bool WasInserted =
1858         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1859             .second;
1860     (void)WasInserted;
1861     assert(WasInserted && "Expected registers to be unique case-insensitively");
1862   }
1863 }
1864 
1865 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1866   initNames2Regs();
1867   auto RegInfo = Names2Regs.find(RegName);
1868   if (RegInfo == Names2Regs.end())
1869     return true;
1870   Reg = RegInfo->getValue();
1871   return false;
1872 }
1873 
1874 void MIParser::initNames2RegMasks() {
1875   if (!Names2RegMasks.empty())
1876     return;
1877   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1878   assert(TRI && "Expected target register info");
1879   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1880   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1881   assert(RegMasks.size() == RegMaskNames.size());
1882   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1883     Names2RegMasks.insert(
1884         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1885 }
1886 
1887 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1888   initNames2RegMasks();
1889   auto RegMaskInfo = Names2RegMasks.find(Identifier);
1890   if (RegMaskInfo == Names2RegMasks.end())
1891     return nullptr;
1892   return RegMaskInfo->getValue();
1893 }
1894 
1895 void MIParser::initNames2SubRegIndices() {
1896   if (!Names2SubRegIndices.empty())
1897     return;
1898   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1899   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1900     Names2SubRegIndices.insert(
1901         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1902 }
1903 
1904 unsigned MIParser::getSubRegIndex(StringRef Name) {
1905   initNames2SubRegIndices();
1906   auto SubRegInfo = Names2SubRegIndices.find(Name);
1907   if (SubRegInfo == Names2SubRegIndices.end())
1908     return 0;
1909   return SubRegInfo->getValue();
1910 }
1911 
1912 static void initSlots2BasicBlocks(
1913     const Function &F,
1914     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1915   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1916   MST.incorporateFunction(F);
1917   for (auto &BB : F) {
1918     if (BB.hasName())
1919       continue;
1920     int Slot = MST.getLocalSlot(&BB);
1921     if (Slot == -1)
1922       continue;
1923     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1924   }
1925 }
1926 
1927 static const BasicBlock *getIRBlockFromSlot(
1928     unsigned Slot,
1929     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1930   auto BlockInfo = Slots2BasicBlocks.find(Slot);
1931   if (BlockInfo == Slots2BasicBlocks.end())
1932     return nullptr;
1933   return BlockInfo->second;
1934 }
1935 
1936 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1937   if (Slots2BasicBlocks.empty())
1938     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1939   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1940 }
1941 
1942 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1943   if (&F == MF.getFunction())
1944     return getIRBlock(Slot);
1945   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1946   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1947   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1948 }
1949 
1950 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1951                            DenseMap<unsigned, const Value *> &Slots2Values) {
1952   int Slot = MST.getLocalSlot(V);
1953   if (Slot == -1)
1954     return;
1955   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
1956 }
1957 
1958 /// Creates the mapping from slot numbers to function's unnamed IR values.
1959 static void initSlots2Values(const Function &F,
1960                              DenseMap<unsigned, const Value *> &Slots2Values) {
1961   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1962   MST.incorporateFunction(F);
1963   for (const auto &Arg : F.args())
1964     mapValueToSlot(&Arg, MST, Slots2Values);
1965   for (const auto &BB : F) {
1966     mapValueToSlot(&BB, MST, Slots2Values);
1967     for (const auto &I : BB)
1968       mapValueToSlot(&I, MST, Slots2Values);
1969   }
1970 }
1971 
1972 const Value *MIParser::getIRValue(unsigned Slot) {
1973   if (Slots2Values.empty())
1974     initSlots2Values(*MF.getFunction(), Slots2Values);
1975   auto ValueInfo = Slots2Values.find(Slot);
1976   if (ValueInfo == Slots2Values.end())
1977     return nullptr;
1978   return ValueInfo->second;
1979 }
1980 
1981 void MIParser::initNames2TargetIndices() {
1982   if (!Names2TargetIndices.empty())
1983     return;
1984   const auto *TII = MF.getSubtarget().getInstrInfo();
1985   assert(TII && "Expected target instruction info");
1986   auto Indices = TII->getSerializableTargetIndices();
1987   for (const auto &I : Indices)
1988     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
1989 }
1990 
1991 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
1992   initNames2TargetIndices();
