1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCContext.h" 58 #include "llvm/MC/MCDwarf.h" 59 #include "llvm/MC/MCInstrDesc.h" 60 #include "llvm/MC/MCRegisterInfo.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/BranchProbability.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/LowLevelTypeImpl.h" 66 #include "llvm/Support/MemoryBuffer.h" 67 #include "llvm/Support/SMLoc.h" 68 #include "llvm/Support/SourceMgr.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Target/TargetIntrinsicInfo.h" 71 #include "llvm/Target/TargetMachine.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cctype> 75 #include <cstddef> 76 #include <cstdint> 77 #include <limits> 78 #include <string> 79 #include <utility> 80 81 using namespace llvm; 82 83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 84 SourceMgr &SM, const SlotMapping &IRSlots, 85 const Name2RegClassMap &Names2RegClasses, 86 const Name2RegBankMap &Names2RegBanks) 87 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 88 Names2RegBanks(Names2RegBanks) { 89 } 90 91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 92 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 93 if (I.second) { 94 MachineRegisterInfo &MRI = MF.getRegInfo(); 95 VRegInfo *Info = new (Allocator) VRegInfo; 96 Info->VReg = MRI.createIncompleteVirtualRegister(); 97 I.first->second = Info; 98 } 99 return *I.first->second; 100 } 101 102 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 103 assert(RegName != "" && "Expected named reg."); 104 105 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 106 if (I.second) { 107 VRegInfo *Info = new (Allocator) VRegInfo; 108 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 109 I.first->second = Info; 110 } 111 return *I.first->second; 112 } 113 114 namespace { 115 116 /// A wrapper struct around the 'MachineOperand' struct that includes a source 117 /// range and other attributes. 118 struct ParsedMachineOperand { 119 MachineOperand Operand; 120 StringRef::iterator Begin; 121 StringRef::iterator End; 122 Optional<unsigned> TiedDefIdx; 123 124 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 125 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 126 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 127 if (TiedDefIdx) 128 assert(Operand.isReg() && Operand.isUse() && 129 "Only used register operands can be tied"); 130 } 131 }; 132 133 class MIParser { 134 MachineFunction &MF; 135 SMDiagnostic &Error; 136 StringRef Source, CurrentSource; 137 MIToken Token; 138 PerFunctionMIParsingState &PFS; 139 /// Maps from instruction names to op codes. 140 StringMap<unsigned> Names2InstrOpCodes; 141 /// Maps from register names to registers. 142 StringMap<unsigned> Names2Regs; 143 /// Maps from register mask names to register masks. 144 StringMap<const uint32_t *> Names2RegMasks; 145 /// Maps from subregister names to subregister indices. 146 StringMap<unsigned> Names2SubRegIndices; 147 /// Maps from slot numbers to function's unnamed basic blocks. 148 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 149 /// Maps from slot numbers to function's unnamed values. 150 DenseMap<unsigned, const Value *> Slots2Values; 151 /// Maps from target index names to target indices. 152 StringMap<int> Names2TargetIndices; 153 /// Maps from direct target flag names to the direct target flag values. 154 StringMap<unsigned> Names2DirectTargetFlags; 155 /// Maps from direct target flag names to the bitmask target flag values. 156 StringMap<unsigned> Names2BitmaskTargetFlags; 157 /// Maps from MMO target flag names to MMO target flag values. 158 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 159 160 public: 161 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 162 StringRef Source); 163 164 /// \p SkipChar gives the number of characters to skip before looking 165 /// for the next token. 166 void lex(unsigned SkipChar = 0); 167 168 /// Report an error at the current location with the given message. 169 /// 170 /// This function always return true. 171 bool error(const Twine &Msg); 172 173 /// Report an error at the given location with the given message. 174 /// 175 /// This function always return true. 176 bool error(StringRef::iterator Loc, const Twine &Msg); 177 178 bool 179 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 180 bool parseBasicBlocks(); 181 bool parse(MachineInstr *&MI); 182 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 183 bool parseStandaloneNamedRegister(unsigned &Reg); 184 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 185 bool parseStandaloneRegister(unsigned &Reg); 186 bool parseStandaloneStackObject(int &FI); 187 bool parseStandaloneMDNode(MDNode *&Node); 188 189 bool 190 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 191 bool parseBasicBlock(MachineBasicBlock &MBB, 192 MachineBasicBlock *&AddFalthroughFrom); 193 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 194 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 195 196 bool parseNamedRegister(unsigned &Reg); 197 bool parseVirtualRegister(VRegInfo *&Info); 198 bool parseNamedVirtualRegister(VRegInfo *&Info); 199 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 200 bool parseRegisterFlag(unsigned &Flags); 201 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 202 bool parseSubRegisterIndex(unsigned &SubReg); 203 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 204 bool parseRegisterOperand(MachineOperand &Dest, 205 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 206 bool parseImmediateOperand(MachineOperand &Dest); 207 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 208 const Constant *&C); 209 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 210 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 211 bool parseTypedImmediateOperand(MachineOperand &Dest); 212 bool parseFPImmediateOperand(MachineOperand &Dest); 213 bool parseMBBReference(MachineBasicBlock *&MBB); 214 bool parseMBBOperand(MachineOperand &Dest); 215 bool parseStackFrameIndex(int &FI); 216 bool parseStackObjectOperand(MachineOperand &Dest); 217 bool parseFixedStackFrameIndex(int &FI); 218 bool parseFixedStackObjectOperand(MachineOperand &Dest); 219 bool parseGlobalValue(GlobalValue *&GV); 220 bool parseGlobalAddressOperand(MachineOperand &Dest); 221 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 222 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 223 bool parseJumpTableIndexOperand(MachineOperand &Dest); 224 bool parseExternalSymbolOperand(MachineOperand &Dest); 225 bool parseMCSymbolOperand(MachineOperand &Dest); 226 bool parseMDNode(MDNode *&Node); 227 bool parseDIExpression(MDNode *&Expr); 228 bool parseDILocation(MDNode *&Expr); 229 bool parseMetadataOperand(MachineOperand &Dest); 230 bool parseCFIOffset(int &Offset); 231 bool parseCFIRegister(unsigned &Reg); 232 bool parseCFIEscapeValues(std::string& Values); 233 bool parseCFIOperand(MachineOperand &Dest); 234 bool parseIRBlock(BasicBlock *&BB, const Function &F); 235 bool parseBlockAddressOperand(MachineOperand &Dest); 236 bool parseIntrinsicOperand(MachineOperand &Dest); 237 bool parsePredicateOperand(MachineOperand &Dest); 238 bool parseTargetIndexOperand(MachineOperand &Dest); 239 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 240 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 241 bool parseMachineOperand(MachineOperand &Dest, 242 Optional<unsigned> &TiedDefIdx); 243 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 244 Optional<unsigned> &TiedDefIdx); 245 bool parseOffset(int64_t &Offset); 246 bool parseAlignment(unsigned &Alignment); 247 bool parseAddrspace(unsigned &Addrspace); 248 bool parseOperandsOffset(MachineOperand &Op); 249 bool parseIRValue(const Value *&V); 250 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 251 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 252 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 253 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 254 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 255 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 256 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 257 258 private: 259 /// Convert the integer literal in the current token into an unsigned integer. 260 /// 261 /// Return true if an error occurred. 262 bool getUnsigned(unsigned &Result); 263 264 /// Convert the integer literal in the current token into an uint64. 265 /// 266 /// Return true if an error occurred. 267 bool getUint64(uint64_t &Result); 268 269 /// Convert the hexadecimal literal in the current token into an unsigned 270 /// APInt with a minimum bitwidth required to represent the value. 271 /// 272 /// Return true if the literal does not represent an integer value. 273 bool getHexUint(APInt &Result); 274 275 /// If the current token is of the given kind, consume it and return false. 276 /// Otherwise report an error and return true. 277 bool expectAndConsume(MIToken::TokenKind TokenKind); 278 279 /// If the current token is of the given kind, consume it and return true. 280 /// Otherwise return false. 281 bool consumeIfPresent(MIToken::TokenKind TokenKind); 282 283 void initNames2InstrOpCodes(); 284 285 /// Try to convert an instruction name to an opcode. Return true if the 286 /// instruction name is invalid. 287 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 288 289 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 290 291 bool assignRegisterTies(MachineInstr &MI, 292 ArrayRef<ParsedMachineOperand> Operands); 293 294 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 295 const MCInstrDesc &MCID); 296 297 void initNames2Regs(); 298 299 /// Try to convert a register name to a register number. Return true if the 300 /// register name is invalid. 301 bool getRegisterByName(StringRef RegName, unsigned &Reg); 302 303 void initNames2RegMasks(); 304 305 /// Check if the given identifier is a name of a register mask. 306 /// 307 /// Return null if the identifier isn't a register mask. 308 const uint32_t *getRegMask(StringRef Identifier); 309 310 void initNames2SubRegIndices(); 311 312 /// Check if the given identifier is a name of a subregister index. 313 /// 314 /// Return 0 if the name isn't a subregister index class. 315 unsigned getSubRegIndex(StringRef Name); 316 317 const BasicBlock *getIRBlock(unsigned Slot); 318 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 319 320 const Value *getIRValue(unsigned Slot); 321 322 void initNames2TargetIndices(); 323 324 /// Try to convert a name of target index to the corresponding target index. 325 /// 326 /// Return true if the name isn't a name of a target index. 