1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCDwarf.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/BranchProbability.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/LowLevelTypeImpl.h"
66 #include "llvm/Support/MemoryBuffer.h"
67 #include "llvm/Support/SMLoc.h"
68 #include "llvm/Support/SourceMgr.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Target/TargetIntrinsicInfo.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cctype>
75 #include <cstddef>
76 #include <cstdint>
77 #include <limits>
78 #include <string>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
84     SourceMgr &SM, const SlotMapping &IRSlots,
85     const Name2RegClassMap &Names2RegClasses,
86     const Name2RegBankMap &Names2RegBanks)
87   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
88     Names2RegBanks(Names2RegBanks) {
89 }
90 
91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
92   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
93   if (I.second) {
94     MachineRegisterInfo &MRI = MF.getRegInfo();
95     VRegInfo *Info = new (Allocator) VRegInfo;
96     Info->VReg = MRI.createIncompleteVirtualRegister();
97     I.first->second = Info;
98   }
99   return *I.first->second;
100 }
101 
102 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
103   assert(RegName != "" && "Expected named reg.");
104 
105   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
106   if (I.second) {
107     VRegInfo *Info = new (Allocator) VRegInfo;
108     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
109     I.first->second = Info;
110   }
111   return *I.first->second;
112 }
113 
114 namespace {
115 
116 /// A wrapper struct around the 'MachineOperand' struct that includes a source
117 /// range and other attributes.
118 struct ParsedMachineOperand {
119   MachineOperand Operand;
120   StringRef::iterator Begin;
121   StringRef::iterator End;
122   Optional<unsigned> TiedDefIdx;
123 
124   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
125                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
126       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
127     if (TiedDefIdx)
128       assert(Operand.isReg() && Operand.isUse() &&
129              "Only used register operands can be tied");
130   }
131 };
132 
133 class MIParser {
134   MachineFunction &MF;
135   SMDiagnostic &Error;
136   StringRef Source, CurrentSource;
137   MIToken Token;
138   PerFunctionMIParsingState &PFS;
139   /// Maps from instruction names to op codes.
140   StringMap<unsigned> Names2InstrOpCodes;
141   /// Maps from register names to registers.
142   StringMap<unsigned> Names2Regs;
143   /// Maps from register mask names to register masks.
144   StringMap<const uint32_t *> Names2RegMasks;
145   /// Maps from subregister names to subregister indices.
146   StringMap<unsigned> Names2SubRegIndices;
147   /// Maps from slot numbers to function's unnamed basic blocks.
148   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
149   /// Maps from slot numbers to function's unnamed values.
150   DenseMap<unsigned, const Value *> Slots2Values;
151   /// Maps from target index names to target indices.
152   StringMap<int> Names2TargetIndices;
153   /// Maps from direct target flag names to the direct target flag values.
154   StringMap<unsigned> Names2DirectTargetFlags;
155   /// Maps from direct target flag names to the bitmask target flag values.
156   StringMap<unsigned> Names2BitmaskTargetFlags;
157   /// Maps from MMO target flag names to MMO target flag values.
158   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
159 
160 public:
161   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
162            StringRef Source);
163 
164   /// \p SkipChar gives the number of characters to skip before looking
165   /// for the next token.
166   void lex(unsigned SkipChar = 0);
167 
168   /// Report an error at the current location with the given message.
169   ///
170   /// This function always return true.
171   bool error(const Twine &Msg);
172 
173   /// Report an error at the given location with the given message.
174   ///
175   /// This function always return true.
176   bool error(StringRef::iterator Loc, const Twine &Msg);
177 
178   bool
179   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
180   bool parseBasicBlocks();
181   bool parse(MachineInstr *&MI);
182   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
183   bool parseStandaloneNamedRegister(unsigned &Reg);
184   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
185   bool parseStandaloneRegister(unsigned &Reg);
186   bool parseStandaloneStackObject(int &FI);
187   bool parseStandaloneMDNode(MDNode *&Node);
188 
189   bool
190   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
191   bool parseBasicBlock(MachineBasicBlock &MBB,
192                        MachineBasicBlock *&AddFalthroughFrom);
193   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
194   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
195 
196   bool parseNamedRegister(unsigned &Reg);
197   bool parseVirtualRegister(VRegInfo *&Info);
198   bool parseNamedVirtualRegister(VRegInfo *&Info);
199   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
200   bool parseRegisterFlag(unsigned &Flags);
201   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
202   bool parseSubRegisterIndex(unsigned &SubReg);
203   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
204   bool parseRegisterOperand(MachineOperand &Dest,
205                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
206   bool parseImmediateOperand(MachineOperand &Dest);
207   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
208                        const Constant *&C);
209   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
210   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
211   bool parseTypedImmediateOperand(MachineOperand &Dest);
212   bool parseFPImmediateOperand(MachineOperand &Dest);
213   bool parseMBBReference(MachineBasicBlock *&MBB);
214   bool parseMBBOperand(MachineOperand &Dest);
215   bool parseStackFrameIndex(int &FI);
216   bool parseStackObjectOperand(MachineOperand &Dest);
217   bool parseFixedStackFrameIndex(int &FI);
218   bool parseFixedStackObjectOperand(MachineOperand &Dest);
219   bool parseGlobalValue(GlobalValue *&GV);
220   bool parseGlobalAddressOperand(MachineOperand &Dest);
221   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
222   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
223   bool parseJumpTableIndexOperand(MachineOperand &Dest);
224   bool parseExternalSymbolOperand(MachineOperand &Dest);
225   bool parseMCSymbolOperand(MachineOperand &Dest);
226   bool parseMDNode(MDNode *&Node);
227   bool parseDIExpression(MDNode *&Expr);
228   bool parseDILocation(MDNode *&Expr);
229   bool parseMetadataOperand(MachineOperand &Dest);
230   bool parseCFIOffset(int &Offset);
231   bool parseCFIRegister(unsigned &Reg);
232   bool parseCFIEscapeValues(std::string& Values);
233   bool parseCFIOperand(MachineOperand &Dest);
234   bool parseIRBlock(BasicBlock *&BB, const Function &F);
235   bool parseBlockAddressOperand(MachineOperand &Dest);
236   bool parseIntrinsicOperand(MachineOperand &Dest);
237   bool parsePredicateOperand(MachineOperand &Dest);
238   bool parseTargetIndexOperand(MachineOperand &Dest);
239   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
240   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
241   bool parseMachineOperand(MachineOperand &Dest,
242                            Optional<unsigned> &TiedDefIdx);
243   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
244                                          Optional<unsigned> &TiedDefIdx);
245   bool parseOffset(int64_t &Offset);
246   bool parseAlignment(unsigned &Alignment);
247   bool parseAddrspace(unsigned &Addrspace);
248   bool parseOperandsOffset(MachineOperand &Op);
249   bool parseIRValue(const Value *&V);
250   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
251   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
252   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
253   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
254   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
255   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
256   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
257 
258 private:
259   /// Convert the integer literal in the current token into an unsigned integer.
260   ///
261   /// Return true if an error occurred.
262   bool getUnsigned(unsigned &Result);
263 
264   /// Convert the integer literal in the current token into an uint64.
265   ///
266   /// Return true if an error occurred.
267   bool getUint64(uint64_t &Result);
268 
269   /// Convert the hexadecimal literal in the current token into an unsigned
270   ///  APInt with a minimum bitwidth required to represent the value.
271   ///
272   /// Return true if the literal does not represent an integer value.
273   bool getHexUint(APInt &Result);
274 
275   /// If the current token is of the given kind, consume it and return false.
276   /// Otherwise report an error and return true.
277   bool expectAndConsume(MIToken::TokenKind TokenKind);
278 
279   /// If the current token is of the given kind, consume it and return true.
280   /// Otherwise return false.
281   bool consumeIfPresent(MIToken::TokenKind TokenKind);
282 
283   void initNames2InstrOpCodes();
284 
285   /// Try to convert an instruction name to an opcode. Return true if the
286   /// instruction name is invalid.
287   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
288 
289   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
290 
291   bool assignRegisterTies(MachineInstr &MI,
292                           ArrayRef<ParsedMachineOperand> Operands);
293 
294   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
295                               const MCInstrDesc &MCID);
296 
297   void initNames2Regs();
298 
299   /// Try to convert a register name to a register number. Return true if the
300   /// register name is invalid.
301   bool getRegisterByName(StringRef RegName, unsigned &Reg);
302 
303   void initNames2RegMasks();
304 
305   /// Check if the given identifier is a name of a register mask.
306   ///
307   /// Return null if the identifier isn't a register mask.
308   const uint32_t *getRegMask(StringRef Identifier);
309 
310   void initNames2SubRegIndices();
311 
312   /// Check if the given identifier is a name of a subregister index.
313   ///
314   /// Return 0 if the name isn't a subregister index class.
315   unsigned getSubRegIndex(StringRef Name);
316 
317   const BasicBlock *getIRBlock(unsigned Slot);
318   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
319 
320   const Value *getIRValue(unsigned Slot);
321 
322   void initNames2TargetIndices();
323 
324   /// Try to convert a name of target index to the corresponding target index.
325   ///
326   /// Return true if the name isn't a name of a target index.
327   bool getTargetIndex(StringRef Name, int &Index);
328 
329   void initNames2DirectTargetFlags();
330 
331   /// Try to convert a name of a direct target flag to the corresponding
332   /// target flag.
333   ///
334   /// Return true if the name isn't a name of a direct flag.
335   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
336 
337   void initNames2BitmaskTargetFlags();
338 
339   /// Try to convert a name of a bitmask target flag to the corresponding
340   /// target flag.
341   ///
342   /// Return true if the name isn't a name of a bitmask target flag.
343   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
344 
345   void initNames2MMOTargetFlags();
346 
347   /// Try to convert a name of a MachineMemOperand target flag to the
348   /// corresponding target flag.
349   ///
350   /// Return true if the name isn't a name of a target MMO flag.
351   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
352 
353   /// Get or create an MCSymbol for a given name.
354   MCSymbol *getOrCreateMCSymbol(StringRef Name);
355 
356   /// parseStringConstant
357   ///   ::= StringConstant
358   bool parseStringConstant(std::string &Result);
359 };
360 
361 } // end anonymous namespace
362 
363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
364                    StringRef Source)
365     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
366 {}
367 
368 void MIParser::lex(unsigned SkipChar) {
369   CurrentSource = lexMIToken(
370       CurrentSource.data() + SkipChar, Token,
371       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
372 }
373 
374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
375 
376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
377   const SourceMgr &SM = *PFS.SM;
378   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
379   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
380   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
381     // Create an ordinary diagnostic when the source manager's buffer is the
382     // source string.
383     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
384     return true;
385   }
386   // Create a diagnostic for a YAML string literal.
387   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
388                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
389                        Source, None, None);
390   return true;
391 }
392 
393 static const char *toString(MIToken::TokenKind TokenKind) {
394   switch (TokenKind) {
395   case MIToken::comma:
396     return "','";
397   case MIToken::equal:
398     return "'='";
399   case MIToken::colon:
400     return "':'";
401   case MIToken::lparen:
402     return "'('";
403   case MIToken::rparen:
404     return "')'";
405   default:
406     return "<unknown token>";
407   }
408 }
409 
410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
411   if (Token.isNot(TokenKind))
412     return error(Twine("expected ") + toString(TokenKind));
413   lex();
414   return false;
415 }
416 
417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
418   if (Token.isNot(TokenKind))
419     return false;
420   lex();
421   return true;
422 }
423 
424 bool MIParser::parseBasicBlockDefinition(
425     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
426   assert(Token.is(MIToken::MachineBasicBlockLabel));
427   unsigned ID = 0;
428   if (getUnsigned(ID))
429     return true;
430   auto Loc = Token.location();
431   auto Name = Token.stringValue();
432   lex();
433   bool HasAddressTaken = false;
434   bool IsLandingPad = false;
435   unsigned Alignment = 0;
436   BasicBlock *BB = nullptr;
437   if (consumeIfPresent(MIToken::lparen)) {
438     do {
439       // TODO: Report an error when multiple same attributes are specified.