1993   auto IndexInfo = Names2TargetIndices.find(Name);
1994   if (IndexInfo == Names2TargetIndices.end())
1995     return true;
1996   Index = IndexInfo->second;
1997   return false;
1998 }
1999 
2000 void MIParser::initNames2DirectTargetFlags() {
2001   if (!Names2DirectTargetFlags.empty())
2002     return;
2003   const auto *TII = MF.getSubtarget().getInstrInfo();
2004   assert(TII && "Expected target instruction info");
2005   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2006   for (const auto &I : Flags)
2007     Names2DirectTargetFlags.insert(
2008         std::make_pair(StringRef(I.second), I.first));
2009 }
2010 
2011 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2012   initNames2DirectTargetFlags();
2013   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2014   if (FlagInfo == Names2DirectTargetFlags.end())
2015     return true;
2016   Flag = FlagInfo->second;
2017   return false;
2018 }
2019 
2020 void MIParser::initNames2BitmaskTargetFlags() {
2021   if (!Names2BitmaskTargetFlags.empty())
2022     return;
2023   const auto *TII = MF.getSubtarget().getInstrInfo();
2024   assert(TII && "Expected target instruction info");
2025   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2026   for (const auto &I : Flags)
2027     Names2BitmaskTargetFlags.insert(
2028         std::make_pair(StringRef(I.second), I.first));
2029 }
2030 
2031 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2032   initNames2BitmaskTargetFlags();
2033   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2034   if (FlagInfo == Names2BitmaskTargetFlags.end())
2035     return true;
2036   Flag = FlagInfo->second;
2037   return false;
2038 }
2039 
2040 bool llvm::parseMachineBasicBlockDefinitions(MachineFunction &MF, StringRef Src,
2041                                              PerFunctionMIParsingState &PFS,
2042                                              const SlotMapping &IRSlots,
2043                                              SMDiagnostic &Error) {
2044   SourceMgr SM;
2045   SM.AddNewSourceBuffer(
2046       MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false),
2047       SMLoc());
2048   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2049       .parseBasicBlockDefinitions(PFS.MBBSlots);
2050 }
2051 
2052 bool llvm::parseMachineInstructions(MachineFunction &MF, StringRef Src,
2053                                     const PerFunctionMIParsingState &PFS,
2054                                     const SlotMapping &IRSlots,
2055                                     SMDiagnostic &Error) {
2056   SourceMgr SM;
2057   SM.AddNewSourceBuffer(
2058       MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false),
2059       SMLoc());
2060   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseBasicBlocks();
2061 }
2062 
2063 bool llvm::parseMBBReference(MachineBasicBlock *&MBB, SourceMgr &SM,
2064                              MachineFunction &MF, StringRef Src,
2065                              const PerFunctionMIParsingState &PFS,
2066                              const SlotMapping &IRSlots, SMDiagnostic &Error) {
2067   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMBB(MBB);
2068 }
2069 
2070 bool llvm::parseNamedRegisterReference(unsigned &Reg, SourceMgr &SM,
2071                                        MachineFunction &MF, StringRef Src,
2072                                        const PerFunctionMIParsingState &PFS,
2073                                        const SlotMapping &IRSlots,
2074                                        SMDiagnostic &Error) {
2075   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2076       .parseStandaloneNamedRegister(Reg);
2077 }
2078 
2079 bool llvm::parseVirtualRegisterReference(unsigned &Reg, SourceMgr &SM,
2080                                          MachineFunction &MF, StringRef Src,
2081                                          const PerFunctionMIParsingState &PFS,
2082                                          const SlotMapping &IRSlots,
2083                                          SMDiagnostic &Error) {
2084   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2085       .parseStandaloneVirtualRegister(Reg);
2086 }
2087 
2088 bool llvm::parseStackObjectReference(int &FI, SourceMgr &SM,
2089                                      MachineFunction &MF, StringRef Src,
2090                                      const PerFunctionMIParsingState &PFS,
2091                                      const SlotMapping &IRSlots,
2092                                      SMDiagnostic &Error) {
2093   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2094       .parseStandaloneStackObject(FI);
2095 }
2096 
2097 bool llvm::parseMDNode(MDNode *&Node, SourceMgr &SM, MachineFunction &MF,
2098                        StringRef Src, const PerFunctionMIParsingState &PFS,
2099                        const SlotMapping &IRSlots, SMDiagnostic &Error) {
2100   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMDNode(Node);
2101 }
2102