327 bool getTargetIndex(StringRef Name, int &Index); 328 329 void initNames2DirectTargetFlags(); 330 331 /// Try to convert a name of a direct target flag to the corresponding 332 /// target flag. 333 /// 334 /// Return true if the name isn't a name of a direct flag. 335 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 336 337 void initNames2BitmaskTargetFlags(); 338 339 /// Try to convert a name of a bitmask target flag to the corresponding 340 /// target flag. 341 /// 342 /// Return true if the name isn't a name of a bitmask target flag. 343 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 344 345 void initNames2MMOTargetFlags(); 346 347 /// Try to convert a name of a MachineMemOperand target flag to the 348 /// corresponding target flag. 349 /// 350 /// Return true if the name isn't a name of a target MMO flag. 351 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 352 353 /// Get or create an MCSymbol for a given name. 354 MCSymbol *getOrCreateMCSymbol(StringRef Name); 355 356 /// parseStringConstant 357 /// ::= StringConstant 358 bool parseStringConstant(std::string &Result); 359 }; 360 361 } // end anonymous namespace 362 363 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 364 StringRef Source) 365 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 366 {} 367 368 void MIParser::lex(unsigned SkipChar) { 369 CurrentSource = lexMIToken( 370 CurrentSource.data() + SkipChar, Token, 371 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 372 } 373 374 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 375 376 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 377 const SourceMgr &SM = *PFS.SM; 378 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 379 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 380 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 381 // Create an ordinary diagnostic when the source manager's buffer is the 382 // source string. 383 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 384 return true; 385 } 386 // Create a diagnostic for a YAML string literal. 387 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 388 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 389 Source, None, None); 390 return true; 391 } 392 393 static const char *toString(MIToken::TokenKind TokenKind) { 394 switch (TokenKind) { 395 case MIToken::comma: 396 return "','"; 397 case MIToken::equal: 398 return "'='"; 399 case MIToken::colon: 400 return "':'"; 401 case MIToken::lparen: 402 return "'('"; 403 case MIToken::rparen: 404 return "')'"; 405 default: 406 return "<unknown token>"; 407 } 408 } 409 410 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return error(Twine("expected ") + toString(TokenKind)); 413 lex(); 414 return false; 415 } 416 417 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 418 if (Token.isNot(TokenKind)) 419 return false; 420 lex(); 421 return true; 422 } 423 424 bool MIParser::parseBasicBlockDefinition( 425 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 426 assert(Token.is(MIToken::MachineBasicBlockLabel)); 427 unsigned ID = 0; 428 if (getUnsigned(ID)) 429 return true; 430 auto Loc = Token.location(); 431 auto Name = Token.stringValue(); 432 lex(); 433 bool HasAddressTaken = false; 434 bool IsLandingPad = false; 435 unsigned Alignment = 0; 436 BasicBlock *BB = nullptr; 437 if (consumeIfPresent(MIToken::lparen)) { 438 do { 439 // TODO: Report an error when multiple same attributes are specified. 440 switch (Token.kind()) { 441 case MIToken::kw_address_taken: 442 HasAddressTaken = true; 443 lex(); 444 break; 445 case MIToken::kw_landing_pad: 446 IsLandingPad = true; 447 lex(); 448 break; 449 case MIToken::kw_align: 450 if (parseAlignment(Alignment)) 451 return true; 452 break; 453 case MIToken::IRBlock: 454 // TODO: Report an error when both name and ir block are specified. 455 if (parseIRBlock(BB, MF.getFunction())) 456 return true; 457 lex(); 458 break; 459 default: 460 break; 461 } 462 } while (consumeIfPresent(MIToken::comma)); 463 if (expectAndConsume(MIToken::rparen)) 464 return true; 465 } 466 if (expectAndConsume(MIToken::colon)) 467 return true; 468 469 if (!Name.empty()) { 470 BB = dyn_cast_or_null<BasicBlock>( 471 MF.getFunction().getValueSymbolTable()->lookup(Name)); 472 if (!BB) 473 return error(Loc, Twine("basic block '") + Name + 474 "' is not defined in the function '" + 475 MF.getName() + "'"); 476 } 477 auto *MBB = MF.CreateMachineBasicBlock(BB); 478 MF.insert(MF.end(), MBB); 479 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 480 if (!WasInserted) 481 return error(Loc, Twine("redefinition of machine basic block with id #") + 482 Twine(ID)); 483 if (Alignment) 484 MBB->setAlignment(Alignment); 485 if (HasAddressTaken) 486 MBB->setHasAddressTaken(); 487 MBB->setIsEHPad(IsLandingPad); 488 return false; 489 } 490 491 bool MIParser::parseBasicBlockDefinitions( 492 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 493 lex(); 494 // Skip until the first machine basic block. 495 while (Token.is(MIToken::Newline)) 496 lex(); 497 if (Token.isErrorOrEOF()) 498 return Token.isError(); 499 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 500 return error("expected a basic block definition before instructions"); 501 unsigned BraceDepth = 0; 502 do { 503 if (parseBasicBlockDefinition(MBBSlots)) 504 return true; 505 bool IsAfterNewline = false; 506 // Skip until the next machine basic block. 507 while (true) { 508 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 509 Token.isErrorOrEOF()) 510 break; 511 else if (Token.is(MIToken::MachineBasicBlockLabel)) 512 return error("basic block definition should be located at the start of " 513 "the line"); 514 else if (consumeIfPresent(MIToken::Newline)) { 515 IsAfterNewline = true; 516 continue; 517 } 518 IsAfterNewline = false; 519 if (Token.is(MIToken::lbrace)) 520 ++BraceDepth; 521 if (Token.is(MIToken::rbrace)) { 522 if (!BraceDepth) 523 return error("extraneous closing brace ('}')"); 524 --BraceDepth; 525 } 526 lex(); 527 } 528 // Verify that we closed all of the '{' at the end of a file or a block. 529 if (!Token.isError() && BraceDepth) 530 return error("expected '}'"); // FIXME: Report a note that shows '{'. 531 } while (!Token.isErrorOrEOF()); 532 return Token.isError(); 533 } 534 535 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 536 assert(Token.is(MIToken::kw_liveins)); 537 lex(); 538 if (expectAndConsume(MIToken::colon)) 539 return true; 540 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 541 return false; 542 do { 543 if (Token.isNot(MIToken::NamedRegister)) 544 return error("expected a named register"); 545 unsigned Reg = 0; 546 if (parseNamedRegister(Reg)) 547 return true; 548 lex(); 549 LaneBitmask Mask = LaneBitmask::getAll(); 550 if (consumeIfPresent(MIToken::colon)) { 551 // Parse lane mask. 552 if (Token.isNot(MIToken::IntegerLiteral) && 553 Token.isNot(MIToken::HexLiteral)) 554 return error("expected a lane mask"); 555 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 556 "Use correct get-function for lane mask"); 557 LaneBitmask::Type V; 558 if (getUnsigned(V)) 559 return error("invalid lane mask value"); 560 Mask = LaneBitmask(V); 561 lex(); 562 } 563 MBB.addLiveIn(Reg, Mask); 564 } while (consumeIfPresent(MIToken::comma)); 565 return false; 566 } 567 568 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 569 assert(Token.is(MIToken::kw_successors)); 570 lex(); 571 if (expectAndConsume(MIToken::colon)) 572 return true; 573 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 574 return false; 575 do { 576 if (Token.isNot(MIToken::MachineBasicBlock)) 577 return error("expected a machine basic block reference"); 578 MachineBasicBlock *SuccMBB = nullptr; 579 if (parseMBBReference(SuccMBB)) 580 return true; 581 lex(); 582 unsigned Weight = 0; 583 if (consumeIfPresent(MIToken::lparen)) { 584 if (Token.isNot(MIToken::IntegerLiteral) && 585 Token.isNot(MIToken::HexLiteral)) 586 return error("expected an integer literal after '('"); 587 if (getUnsigned(Weight)) 588 return true; 589 lex(); 590 if (expectAndConsume(MIToken::rparen)) 591 return true; 592 } 593 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 594 } while (consumeIfPresent(MIToken::comma)); 595 MBB.normalizeSuccProbs(); 596 return false; 597 } 598 599 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 600 MachineBasicBlock *&AddFalthroughFrom) { 601 // Skip the definition. 602 assert(Token.is(MIToken::MachineBasicBlockLabel)); 603 lex(); 604 if (consumeIfPresent(MIToken::lparen)) { 605 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 606 lex(); 607 consumeIfPresent(MIToken::rparen); 608 } 609 consumeIfPresent(MIToken::colon); 610 611 // Parse the liveins and successors. 612 // N.B: Multiple lists of successors and liveins are allowed and they're 613 // merged into one. 614 // Example: 615 // liveins: %edi 616 // liveins: %esi 617 // 618 // is equivalent to 619 // liveins: %edi, %esi 620 bool ExplicitSuccessors = false; 621 while (true) { 622 if (Token.is(MIToken::kw_successors)) { 623 if (parseBasicBlockSuccessors(MBB)) 624 return true; 625 ExplicitSuccessors = true; 626 } else if (Token.is(MIToken::kw_liveins)) { 627 if (parseBasicBlockLiveins(MBB)) 628 return true; 629 } else if (consumeIfPresent(MIToken::Newline)) { 630 continue; 631 } else 632 break; 633 if (!Token.isNewlineOrEOF()) 634 return error("expected line break at the end of a list"); 635 lex(); 636 } 637 638 // Parse the instructions. 639 bool IsInBundle = false; 640 MachineInstr *PrevMI = nullptr; 641 while (!Token.is(MIToken::MachineBasicBlockLabel) && 642 !Token.is(MIToken::Eof)) { 643 if (consumeIfPresent(MIToken::Newline)) 644 continue; 645 if (consumeIfPresent(MIToken::rbrace)) { 646 // The first parsing pass should verify that all closing '}' have an 647 // opening '{'. 648 assert(IsInBundle); 649 IsInBundle = false; 650 continue; 651 } 652 MachineInstr *MI = nullptr; 653 if (parse(MI)) 654 return true; 655 MBB.insert(MBB.end(), MI); 656 if (IsInBundle) { 657 PrevMI->setFlag(MachineInstr::BundledSucc); 658 MI->setFlag(MachineInstr::BundledPred); 659 } 660 PrevMI = MI; 661 if (Token.is(MIToken::lbrace)) { 662 if (IsInBundle) 663 return error("nested instruction bundles are not allowed"); 664 lex(); 665 // This instruction is the start of the bundle. 666 MI->setFlag(MachineInstr::BundledSucc); 667 IsInBundle = true; 668 if (!Token.is(MIToken::Newline)) 669 // The next instruction can be on the same line. 670 continue; 671 } 672 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 673 lex(); 674 } 675 676 // Construct successor list by searching for basic block machine operands. 677 if (!ExplicitSuccessors) { 678 SmallVector<MachineBasicBlock*,4> Successors; 679 bool IsFallthrough; 680 guessSuccessors(MBB, Successors, IsFallthrough); 681 for (MachineBasicBlock *Succ : Successors) 682 MBB.addSuccessor(Succ); 683 684 if (IsFallthrough) { 685 AddFalthroughFrom = &MBB; 686 } else { 687 MBB.normalizeSuccProbs(); 688 } 689 } 690 691 return false; 692 } 693 694 bool MIParser::parseBasicBlocks() { 695 lex(); 696 // Skip until the first machine basic block. 