440       switch (Token.kind()) {
441       case MIToken::kw_address_taken:
442         HasAddressTaken = true;
443         lex();
444         break;
445       case MIToken::kw_landing_pad:
446         IsLandingPad = true;
447         lex();
448         break;
449       case MIToken::kw_align:
450         if (parseAlignment(Alignment))
451           return true;
452         break;
453       case MIToken::IRBlock:
454         // TODO: Report an error when both name and ir block are specified.
455         if (parseIRBlock(BB, MF.getFunction()))
456           return true;
457         lex();
458         break;
459       default:
460         break;
461       }
462     } while (consumeIfPresent(MIToken::comma));
463     if (expectAndConsume(MIToken::rparen))
464       return true;
465   }
466   if (expectAndConsume(MIToken::colon))
467     return true;
468 
469   if (!Name.empty()) {
470     BB = dyn_cast_or_null<BasicBlock>(
471         MF.getFunction().getValueSymbolTable()->lookup(Name));
472     if (!BB)
473       return error(Loc, Twine("basic block '") + Name +
474                             "' is not defined in the function '" +
475                             MF.getName() + "'");
476   }
477   auto *MBB = MF.CreateMachineBasicBlock(BB);
478   MF.insert(MF.end(), MBB);
479   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
480   if (!WasInserted)
481     return error(Loc, Twine("redefinition of machine basic block with id #") +
482                           Twine(ID));
483   if (Alignment)
484     MBB->setAlignment(Alignment);
485   if (HasAddressTaken)
486     MBB->setHasAddressTaken();
487   MBB->setIsEHPad(IsLandingPad);
488   return false;
489 }
490 
491 bool MIParser::parseBasicBlockDefinitions(
492     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
493   lex();
494   // Skip until the first machine basic block.
495   while (Token.is(MIToken::Newline))
496     lex();
497   if (Token.isErrorOrEOF())
498     return Token.isError();
499   if (Token.isNot(MIToken::MachineBasicBlockLabel))
500     return error("expected a basic block definition before instructions");
501   unsigned BraceDepth = 0;
502   do {
503     if (parseBasicBlockDefinition(MBBSlots))
504       return true;
505     bool IsAfterNewline = false;
506     // Skip until the next machine basic block.
507     while (true) {
508       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
509           Token.isErrorOrEOF())
510         break;
511       else if (Token.is(MIToken::MachineBasicBlockLabel))
512         return error("basic block definition should be located at the start of "
513                      "the line");
514       else if (consumeIfPresent(MIToken::Newline)) {
515         IsAfterNewline = true;
516         continue;
517       }
518       IsAfterNewline = false;
519       if (Token.is(MIToken::lbrace))
520         ++BraceDepth;
521       if (Token.is(MIToken::rbrace)) {
522         if (!BraceDepth)
523           return error("extraneous closing brace ('}')");
524         --BraceDepth;
525       }
526       lex();
527     }
528     // Verify that we closed all of the '{' at the end of a file or a block.
529     if (!Token.isError() && BraceDepth)
530       return error("expected '}'"); // FIXME: Report a note that shows '{'.
531   } while (!Token.isErrorOrEOF());
532   return Token.isError();
533 }
534 
535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
536   assert(Token.is(MIToken::kw_liveins));
537   lex();
538   if (expectAndConsume(MIToken::colon))
539     return true;
540   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
541     return false;
542   do {
543     if (Token.isNot(MIToken::NamedRegister))
544       return error("expected a named register");
545     unsigned Reg = 0;
546     if (parseNamedRegister(Reg))
547       return true;
548     lex();
549     LaneBitmask Mask = LaneBitmask::getAll();
550     if (consumeIfPresent(MIToken::colon)) {
551       // Parse lane mask.
552       if (Token.isNot(MIToken::IntegerLiteral) &&
553           Token.isNot(MIToken::HexLiteral))
554         return error("expected a lane mask");
555       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
556                     "Use correct get-function for lane mask");
557       LaneBitmask::Type V;
558       if (getUnsigned(V))
559         return error("invalid lane mask value");
560       Mask = LaneBitmask(V);
561       lex();
562     }
563     MBB.addLiveIn(Reg, Mask);
564   } while (consumeIfPresent(MIToken::comma));
565   return false;
566 }
567 
568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
569   assert(Token.is(MIToken::kw_successors));
570   lex();
571   if (expectAndConsume(MIToken::colon))
572     return true;
573   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
574     return false;
575   do {
576     if (Token.isNot(MIToken::MachineBasicBlock))
577       return error("expected a machine basic block reference");
578     MachineBasicBlock *SuccMBB = nullptr;
579     if (parseMBBReference(SuccMBB))
580       return true;
581     lex();
582     unsigned Weight = 0;
583     if (consumeIfPresent(MIToken::lparen)) {
584       if (Token.isNot(MIToken::IntegerLiteral) &&
585           Token.isNot(MIToken::HexLiteral))
586         return error("expected an integer literal after '('");
587       if (getUnsigned(Weight))
588         return true;
589       lex();
590       if (expectAndConsume(MIToken::rparen))
591         return true;
592     }
593     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
594   } while (consumeIfPresent(MIToken::comma));
595   MBB.normalizeSuccProbs();
596   return false;
597 }
598 
599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
600                                MachineBasicBlock *&AddFalthroughFrom) {
601   // Skip the definition.
602   assert(Token.is(MIToken::MachineBasicBlockLabel));
603   lex();
604   if (consumeIfPresent(MIToken::lparen)) {
605     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
606       lex();
607     consumeIfPresent(MIToken::rparen);
608   }
609   consumeIfPresent(MIToken::colon);
610 
611   // Parse the liveins and successors.
612   // N.B: Multiple lists of successors and liveins are allowed and they're
613   // merged into one.
614   // Example:
615   //   liveins: %edi
616   //   liveins: %esi
617   //
618   // is equivalent to
619   //   liveins: %edi, %esi
620   bool ExplicitSuccessors = false;
621   while (true) {
622     if (Token.is(MIToken::kw_successors)) {
623       if (parseBasicBlockSuccessors(MBB))
624         return true;
625       ExplicitSuccessors = true;
626     } else if (Token.is(MIToken::kw_liveins)) {
627       if (parseBasicBlockLiveins(MBB))
628         return true;
629     } else if (consumeIfPresent(MIToken::Newline)) {
630       continue;
631     } else
632       break;
633     if (!Token.isNewlineOrEOF())
634       return error("expected line break at the end of a list");
635     lex();
636   }
637 
638   // Parse the instructions.
639   bool IsInBundle = false;
640   MachineInstr *PrevMI = nullptr;
641   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
642          !Token.is(MIToken::Eof)) {
643     if (consumeIfPresent(MIToken::Newline))
644       continue;
645     if (consumeIfPresent(MIToken::rbrace)) {
646       // The first parsing pass should verify that all closing '}' have an
647       // opening '{'.
648       assert(IsInBundle);
649       IsInBundle = false;
650       continue;
651     }
652     MachineInstr *MI = nullptr;
653     if (parse(MI))
654       return true;
655     MBB.insert(MBB.end(), MI);
656     if (IsInBundle) {
657       PrevMI->setFlag(MachineInstr::BundledSucc);
658       MI->setFlag(MachineInstr::BundledPred);
659     }
660     PrevMI = MI;
661     if (Token.is(MIToken::lbrace)) {
662       if (IsInBundle)
663         return error("nested instruction bundles are not allowed");
664       lex();
665       // This instruction is the start of the bundle.
666       MI->setFlag(MachineInstr::BundledSucc);
667       IsInBundle = true;
668       if (!Token.is(MIToken::Newline))
669         // The next instruction can be on the same line.
670         continue;
671     }
672     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
673     lex();
674   }
675 
676   // Construct successor list by searching for basic block machine operands.
677   if (!ExplicitSuccessors) {
678     SmallVector<MachineBasicBlock*,4> Successors;
679     bool IsFallthrough;
680     guessSuccessors(MBB, Successors, IsFallthrough);
681     for (MachineBasicBlock *Succ : Successors)
682       MBB.addSuccessor(Succ);
683 
684     if (IsFallthrough) {
685       AddFalthroughFrom = &MBB;
686     } else {
687       MBB.normalizeSuccProbs();
688     }
689   }
690 
691   return false;
692 }
693 
694 bool MIParser::parseBasicBlocks() {
695   lex();
696   // Skip until the first machine basic block.
697   while (Token.is(MIToken::Newline))
698     lex();
699   if (Token.isErrorOrEOF())
700     return Token.isError();
701   // The first parsing pass should have verified that this token is a MBB label
702   // in the 'parseBasicBlockDefinitions' method.
703   assert(Token.is(MIToken::MachineBasicBlockLabel));
704   MachineBasicBlock *AddFalthroughFrom = nullptr;
705   do {
706     MachineBasicBlock *MBB = nullptr;
707     if (parseMBBReference(MBB))
708       return true;
709     if (AddFalthroughFrom) {
710       if (!AddFalthroughFrom->isSuccessor(MBB))
711         AddFalthroughFrom->addSuccessor(MBB);
712       AddFalthroughFrom->normalizeSuccProbs();
713       AddFalthroughFrom = nullptr;
714     }
715     if (parseBasicBlock(*MBB, AddFalthroughFrom))
716       return true;
717     // The method 'parseBasicBlock' should parse the whole block until the next
718     // block or the end of file.
719     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
720   } while (Token.isNot(MIToken::Eof));
721   return false;
722 }
723 
724 bool MIParser::parse(MachineInstr *&MI) {
725   // Parse any register operands before '='
726   MachineOperand MO = MachineOperand::CreateImm(0);
727   SmallVector<ParsedMachineOperand, 8> Operands;
728   while (Token.isRegister() || Token.isRegisterFlag()) {
729     auto Loc = Token.location();
730     Optional<unsigned> TiedDefIdx;
731     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
732       return true;
733     Operands.push_back(
734         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
735     if (Token.isNot(MIToken::comma))
736       break;
737     lex();
738   }
739   if (!Operands.empty() && expectAndConsume(MIToken::equal))
740     return true;
741 
742   unsigned OpCode, Flags = 0;
743   if (Token.isError() || parseInstruction(OpCode, Flags))
744     return true;
745 
746   // Parse the remaining machine operands.
747   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
748          Token.isNot(MIToken::kw_post_instr_symbol) &&
749          Token.isNot(MIToken::kw_debug_location) &&
750          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
751     auto Loc = Token.location();
752     Optional<unsigned> TiedDefIdx;
753     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
754       return true;
755     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
756       MO.setIsDebug();
757     Operands.push_back(
758         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
759     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
760         Token.is(MIToken::lbrace))
761       break;
762     if (Token.isNot(MIToken::comma))
763       return error("expected ',' before the next machine operand");
764     lex();
765   }
766 
767   MCSymbol *PreInstrSymbol = nullptr;
768   if (Token.is(MIToken::kw_pre_instr_symbol))
769     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
770       return true;
771   MCSymbol *PostInstrSymbol = nullptr;
772   if (Token.is(MIToken::kw_post_instr_symbol))
773     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
774       return true;
775 
776   DebugLoc DebugLocation;
777   if (Token.is(MIToken::kw_debug_location)) {
778     lex();
779     MDNode *Node = nullptr;
780     if (Token.is(MIToken::exclaim)) {
781       if (parseMDNode(Node))
782         return true;
783     } else if (Token.is(MIToken::md_dilocation)) {
784       if (parseDILocation(Node))
785         return true;
786     } else
787       return error("expected a metadata node after 'debug-location'");
788     if (!isa<DILocation>(Node))
789       return error("referenced metadata is not a DILocation");
790     DebugLocation = DebugLoc(Node);
791   }
792 
793   // Parse the machine memory operands.
794   SmallVector<MachineMemOperand *, 2> MemOperands;
795   if (Token.is(MIToken::coloncolon)) {
796     lex();
797     while (!Token.isNewlineOrEOF()) {
798       MachineMemOperand *MemOp = nullptr;
799       if (parseMachineMemoryOperand(MemOp))
800         return true;
801       MemOperands.push_back(MemOp);
802       if (Token.isNewlineOrEOF())
803         break;
804       if (Token.isNot(MIToken::comma))
805         return error("expected ',' before the next machine memory operand");
806       lex();
807     }
808   }
809 
810   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
811   if (!MCID.isVariadic()) {
812     // FIXME: Move the implicit operand verification to the machine verifier.