697 while (Token.is(MIToken::Newline)) 698 lex(); 699 if (Token.isErrorOrEOF()) 700 return Token.isError(); 701 // The first parsing pass should have verified that this token is a MBB label 702 // in the 'parseBasicBlockDefinitions' method. 703 assert(Token.is(MIToken::MachineBasicBlockLabel)); 704 MachineBasicBlock *AddFalthroughFrom = nullptr; 705 do { 706 MachineBasicBlock *MBB = nullptr; 707 if (parseMBBReference(MBB)) 708 return true; 709 if (AddFalthroughFrom) { 710 if (!AddFalthroughFrom->isSuccessor(MBB)) 711 AddFalthroughFrom->addSuccessor(MBB); 712 AddFalthroughFrom->normalizeSuccProbs(); 713 AddFalthroughFrom = nullptr; 714 } 715 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 716 return true; 717 // The method 'parseBasicBlock' should parse the whole block until the next 718 // block or the end of file. 719 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 720 } while (Token.isNot(MIToken::Eof)); 721 return false; 722 } 723 724 bool MIParser::parse(MachineInstr *&MI) { 725 // Parse any register operands before '=' 726 MachineOperand MO = MachineOperand::CreateImm(0); 727 SmallVector<ParsedMachineOperand, 8> Operands; 728 while (Token.isRegister() || Token.isRegisterFlag()) { 729 auto Loc = Token.location(); 730 Optional<unsigned> TiedDefIdx; 731 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 732 return true; 733 Operands.push_back( 734 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 735 if (Token.isNot(MIToken::comma)) 736 break; 737 lex(); 738 } 739 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 740 return true; 741 742 unsigned OpCode, Flags = 0; 743 if (Token.isError() || parseInstruction(OpCode, Flags)) 744 return true; 745 746 // Parse the remaining machine operands. 747 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 748 Token.isNot(MIToken::kw_post_instr_symbol) && 749 Token.isNot(MIToken::kw_debug_location) && 750 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 751 auto Loc = Token.location(); 752 Optional<unsigned> TiedDefIdx; 753 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 754 return true; 755 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg()) 756 MO.setIsDebug(); 757 Operands.push_back( 758 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 759 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 760 Token.is(MIToken::lbrace)) 761 break; 762 if (Token.isNot(MIToken::comma)) 763 return error("expected ',' before the next machine operand"); 764 lex(); 765 } 766 767 MCSymbol *PreInstrSymbol = nullptr; 768 if (Token.is(MIToken::kw_pre_instr_symbol)) 769 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 770 return true; 771 MCSymbol *PostInstrSymbol = nullptr; 772 if (Token.is(MIToken::kw_post_instr_symbol)) 773 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 774 return true; 775 776 DebugLoc DebugLocation; 777 if (Token.is(MIToken::kw_debug_location)) { 778 lex(); 779 MDNode *Node = nullptr; 780 if (Token.is(MIToken::exclaim)) { 781 if (parseMDNode(Node)) 782 return true; 783 } else if (Token.is(MIToken::md_dilocation)) { 784 if (parseDILocation(Node)) 785 return true; 786 } else 787 return error("expected a metadata node after 'debug-location'"); 788 if (!isa<DILocation>(Node)) 789 return error("referenced metadata is not a DILocation"); 790 DebugLocation = DebugLoc(Node); 791 } 792 793 // Parse the machine memory operands. 794 SmallVector<MachineMemOperand *, 2> MemOperands; 795 if (Token.is(MIToken::coloncolon)) { 796 lex(); 797 while (!Token.isNewlineOrEOF()) { 798 MachineMemOperand *MemOp = nullptr; 799 if (parseMachineMemoryOperand(MemOp)) 800 return true; 801 MemOperands.push_back(MemOp); 802 if (Token.isNewlineOrEOF()) 803 break; 804 if (Token.isNot(MIToken::comma)) 805 return error("expected ',' before the next machine memory operand"); 806 lex(); 807 } 808 } 809 810 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 811 if (!MCID.isVariadic()) { 812 // FIXME: Move the implicit operand verification to the machine verifier. 813 if (verifyImplicitOperands(Operands, MCID)) 814 return true; 815 } 816 817 // TODO: Check for extraneous machine operands. 818 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 819 MI->setFlags(Flags); 820 for (const auto &Operand : Operands) 821 MI->addOperand(MF, Operand.Operand); 822 if (assignRegisterTies(*MI, Operands)) 823 return true; 824 if (PreInstrSymbol) 825 MI->setPreInstrSymbol(MF, PreInstrSymbol); 826 if (PostInstrSymbol) 827 MI->setPostInstrSymbol(MF, PostInstrSymbol); 828 if (!MemOperands.empty()) 829 MI->setMemRefs(MF, MemOperands); 830 return false; 831 } 832 833 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 834 lex(); 835 if (Token.isNot(MIToken::MachineBasicBlock)) 836 return error("expected a machine basic block reference"); 837 if (parseMBBReference(MBB)) 838 return true; 839 lex(); 840 if (Token.isNot(MIToken::Eof)) 841 return error( 842 "expected end of string after the machine basic block reference"); 843 return false; 844 } 845 846 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 847 lex(); 848 if (Token.isNot(MIToken::NamedRegister)) 849 return error("expected a named register"); 850 if (parseNamedRegister(Reg)) 851 return true; 852 lex(); 853 if (Token.isNot(MIToken::Eof)) 854 return error("expected end of string after the register reference"); 855 return false; 856 } 857 858 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 859 lex(); 860 if (Token.isNot(MIToken::VirtualRegister)) 861 return error("expected a virtual register"); 862 if (parseVirtualRegister(Info)) 863 return true; 864 lex(); 865 if (Token.isNot(MIToken::Eof)) 866 return error("expected end of string after the register reference"); 867 return false; 868 } 869 870 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 871 lex(); 872 if (Token.isNot(MIToken::NamedRegister) && 873 Token.isNot(MIToken::VirtualRegister)) 874 return error("expected either a named or virtual register"); 875 876 VRegInfo *Info; 877 if (parseRegister(Reg, Info)) 878 return true; 879 880 lex(); 881 if (Token.isNot(MIToken::Eof)) 882 return error("expected end of string after the register reference"); 883 return false; 884 } 885 886 bool MIParser::parseStandaloneStackObject(int &FI) { 887 lex(); 888 if (Token.isNot(MIToken::StackObject)) 889 return error("expected a stack object"); 890 if (parseStackFrameIndex(FI)) 891 return true; 892 if (Token.isNot(MIToken::Eof)) 893 return error("expected end of string after the stack object reference"); 894 return false; 895 } 896 897 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 898 lex(); 899 if (Token.is(MIToken::exclaim)) { 900 if (parseMDNode(Node)) 901 return true; 902 } else if (Token.is(MIToken::md_diexpr)) { 903 if (parseDIExpression(Node)) 904 return true; 905 } else if (Token.is(MIToken::md_dilocation)) { 906 if (parseDILocation(Node)) 907 return true; 908 } else 909 return error("expected a metadata node"); 910 if (Token.isNot(MIToken::Eof)) 911 return error("expected end of string after the metadata node"); 912 return false; 913 } 914 915 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 916 assert(MO.isImplicit()); 917 return MO.isDef() ? "implicit-def" : "implicit"; 918 } 919 920 static std::string getRegisterName(const TargetRegisterInfo *TRI, 921 unsigned Reg) { 922 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 923 return StringRef(TRI->getName(Reg)).lower(); 924 } 925 926 /// Return true if the parsed machine operands contain a given machine operand. 927 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 928 ArrayRef<ParsedMachineOperand> Operands) { 929 for (const auto &I : Operands) { 930 if (ImplicitOperand.isIdenticalTo(I.Operand)) 931 return true; 932 } 933 return false; 934 } 935 936 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 937 const MCInstrDesc &MCID) { 938 if (MCID.isCall()) 939 // We can't verify call instructions as they can contain arbitrary implicit 940 // register and register mask operands. 941 return false; 942 943 // Gather all the expected implicit operands. 944 SmallVector<MachineOperand, 4> ImplicitOperands; 945 if (MCID.ImplicitDefs) 946 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 947 ImplicitOperands.push_back( 948 MachineOperand::CreateReg(*ImpDefs, true, true)); 949 if (MCID.ImplicitUses) 950 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 951 ImplicitOperands.push_back( 952 MachineOperand::CreateReg(*ImpUses, false, true)); 953 954 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 955 assert(TRI && "Expected target register info"); 956 for (const auto &I : ImplicitOperands) { 957 if (isImplicitOperandIn(I, Operands)) 958 continue; 959 return error(Operands.empty() ? Token.location() : Operands.back().End, 960 Twine("missing implicit register operand '") + 961 printImplicitRegisterFlag(I) + " $" + 962 getRegisterName(TRI, I.getReg()) + "'"); 963 } 964 return false; 965 } 966 967 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 968 // Allow frame and fast math flags for OPCODE 969 while (Token.is(MIToken::kw_frame_setup) || 970 Token.is(MIToken::kw_frame_destroy) || 971 Token.is(MIToken::kw_nnan) || 972 Token.is(MIToken::kw_ninf) || 973 Token.is(MIToken::kw_nsz) || 974 Token.is(MIToken::kw_arcp) || 975 Token.is(MIToken::kw_contract) || 976 Token.is(MIToken::kw_afn) || 977 Token.is(MIToken::kw_reassoc) || 978 Token.is(MIToken::kw_nuw) || 979 Token.is(MIToken::kw_nsw) || 980 Token.is(MIToken::kw_exact)) { 981 // Mine frame and fast math flags 982 if (Token.is(MIToken::kw_frame_setup)) 983 Flags |= MachineInstr::FrameSetup; 984 if (Token.is(MIToken::kw_frame_destroy)) 985 Flags |= MachineInstr::FrameDestroy; 986 if (Token.is(MIToken::kw_nnan)) 987 Flags |= MachineInstr::FmNoNans; 988 if (Token.is(MIToken::kw_ninf)) 989 Flags |= MachineInstr::FmNoInfs; 990 if (Token.is(MIToken::kw_nsz)) 991 Flags |= MachineInstr::FmNsz; 992 if (Token.is(MIToken::kw_arcp)) 993 Flags |= MachineInstr::FmArcp; 994 if (Token.is(MIToken::kw_contract)) 995 Flags |= MachineInstr::FmContract; 996 if (Token.is(MIToken::kw_afn)) 997 Flags |= MachineInstr::FmAfn; 998 if (Token.is(MIToken::kw_reassoc)) 999 Flags |= MachineInstr::FmReassoc; 1000 if (Token.is(MIToken::kw_nuw)) 1001 Flags |= MachineInstr::NoUWrap; 1002 if (Token.is(MIToken::kw_nsw)) 1003 Flags |= MachineInstr::NoSWrap; 1004 if (Token.is(MIToken::kw_exact)) 1005 Flags |= MachineInstr::IsExact; 1006 1007 lex(); 1008 } 1009 if (Token.isNot(MIToken::Identifier)) 1010 return error("expected a machine instruction"); 1011 StringRef InstrName = Token.stringValue(); 1012 if (parseInstrName(InstrName, OpCode)) 1013 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1014 lex(); 1015 return false; 1016 } 1017 1018 bool MIParser::parseNamedRegister(unsigned &Reg) { 1019 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1020 StringRef Name = Token.stringValue(); 1021 if (getRegisterByName(Name, Reg)) 1022 return error(Twine("unknown register name '") + Name + "'"); 1023 return false; 1024 } 1025 1026 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1027 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1028 StringRef Name = Token.stringValue(); 1029 // TODO: Check that the VReg name is not the same as a physical register name. 1030 // If it is, then print a warning (when warnings are implemented). 1031 Info = &PFS.getVRegInfoNamed(Name); 1032 return false; 1033 } 1034 1035 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1036 if (Token.is(MIToken::NamedVirtualRegister)) 1037 return parseNamedVirtualRegister(Info); 1038 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1039 unsigned ID; 1040 if (getUnsigned(ID)) 1041 return true; 1042 Info = &PFS.getVRegInfo(ID); 1043 return false; 1044 } 1045 1046 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 1047 switch (Token.kind()) { 1048 case MIToken::underscore: 1049 Reg = 0; 1050 return false; 1051 case MIToken::NamedRegister: 1052 return parseNamedRegister(Reg); 1053 case MIToken::NamedVirtualRegister: 1054 case MIToken::VirtualRegister: 1055 if (parseVirtualRegister(Info)) 1056 return true; 1057 Reg = Info->VReg; 1058 return false; 1059 // TODO: Parse other register kinds. 1060 default: 1061 llvm_unreachable("The current token should be a register"); 1062 } 1063 } 1064 1065 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1066 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1067 return error("expected '_', register class, or register bank name"); 1068 StringRef::iterator Loc = Token.location(); 1069 StringRef Name = Token.stringValue(); 1070 1071 // Was it a register class? 1072 auto RCNameI = PFS.Names2RegClasses.find(Name); 1073 if (RCNameI != PFS.Names2RegClasses.end()) { 1074 lex(); 1075 const TargetRegisterClass &RC = *RCNameI->getValue(); 1076 1077 switch (RegInfo.Kind) { 1078 case VRegInfo::UNKNOWN: 1079 case VRegInfo::NORMAL: 1080 RegInfo.Kind = VRegInfo::NORMAL; 1081 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1082 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1083 return error(Loc, Twine("conflicting register classes, previously: ") + 1084 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1085 } 1086 RegInfo.D.RC = &RC; 1087 RegInfo.Explicit = true; 1088 return false; 1089 1090 case VRegInfo::GENERIC: 1091 case VRegInfo::REGBANK: 1092 return error(Loc, "register class specification on generic register"); 1093 } 1094 llvm_unreachable("Unexpected register kind"); 1095 } 1096 1097 // Should be a register bank or a generic register. 1098 const RegisterBank *RegBank = nullptr; 1099 if (Name != "_") { 1100 auto RBNameI = PFS.Names2RegBanks.find(Name); 1101 if (RBNameI == PFS.Names2RegBanks.end()) 1102 return error(Loc, "expected '_', register class, or register bank name"); 1103 RegBank = RBNameI->getValue(); 1104 } 1105 1106 lex(); 1107 1108 switch (RegInfo.Kind) { 1109 case VRegInfo::UNKNOWN: 1110 case VRegInfo::GENERIC: 1111 case VRegInfo::REGBANK: 1112 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1113 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1114 return error(Loc, "conflicting generic register banks"); 1115 RegInfo.D.RegBank = RegBank; 1116 RegInfo.Explicit = true; 1117 return false; 1118 1119 case VRegInfo::NORMAL: 1120 return error(Loc, "register bank specification on normal register"); 1121 } 1122 llvm_unreachable("Unexpected register kind"); 1123 } 1124 1125 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1126 const unsigned OldFlags = Flags; 1127 switch (Token.kind()) { 1128 case MIToken::kw_implicit: 1129 Flags |= RegState::Implicit; 1130 break; 1131 case MIToken::kw_implicit_define: 1132 Flags |= RegState::ImplicitDefine; 1133 break; 1134 case MIToken::kw_def: 1135 Flags |= RegState::Define; 1136 break; 1137 case MIToken::kw_dead: 1138 Flags |= RegState::Dead; 1139 break; 1140 case MIToken::kw_killed: 1141 Flags |= RegState::Kill; 1142 break; 1143 case MIToken::kw_undef: 1144 Flags |= RegState::Undef; 1145 break; 1146 case MIToken::kw_internal: 1147 Flags |= RegState::InternalRead; 1148 break; 1149 case MIToken::kw_early_clobber: 1150 Flags |= RegState::EarlyClobber; 1151 break; 1152 case MIToken::kw_debug_use: 1153 Flags |= RegState::Debug; 1154 break; 1155 case MIToken::kw_renamable: 1156 Flags |= RegState::Renamable; 1157 break; 1158 default: 1159 llvm_unreachable("The current token should be a register flag"); 1160 } 1161 if (OldFlags == Flags) 1162 // We know that the same flag is specified more than once when the flags 1163 // weren't modified. 1164 return error("duplicate '" + Token.stringValue() + "' register flag"); 1165 lex(); 1166 return false; 1167 } 1168 1169 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1170 assert(Token.is(MIToken::dot)); 1171 lex(); 1172 if (Token.isNot(MIToken::Identifier)) 1173 return error("expected a subregister index after '.'"); 1174 auto Name = Token.stringValue(); 1175 SubReg = getSubRegIndex(Name); 1176 if (!SubReg) 1177 return error(Twine("use of unknown subregister index '") + Name + "'"); 1178 lex(); 1179 return false; 1180 } 1181 1182 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1183 if (!consumeIfPresent(MIToken::kw_tied_def)) 1184 return true; 1185 if (Token.isNot(MIToken::IntegerLiteral)) 1186 return error("expected an integer literal after 'tied-def'"); 1187 if (getUnsigned(TiedDefIdx)) 1188 return true; 1189 lex(); 1190 if (expectAndConsume(MIToken::rparen)) 1191 return true; 1192 return false; 1193 } 1194 1195 bool MIParser::assignRegisterTies(MachineInstr &MI, 1196 ArrayRef<ParsedMachineOperand> Operands) { 1197 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1198 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1199 if (!Operands[I].TiedDefIdx) 1200 continue; 1201 // The parser ensures that this operand is a register use, so we just have 1202 // to check the tied-def operand. 1203 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1204 if (DefIdx >= E) 1205 return error(Operands[I].Begin, 1206 Twine("use of invalid tied-def operand index '" + 1207 Twine(DefIdx) + "'; instruction has only ") + 1208 Twine(E) + " operands"); 1209 const auto &DefOperand = Operands[DefIdx].Operand; 1210 if (!DefOperand.isReg() || !DefOperand.isDef()) 1211 // FIXME: add note with the def operand. 1212 return error(Operands[I].Begin, 1213 Twine("use of invalid tied-def operand index '") + 1214 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1215 " isn't a defined register"); 1216 // Check that the tied-def operand wasn't tied elsewhere. 1217 for (const auto &TiedPair : TiedRegisterPairs) { 1218 if (TiedPair.first == DefIdx) 1219 return error(Operands[I].Begin, 1220 Twine("the tied-def operand #") + Twine(DefIdx) + 1221 " is already tied with another register operand"); 1222 } 1223 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1224 } 1225 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1226 // indices must be less than tied max. 1227 for (const auto &TiedPair : TiedRegisterPairs) 1228 MI.tieOperands(TiedPair.first, TiedPair.second); 1229 return false; 1230 } 1231 1232 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1233 Optional<unsigned> &TiedDefIdx, 1234 bool IsDef) { 1235 unsigned Flags = IsDef ? RegState::Define : 0; 1236 while (Token.isRegisterFlag()) { 1237 if (parseRegisterFlag(Flags)) 1238 return true; 1239 } 1240 if (!Token.isRegister()) 1241 return error("expected a register after register flags"); 1242 unsigned Reg; 1243 VRegInfo *RegInfo; 1244 if (parseRegister(Reg, RegInfo)) 1245 return true; 1246 lex(); 1247 unsigned SubReg = 0; 1248 if (Token.is(MIToken::dot)) { 1249 if (parseSubRegisterIndex(SubReg)) 1250 return true; 1251 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1252 return error("subregister index expects a virtual register"); 1253 } 1254 if (Token.is(MIToken::colon)) { 1255 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1256 return error("register class specification expects a virtual register"); 1257 lex(); 1258 if (parseRegisterClassOrBank(*RegInfo)) 1259 return true; 1260 } 1261 MachineRegisterInfo &MRI = MF.getRegInfo(); 1262 if ((Flags & RegState::Define) == 0) { 1263 if (consumeIfPresent(MIToken::lparen)) { 1264 unsigned Idx; 1265 if (!parseRegisterTiedDefIndex(Idx)) 1266 TiedDefIdx = Idx; 1267 else { 1268 // Try a redundant low-level type. 1269 LLT Ty; 1270 if (parseLowLevelType(Token.location(), Ty)) 1271 return error("expected tied-def or low-level type after '('"); 1272 1273 if (expectAndConsume(MIToken::rparen)) 1274 return true; 1275 1276 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1277 return error("inconsistent type for generic virtual register"); 1278 1279 MRI.setType(Reg, Ty); 1280 } 1281 } 1282 } else if (consumeIfPresent(MIToken::lparen)) { 1283 // Virtual registers may have a tpe with GlobalISel. 1284 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1285 return error("unexpected type on physical register"); 1286 1287 LLT Ty; 1288 if (parseLowLevelType(Token.location(), Ty)) 1289 return true; 1290 1291 if (expectAndConsume(MIToken::rparen)) 1292 return true; 1293 1294 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1295 return error("inconsistent type for generic virtual register"); 1296 1297 MRI.setType(Reg, Ty); 1298 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1299 // Generic virtual registers must have a type. 1300 // If we end up here this means the type hasn't been specified and 1301 // this is bad! 1302 if (RegInfo->Kind == VRegInfo::GENERIC || 1303 RegInfo->Kind == VRegInfo::REGBANK) 1304 return error("generic virtual registers must have a type"); 1305 } 1306 Dest = MachineOperand::CreateReg( 1307 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1308 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1309 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1310 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1311 1312 return false; 1313 } 1314 1315 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1316 assert(Token.is(MIToken::IntegerLiteral)); 1317 const APSInt &Int = Token.integerValue(); 1318 if (Int.getMinSignedBits() > 64) 1319 return error("integer literal is too large to be an immediate operand"); 1320 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1321 lex(); 1322 return false; 1323 } 1324 1325 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1326 const Constant *&C) { 1327 auto Source = StringValue.str(); // The source has to be null terminated. 