813     if (verifyImplicitOperands(Operands, MCID))
814       return true;
815   }
816 
817   // TODO: Check for extraneous machine operands.
818   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
819   MI->setFlags(Flags);
820   for (const auto &Operand : Operands)
821     MI->addOperand(MF, Operand.Operand);
822   if (assignRegisterTies(*MI, Operands))
823     return true;
824   if (PreInstrSymbol)
825     MI->setPreInstrSymbol(MF, PreInstrSymbol);
826   if (PostInstrSymbol)
827     MI->setPostInstrSymbol(MF, PostInstrSymbol);
828   if (!MemOperands.empty())
829     MI->setMemRefs(MF, MemOperands);
830   return false;
831 }
832 
833 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
834   lex();
835   if (Token.isNot(MIToken::MachineBasicBlock))
836     return error("expected a machine basic block reference");
837   if (parseMBBReference(MBB))
838     return true;
839   lex();
840   if (Token.isNot(MIToken::Eof))
841     return error(
842         "expected end of string after the machine basic block reference");
843   return false;
844 }
845 
846 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
847   lex();
848   if (Token.isNot(MIToken::NamedRegister))
849     return error("expected a named register");
850   if (parseNamedRegister(Reg))
851     return true;
852   lex();
853   if (Token.isNot(MIToken::Eof))
854     return error("expected end of string after the register reference");
855   return false;
856 }
857 
858 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
859   lex();
860   if (Token.isNot(MIToken::VirtualRegister))
861     return error("expected a virtual register");
862   if (parseVirtualRegister(Info))
863     return true;
864   lex();
865   if (Token.isNot(MIToken::Eof))
866     return error("expected end of string after the register reference");
867   return false;
868 }
869 
870 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
871   lex();
872   if (Token.isNot(MIToken::NamedRegister) &&
873       Token.isNot(MIToken::VirtualRegister))
874     return error("expected either a named or virtual register");
875 
876   VRegInfo *Info;
877   if (parseRegister(Reg, Info))
878     return true;
879 
880   lex();
881   if (Token.isNot(MIToken::Eof))
882     return error("expected end of string after the register reference");
883   return false;
884 }
885 
886 bool MIParser::parseStandaloneStackObject(int &FI) {
887   lex();
888   if (Token.isNot(MIToken::StackObject))
889     return error("expected a stack object");
890   if (parseStackFrameIndex(FI))
891     return true;
892   if (Token.isNot(MIToken::Eof))
893     return error("expected end of string after the stack object reference");
894   return false;
895 }
896 
897 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
898   lex();
899   if (Token.is(MIToken::exclaim)) {
900     if (parseMDNode(Node))
901       return true;
902   } else if (Token.is(MIToken::md_diexpr)) {
903     if (parseDIExpression(Node))
904       return true;
905   } else if (Token.is(MIToken::md_dilocation)) {
906     if (parseDILocation(Node))
907       return true;
908   } else
909     return error("expected a metadata node");
910   if (Token.isNot(MIToken::Eof))
911     return error("expected end of string after the metadata node");
912   return false;
913 }
914 
915 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
916   assert(MO.isImplicit());
917   return MO.isDef() ? "implicit-def" : "implicit";
918 }
919 
920 static std::string getRegisterName(const TargetRegisterInfo *TRI,
921                                    unsigned Reg) {
922   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
923   return StringRef(TRI->getName(Reg)).lower();
924 }
925 
926 /// Return true if the parsed machine operands contain a given machine operand.
927 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
928                                 ArrayRef<ParsedMachineOperand> Operands) {
929   for (const auto &I : Operands) {
930     if (ImplicitOperand.isIdenticalTo(I.Operand))
931       return true;
932   }
933   return false;
934 }
935 
936 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
937                                       const MCInstrDesc &MCID) {
938   if (MCID.isCall())
939     // We can't verify call instructions as they can contain arbitrary implicit
940     // register and register mask operands.
941     return false;
942 
943   // Gather all the expected implicit operands.
944   SmallVector<MachineOperand, 4> ImplicitOperands;
945   if (MCID.ImplicitDefs)
946     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
947       ImplicitOperands.push_back(
948           MachineOperand::CreateReg(*ImpDefs, true, true));
949   if (MCID.ImplicitUses)
950     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
951       ImplicitOperands.push_back(
952           MachineOperand::CreateReg(*ImpUses, false, true));
953 
954   const auto *TRI = MF.getSubtarget().getRegisterInfo();
955   assert(TRI && "Expected target register info");
956   for (const auto &I : ImplicitOperands) {
957     if (isImplicitOperandIn(I, Operands))
958       continue;
959     return error(Operands.empty() ? Token.location() : Operands.back().End,
960                  Twine("missing implicit register operand '") +
961                      printImplicitRegisterFlag(I) + " $" +
962                      getRegisterName(TRI, I.getReg()) + "'");
963   }
964   return false;
965 }
966 
967 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
968   // Allow frame and fast math flags for OPCODE
969   while (Token.is(MIToken::kw_frame_setup) ||
970          Token.is(MIToken::kw_frame_destroy) ||
971          Token.is(MIToken::kw_nnan) ||
972          Token.is(MIToken::kw_ninf) ||
973          Token.is(MIToken::kw_nsz) ||
974          Token.is(MIToken::kw_arcp) ||
975          Token.is(MIToken::kw_contract) ||
976          Token.is(MIToken::kw_afn) ||
977          Token.is(MIToken::kw_reassoc) ||
978          Token.is(MIToken::kw_nuw) ||
979          Token.is(MIToken::kw_nsw) ||
980          Token.is(MIToken::kw_exact)) {
981     // Mine frame and fast math flags
982     if (Token.is(MIToken::kw_frame_setup))
983       Flags |= MachineInstr::FrameSetup;
984     if (Token.is(MIToken::kw_frame_destroy))
985       Flags |= MachineInstr::FrameDestroy;
986     if (Token.is(MIToken::kw_nnan))
987       Flags |= MachineInstr::FmNoNans;
988     if (Token.is(MIToken::kw_ninf))
989       Flags |= MachineInstr::FmNoInfs;
990     if (Token.is(MIToken::kw_nsz))
991       Flags |= MachineInstr::FmNsz;
992     if (Token.is(MIToken::kw_arcp))
993       Flags |= MachineInstr::FmArcp;
994     if (Token.is(MIToken::kw_contract))
995       Flags |= MachineInstr::FmContract;
996     if (Token.is(MIToken::kw_afn))
997       Flags |= MachineInstr::FmAfn;
998     if (Token.is(MIToken::kw_reassoc))
999       Flags |= MachineInstr::FmReassoc;
1000     if (Token.is(MIToken::kw_nuw))
1001       Flags |= MachineInstr::NoUWrap;
1002     if (Token.is(MIToken::kw_nsw))
1003       Flags |= MachineInstr::NoSWrap;
1004     if (Token.is(MIToken::kw_exact))
1005       Flags |= MachineInstr::IsExact;
1006 
1007     lex();
1008   }
1009   if (Token.isNot(MIToken::Identifier))
1010     return error("expected a machine instruction");
1011   StringRef InstrName = Token.stringValue();
1012   if (parseInstrName(InstrName, OpCode))
1013     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1014   lex();
1015   return false;
1016 }
1017 
1018 bool MIParser::parseNamedRegister(unsigned &Reg) {
1019   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1020   StringRef Name = Token.stringValue();
1021   if (getRegisterByName(Name, Reg))
1022     return error(Twine("unknown register name '") + Name + "'");
1023   return false;
1024 }
1025 
1026 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1027   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1028   StringRef Name = Token.stringValue();
1029   // TODO: Check that the VReg name is not the same as a physical register name.
1030   //       If it is, then print a warning (when warnings are implemented).
1031   Info = &PFS.getVRegInfoNamed(Name);
1032   return false;
1033 }
1034 
1035 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1036   if (Token.is(MIToken::NamedVirtualRegister))
1037     return parseNamedVirtualRegister(Info);
1038   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1039   unsigned ID;
1040   if (getUnsigned(ID))
1041     return true;
1042   Info = &PFS.getVRegInfo(ID);
1043   return false;
1044 }
1045 
1046 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1047   switch (Token.kind()) {
1048   case MIToken::underscore:
1049     Reg = 0;
1050     return false;
1051   case MIToken::NamedRegister:
1052     return parseNamedRegister(Reg);
1053   case MIToken::NamedVirtualRegister:
1054   case MIToken::VirtualRegister:
1055     if (parseVirtualRegister(Info))
1056       return true;
1057     Reg = Info->VReg;
1058     return false;
1059   // TODO: Parse other register kinds.
1060   default:
1061     llvm_unreachable("The current token should be a register");
1062   }
1063 }
1064 
1065 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1066   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1067     return error("expected '_', register class, or register bank name");
1068   StringRef::iterator Loc = Token.location();
1069   StringRef Name = Token.stringValue();
1070 
1071   // Was it a register class?
1072   auto RCNameI = PFS.Names2RegClasses.find(Name);
1073   if (RCNameI != PFS.Names2RegClasses.end()) {
1074     lex();
1075     const TargetRegisterClass &RC = *RCNameI->getValue();
1076 
1077     switch (RegInfo.Kind) {
1078     case VRegInfo::UNKNOWN:
1079     case VRegInfo::NORMAL:
1080       RegInfo.Kind = VRegInfo::NORMAL;
1081       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1082         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1083         return error(Loc, Twine("conflicting register classes, previously: ") +
1084                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1085       }
1086       RegInfo.D.RC = &RC;
1087       RegInfo.Explicit = true;
1088       return false;
1089 
1090     case VRegInfo::GENERIC:
1091     case VRegInfo::REGBANK:
1092       return error(Loc, "register class specification on generic register");
1093     }
1094     llvm_unreachable("Unexpected register kind");
1095   }
1096 
1097   // Should be a register bank or a generic register.
1098   const RegisterBank *RegBank = nullptr;
1099   if (Name != "_") {
1100     auto RBNameI = PFS.Names2RegBanks.find(Name);
1101     if (RBNameI == PFS.Names2RegBanks.end())
1102       return error(Loc, "expected '_', register class, or register bank name");
1103     RegBank = RBNameI->getValue();
1104   }
1105 
1106   lex();
1107 
1108   switch (RegInfo.Kind) {
1109   case VRegInfo::UNKNOWN:
1110   case VRegInfo::GENERIC:
1111   case VRegInfo::REGBANK:
1112     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1113     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1114       return error(Loc, "conflicting generic register banks");
1115     RegInfo.D.RegBank = RegBank;
1116     RegInfo.Explicit = true;
1117     return false;
1118 
1119   case VRegInfo::NORMAL:
1120     return error(Loc, "register bank specification on normal register");
1121   }
1122   llvm_unreachable("Unexpected register kind");
1123 }
1124 
1125 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1126   const unsigned OldFlags = Flags;
1127   switch (Token.kind()) {
1128   case MIToken::kw_implicit:
1129     Flags |= RegState::Implicit;
1130     break;
1131   case MIToken::kw_implicit_define:
1132     Flags |= RegState::ImplicitDefine;
1133     break;
1134   case MIToken::kw_def:
1135     Flags |= RegState::Define;
1136     break;
1137   case MIToken::kw_dead:
1138     Flags |= RegState::Dead;
1139     break;
1140   case MIToken::kw_killed:
1141     Flags |= RegState::Kill;
1142     break;
1143   case MIToken::kw_undef:
1144     Flags |= RegState::Undef;
1145     break;
1146   case MIToken::kw_internal:
1147     Flags |= RegState::InternalRead;
1148     break;
1149   case MIToken::kw_early_clobber:
1150     Flags |= RegState::EarlyClobber;
1151     break;
1152   case MIToken::kw_debug_use:
1153     Flags |= RegState::Debug;
1154     break;
1155   case MIToken::kw_renamable:
1156     Flags |= RegState::Renamable;
1157     break;
1158   default:
1159     llvm_unreachable("The current token should be a register flag");
1160   }
1161   if (OldFlags == Flags)
1162     // We know that the same flag is specified more than once when the flags
1163     // weren't modified.