1328 SMDiagnostic Err; 1329 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1330 &PFS.IRSlots); 1331 if (!C) 1332 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1333 return false; 1334 } 1335 1336 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1337 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1338 return true; 1339 lex(); 1340 return false; 1341 } 1342 1343 // See LLT implemntation for bit size limits. 1344 static bool verifyScalarSize(uint64_t Size) { 1345 return Size != 0 && isUInt<16>(Size); 1346 } 1347 1348 static bool verifyVectorElementCount(uint64_t NumElts) { 1349 return NumElts != 0 && isUInt<16>(NumElts); 1350 } 1351 1352 static bool verifyAddrSpace(uint64_t AddrSpace) { 1353 return isUInt<24>(AddrSpace); 1354 } 1355 1356 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1357 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1358 StringRef SizeStr = Token.range().drop_front(); 1359 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1360 return error("expected integers after 's'/'p' type character"); 1361 } 1362 1363 if (Token.range().front() == 's') { 1364 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1365 if (!verifyScalarSize(ScalarSize)) 1366 return error("invalid size for scalar type"); 1367 1368 Ty = LLT::scalar(ScalarSize); 1369 lex(); 1370 return false; 1371 } else if (Token.range().front() == 'p') { 1372 const DataLayout &DL = MF.getDataLayout(); 1373 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1374 if (!verifyAddrSpace(AS)) 1375 return error("invalid address space number"); 1376 1377 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1378 lex(); 1379 return false; 1380 } 1381 1382 // Now we're looking for a vector. 1383 if (Token.isNot(MIToken::less)) 1384 return error(Loc, 1385 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1386 lex(); 1387 1388 if (Token.isNot(MIToken::IntegerLiteral)) 1389 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1390 uint64_t NumElements = Token.integerValue().getZExtValue(); 1391 if (!verifyVectorElementCount(NumElements)) 1392 return error("invalid number of vector elements"); 1393 1394 lex(); 1395 1396 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1397 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1398 lex(); 1399 1400 if (Token.range().front() != 's' && Token.range().front() != 'p') 1401 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1402 StringRef SizeStr = Token.range().drop_front(); 1403 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1404 return error("expected integers after 's'/'p' type character"); 1405 1406 if (Token.range().front() == 's') { 1407 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1408 if (!verifyScalarSize(ScalarSize)) 1409 return error("invalid size for scalar type"); 1410 Ty = LLT::scalar(ScalarSize); 1411 } else if (Token.range().front() == 'p') { 1412 const DataLayout &DL = MF.getDataLayout(); 1413 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1414 if (!verifyAddrSpace(AS)) 1415 return error("invalid address space number"); 1416 1417 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1418 } else 1419 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1420 lex(); 1421 1422 if (Token.isNot(MIToken::greater)) 1423 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1424 lex(); 1425 1426 Ty = LLT::vector(NumElements, Ty); 1427 return false; 1428 } 1429 1430 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1431 assert(Token.is(MIToken::Identifier)); 1432 StringRef TypeStr = Token.range(); 1433 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1434 TypeStr.front() != 'p') 1435 return error( 1436 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1437 StringRef SizeStr = Token.range().drop_front(); 1438 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1439 return error("expected integers after 'i'/'s'/'p' type character"); 1440 1441 auto Loc = Token.location(); 1442 lex(); 1443 if (Token.isNot(MIToken::IntegerLiteral)) { 1444 if (Token.isNot(MIToken::Identifier) || 1445 !(Token.range() == "true" || Token.range() == "false")) 1446 return error("expected an integer literal"); 1447 } 1448 const Constant *C = nullptr; 1449 if (parseIRConstant(Loc, C)) 1450 return true; 1451 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1452 return false; 1453 } 1454 1455 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1456 auto Loc = Token.location(); 1457 lex(); 1458 if (Token.isNot(MIToken::FloatingPointLiteral) && 1459 Token.isNot(MIToken::HexLiteral)) 1460 return error("expected a floating point literal"); 1461 const Constant *C = nullptr; 1462 if (parseIRConstant(Loc, C)) 1463 return true; 1464 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1465 return false; 1466 } 1467 1468 bool MIParser::getUnsigned(unsigned &Result) { 1469 if (Token.hasIntegerValue()) { 1470 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1471 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1472 if (Val64 == Limit) 1473 return error("expected 32-bit integer (too large)"); 1474 Result = Val64; 1475 return false; 1476 } 1477 if (Token.is(MIToken::HexLiteral)) { 1478 APInt A; 1479 if (getHexUint(A)) 1480 return true; 1481 if (A.getBitWidth() > 32) 1482 return error("expected 32-bit integer (too large)"); 1483 Result = A.getZExtValue(); 1484 return false; 1485 } 1486 return true; 1487 } 1488 1489 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1490 assert(Token.is(MIToken::MachineBasicBlock) || 1491 Token.is(MIToken::MachineBasicBlockLabel)); 1492 unsigned Number; 1493 if (getUnsigned(Number)) 1494 return true; 1495 auto MBBInfo = PFS.MBBSlots.find(Number); 1496 if (MBBInfo == PFS.MBBSlots.end()) 1497 return error(Twine("use of undefined machine basic block #") + 1498 Twine(Number)); 1499 MBB = MBBInfo->second; 1500 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1501 // we drop the <irname> from the bb.<id>.<irname> format. 1502 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1503 return error(Twine("the name of machine basic block #") + Twine(Number) + 1504 " isn't '" + Token.stringValue() + "'"); 1505 return false; 1506 } 1507 1508 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1509 MachineBasicBlock *MBB; 1510 if (parseMBBReference(MBB)) 1511 return true; 1512 Dest = MachineOperand::CreateMBB(MBB); 1513 lex(); 1514 return false; 1515 } 1516 1517 bool MIParser::parseStackFrameIndex(int &FI) { 1518 assert(Token.is(MIToken::StackObject)); 1519 unsigned ID; 1520 if (getUnsigned(ID)) 1521 return true; 1522 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1523 if (ObjectInfo == PFS.StackObjectSlots.end()) 1524 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1525 "'"); 1526 StringRef Name; 1527 if (const auto *Alloca = 1528 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1529 Name = Alloca->getName(); 1530 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1531 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1532 "' isn't '" + Token.stringValue() + "'"); 1533 lex(); 1534 FI = ObjectInfo->second; 1535 return false; 1536 } 1537 1538 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1539 int FI; 1540 if (parseStackFrameIndex(FI)) 1541 return true; 1542 Dest = MachineOperand::CreateFI(FI); 1543 return false; 1544 } 1545 1546 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1547 assert(Token.is(MIToken::FixedStackObject)); 1548 unsigned ID; 1549 if (getUnsigned(ID)) 1550 return true; 1551 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1552 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1553 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1554 Twine(ID) + "'"); 1555 lex(); 1556 FI = ObjectInfo->second; 1557 return false; 1558 } 1559 1560 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1561 int FI; 1562 if (parseFixedStackFrameIndex(FI)) 1563 return true; 1564 Dest = MachineOperand::CreateFI(FI); 1565 return false; 1566 } 1567 1568 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1569 switch (Token.kind()) { 1570 case MIToken::NamedGlobalValue: { 1571 const Module *M = MF.getFunction().getParent(); 1572 GV = M->getNamedValue(Token.stringValue()); 1573 if (!GV) 1574 return error(Twine("use of undefined global value '") + Token.range() + 1575 "'"); 1576 break; 1577 } 1578 case MIToken::GlobalValue: { 1579 unsigned GVIdx; 1580 if (getUnsigned(GVIdx)) 1581 return true; 1582 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1583 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1584 "'"); 1585 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1586 break; 1587 } 1588 default: 1589 llvm_unreachable("The current token should be a global value"); 1590 } 1591 return false; 1592 } 1593 1594 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1595 GlobalValue *GV = nullptr; 1596 if (parseGlobalValue(GV)) 1597 return true; 1598 lex(); 1599 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1600 if (parseOperandsOffset(Dest)) 1601 return true; 1602 return false; 1603 } 1604 1605 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1606 assert(Token.is(MIToken::ConstantPoolItem)); 1607 unsigned ID; 1608 if (getUnsigned(ID)) 1609 return true; 1610 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1611 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1612 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1613 lex(); 1614 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1615 if (parseOperandsOffset(Dest)) 1616 return true; 1617 return false; 1618 } 1619 1620 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1621 assert(Token.is(MIToken::JumpTableIndex)); 1622 unsigned ID; 1623 if (getUnsigned(ID)) 1624 return true; 1625 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1626 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1627 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1628 lex(); 1629 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1630 return false; 1631 } 1632 1633 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1634 assert(Token.is(MIToken::ExternalSymbol)); 1635 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1636 lex(); 1637 Dest = MachineOperand::CreateES(Symbol); 1638 if (parseOperandsOffset(Dest)) 1639 return true; 1640 return false; 1641 } 1642 1643 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1644 assert(Token.is(MIToken::MCSymbol)); 1645 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1646 lex(); 1647 Dest = MachineOperand::CreateMCSymbol(Symbol); 1648 if (parseOperandsOffset(Dest)) 1649 return true; 1650 return false; 1651 } 1652 1653 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1654 assert(Token.is(MIToken::SubRegisterIndex)); 1655 StringRef Name = Token.stringValue(); 1656 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1657 if (SubRegIndex == 0) 1658 return error(Twine("unknown subregister index '") + Name + "'"); 1659 lex(); 1660 Dest = MachineOperand::CreateImm(SubRegIndex); 1661 return false; 1662 } 1663 1664 bool MIParser::parseMDNode(MDNode *&Node) { 1665 assert(Token.is(MIToken::exclaim)); 1666 1667 auto Loc = Token.location(); 1668 lex(); 1669 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1670 return error("expected metadata id after '!'"); 1671 unsigned ID; 1672 if (getUnsigned(ID)) 1673 return true; 1674 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1675 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1676 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1677 lex(); 1678 Node = NodeInfo->second.get(); 1679 return false; 1680 } 1681 1682 bool MIParser::parseDIExpression(MDNode *&Expr) { 1683 assert(Token.is(MIToken::md_diexpr)); 1684 lex(); 1685 1686 // FIXME: Share this parsing with the IL parser. 1687 SmallVector<uint64_t, 8> Elements; 1688 1689 if (expectAndConsume(MIToken::lparen)) 1690 return true; 1691 1692 if (Token.isNot(MIToken::rparen)) { 1693 do { 1694 if (Token.is(MIToken::Identifier)) { 1695 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1696 lex(); 1697 Elements.push_back(Op); 1698 continue; 1699 } 1700 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1701 } 1702 1703 if (Token.isNot(MIToken::IntegerLiteral) || 1704 Token.integerValue().isSigned()) 1705 return error("expected unsigned integer"); 1706 1707 auto &U = Token.integerValue(); 1708 if (U.ugt(UINT64_MAX)) 1709 return error("element too large, limit is " + Twine(UINT64_MAX)); 1710 Elements.push_back(U.getZExtValue()); 1711 lex(); 1712 1713 } while (consumeIfPresent(MIToken::comma)); 1714 } 1715 1716 if (expectAndConsume(MIToken::rparen)) 1717 return true; 1718 1719 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1720 return false; 1721 } 1722 1723 bool MIParser::parseDILocation(MDNode *&Loc) { 1724 assert(Token.is(MIToken::md_dilocation)); 1725 lex(); 1726 1727 bool HaveLine = false; 1728 unsigned Line = 0; 1729 unsigned Column = 0; 1730 MDNode *Scope = nullptr; 1731 MDNode *InlinedAt = nullptr; 1732 bool ImplicitCode = false; 1733 1734 if (expectAndConsume(MIToken::lparen)) 1735 return true; 1736 1737 if (Token.isNot(MIToken::rparen)) { 1738 do { 1739 if (Token.is(MIToken::Identifier)) { 1740 if (Token.stringValue() == "line") { 1741 lex(); 1742 if (expectAndConsume(MIToken::colon)) 1743 return true; 1744 if (Token.isNot(MIToken::IntegerLiteral) || 1745 Token.integerValue().isSigned()) 1746 return error("expected unsigned integer"); 1747 Line = Token.integerValue().getZExtValue(); 1748 HaveLine = true; 1749 lex(); 1750 continue; 1751 } 1752 if (Token.stringValue() == "column") { 1753 lex(); 1754 if (expectAndConsume(MIToken::colon)) 1755 return true; 1756 if (Token.isNot(MIToken::IntegerLiteral) || 1757 Token.integerValue().isSigned()) 1758 return error("expected unsigned integer"); 1759 Column = Token.integerValue().getZExtValue(); 1760 lex(); 1761 continue; 1762 } 1763 if (Token.stringValue() == "scope") { 1764 lex(); 1765 if (expectAndConsume(MIToken::colon)) 1766 return true; 1767 if (parseMDNode(Scope)) 1768 return error("expected metadata node"); 1769 if (!isa<DIScope>(Scope)) 1770 return error("expected DIScope node"); 1771 continue; 1772 } 1773 if (Token.stringValue() == "inlinedAt") { 1774 lex(); 1775 if (expectAndConsume(MIToken::colon)) 1776 return true; 1777 if (Token.is(MIToken::exclaim)) { 1778 if (parseMDNode(InlinedAt)) 1779 return true; 1780 } else if (Token.is(MIToken::md_dilocation)) { 1781 if (parseDILocation(InlinedAt)) 1782 return true; 1783 } else 1784 return error("expected metadata node"); 1785 if (!isa<DILocation>(InlinedAt)) 1786 return error("expected DILocation node"); 1787 continue; 1788 } 1789 if (Token.stringValue() == "isImplicitCode") { 1790 lex(); 1791 if (expectAndConsume(MIToken::colon)) 1792 return true; 1793 if (!Token.is(MIToken::Identifier)) 1794 return error("expected true/false"); 1795 // As far as I can see, we don't have any existing need for parsing 1796 // true/false in MIR yet. Do it ad-hoc until there's something else 1797 // that needs it. 1798 if (Token.stringValue() == "true") 1799 ImplicitCode = true; 1800 else if (Token.stringValue() == "false") 1801 ImplicitCode = false; 1802 else 1803 return error("expected true/false"); 1804 lex(); 1805 continue; 1806 } 1807 } 1808 return error(Twine("invalid DILocation argument '") + 1809 Token.stringValue() + "'"); 1810 } while (consumeIfPresent(MIToken::comma)); 1811 } 1812 1813 if (expectAndConsume(MIToken::rparen)) 1814 return true; 1815 1816 if (!HaveLine) 1817 return error("DILocation requires line number"); 1818 if (!Scope) 1819 return error("DILocation requires a scope"); 1820 1821 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 1822 InlinedAt, ImplicitCode); 1823 return false; 1824 } 1825 1826 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1827 MDNode *Node = nullptr; 1828 if (Token.is(MIToken::exclaim)) { 1829 if (parseMDNode(Node)) 1830 return true; 1831 } else if (Token.is(MIToken::md_diexpr)) { 1832 if (parseDIExpression(Node)) 1833 return true; 1834 } 1835 Dest = MachineOperand::CreateMetadata(Node); 1836 return false; 1837 } 1838 1839 bool MIParser::parseCFIOffset(int &Offset) { 1840 if (Token.isNot(MIToken::IntegerLiteral)) 1841 return error("expected a cfi offset"); 1842 if (Token.integerValue().getMinSignedBits() > 32) 1843 return error("expected a 32 bit integer (the cfi offset is too large)"); 1844 Offset = (int)Token.integerValue().getExtValue(); 1845 lex(); 1846 return false; 1847 } 1848 1849 bool MIParser::parseCFIRegister(unsigned &Reg) { 1850 if (Token.isNot(MIToken::NamedRegister)) 1851 return error("expected a cfi register"); 1852 unsigned LLVMReg; 1853 if (parseNamedRegister(LLVMReg)) 1854 return true; 1855 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1856 assert(TRI && "Expected target register info"); 1857 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1858 if (DwarfReg < 0) 1859 return error("invalid DWARF register"); 1860 Reg = (unsigned)DwarfReg; 1861 lex(); 1862 return false; 1863 } 1864 1865 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1866 do { 1867 if (Token.isNot(MIToken::HexLiteral)) 1868 return error("expected a hexadecimal literal"); 1869 unsigned Value; 1870 if (getUnsigned(Value)) 1871 return true; 1872 if (Value > UINT8_MAX) 1873 return error("expected a 8-bit integer (too large)"); 1874 Values.push_back(static_cast<uint8_t>(Value)); 1875 lex(); 1876 } while (consumeIfPresent(MIToken::comma)); 1877 return false; 1878 } 1879 1880 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1881 auto Kind = Token.kind(); 1882 lex(); 1883 int Offset; 1884 unsigned Reg; 1885 unsigned CFIIndex; 1886 switch (Kind) { 1887 case MIToken::kw_cfi_same_value: 1888 if (parseCFIRegister(Reg)) 1889 return true; 1890 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1891 break; 1892 case MIToken::kw_cfi_offset: 1893 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1894 parseCFIOffset(Offset)) 1895 return true; 1896 CFIIndex = 1897 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1898 break; 1899 case MIToken::kw_cfi_rel_offset: 1900 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1901 parseCFIOffset(Offset)) 1902 return true; 1903 CFIIndex = MF.addFrameInst( 1904 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1905 break; 1906 case MIToken::kw_cfi_def_cfa_register: 1907 if (parseCFIRegister(Reg)) 1908 return true; 1909 CFIIndex = 1910 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1911 break; 1912 case MIToken::kw_cfi_def_cfa_offset: 1913 if (parseCFIOffset(Offset)) 1914 return true; 1915 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1916 CFIIndex = MF.addFrameInst( 1917 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1918 break; 1919 case MIToken::kw_cfi_adjust_cfa_offset: 1920 if (parseCFIOffset(Offset)) 1921 return true; 1922 CFIIndex = MF.addFrameInst( 1923 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1924 break; 1925 case MIToken::kw_cfi_def_cfa: 1926 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1927 parseCFIOffset(Offset)) 1928 return true; 1929 // NB: MCCFIInstruction::createDefCfa negates the offset. 1930 CFIIndex = 1931 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1932 break; 1933 case MIToken::kw_cfi_remember_state: 1934 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1935 break; 1936 case MIToken::kw_cfi_restore: 1937 if (parseCFIRegister(Reg)) 1938 return true; 1939 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1940 break; 1941 case MIToken::kw_cfi_restore_state: 1942 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1943 break; 1944 case MIToken::kw_cfi_undefined: 1945 if (parseCFIRegister(Reg)) 1946 return true; 1947 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1948 break; 1949 case MIToken::kw_cfi_register: { 1950 unsigned Reg2; 1951 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1952 parseCFIRegister(Reg2)) 1953 return true; 1954 1955 CFIIndex = 1956 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1957 break; 1958 } 1959 case MIToken::kw_cfi_window_save: 1960 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1961 break; 1962 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 1963 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 1964 break; 1965 case MIToken::kw_cfi_escape: { 1966 std::string Values; 1967 if (parseCFIEscapeValues(Values)) 1968 return true; 1969 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1970 break; 1971 } 1972 default: 1973 // TODO: Parse the other CFI operands. 1974 llvm_unreachable("The current token should be a cfi operand"); 1975 } 1976 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1977 return false; 1978 } 1979 1980 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1981 switch (Token.kind()) { 1982 case MIToken::NamedIRBlock: { 1983 BB = dyn_cast_or_null<BasicBlock>( 1984 F.getValueSymbolTable()->lookup(Token.stringValue())); 1985 if (!BB) 1986 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1987 break; 1988 } 1989 case MIToken::IRBlock: { 1990 unsigned SlotNumber = 0; 1991 if (getUnsigned(SlotNumber)) 1992 return true; 1993 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1994 if (!BB) 1995 return error(Twine("use of undefined IR block '%ir-block.") + 1996 Twine(SlotNumber) + "'"); 1997 break; 1998 } 1999 default: 2000 llvm_unreachable("The current token should be an IR block reference"); 2001 } 2002 return false; 2003 } 2004 2005 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2006 assert(Token.is(MIToken::kw_blockaddress)); 2007 lex(); 2008 if (expectAndConsume(MIToken::lparen)) 2009 return true; 2010 if (Token.isNot(MIToken::GlobalValue) && 2011 Token.isNot(MIToken::NamedGlobalValue)) 2012 return error("expected a global value"); 2013 GlobalValue *GV = nullptr; 2014 if (parseGlobalValue(GV)) 2015 return true; 2016 auto *F = dyn_cast<Function>(GV); 2017 if (!F) 2018 return error("expected an IR function reference"); 2019 lex(); 2020 if (expectAndConsume(MIToken::comma)) 2021 return true; 2022 BasicBlock *BB = nullptr; 2023 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2024 return error("expected an IR block reference"); 2025 if (parseIRBlock(BB, *F)) 2026 return true; 2027 lex(); 2028 if (expectAndConsume(MIToken::rparen)) 2029 return true; 2030 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2031 if (parseOperandsOffset(Dest)) 2032 return true; 2033 return false; 2034 } 2035 2036 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2037 assert(Token.is(MIToken::kw_intrinsic)); 2038 lex(); 2039 if (expectAndConsume(MIToken::lparen)) 2040 return error("expected syntax intrinsic(@llvm.whatever)"); 2041 2042 if (Token.isNot(MIToken::NamedGlobalValue)) 2043 return error("expected syntax intrinsic(@llvm.whatever)"); 2044 2045 std::string Name = Token.stringValue(); 2046 lex(); 2047 2048 if (expectAndConsume(MIToken::rparen)) 2049 return error("expected ')' to terminate intrinsic name"); 2050 2051 // Find out what intrinsic we're dealing with, first try the global namespace 2052 // and then the target's private intrinsics if that fails. 