1164     return error("duplicate '" + Token.stringValue() + "' register flag");
1165   lex();
1166   return false;
1167 }
1168 
1169 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1170   assert(Token.is(MIToken::dot));
1171   lex();
1172   if (Token.isNot(MIToken::Identifier))
1173     return error("expected a subregister index after '.'");
1174   auto Name = Token.stringValue();
1175   SubReg = getSubRegIndex(Name);
1176   if (!SubReg)
1177     return error(Twine("use of unknown subregister index '") + Name + "'");
1178   lex();
1179   return false;
1180 }
1181 
1182 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1183   if (!consumeIfPresent(MIToken::kw_tied_def))
1184     return true;
1185   if (Token.isNot(MIToken::IntegerLiteral))
1186     return error("expected an integer literal after 'tied-def'");
1187   if (getUnsigned(TiedDefIdx))
1188     return true;
1189   lex();
1190   if (expectAndConsume(MIToken::rparen))
1191     return true;
1192   return false;
1193 }
1194 
1195 bool MIParser::assignRegisterTies(MachineInstr &MI,
1196                                   ArrayRef<ParsedMachineOperand> Operands) {
1197   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1198   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1199     if (!Operands[I].TiedDefIdx)
1200       continue;
1201     // The parser ensures that this operand is a register use, so we just have
1202     // to check the tied-def operand.
1203     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1204     if (DefIdx >= E)
1205       return error(Operands[I].Begin,
1206                    Twine("use of invalid tied-def operand index '" +
1207                          Twine(DefIdx) + "'; instruction has only ") +
1208                        Twine(E) + " operands");
1209     const auto &DefOperand = Operands[DefIdx].Operand;
1210     if (!DefOperand.isReg() || !DefOperand.isDef())
1211       // FIXME: add note with the def operand.
1212       return error(Operands[I].Begin,
1213                    Twine("use of invalid tied-def operand index '") +
1214                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1215                        " isn't a defined register");
1216     // Check that the tied-def operand wasn't tied elsewhere.
1217     for (const auto &TiedPair : TiedRegisterPairs) {
1218       if (TiedPair.first == DefIdx)
1219         return error(Operands[I].Begin,
1220                      Twine("the tied-def operand #") + Twine(DefIdx) +
1221                          " is already tied with another register operand");
1222     }
1223     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1224   }
1225   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1226   // indices must be less than tied max.
1227   for (const auto &TiedPair : TiedRegisterPairs)
1228     MI.tieOperands(TiedPair.first, TiedPair.second);
1229   return false;
1230 }
1231 
1232 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1233                                     Optional<unsigned> &TiedDefIdx,
1234                                     bool IsDef) {
1235   unsigned Flags = IsDef ? RegState::Define : 0;
1236   while (Token.isRegisterFlag()) {
1237     if (parseRegisterFlag(Flags))
1238       return true;
1239   }
1240   if (!Token.isRegister())
1241     return error("expected a register after register flags");
1242   unsigned Reg;
1243   VRegInfo *RegInfo;
1244   if (parseRegister(Reg, RegInfo))
1245     return true;
1246   lex();
1247   unsigned SubReg = 0;
1248   if (Token.is(MIToken::dot)) {
1249     if (parseSubRegisterIndex(SubReg))
1250       return true;
1251     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1252       return error("subregister index expects a virtual register");
1253   }
1254   if (Token.is(MIToken::colon)) {
1255     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1256       return error("register class specification expects a virtual register");
1257     lex();
1258     if (parseRegisterClassOrBank(*RegInfo))
1259         return true;
1260   }
1261   MachineRegisterInfo &MRI = MF.getRegInfo();
1262   if ((Flags & RegState::Define) == 0) {
1263     if (consumeIfPresent(MIToken::lparen)) {
1264       unsigned Idx;
1265       if (!parseRegisterTiedDefIndex(Idx))
1266         TiedDefIdx = Idx;
1267       else {
1268         // Try a redundant low-level type.
1269         LLT Ty;
1270         if (parseLowLevelType(Token.location(), Ty))
1271           return error("expected tied-def or low-level type after '('");
1272 
1273         if (expectAndConsume(MIToken::rparen))
1274           return true;
1275 
1276         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1277           return error("inconsistent type for generic virtual register");
1278 
1279         MRI.setType(Reg, Ty);
1280       }
1281     }
1282   } else if (consumeIfPresent(MIToken::lparen)) {
1283     // Virtual registers may have a tpe with GlobalISel.
1284     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1285       return error("unexpected type on physical register");
1286 
1287     LLT Ty;
1288     if (parseLowLevelType(Token.location(), Ty))
1289       return true;
1290 
1291     if (expectAndConsume(MIToken::rparen))
1292       return true;
1293 
1294     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1295       return error("inconsistent type for generic virtual register");
1296 
1297     MRI.setType(Reg, Ty);
1298   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1299     // Generic virtual registers must have a type.
1300     // If we end up here this means the type hasn't been specified and
1301     // this is bad!
1302     if (RegInfo->Kind == VRegInfo::GENERIC ||
1303         RegInfo->Kind == VRegInfo::REGBANK)
1304       return error("generic virtual registers must have a type");
1305   }
1306   Dest = MachineOperand::CreateReg(
1307       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1308       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1309       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1310       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1311 
1312   return false;
1313 }
1314 
1315 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1316   assert(Token.is(MIToken::IntegerLiteral));
1317   const APSInt &Int = Token.integerValue();
1318   if (Int.getMinSignedBits() > 64)
1319     return error("integer literal is too large to be an immediate operand");
1320   Dest = MachineOperand::CreateImm(Int.getExtValue());
1321   lex();
1322   return false;
1323 }
1324 
1325 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1326                                const Constant *&C) {
1327   auto Source = StringValue.str(); // The source has to be null terminated.
1328   SMDiagnostic Err;
1329   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1330                          &PFS.IRSlots);
1331   if (!C)
1332     return error(Loc + Err.getColumnNo(), Err.getMessage());
1333   return false;
1334 }
1335 
1336 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1337   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1338     return true;
1339   lex();
1340   return false;
1341 }
1342 
1343 // See LLT implemntation for bit size limits.
1344 static bool verifyScalarSize(uint64_t Size) {
1345   return Size != 0 && isUInt<16>(Size);
1346 }
1347 
1348 static bool verifyVectorElementCount(uint64_t NumElts) {
1349   return NumElts != 0 && isUInt<16>(NumElts);
1350 }
1351 
1352 static bool verifyAddrSpace(uint64_t AddrSpace) {
1353   return isUInt<24>(AddrSpace);
1354 }
1355 
1356 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1357   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1358     StringRef SizeStr = Token.range().drop_front();
1359     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1360       return error("expected integers after 's'/'p' type character");
1361   }
1362 
1363   if (Token.range().front() == 's') {
1364     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1365     if (!verifyScalarSize(ScalarSize))
1366       return error("invalid size for scalar type");
1367 
1368     Ty = LLT::scalar(ScalarSize);
1369     lex();
1370     return false;
1371   } else if (Token.range().front() == 'p') {
1372     const DataLayout &DL = MF.getDataLayout();
1373     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1374     if (!verifyAddrSpace(AS))
1375       return error("invalid address space number");
1376 
1377     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1378     lex();
1379     return false;
1380   }
1381 
1382   // Now we're looking for a vector.
1383   if (Token.isNot(MIToken::less))
1384     return error(Loc,
1385                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1386   lex();
1387 
1388   if (Token.isNot(MIToken::IntegerLiteral))
1389     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1390   uint64_t NumElements = Token.integerValue().getZExtValue();
1391   if (!verifyVectorElementCount(NumElements))
1392     return error("invalid number of vector elements");
1393 
1394   lex();
1395 
1396   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1397     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1398   lex();
1399 
1400   if (Token.range().front() != 's' && Token.range().front() != 'p')
1401     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1402   StringRef SizeStr = Token.range().drop_front();
1403   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1404     return error("expected integers after 's'/'p' type character");
1405 
1406   if (Token.range().front() == 's') {
1407     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1408     if (!verifyScalarSize(ScalarSize))
1409       return error("invalid size for scalar type");
1410     Ty = LLT::scalar(ScalarSize);
1411   } else if (Token.range().front() == 'p') {
1412     const DataLayout &DL = MF.getDataLayout();
1413     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1414     if (!verifyAddrSpace(AS))
1415       return error("invalid address space number");
1416 
1417     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1418   } else
1419     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1420   lex();
1421 
1422   if (Token.isNot(MIToken::greater))
1423     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1424   lex();
1425 
1426   Ty = LLT::vector(NumElements, Ty);
1427   return false;
1428 }
1429 
1430 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1431   assert(Token.is(MIToken::Identifier));
1432   StringRef TypeStr = Token.range();
1433   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1434       TypeStr.front() != 'p')
1435     return error(
1436         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1437   StringRef SizeStr = Token.range().drop_front();
1438   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1439     return error("expected integers after 'i'/'s'/'p' type character");
1440 
1441   auto Loc = Token.location();
1442   lex();
1443   if (Token.isNot(MIToken::IntegerLiteral)) {
1444     if (Token.isNot(MIToken::Identifier) ||
1445         !(Token.range() == "true" || Token.range() == "false"))
1446       return error("expected an integer literal");
1447   }
1448   const Constant *C = nullptr;
1449   if (parseIRConstant(Loc, C))
1450     return true;
1451   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1452   return false;
1453 }
1454 
1455 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1456   auto Loc = Token.location();
1457   lex();
1458   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1459       Token.isNot(MIToken::HexLiteral))
1460     return error("expected a floating point literal");
1461   const Constant *C = nullptr;
1462   if (parseIRConstant(Loc, C))
1463     return true;
1464   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1465   return false;
1466 }
1467 
1468 bool MIParser::getUnsigned(unsigned &Result) {
1469   if (Token.hasIntegerValue()) {
1470     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1471     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1472     if (Val64 == Limit)
1473       return error("expected 32-bit integer (too large)");
1474     Result = Val64;
1475     return false;
1476   }
1477   if (Token.is(MIToken::HexLiteral)) {
1478     APInt A;
1479     if (getHexUint(A))
1480       return true;
1481     if (A.getBitWidth() > 32)
1482       return error("expected 32-bit integer (too large)");
1483     Result = A.getZExtValue();
1484     return false;
1485   }
1486   return true;
1487 }
1488 
1489 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1490   assert(Token.is(MIToken::MachineBasicBlock) ||
1491          Token.is(MIToken::MachineBasicBlockLabel));
1492   unsigned Number;
1493   if (getUnsigned(Number))
1494     return true;
1495   auto MBBInfo = PFS.MBBSlots.find(Number);
1496   if (MBBInfo == PFS.MBBSlots.end())
1497     return error(Twine("use of undefined machine basic block #") +
1498                  Twine(Number));
1499   MBB = MBBInfo->second;
1500   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1501   // we drop the <irname> from the bb.<id>.<irname> format.