2053 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2054 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2055 if (ID == Intrinsic::not_intrinsic && TII) 2056 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2057 2058 if (ID == Intrinsic::not_intrinsic) 2059 return error("unknown intrinsic name"); 2060 Dest = MachineOperand::CreateIntrinsicID(ID); 2061 2062 return false; 2063 } 2064 2065 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2066 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2067 bool IsFloat = Token.is(MIToken::kw_floatpred); 2068 lex(); 2069 2070 if (expectAndConsume(MIToken::lparen)) 2071 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2072 2073 if (Token.isNot(MIToken::Identifier)) 2074 return error("whatever"); 2075 2076 CmpInst::Predicate Pred; 2077 if (IsFloat) { 2078 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2079 .Case("false", CmpInst::FCMP_FALSE) 2080 .Case("oeq", CmpInst::FCMP_OEQ) 2081 .Case("ogt", CmpInst::FCMP_OGT) 2082 .Case("oge", CmpInst::FCMP_OGE) 2083 .Case("olt", CmpInst::FCMP_OLT) 2084 .Case("ole", CmpInst::FCMP_OLE) 2085 .Case("one", CmpInst::FCMP_ONE) 2086 .Case("ord", CmpInst::FCMP_ORD) 2087 .Case("uno", CmpInst::FCMP_UNO) 2088 .Case("ueq", CmpInst::FCMP_UEQ) 2089 .Case("ugt", CmpInst::FCMP_UGT) 2090 .Case("uge", CmpInst::FCMP_UGE) 2091 .Case("ult", CmpInst::FCMP_ULT) 2092 .Case("ule", CmpInst::FCMP_ULE) 2093 .Case("une", CmpInst::FCMP_UNE) 2094 .Case("true", CmpInst::FCMP_TRUE) 2095 .Default(CmpInst::BAD_FCMP_PREDICATE); 2096 if (!CmpInst::isFPPredicate(Pred)) 2097 return error("invalid floating-point predicate"); 2098 } else { 2099 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2100 .Case("eq", CmpInst::ICMP_EQ) 2101 .Case("ne", CmpInst::ICMP_NE) 2102 .Case("sgt", CmpInst::ICMP_SGT) 2103 .Case("sge", CmpInst::ICMP_SGE) 2104 .Case("slt", CmpInst::ICMP_SLT) 2105 .Case("sle", CmpInst::ICMP_SLE) 2106 .Case("ugt", CmpInst::ICMP_UGT) 2107 .Case("uge", CmpInst::ICMP_UGE) 2108 .Case("ult", CmpInst::ICMP_ULT) 2109 .Case("ule", CmpInst::ICMP_ULE) 2110 .Default(CmpInst::BAD_ICMP_PREDICATE); 2111 if (!CmpInst::isIntPredicate(Pred)) 2112 return error("invalid integer predicate"); 2113 } 2114 2115 lex(); 2116 Dest = MachineOperand::CreatePredicate(Pred); 2117 if (expectAndConsume(MIToken::rparen)) 2118 return error("predicate should be terminated by ')'."); 2119 2120 return false; 2121 } 2122 2123 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2124 assert(Token.is(MIToken::kw_target_index)); 2125 lex(); 2126 if (expectAndConsume(MIToken::lparen)) 2127 return true; 2128 if (Token.isNot(MIToken::Identifier)) 2129 return error("expected the name of the target index"); 2130 int Index = 0; 2131 if (getTargetIndex(Token.stringValue(), Index)) 2132 return error("use of undefined target index '" + Token.stringValue() + "'"); 2133 lex(); 2134 if (expectAndConsume(MIToken::rparen)) 2135 return true; 2136 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2137 if (parseOperandsOffset(Dest)) 2138 return true; 2139 return false; 2140 } 2141 2142 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2143 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2144 lex(); 2145 if (expectAndConsume(MIToken::lparen)) 2146 return true; 2147 2148 uint32_t *Mask = MF.allocateRegMask(); 2149 while (true) { 2150 if (Token.isNot(MIToken::NamedRegister)) 2151 return error("expected a named register"); 2152 unsigned Reg; 2153 if (parseNamedRegister(Reg)) 2154 return true; 2155 lex(); 2156 Mask[Reg / 32] |= 1U << (Reg % 32); 2157 // TODO: Report an error if the same register is used more than once. 2158 if (Token.isNot(MIToken::comma)) 2159 break; 2160 lex(); 2161 } 2162 2163 if (expectAndConsume(MIToken::rparen)) 2164 return true; 2165 Dest = MachineOperand::CreateRegMask(Mask); 2166 return false; 2167 } 2168 2169 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2170 assert(Token.is(MIToken::kw_liveout)); 2171 uint32_t *Mask = MF.allocateRegMask(); 2172 lex(); 2173 if (expectAndConsume(MIToken::lparen)) 2174 return true; 2175 while (true) { 2176 if (Token.isNot(MIToken::NamedRegister)) 2177 return error("expected a named register"); 2178 unsigned Reg; 2179 if (parseNamedRegister(Reg)) 2180 return true; 2181 lex(); 2182 Mask[Reg / 32] |= 1U << (Reg % 32); 2183 // TODO: Report an error if the same register is used more than once. 2184 if (Token.isNot(MIToken::comma)) 2185 break; 2186 lex(); 2187 } 2188 if (expectAndConsume(MIToken::rparen)) 2189 return true; 2190 Dest = MachineOperand::CreateRegLiveOut(Mask); 2191 return false; 2192 } 2193 2194 bool MIParser::parseMachineOperand(MachineOperand &Dest, 2195 Optional<unsigned> &TiedDefIdx) { 2196 switch (Token.kind()) { 2197 case MIToken::kw_implicit: 2198 case MIToken::kw_implicit_define: 2199 case MIToken::kw_def: 2200 case MIToken::kw_dead: 2201 case MIToken::kw_killed: 2202 case MIToken::kw_undef: 2203 case MIToken::kw_internal: 2204 case MIToken::kw_early_clobber: 2205 case MIToken::kw_debug_use: 2206 case MIToken::kw_renamable: 2207 case MIToken::underscore: 2208 case MIToken::NamedRegister: 2209 case MIToken::VirtualRegister: 2210 case MIToken::NamedVirtualRegister: 2211 return parseRegisterOperand(Dest, TiedDefIdx); 2212 case MIToken::IntegerLiteral: 2213 return parseImmediateOperand(Dest); 2214 case MIToken::kw_half: 2215 case MIToken::kw_float: 2216 case MIToken::kw_double: 2217 case MIToken::kw_x86_fp80: 2218 case MIToken::kw_fp128: 2219 case MIToken::kw_ppc_fp128: 2220 return parseFPImmediateOperand(Dest); 2221 case MIToken::MachineBasicBlock: 2222 return parseMBBOperand(Dest); 2223 case MIToken::StackObject: 2224 return parseStackObjectOperand(Dest); 2225 case MIToken::FixedStackObject: 2226 return parseFixedStackObjectOperand(Dest); 2227 case MIToken::GlobalValue: 2228 case MIToken::NamedGlobalValue: 2229 return parseGlobalAddressOperand(Dest); 2230 case MIToken::ConstantPoolItem: 2231 return parseConstantPoolIndexOperand(Dest); 2232 case MIToken::JumpTableIndex: 2233 return parseJumpTableIndexOperand(Dest); 2234 case MIToken::ExternalSymbol: 2235 return parseExternalSymbolOperand(Dest); 2236 case MIToken::MCSymbol: 2237 return parseMCSymbolOperand(Dest); 2238 case MIToken::SubRegisterIndex: 2239 return parseSubRegisterIndexOperand(Dest); 2240 case MIToken::md_diexpr: 2241 case MIToken::exclaim: 2242 return parseMetadataOperand(Dest); 2243 case MIToken::kw_cfi_same_value: 2244 case MIToken::kw_cfi_offset: 2245 case MIToken::kw_cfi_rel_offset: 2246 case MIToken::kw_cfi_def_cfa_register: 2247 case MIToken::kw_cfi_def_cfa_offset: 2248 case MIToken::kw_cfi_adjust_cfa_offset: 2249 case MIToken::kw_cfi_escape: 2250 case MIToken::kw_cfi_def_cfa: 2251 case MIToken::kw_cfi_register: 2252 case MIToken::kw_cfi_remember_state: 2253 case MIToken::kw_cfi_restore: 2254 case MIToken::kw_cfi_restore_state: 2255 case MIToken::kw_cfi_undefined: 2256 case MIToken::kw_cfi_window_save: 2257 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2258 return parseCFIOperand(Dest); 2259 case MIToken::kw_blockaddress: 2260 return parseBlockAddressOperand(Dest); 2261 case MIToken::kw_intrinsic: 2262 return parseIntrinsicOperand(Dest); 2263 case MIToken::kw_target_index: 2264 return parseTargetIndexOperand(Dest); 2265 case MIToken::kw_liveout: 2266 return parseLiveoutRegisterMaskOperand(Dest); 2267 case MIToken::kw_floatpred: 2268 case MIToken::kw_intpred: 2269 return parsePredicateOperand(Dest); 2270 case MIToken::Error: 2271 return true; 2272 case MIToken::Identifier: 2273 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2274 Dest = MachineOperand::CreateRegMask(RegMask); 2275 lex(); 2276 break; 2277 } else if (Token.stringValue() == "CustomRegMask") { 2278 return parseCustomRegisterMaskOperand(Dest); 2279 } else 2280 return parseTypedImmediateOperand(Dest); 2281 default: 2282 // FIXME: Parse the MCSymbol machine operand. 2283 return error("expected a machine operand"); 2284 } 2285 return false; 2286 } 2287 2288 bool MIParser::parseMachineOperandAndTargetFlags( 2289 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2290 unsigned TF = 0; 2291 bool HasTargetFlags = false; 2292 if (Token.is(MIToken::kw_target_flags)) { 2293 HasTargetFlags = true; 2294 lex(); 2295 if (expectAndConsume(MIToken::lparen)) 2296 return true; 2297 if (Token.isNot(MIToken::Identifier)) 2298 return error("expected the name of the target flag"); 2299 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2300 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2301 return error("use of undefined target flag '" + Token.stringValue() + 2302 "'"); 2303 } 2304 lex(); 2305 while (Token.is(MIToken::comma)) { 2306 lex(); 2307 if (Token.isNot(MIToken::Identifier)) 2308 return error("expected the name of the target flag"); 2309 unsigned BitFlag = 0; 2310 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2311 return error("use of undefined target flag '" + Token.stringValue() + 2312 "'"); 2313 // TODO: Report an error when using a duplicate bit target flag. 2314 TF |= BitFlag; 2315 lex(); 2316 } 2317 if (expectAndConsume(MIToken::rparen)) 2318 return true; 2319 } 2320 auto Loc = Token.location(); 2321 if (parseMachineOperand(Dest, TiedDefIdx)) 2322 return true; 2323 if (!HasTargetFlags) 2324 return false; 2325 if (Dest.isReg()) 2326 return error(Loc, "register operands can't have target flags"); 2327 Dest.setTargetFlags(TF); 2328 return false; 2329 } 2330 2331 bool MIParser::parseOffset(int64_t &Offset) { 2332 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2333 return false; 2334 StringRef Sign = Token.range(); 2335 bool IsNegative = Token.is(MIToken::minus); 2336 lex(); 2337 if (Token.isNot(MIToken::IntegerLiteral)) 2338 return error("expected an integer