1502   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1503     return error(Twine("the name of machine basic block #") + Twine(Number) +
1504                  " isn't '" + Token.stringValue() + "'");
1505   return false;
1506 }
1507 
1508 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1509   MachineBasicBlock *MBB;
1510   if (parseMBBReference(MBB))
1511     return true;
1512   Dest = MachineOperand::CreateMBB(MBB);
1513   lex();
1514   return false;
1515 }
1516 
1517 bool MIParser::parseStackFrameIndex(int &FI) {
1518   assert(Token.is(MIToken::StackObject));
1519   unsigned ID;
1520   if (getUnsigned(ID))
1521     return true;
1522   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1523   if (ObjectInfo == PFS.StackObjectSlots.end())
1524     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1525                  "'");
1526   StringRef Name;
1527   if (const auto *Alloca =
1528           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1529     Name = Alloca->getName();
1530   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1531     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1532                  "' isn't '" + Token.stringValue() + "'");
1533   lex();
1534   FI = ObjectInfo->second;
1535   return false;
1536 }
1537 
1538 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1539   int FI;
1540   if (parseStackFrameIndex(FI))
1541     return true;
1542   Dest = MachineOperand::CreateFI(FI);
1543   return false;
1544 }
1545 
1546 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1547   assert(Token.is(MIToken::FixedStackObject));
1548   unsigned ID;
1549   if (getUnsigned(ID))
1550     return true;
1551   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1552   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1553     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1554                  Twine(ID) + "'");
1555   lex();
1556   FI = ObjectInfo->second;
1557   return false;
1558 }
1559 
1560 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1561   int FI;
1562   if (parseFixedStackFrameIndex(FI))
1563     return true;
1564   Dest = MachineOperand::CreateFI(FI);
1565   return false;
1566 }
1567 
1568 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1569   switch (Token.kind()) {
1570   case MIToken::NamedGlobalValue: {
1571     const Module *M = MF.getFunction().getParent();
1572     GV = M->getNamedValue(Token.stringValue());
1573     if (!GV)
1574       return error(Twine("use of undefined global value '") + Token.range() +
1575                    "'");
1576     break;
1577   }
1578   case MIToken::GlobalValue: {
1579     unsigned GVIdx;
1580     if (getUnsigned(GVIdx))
1581       return true;
1582     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1583       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1584                    "'");
1585     GV = PFS.IRSlots.GlobalValues[GVIdx];
1586     break;
1587   }
1588   default:
1589     llvm_unreachable("The current token should be a global value");
1590   }
1591   return false;
1592 }
1593 
1594 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1595   GlobalValue *GV = nullptr;
1596   if (parseGlobalValue(GV))
1597     return true;
1598   lex();
1599   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1600   if (parseOperandsOffset(Dest))
1601     return true;
1602   return false;
1603 }
1604 
1605 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1606   assert(Token.is(MIToken::ConstantPoolItem));
1607   unsigned ID;
1608   if (getUnsigned(ID))
1609     return true;
1610   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1611   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1612     return error("use of undefined constant '%const." + Twine(ID) + "'");
1613   lex();
1614   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1615   if (parseOperandsOffset(Dest))
1616     return true;
1617   return false;
1618 }
1619 
1620 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1621   assert(Token.is(MIToken::JumpTableIndex));
1622   unsigned ID;
1623   if (getUnsigned(ID))
1624     return true;
1625   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1626   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1627     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1628   lex();
1629   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1630   return false;
1631 }
1632 
1633 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1634   assert(Token.is(MIToken::ExternalSymbol));
1635   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1636   lex();
1637   Dest = MachineOperand::CreateES(Symbol);
1638   if (parseOperandsOffset(Dest))
1639     return true;
1640   return false;
1641 }
1642 
1643 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1644   assert(Token.is(MIToken::MCSymbol));
1645   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1646   lex();
1647   Dest = MachineOperand::CreateMCSymbol(Symbol);
1648   if (parseOperandsOffset(Dest))
1649     return true;
1650   return false;
1651 }
1652 
1653 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1654   assert(Token.is(MIToken::SubRegisterIndex));
1655   StringRef Name = Token.stringValue();
1656   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1657   if (SubRegIndex == 0)
1658     return error(Twine("unknown subregister index '") + Name + "'");
1659   lex();
1660   Dest = MachineOperand::CreateImm(SubRegIndex);
1661   return false;
1662 }
1663 
1664 bool MIParser::parseMDNode(MDNode *&Node) {
1665   assert(Token.is(MIToken::exclaim));
1666 
1667   auto Loc = Token.location();
1668   lex();
1669   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1670     return error("expected metadata id after '!'");
1671   unsigned ID;
1672   if (getUnsigned(ID))
1673     return true;
1674   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1675   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1676     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1677   lex();
1678   Node = NodeInfo->second.get();
1679   return false;
1680 }
1681 
1682 bool MIParser::parseDIExpression(MDNode *&Expr) {
1683   assert(Token.is(MIToken::md_diexpr));
1684   lex();
1685 
1686   // FIXME: Share this parsing with the IL parser.
1687   SmallVector<uint64_t, 8> Elements;
1688 
1689   if (expectAndConsume(MIToken::lparen))
1690     return true;
1691 
1692   if (Token.isNot(MIToken::rparen)) {
1693     do {
1694       if (Token.is(MIToken::Identifier)) {
1695         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1696           lex();
1697           Elements.push_back(Op);
1698           continue;
1699         }
1700         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1701       }
1702 
1703       if (Token.isNot(MIToken::IntegerLiteral) ||
1704           Token.integerValue().isSigned())
1705         return error("expected unsigned integer");
1706 
1707       auto &U = Token.integerValue();
1708       if (U.ugt(UINT64_MAX))
1709         return error("element too large, limit is " + Twine(UINT64_MAX));
1710       Elements.push_back(U.getZExtValue());
1711       lex();
1712 
1713     } while (consumeIfPresent(MIToken::comma));
1714   }
1715 
1716   if (expectAndConsume(MIToken::rparen))
1717     return true;
1718 
1719   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1720   return false;
1721 }
1722 
1723 bool MIParser::parseDILocation(MDNode *&Loc) {
1724   assert(Token.is(MIToken::md_dilocation));
1725   lex();
1726 
1727   bool HaveLine = false;
1728   unsigned Line = 0;
1729   unsigned Column = 0;
1730   MDNode *Scope = nullptr;
1731   MDNode *InlinedAt = nullptr;
1732   bool ImplicitCode = false;
1733 
1734   if (expectAndConsume(MIToken::lparen))
1735     return true;
1736 
1737   if (Token.isNot(MIToken::rparen)) {
1738     do {
1739       if (Token.is(MIToken::Identifier)) {
1740         if (Token.stringValue() == "line") {
1741           lex();
1742           if (expectAndConsume(MIToken::colon))
1743             return true;
1744           if (Token.isNot(MIToken::IntegerLiteral) ||
1745               Token.integerValue().isSigned())
1746             return error("expected unsigned integer");
1747           Line = Token.integerValue().getZExtValue();
1748           HaveLine = true;
1749           lex();
1750           continue;
1751         }
1752         if (Token.stringValue() == "column") {
1753           lex();
1754           if (expectAndConsume(MIToken::colon))
1755             return true;
1756           if (Token.isNot(MIToken::IntegerLiteral) ||
1757               Token.integerValue().isSigned())
1758             return error("expected unsigned integer");
1759           Column = Token.integerValue().getZExtValue();
1760           lex();
1761           continue;
1762         }
1763         if (Token.stringValue() == "scope") {
1764           lex();
1765           if (expectAndConsume(MIToken::colon))
1766             return true;
1767           if (parseMDNode(Scope))
1768             return error("expected metadata node");
1769           if (!isa<DIScope>(Scope))
1770             return error("expected DIScope node");
1771           continue;
1772         }
1773         if (Token.stringValue() == "inlinedAt") {
1774           lex();
1775           if (expectAndConsume(MIToken::colon))
1776             return true;
1777           if (Token.is(MIToken::exclaim)) {
1778             if (parseMDNode(InlinedAt))
1779               return true;
1780           } else if (Token.is(MIToken::md_dilocation)) {
1781             if (parseDILocation(InlinedAt))
1782               return true;
1783           } else
1784             return error("expected metadata node");
1785           if (!isa<DILocation>(InlinedAt))
1786             return error("expected DILocation node");
1787           continue;
1788         }
1789         if (Token.stringValue() == "isImplicitCode") {
1790           lex();
1791           if (expectAndConsume(MIToken::colon))
1792             return true;
1793           if (!Token.is(MIToken::Identifier))
1794             return error("expected true/false");
1795           // As far as I can see, we don't have any existing need for parsing
1796           // true/false in MIR yet. Do it ad-hoc until there's something else
1797           // that needs it.
1798           if (Token.stringValue() == "true")
1799             ImplicitCode = true;
1800           else if (Token.stringValue() == "false")
1801             ImplicitCode = false;
1802           else
1803             return error("expected true/false");
1804           lex();
1805           continue;
1806         }
1807       }
1808       return error(Twine("invalid DILocation argument '") +
1809                    Token.stringValue() + "'");
1810     } while (consumeIfPresent(MIToken::comma));
1811   }
1812 
1813   if (expectAndConsume(MIToken::rparen))
1814     return true;
1815 
1816   if (!HaveLine)
1817     return error("DILocation requires line number");
1818   if (!Scope)
1819     return error("DILocation requires a scope");
1820 
1821   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
1822                         InlinedAt, ImplicitCode);
1823   return false;
1824 }
1825 
1826 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1827   MDNode *Node = nullptr;
1828   if (Token.is(MIToken::exclaim)) {
1829     if (parseMDNode(Node))
1830       return true;
1831   } else if (Token.is(MIToken::md_diexpr)) {
1832     if (parseDIExpression(Node))
1833       return true;
1834   }
1835   Dest = MachineOperand::CreateMetadata(Node);
1836   return false;
1837 }
1838 
1839 bool MIParser::parseCFIOffset(int &Offset) {
1840   if (Token.isNot(MIToken::IntegerLiteral))
1841     return error("expected a cfi offset");
1842   if (Token.integerValue().getMinSignedBits() > 32)
1843     return error("expected a 32 bit integer (the cfi offset is too large)");
1844   Offset = (int)Token.integerValue().getExtValue();
1845   lex();
1846   return false;
1847 }
1848 
1849 bool MIParser::parseCFIRegister(unsigned &Reg) {
1850   if (Token.isNot(MIToken::NamedRegister))
1851     return error("expected a cfi register");
1852   unsigned LLVMReg;
1853   if (parseNamedRegister(LLVMReg))
1854     return true;
1855   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1856   assert(TRI && "Expected target register info");
1857   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1858   if (DwarfReg < 0)
1859     return error("invalid DWARF register");
1860   Reg = (unsigned)DwarfReg;
1861   lex();
1862   return false;
1863 }
1864 
1865 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1866   do {
1867     if (Token.isNot(MIToken::HexLiteral))
1868       return error("expected a hexadecimal literal");
1869     unsigned Value;
1870     if (getUnsigned(Value))
1871       return true;
1872     if (Value > UINT8_MAX)
1873       return error("expected a 8-bit integer (too large)");
1874     Values.push_back(static_cast<uint8_t>(Value));
1875     lex();
1876   } while (consumeIfPresent(MIToken::comma));
1877   return false;
1878 }
1879 
1880 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1881   auto Kind = Token.kind();
1882   lex();
1883   int Offset;
1884   unsigned Reg;
1885   unsigned CFIIndex;
1886   switch (Kind) {
1887   case MIToken::kw_cfi_same_value:
1888     if (parseCFIRegister(Reg))
1889       return true;
1890     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1891     break;
1892   case MIToken::kw_cfi_offset:
1893     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1894         parseCFIOffset(Offset))
1895       return true;
1896     CFIIndex =
1897         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1898     break;
1899   case MIToken::kw_cfi_rel_offset:
1900     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1901         parseCFIOffset(Offset))
1902       return true;
1903     CFIIndex = MF.addFrameInst(
1904         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1905     break;
1906   case MIToken::kw_cfi_def_cfa_register:
1907     if (parseCFIRegister(Reg))
1908       return true;
1909     CFIIndex =
1910         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1911     break;
1912   case MIToken::kw_cfi_def_cfa_offset:
1913     if (parseCFIOffset(Offset))
1914       return true;
1915     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1916     CFIIndex = MF.addFrameInst(
1917         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1918     break;
1919   case MIToken::kw_cfi_adjust_cfa_offset:
1920     if (parseCFIOffset(Offset))
1921       return true;
1922     CFIIndex = MF.addFrameInst(
1923         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1924     break;
1925   case MIToken::kw_cfi_def_cfa:
1926     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1927         parseCFIOffset(Offset))
1928       return true;
1929     // NB: MCCFIInstruction::createDefCfa negates the offset.
1930     CFIIndex =
1931         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1932     break;
1933   case MIToken::kw_cfi_remember_state:
1934     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1935     break;
1936   case MIToken::kw_cfi_restore:
1937     if (parseCFIRegister(Reg))
1938       return true;
1939     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1940     break;
1941   case MIToken::kw_cfi_restore_state:
1942     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1943     break;
1944   case MIToken::kw_cfi_undefined:
1945     if (parseCFIRegister(Reg))
1946       return true;
1947     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1948     break;
1949   case MIToken::kw_cfi_register: {
1950     unsigned Reg2;
1951     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1952         parseCFIRegister(Reg2))
1953       return true;
1954 
1955     CFIIndex =
1956         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1957     break;
1958   }
1959   case MIToken::kw_cfi_window_save:
1960     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1961     break;
1962   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
1963     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1964     break;
1965   case MIToken::kw_cfi_escape: {
1966     std::string Values;
1967     if (parseCFIEscapeValues(Values))
1968       return true;
1969     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1970     break;
1971   }
1972   default:
1973     // TODO: Parse the other CFI operands.
1974     llvm_unreachable("The current token should be a cfi operand");
1975   }
1976   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1977   return false;
1978 }
1979 
1980 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1981   switch (Token.kind()) {
1982   case MIToken::NamedIRBlock: {
1983     BB = dyn_cast_or_null<BasicBlock>(
1984         F.getValueSymbolTable()->lookup(Token.stringValue()));
1985     if (!BB)
1986       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1987     break;
1988   }
1989   case MIToken::IRBlock: {
1990     unsigned SlotNumber = 0;
1991     if (getUnsigned(SlotNumber))
1992       return true;
1993     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1994     if (!BB)
1995       return error(Twine("use of undefined IR block '%ir-block.") +
1996                    Twine(SlotNumber) + "'");
1997     break;
1998   }
1999   default:
2000     llvm_unreachable("The current token should be an IR block reference");
2001   }
2002   return false;
2003 }
2004 
2005 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2006   assert(Token.is(MIToken::kw_blockaddress));
2007   lex();
2008   if (expectAndConsume(MIToken::lparen))
2009     return true;
2010   if (Token.isNot(MIToken::GlobalValue) &&
2011       Token.isNot(MIToken::NamedGlobalValue))
2012     return error("expected a global value");
2013   GlobalValue *GV = nullptr;
2014   if (parseGlobalValue(GV))
2015     return true;
2016   auto *F = dyn_cast<Function>(GV);
2017   if (!F)
2018     return error("expected an IR function reference");
2019   lex();
2020   if (expectAndConsume(MIToken::comma))
2021     return true;
2022   BasicBlock *BB = nullptr;
2023   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2024     return error("expected an IR block reference");
2025   if (parseIRBlock(BB, *F))
2026     return true;
2027   lex();
2028   if (expectAndConsume(MIToken::rparen))
2029     return true;
2030   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2031   if (parseOperandsOffset(Dest))
2032     return true;
2033   return false;
2034 }
2035 
2036 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2037   assert(Token.is(MIToken::kw_intrinsic));
2038   lex();
2039   if (expectAndConsume(MIToken::lparen))
2040     return error("expected syntax intrinsic(@llvm.whatever)");
2041 
2042   if (Token.isNot(MIToken::NamedGlobalValue))
2043     return error("expected syntax intrinsic(@llvm.whatever)");
2044 
2045   std::string Name = Token.stringValue();
2046   lex();
2047 
2048   if (expectAndConsume(MIToken::rparen))
2049     return error("expected ')' to terminate intrinsic name");
2050 
2051   // Find out what intrinsic we're dealing with, first try the global namespace
2052   // and then the target's private intrinsics if that fails.
2053   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2054   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2055   if (ID == Intrinsic::not_intrinsic && TII)
2056     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2057 
2058   if (ID == Intrinsic::not_intrinsic)
2059     return error("unknown intrinsic name");
2060   Dest = MachineOperand::CreateIntrinsicID(ID);
2061 
2062   return false;
2063 }
2064 
2065 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2066   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2067   bool IsFloat = Token.is(MIToken::kw_floatpred);
2068   lex();
2069 
2070   if (expectAndConsume(MIToken::lparen))
2071     return error("expected syntax intpred(whatever) or floatpred(whatever");
2072 
2073   if (Token.isNot(MIToken::Identifier))
2074     return error("whatever");
2075 
2076   CmpInst::Predicate Pred;
2077   if (IsFloat) {
2078     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2079                .Case("false", CmpInst::FCMP_FALSE)
2080                .Case("oeq", CmpInst::FCMP_OEQ)
2081                .Case("ogt", CmpInst::FCMP_OGT)
2082                .Case("oge", CmpInst::FCMP_OGE)
2083                .Case("olt", CmpInst::FCMP_OLT)
2084                .Case("ole", CmpInst::FCMP_OLE)
2085                .Case("one", CmpInst::FCMP_ONE)
2086                .Case("ord", CmpInst::FCMP_ORD)
2087                .Case("uno", CmpInst::FCMP_UNO)
2088                .Case("ueq", CmpInst::FCMP_UEQ)
2089                .Case("ugt", CmpInst::FCMP_UGT)
2090                .Case("uge", CmpInst::FCMP_UGE)
2091                .Case("ult", CmpInst::FCMP_ULT)
2092                .Case("ule", CmpInst::FCMP_ULE)
2093                .Case("une", CmpInst::FCMP_UNE)
2094                .Case("true", CmpInst::FCMP_TRUE)
2095                .Default(CmpInst::BAD_FCMP_PREDICATE);
2096     if (!CmpInst::isFPPredicate(Pred))
2097       return error("invalid floating-point predicate");
2098   } else {
2099     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2100                .Case("eq", CmpInst::ICMP_EQ)
2101                .Case("ne", CmpInst::ICMP_NE)
2102                .Case("sgt", CmpInst::ICMP_SGT)
2103                .Case("sge", CmpInst::ICMP_SGE)
2104                .Case("slt", CmpInst::ICMP_SLT)
2105                .Case("sle", CmpInst::ICMP_SLE)
2106                .Case("ugt", CmpInst::ICMP_UGT)
2107                .Case("uge", CmpInst::ICMP_UGE)
2108                .Case("ult", CmpInst::ICMP_ULT)
2109                .Case("ule", CmpInst::ICMP_ULE)
2110                .Default(CmpInst::BAD_ICMP_PREDICATE);
2111     if (!CmpInst::isIntPredicate(Pred))
2112       return error("invalid integer predicate");
2113   }
2114 
2115   lex();
2116   Dest = MachineOperand::CreatePredicate(Pred);
2117   if (expectAndConsume(MIToken::rparen))
2118     return error("predicate should be terminated by ')'.");
2119 
2120   return false;
2121 }
2122 
2123 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2124   assert(Token.is(MIToken::kw_target_index));
2125   lex();
2126   if (expectAndConsume(MIToken::lparen))
2127     return true;
2128   if (Token.isNot(MIToken::Identifier))
2129     return error("expected the name of the target index");
2130   int Index = 0;
2131   if (getTargetIndex(Token.stringValue(), Index))
2132     return error("use of undefined target index '" + Token.stringValue() + "'");
2133   lex();
2134   if (expectAndConsume(MIToken::rparen))
2135     return true;
2136   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2137   if (parseOperandsOffset(Dest))
2138     return true;
2139   return false;
2140 }
2141 
2142 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2143   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2144   lex();
2145   if (expectAndConsume(MIToken::lparen))
2146     return true;
2147 
2148   uint32_t *Mask = MF.allocateRegMask();
2149   while (true) {
2150     if (Token.isNot(MIToken::NamedRegister))
2151       return error("expected a named register");
2152     unsigned Reg;
2153     if (parseNamedRegister(Reg))
2154       return true;
2155     lex();
2156     Mask[Reg / 32] |= 1U << (Reg % 32);
2157     // TODO: Report an error if the same register is used more than once.
2158     if (Token.isNot(MIToken::comma))
2159       break;
2160     lex();
2161   }
2162 
2163   if (expectAndConsume(MIToken::rparen))
2164     return true;
2165   Dest = MachineOperand::CreateRegMask(Mask);
2166   return false;
2167 }
2168 
2169 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2170   assert(Token.is(MIToken::kw_liveout));
2171   uint32_t *Mask = MF.allocateRegMask();
2172   lex();
2173   if (expectAndConsume(MIToken::lparen))
2174     return true;
2175   while (true) {
2176     if (Token.isNot(MIToken::NamedRegister))
2177       return error("expected a named register");
2178     unsigned Reg;
2179     if (parseNamedRegister(Reg))
2180       return true;
2181     lex();
2182     Mask[Reg / 32] |= 1U << (Reg % 32);
2183     // TODO: Report an error if the same register is used more than once.
2184     if (Token.isNot(MIToken::comma))
2185       break;
2186     lex();
2187   }
2188   if (expectAndConsume(MIToken::rparen))
2189     return true;
2190   Dest = MachineOperand::CreateRegLiveOut(Mask);
2191   return false;
2192 }
2193 
2194 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2195                                    Optional<unsigned> &TiedDefIdx) {
2196   switch (Token.kind()) {
2197   case MIToken::kw_implicit:
2198   case MIToken::kw_implicit_define:
2199   case MIToken::kw_def:
2200   case MIToken::kw_dead:
2201   case MIToken::kw_killed:
2202   case MIToken::kw_undef:
2203   case MIToken::kw_internal:
2204   case MIToken::kw_early_clobber:
2205   case MIToken::kw_debug_use:
2206   case MIToken::kw_renamable:
2207   case MIToken::underscore:
2208   case MIToken::NamedRegister:
2209   case MIToken::VirtualRegister:
2210   case MIToken::NamedVirtualRegister:
2211     return parseRegisterOperand(Dest, TiedDefIdx);
2212   case MIToken::IntegerLiteral:
2213     return parseImmediateOperand(Dest);
2214   case MIToken::kw_half:
2215   case MIToken::kw_float:
2216   case MIToken::kw_double:
2217   case MIToken::kw_x86_fp80:
2218   case MIToken::kw_fp128:
2219   case MIToken::kw_ppc_fp128:
2220     return parseFPImmediateOperand(Dest);
2221   case MIToken::MachineBasicBlock:
2222     return parseMBBOperand(Dest);
2223   case MIToken::StackObject:
2224     return parseStackObjectOperand(Dest);
2225   case MIToken::FixedStackObject:
2226     return parseFixedStackObjectOperand(Dest);
2227   case MIToken::GlobalValue:
2228   case MIToken::NamedGlobalValue:
2229     return parseGlobalAddressOperand(Dest);
2230   case MIToken::ConstantPoolItem:
2231     return parseConstantPoolIndexOperand(Dest);
2232   case MIToken::JumpTableIndex:
2233     return parseJumpTableIndexOperand(Dest);
2234   case MIToken::ExternalSymbol:
2235     return parseExternalSymbolOperand(Dest);
2236   case MIToken::MCSymbol:
2237     return parseMCSymbolOperand(Dest);
2238   case MIToken::SubRegisterIndex:
2239     return parseSubRegisterIndexOperand(Dest);
2240   case MIToken::md_diexpr:
2241   case MIToken::exclaim:
2242     return parseMetadataOperand(Dest);
2243   case MIToken::kw_cfi_same_value:
2244   case MIToken::kw_cfi_offset:
2245   case MIToken::kw_cfi_rel_offset:
2246   case MIToken::kw_cfi_def_cfa_register:
2247   case MIToken::kw_cfi_def_cfa_offset:
2248   case MIToken::kw_cfi_adjust_cfa_offset:
2249   case MIToken::kw_cfi_escape:
2250   case MIToken::kw_cfi_def_cfa:
2251   case MIToken::kw_cfi_register:
2252   case MIToken::kw_cfi_remember_state:
2253   case MIToken::kw_cfi_restore:
2254   case MIToken::kw_cfi_restore_state:
2255   case MIToken::kw_cfi_undefined:
2256   case MIToken::kw_cfi_window_save:
2257   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2258     return parseCFIOperand(Dest);
2259   case MIToken::kw_blockaddress:
2260     return parseBlockAddressOperand(Dest);
2261   case MIToken::kw_intrinsic:
2262     return parseIntrinsicOperand(Dest);
2263   case MIToken::kw_target_index:
2264     return parseTargetIndexOperand(Dest);
2265   case MIToken::kw_liveout:
2266     return parseLiveoutRegisterMaskOperand(Dest);
2267   case MIToken::kw_floatpred:
2268   case MIToken::kw_intpred:
2269     return parsePredicateOperand(Dest);
2270   case MIToken::Error:
2271     return true;
2272   case MIToken::Identifier:
2273     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2274       Dest = MachineOperand::CreateRegMask(RegMask);
2275       lex();
2276       break;
2277     } else if (Token.stringValue() == "CustomRegMask") {
2278       return parseCustomRegisterMaskOperand(Dest);
2279     } else
2280       return parseTypedImmediateOperand(Dest);
2281   default:
2282     // FIXME: Parse the MCSymbol machine operand.
2283     return error("expected a machine operand");
2284   }
2285   return false;
2286 }
2287 
2288 bool MIParser::parseMachineOperandAndTargetFlags(
2289     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2290   unsigned TF = 0;
2291   bool HasTargetFlags = false;
2292   if (Token.is(MIToken::kw_target_flags)) {
2293     HasTargetFlags = true;
2294     lex();
2295     if (expectAndConsume(MIToken::lparen))
2296       return true;
2297     if (Token.isNot(MIToken::Identifier))
2298       return error("expected the name of the target flag");
2299     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2300       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2301         return error("use of undefined target flag '" + Token.stringValue() +
2302                      "'");
2303     }
2304     lex();
2305     while (Token.is(MIToken::comma)) {
2306       lex();
2307       if (Token.isNot(MIToken::Identifier))
2308         return error("expected the name of the target flag");
2309       unsigned BitFlag = 0;
2310       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2311         return error("use of undefined target flag '" + Token.stringValue() +
2312                      "'");
2313       // TODO: Report an error when using a duplicate bit target flag.
2314       TF |= BitFlag;
2315       lex();
2316     }
2317     if (expectAndConsume(MIToken::rparen))
2318       return true;
2319   }
2320   auto Loc = Token.location();
2321   if (parseMachineOperand(Dest, TiedDefIdx))
2322     return true;
2323   if (!HasTargetFlags)
2324     return false;
2325   if (Dest.isReg())
2326     return error(Loc, "register operands can't have target flags");
2327   Dest.setTargetFlags(TF);
2328   return false;
2329 }
2330 
2331 bool MIParser::parseOffset(int64_t &Offset) {
2332   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2333     return false;
2334   StringRef Sign = Token.range();
2335   bool IsNegative = Token.is(MIToken::minus);
2336   lex();
2337   if (Token.isNot(MIToken::IntegerLiteral))
2338     return error("expected an integer literal after '" + Sign + "'");
2339   if (Token.integerValue().getMinSignedBits() > 64)
2340     return error("expected 64-bit integer (too large)");
2341   Offset = Token.integerValue().getExtValue();
2342   if (IsNegative)
2343     Offset = -Offset;
2344   lex();
2345   return false;
2346 }
2347 
2348 bool MIParser::parseAlignment(unsigned &Alignment) {
2349   assert(Token.is(MIToken::kw_align));
2350   lex();
2351   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2352     return error("expected an integer literal after 'align'");
2353   if (getUnsigned(Alignment))
2354     return true;
2355   lex();
2356 
2357   if (!isPowerOf2_32(Alignment))
2358     return error("expected a power-of-2 literal after 'align'");
2359 
2360   return false;
2361 }
2362 
2363 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2364   assert(Token.is(MIToken::kw_addrspace));
2365   lex();
2366   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2367     return error("expected an integer literal after 'addrspace'");
2368   if (getUnsigned(Addrspace))
2369     return true;
2370   lex();
2371   return false;
2372 }
2373 
2374 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2375   int64_t Offset = 0;
2376   if (parseOffset(Offset))
2377     return true;
2378   Op.setOffset(Offset);
2379   return false;
2380 }
2381 
2382 bool MIParser::parseIRValue(const Value *&V) {
2383   switch (Token.kind()) {
2384   case MIToken::NamedIRValue: {
2385     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2386     break;
2387   }
2388   case MIToken::IRValue: {
2389     unsigned SlotNumber = 0;
2390     if (getUnsigned(SlotNumber))
2391       return true;
2392     V = getIRValue(SlotNumber);
2393     break;
2394   }
2395   case MIToken::NamedGlobalValue:
2396   case MIToken::GlobalValue: {
2397     GlobalValue *GV = nullptr;
2398     if (parseGlobalValue(GV))
2399       return true;
2400     V = GV;
2401     break;
2402   }
2403   case MIToken::QuotedIRValue: {
2404     const Constant *C = nullptr;
2405     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2406       return true;
2407     V = C;
2408     break;
2409   }
2410   default:
2411     llvm_unreachable("The current token should be an IR block reference");
2412   }
2413   if (!V)
2414     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2415   return false;
2416 }
2417 
2418 bool MIParser::getUint64(uint64_t &Result) {
2419   if (Token.hasIntegerValue()) {
2420     if (Token.integerValue().getActiveBits() > 64)
2421       return error("expected 64-bit integer (too large)");
2422     Result = Token.integerValue().getZExtValue();
2423     return false;
2424   }
2425   if (Token.is(MIToken::HexLiteral)) {
2426     APInt A;
2427     if (getHexUint(A))
2428       return true;
2429     if (A.getBitWidth() > 64)
2430       return error("expected 64-bit integer (too large)");
2431     Result = A.getZExtValue();
2432     return false;
2433   }
2434   return true;
2435 }
2436 
2437 bool MIParser::getHexUint(APInt &Result) {
2438   assert(Token.is(MIToken::HexLiteral));
2439   StringRef S = Token.range();
2440   assert(S[0] == '0' && tolower(S[1]) == 'x');
2441   // This could be a floating point literal with a special prefix.
2442   if (!isxdigit(S[2]))
2443     return true;
2444   StringRef V = S.substr(2);
2445   APInt A(V.size()*4, V, 16);
2446 
2447   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2448   // sure it isn't the case before constructing result.
2449   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2450   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2451   return false;
2452 }
2453 
2454 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2455   const auto OldFlags = Flags;
2456   switch (Token.kind()) {
2457   case MIToken::kw_volatile:
2458     Flags |= MachineMemOperand::MOVolatile;
2459     break;
2460   case MIToken::kw_non_temporal:
2461     Flags |= MachineMemOperand::MONonTemporal;
2462     break;
2463   case MIToken::kw_dereferenceable:
2464     Flags |= MachineMemOperand::MODereferenceable;
2465     break;
2466   case MIToken::kw_invariant:
2467     Flags |= MachineMemOperand::MOInvariant;
2468     break;
2469   case MIToken::StringConstant: {
2470     MachineMemOperand::Flags TF;
2471     if (getMMOTargetFlag(Token.stringValue(), TF))
2472       return error("use of undefined target MMO flag '" + Token.stringValue() +
2473                    "'");
2474     Flags |= TF;
2475     break;
2476   }
2477   default:
2478     llvm_unreachable("The current token should be a memory operand flag");
2479   }
2480   if (OldFlags == Flags)
2481     // We know that the same flag is specified more than once when the flags
2482     // weren't modified.
2483     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2484   lex();
2485   return false;
2486 }
2487 
2488 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2489   switch (Token.kind()) {
2490   case MIToken::kw_stack:
2491     PSV = MF.getPSVManager().getStack();
2492     break;
2493   case MIToken::kw_got:
2494     PSV = MF.getPSVManager().getGOT();
2495     break;
2496   case MIToken::kw_jump_table:
2497     PSV = MF.getPSVManager().getJumpTable();
2498     break;
2499   case MIToken::kw_constant_pool:
2500     PSV = MF.getPSVManager().getConstantPool();
2501     break;
2502   case MIToken::FixedStackObject: {
2503     int FI;
2504     if (parseFixedStackFrameIndex(FI))
2505       return true;
2506     PSV = MF.getPSVManager().getFixedStack(FI);
2507     // The token was already consumed, so use return here instead of break.
2508     return false;
2509   }
2510   case MIToken::StackObject: {
2511     int FI;
2512     if (parseStackFrameIndex(FI))
2513       return true;
2514     PSV = MF.getPSVManager().getFixedStack(FI);
2515     // The token was already consumed, so use return here instead of break.
2516     return false;
2517   }
2518   case MIToken::kw_call_entry:
2519     lex();
2520     switch (Token.kind()) {
2521     case MIToken::GlobalValue:
2522     case MIToken::NamedGlobalValue: {
2523       GlobalValue *GV = nullptr;
2524       if (parseGlobalValue(GV))
2525         return true;
2526       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2527       break;
2528     }
2529     case MIToken::ExternalSymbol:
2530       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2531           MF.createExternalSymbolName(Token.stringValue()));
2532       break;
2533     default:
2534       return error(
2535           "expected a global value or an external symbol after 'call-entry'");
2536     }
2537     break;
2538   default:
2539     llvm_unreachable("The current token should be pseudo source value");
2540   }
2541   lex();
2542   return false;
2543 }
2544 
2545 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2546   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2547       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2548       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2549       Token.is(MIToken::kw_call_entry)) {
2550     const PseudoSourceValue *PSV = nullptr;
2551     if (parseMemoryPseudoSourceValue(PSV))
2552       return true;
2553     int64_t Offset = 0;
2554     if (parseOffset(Offset))
2555       return true;
2556     Dest = MachinePointerInfo(PSV, Offset);
2557     return false;
2558   }
2559   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2560       Token.isNot(MIToken::GlobalValue) &&
2561       Token.isNot(MIToken::NamedGlobalValue) &&
2562       Token.isNot(MIToken::QuotedIRValue))
2563     return error("expected an IR value reference");
2564   const Value *V = nullptr;
2565   if (parseIRValue(V))
2566     return true;
2567   if (!V->getType()->isPointerTy())
2568     return error("expected a pointer IR value");
2569   lex();
2570   int64_t Offset = 0;
2571   if (parseOffset(Offset))
2572     return true;
2573   Dest = MachinePointerInfo(V, Offset);
2574   return false;
2575 }
2576 
2577 bool MIParser::parseOptionalScope(LLVMContext &Context,
2578                                   SyncScope::ID &SSID) {
2579   SSID = SyncScope::System;
2580   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2581     lex();
2582     if (expectAndConsume(MIToken::lparen))
2583       return error("expected '(' in syncscope");
2584 
2585     std::string SSN;
2586     if (parseStringConstant(SSN))
2587       return true;
2588 
2589     SSID = Context.getOrInsertSyncScopeID(SSN);
2590     if (expectAndConsume(MIToken::rparen))
2591       return error("expected ')' in syncscope");
2592   }
2593 
2594   return false;
2595 }
2596 
2597 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2598   Order = AtomicOrdering::NotAtomic;
2599   if (Token.isNot(MIToken::Identifier))
2600     return false;
2601 
2602   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2603               .Case("unordered", AtomicOrdering::Unordered)
2604               .Case("monotonic", AtomicOrdering::Monotonic)
2605               .Case("acquire", AtomicOrdering::Acquire)
2606               .Case("release", AtomicOrdering::Release)
2607               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2608               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2609               .Default(AtomicOrdering::NotAtomic);
2610 
2611   if (Order != AtomicOrdering::NotAtomic) {
2612     lex();
2613     return false;
2614   }
2615 
2616   return error("expected an atomic scope, ordering or a size specification");
2617 }
2618 
2619 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2620   if (expectAndConsume(MIToken::lparen))
2621     return true;
2622   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2623   while (Token.isMemoryOperandFlag()) {
2624     if (parseMemoryOperandFlag(Flags))
2625       return true;
2626   }
2627   if (Token.isNot(MIToken::Identifier) ||
2628       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2629     return error("expected 'load' or 'store' memory operation");
2630   if (Token.stringValue() == "load")
2631     Flags |= MachineMemOperand::MOLoad;
2632   else
2633     Flags |= MachineMemOperand::MOStore;
2634   lex();
2635 
2636   // Optional 'store' for operands that both load and store.
2637   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2638     Flags |= MachineMemOperand::MOStore;
2639     lex();
2640   }
2641 
2642   // Optional synchronization scope.
2643   SyncScope::ID SSID;
2644   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2645     return true;
2646 
2647   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2648   AtomicOrdering Order, FailureOrder;
2649   if (parseOptionalAtomicOrdering(Order))
2650     return true;
2651 
2652   if (parseOptionalAtomicOrdering(FailureOrder))
2653     return true;
2654 
2655   if (Token.isNot(MIToken::IntegerLiteral) &&
2656       Token.isNot(MIToken::kw_unknown_size))
2657     return error("expected the size integer literal or 'unknown-size' after "
2658                  "memory operation");
2659   uint64_t Size;
2660   if (Token.is(MIToken::IntegerLiteral)) {
2661     if (getUint64(Size))
2662       return true;
2663   } else if (Token.is(MIToken::kw_unknown_size)) {
2664     Size = MemoryLocation::UnknownSize;
2665   }
2666   lex();
2667 
2668   MachinePointerInfo Ptr = MachinePointerInfo();
2669   if (Token.is(MIToken::Identifier)) {
2670     const char *Word =
2671         ((Flags & MachineMemOperand::MOLoad) &&
2672          (Flags & MachineMemOperand::MOStore))
2673             ? "on"
2674             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2675     if (Token.stringValue() != Word)
2676       return error(Twine("expected '") + Word + "'");
2677     lex();
2678 
2679     if (parseMachinePointerInfo(Ptr))
2680       return true;
2681   }
2682   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2683   AAMDNodes AAInfo;
2684   MDNode *Range = nullptr;
2685   while (consumeIfPresent(MIToken::comma)) {
2686     switch (Token.kind()) {
2687     case MIToken::kw_align:
2688       if (parseAlignment(BaseAlignment))
2689         return true;
2690       break;
2691     case MIToken::kw_addrspace:
2692       if (parseAddrspace(Ptr.AddrSpace))
2693         return true;
2694       break;
2695     case MIToken::md_tbaa:
2696       lex();
2697       if (parseMDNode(AAInfo.TBAA))
2698         return true;
2699       break;
2700     case MIToken::md_alias_scope:
2701       lex();
2702       if (parseMDNode(AAInfo.Scope))
2703         return true;
2704       break;
2705     case MIToken::md_noalias:
2706       lex();
2707       if (parseMDNode(AAInfo.NoAlias))
2708         return true;
2709       break;
2710     case MIToken::md_range:
2711       lex();
2712       if (parseMDNode(Range))
2713         return true;
2714       break;
2715     // TODO: Report an error on duplicate metadata nodes.
2716     default:
2717       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2718                    "'!noalias' or '!range'");
2719     }
2720   }
2721   if (expectAndConsume(MIToken::rparen))
2722     return true;
2723   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2724                                  SSID, Order, FailureOrder);
2725   return false;
2726 }
2727 
2728 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2729   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2730           Token.is(MIToken::kw_post_instr_symbol)) &&
2731          "Invalid token for a pre- post-instruction symbol!");
2732   lex();
2733   if (Token.isNot(MIToken::MCSymbol))
2734     return error("expected a symbol after 'pre-instr-symbol'");
2735   Symbol = getOrCreateMCSymbol(Token.stringValue());
2736   lex();
2737   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2738       Token.is(MIToken::lbrace))
2739     return false;
2740   if (Token.isNot(MIToken::comma))
2741     return error("expected ',' before the next machine operand");
2742   lex();
2743   return false;
2744 }
2745 
2746 void MIParser::initNames2InstrOpCodes() {
2747   if (!Names2InstrOpCodes.empty())
2748     return;
2749   const auto *TII = MF.getSubtarget().getInstrInfo();
2750   assert(TII && "Expected target instruction info");
2751   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2752     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2753 }
2754 
2755 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2756   initNames2InstrOpCodes();
2757   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2758   if (InstrInfo == Names2InstrOpCodes.end())
2759     return true;
2760   OpCode = InstrInfo->getValue();
2761   return false;
2762 }
2763 
2764 void MIParser::initNames2Regs() {
2765   if (!Names2Regs.empty())
2766     return;
2767   // The '%noreg' register is the register 0.
2768   Names2Regs.insert(std::make_pair("noreg", 0));
2769   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2770   assert(TRI && "Expected target register info");
2771   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2772     bool WasInserted =
2773         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2774             .second;
2775     (void)WasInserted;
2776     assert(WasInserted && "Expected registers to be unique case-insensitively");
2777   }
2778 }
2779 
2780 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2781   initNames2Regs();
2782   auto RegInfo = Names2Regs.find(RegName);
2783   if (RegInfo == Names2Regs.end())
2784     return true;
2785   Reg = RegInfo->getValue();
2786   return false;
2787 }
2788 
2789 void MIParser::initNames2RegMasks() {
2790   if (!Names2RegMasks.empty())
2791     return;
2792   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2793   assert(TRI && "Expected target register info");
2794   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2795   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2796   assert(RegMasks.size() == RegMaskNames.size());
2797   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2798     Names2RegMasks.insert(
2799         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2800 }
2801 
2802 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2803   initNames2RegMasks();
2804   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2805   if (RegMaskInfo == Names2RegMasks.end())
2806     return nullptr;
2807   return RegMaskInfo->getValue();
2808 }
2809 
2810 void MIParser::initNames2SubRegIndices() {
2811   if (!Names2SubRegIndices.empty())
2812     return;
2813   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2814   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2815     Names2SubRegIndices.insert(
2816         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2817 }
2818 
2819 unsigned MIParser::getSubRegIndex(StringRef Name) {
2820   initNames2SubRegIndices();
2821   auto SubRegInfo = Names2SubRegIndices.find(Name);
2822   if (SubRegInfo == Names2SubRegIndices.end())
2823     return 0;
2824   return SubRegInfo->getValue();
2825 }
2826 
2827 static void initSlots2BasicBlocks(
2828     const Function &F,
2829     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2830   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2831   MST.incorporateFunction(F);
2832   for (auto &BB : F) {
2833     if (BB.hasName())
2834       continue;
2835     int Slot = MST.getLocalSlot(&BB);
2836     if (Slot == -1)
2837       continue;
2838     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2839   }
2840 }
2841 
2842 static const BasicBlock *getIRBlockFromSlot(
2843     unsigned Slot,
2844     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2845   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2846   if (BlockInfo == Slots2BasicBlocks.end())
2847     return nullptr;
2848   return BlockInfo->second;
2849 }
2850 
2851 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2852   if (Slots2BasicBlocks.empty())
2853     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2854   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2855 }
2856 
2857 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2858   if (&F == &MF.getFunction())
2859     return getIRBlock(Slot);
2860   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2861   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2862   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2863 }
2864 
2865 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2866                            DenseMap<unsigned, const Value *> &Slots2Values) {
2867   int Slot = MST.getLocalSlot(V);
2868   if (Slot == -1)
2869     return;
2870   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2871 }
2872 
2873 /// Creates the mapping from slot numbers to function's unnamed IR values.
2874 static void initSlots2Values(const Function &F,
2875                              DenseMap<unsigned, const Value *> &Slots2Values) {
2876   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2877   MST.incorporateFunction(F);
2878   for (const auto &Arg : F.args())
2879     mapValueToSlot(&Arg, MST, Slots2Values);
2880   for (const auto &BB : F) {
2881     mapValueToSlot(&BB, MST, Slots2Values);
2882     for (const auto &I : BB)
2883       mapValueToSlot(&I, MST, Slots2Values);
2884   }
2885 }
2886 
2887 const Value *MIParser::getIRValue(unsigned Slot) {
2888   if (Slots2Values.empty())
2889     initSlots2Values(MF.getFunction(), Slots2Values);
2890   auto ValueInfo = Slots2Values.find(Slot);
2891   if (ValueInfo == Slots2Values.end())
2892     return nullptr;
2893   return ValueInfo->second;
2894 }
2895 
2896 void MIParser::initNames2TargetIndices() {
2897   if (!Names2TargetIndices.empty())
2898     return;
2899   const auto *TII = MF.getSubtarget().getInstrInfo();
2900   assert(TII && "Expected target instruction info");
2901   auto Indices = TII->getSerializableTargetIndices();
2902   for (const auto &I : Indices)
2903     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2904 }
2905 
2906 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2907   initNames2TargetIndices();
2908   auto IndexInfo = Names2TargetIndices.find(Name);
2909   if (IndexInfo == Names2TargetIndices.end())
2910     return true;
2911   Index = IndexInfo->second;
2912   return false;
2913 }
2914 
2915 void MIParser::initNames2DirectTargetFlags() {
2916   if (!Names2DirectTargetFlags.empty())
2917     return;
2918   const auto *TII = MF.getSubtarget().getInstrInfo();
2919   assert(TII && "Expected target instruction info");
2920   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2921   for (const auto &I : Flags)
2922     Names2DirectTargetFlags.insert(
2923         std::make_pair(StringRef(I.second), I.first));
2924 }
2925 
2926 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2927   initNames2DirectTargetFlags();
2928   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2929   if (FlagInfo == Names2DirectTargetFlags.end())
2930     return true;
2931   Flag = FlagInfo->second;
2932   return false;
2933 }
2934 
2935 void MIParser::initNames2BitmaskTargetFlags() {
2936   if (!Names2BitmaskTargetFlags.empty())
2937     return;
2938   const auto *TII = MF.getSubtarget().getInstrInfo();
2939   assert(TII && "Expected target instruction info");
2940   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2941   for (const auto &I : Flags)
2942     Names2BitmaskTargetFlags.insert(
2943         std::make_pair(StringRef(I.second), I.first));
2944 }
2945 
2946 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2947   initNames2BitmaskTargetFlags();
2948   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2949   if (FlagInfo == Names2BitmaskTargetFlags.end())
2950     return true;
2951   Flag = FlagInfo->second;
2952   return false;
2953 }
2954 
2955 void MIParser::initNames2MMOTargetFlags() {
2956   if (!Names2MMOTargetFlags.empty())
2957     return;
2958   const auto *TII = MF.getSubtarget().getInstrInfo();
2959   assert(TII && "Expected target instruction info");
2960   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2961   for (const auto &I : Flags)
2962     Names2MMOTargetFlags.insert(
2963         std::make_pair(StringRef(I.second), I.first));
2964 }
2965 
2966 bool MIParser::getMMOTargetFlag(StringRef Name,
2967                                 MachineMemOperand::Flags &Flag) {
2968   initNames2MMOTargetFlags();
2969   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2970   if (FlagInfo == Names2MMOTargetFlags.end())
2971     return true;
2972   Flag = FlagInfo->second;
2973   return false;
2974 }
2975 
2976 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
2977   // FIXME: Currently we can't recognize temporary or local symbols and call all
2978   // of the appropriate forms to create them. However, this handles basic cases
2979   // well as most of the special aspects are recognized by a prefix on their
2980   // name, and the input names should already be unique. For test cases, keeping
2981   // the symbol name out of the symbol table isn't terribly important.
2982   return MF.getContext().getOrCreateSymbol(Name);
2983 }
2984 
2985 bool MIParser::parseStringConstant(std::string &Result) {
2986   if (Token.isNot(MIToken::StringConstant))
2987     return error("expected string constant");
2988   Result = Token.stringValue();
2989   lex();
2990   return false;
2991 }
2992 
2993 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2994                                              StringRef Src,
2995                                              SMDiagnostic &Error) {
2996   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2997 }
2998 
2999 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3000                                     StringRef Src, SMDiagnostic &Error) {
3001   return MIParser(PFS, Error, Src).parseBasicBlocks();
3002 }
3003 
3004 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3005                              MachineBasicBlock *&MBB, StringRef Src,
3006                              SMDiagnostic &Error) {
3007   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3008 }
3009 
3010 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3011                                   unsigned &Reg, StringRef Src,
3012                                   SMDiagnostic &Error) {
3013   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3014 }
3015 
3016 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3017                                        unsigned &Reg, StringRef Src,
3018                                        SMDiagnostic &Error) {
3019   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3020 }
3021 
3022 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3023                                          VRegInfo *&Info, StringRef Src,
3024                                          SMDiagnostic &Error) {
3025   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3026 }
3027 
3028 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3029                                      int &FI, StringRef Src,
3030                                      SMDiagnostic &Error) {
3031   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3032 }
3033 
3034 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3035                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3036   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3037 }
3038