literal after '" + Sign + "'"); 2339 if (Token.integerValue().getMinSignedBits() > 64) 2340 return error("expected 64-bit integer (too large)"); 2341 Offset = Token.integerValue().getExtValue(); 2342 if (IsNegative) 2343 Offset = -Offset; 2344 lex(); 2345 return false; 2346 } 2347 2348 bool MIParser::parseAlignment(unsigned &Alignment) { 2349 assert(Token.is(MIToken::kw_align)); 2350 lex(); 2351 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2352 return error("expected an integer literal after 'align'"); 2353 if (getUnsigned(Alignment)) 2354 return true; 2355 lex(); 2356 2357 if (!isPowerOf2_32(Alignment)) 2358 return error("expected a power-of-2 literal after 'align'"); 2359 2360 return false; 2361 } 2362 2363 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2364 assert(Token.is(MIToken::kw_addrspace)); 2365 lex(); 2366 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2367 return error("expected an integer literal after 'addrspace'"); 2368 if (getUnsigned(Addrspace)) 2369 return true; 2370 lex(); 2371 return false; 2372 } 2373 2374 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2375 int64_t Offset = 0; 2376 if (parseOffset(Offset)) 2377 return true; 2378 Op.setOffset(Offset); 2379 return false; 2380 } 2381 2382 bool MIParser::parseIRValue(const Value *&V) { 2383 switch (Token.kind()) { 2384 case MIToken::NamedIRValue: { 2385 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2386 break; 2387 } 2388 case MIToken::IRValue: { 2389 unsigned SlotNumber = 0; 2390 if (getUnsigned(SlotNumber)) 2391 return true; 2392 V = getIRValue(SlotNumber); 2393 break; 2394 } 2395 case MIToken::NamedGlobalValue: 2396 case MIToken::GlobalValue: { 2397 GlobalValue *GV = nullptr; 2398 if (parseGlobalValue(GV)) 2399 return true; 2400 V = GV; 2401 break; 2402 } 2403 case MIToken::QuotedIRValue: { 2404 const Constant *C = nullptr; 2405 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2406 return true; 2407 V = C; 2408 break; 2409 } 2410 default: 2411 llvm_unreachable("The current token should be an IR block reference"); 2412 } 2413 if (!V) 2414 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2415 return false; 2416 } 2417 2418 bool MIParser::getUint64(uint64_t &Result) { 2419 if (Token.hasIntegerValue()) { 2420 if (Token.integerValue().getActiveBits() > 64) 2421 return error("expected 64-bit integer (too large)"); 2422 Result = Token.integerValue().getZExtValue(); 2423 return false; 2424 } 2425 if (Token.is(MIToken::HexLiteral)) { 2426 APInt A; 2427 if (getHexUint(A)) 2428 return true; 2429 if (A.getBitWidth() > 64) 2430 return error("expected 64-bit integer (too large)"); 2431 Result = A.getZExtValue(); 2432 return false; 2433 } 2434 return true; 2435 } 2436 2437 bool MIParser::getHexUint(APInt &Result) { 2438 assert(Token.is(MIToken::HexLiteral)); 2439 StringRef S = Token.range(); 2440 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2441 // This could be a floating point literal with a special prefix. 2442 if (!isxdigit(S[2])) 2443 return true; 2444 StringRef V = S.substr(2); 2445 APInt A(V.size()*4, V, 16); 2446 2447 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2448 // sure it isn't the case before constructing result. 2449 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2450 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2451 return false; 2452 } 2453 2454 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2455 const auto OldFlags = Flags; 2456 switch (Token.kind()) { 2457 case MIToken::kw_volatile: 2458 Flags |= MachineMemOperand::MOVolatile; 2459 break; 2460 case MIToken::kw_non_temporal: 2461 Flags |= MachineMemOperand::MONonTemporal; 2462 break; 2463 case MIToken::kw_dereferenceable: 2464 Flags |= MachineMemOperand::MODereferenceable; 2465 break; 2466 case MIToken::kw_invariant: 2467 Flags |= MachineMemOperand::MOInvariant; 2468 break; 2469 case MIToken::StringConstant: { 2470 MachineMemOperand::Flags TF; 2471 if (getMMOTargetFlag(Token.stringValue(), TF)) 2472 return error("use of undefined target MMO flag '" + Token.stringValue() + 2473 "'"); 2474 Flags |= TF; 2475 break; 2476 } 2477 default: 2478 llvm_unreachable("The current token should be a memory operand flag"); 2479 } 2480 if (OldFlags == Flags) 2481 // We know that the same flag is specified more than once when the flags 2482 // weren't modified. 2483 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2484 lex(); 2485 return false; 2486 } 2487 2488 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2489 switch (Token.kind()) { 2490 case MIToken::kw_stack: 2491 PSV = MF.getPSVManager().getStack(); 2492 break; 2493 case MIToken::kw_got: 2494 PSV = MF.getPSVManager().getGOT(); 2495 break; 2496 case MIToken::kw_jump_table: 2497 PSV = MF.getPSVManager().getJumpTable(); 2498 break; 2499 case MIToken::kw_constant_pool: 2500 PSV = MF.getPSVManager().getConstantPool(); 2501 break; 2502 case MIToken::FixedStackObject: { 2503 int FI; 2504 if (parseFixedStackFrameIndex(FI)) 2505 return true; 2506 PSV = MF.getPSVManager().getFixedStack(FI); 2507 // The token was already consumed, so use return here instead of break. 2508 return false; 2509 } 2510 case MIToken::StackObject: { 2511 int FI; 2512 if (parseStackFrameIndex(FI)) 2513 return true; 2514 PSV = MF.getPSVManager().getFixedStack(FI); 2515 // The token was already consumed, so use return here instead of break. 2516 return false; 2517 } 2518 case MIToken::kw_call_entry: 2519 lex(); 2520 switch (Token.kind()) { 2521 case MIToken::GlobalValue: 2522 case MIToken::NamedGlobalValue: { 2523 GlobalValue *GV = nullptr; 2524 if (parseGlobalValue(GV)) 2525 return true; 2526 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2527 break; 2528 } 2529 case MIToken::ExternalSymbol: 2530 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2531 MF.createExternalSymbolName(Token.stringValue())); 2532 break; 2533 default: 2534 return error( 2535 "expected a global value or an external symbol after 'call-entry'"); 2536 } 2537 break; 2538 default: 2539 llvm_unreachable("The current token should be pseudo source value"); 2540 } 2541 lex(); 2542 return false; 2543 } 2544 2545 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2546 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2547 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2548 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2549 Token.is(MIToken::kw_call_entry)) { 2550 const PseudoSourceValue *PSV = nullptr; 2551 if (parseMemoryPseudoSourceValue(PSV)) 2552 return true; 2553 int64_t Offset = 0; 2554 if (parseOffset(Offset)) 2555 return true; 2556 Dest = MachinePointerInfo(PSV, Offset); 2557 return false; 2558 } 2559 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2560 Token.isNot(MIToken::GlobalValue) && 2561 Token.isNot(MIToken::NamedGlobalValue) && 2562 Token.isNot(MIToken::QuotedIRValue)) 2563 return error("expected an IR value reference"); 2564 const Value *V = nullptr; 2565 if (parseIRValue(V)) 2566 return true; 2567 if (!V->getType()->isPointerTy()) 2568 return error("expected a pointer IR value"); 2569 lex(); 2570 int64_t Offset = 0; 2571 if (parseOffset(Offset)) 2572 return true; 2573 Dest = MachinePointerInfo(V, Offset); 2574 return false; 2575 } 2576 2577 bool MIParser::parseOptionalScope(LLVMContext &Context, 2578 SyncScope::ID &SSID) { 2579 SSID = SyncScope::System; 2580 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2581 lex(); 2582 if (expectAndConsume(MIToken::lparen)) 2583 return error("expected '(' in syncscope"); 2584 2585 std::string SSN; 2586 if (parseStringConstant(SSN)) 2587 return true; 2588 2589 SSID = Context.getOrInsertSyncScopeID(SSN); 2590 if (expectAndConsume(MIToken::rparen)) 2591 return error("expected ')' in syncscope"); 2592 } 2593 2594 return false; 2595 } 2596 2597 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2598 Order = AtomicOrdering::NotAtomic; 2599 if (Token.isNot(MIToken::Identifier)) 2600 return false; 2601 2602 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2603 .Case("unordered", AtomicOrdering::Unordered) 2604 .Case("monotonic", AtomicOrdering::Monotonic) 2605 .Case("acquire", AtomicOrdering::Acquire) 2606 .Case("release", AtomicOrdering::Release) 2607 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2608 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2609 .Default(AtomicOrdering::NotAtomic); 2610 2611 if (Order != AtomicOrdering::NotAtomic) { 2612 lex(); 2613 return false; 2614 } 2615 2616 return error("expected an atomic scope, ordering or a size specification"); 2617 } 2618 2619 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2620 if (expectAndConsume(MIToken::lparen)) 2621 return true; 2622 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2623 while (Token.isMemoryOperandFlag()) { 2624 if (parseMemoryOperandFlag(Flags)) 2625 return true; 2626 } 2627 if (Token.isNot(MIToken::Identifier) || 2628 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2629 return error("expected 'load' or 'store' memory operation"); 2630 if (Token.stringValue() == "load") 2631 Flags |= MachineMemOperand::MOLoad; 2632 else 2633 Flags |= MachineMemOperand::MOStore; 2634 lex(); 2635 2636 // Optional 'store' for operands that both load and store. 2637 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2638 Flags |= MachineMemOperand::MOStore; 2639 lex(); 2640 } 2641 2642 // Optional synchronization scope. 2643 SyncScope::ID SSID; 2644 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2645 return true; 2646 2647 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2648 AtomicOrdering Order, FailureOrder; 2649 if (parseOptionalAtomicOrdering(Order)) 2650 return true; 2651 2652 if (parseOptionalAtomicOrdering(FailureOrder)) 2653 return true; 2654 2655 if (Token.isNot(MIToken::IntegerLiteral) && 2656 Token.isNot(MIToken::kw_unknown_size)) 2657 return error("expected the size integer literal or 'unknown-size' after " 2658 "memory operation"); 2659 uint64_t Size; 2660 if (Token.is(MIToken::IntegerLiteral)) { 2661 if (getUint64(Size)) 2662 return true; 2663 } else if (Token.is(MIToken::kw_unknown_size)) { 2664 Size = MemoryLocation::UnknownSize; 2665 } 2666 lex(); 2667 2668 MachinePointerInfo Ptr = MachinePointerInfo(); 2669 if (Token.is(MIToken::Identifier)) { 2670 const char *Word = 2671 ((Flags & MachineMemOperand::MOLoad) && 2672 (Flags & MachineMemOperand::MOStore)) 2673 ? "on" 2674 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2675 if (Token.stringValue() != Word) 2676 return error(Twine("expected '") + Word + "'"); 2677 lex(); 2678 2679 if (parseMachinePointerInfo(Ptr)) 2680 return true; 2681 } 2682 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 2683 AAMDNodes AAInfo; 2684 MDNode *Range = nullptr; 2685 while (consumeIfPresent(MIToken::comma)) { 2686 switch (Token.kind()) { 2687 case MIToken::kw_align: 2688 if (parseAlignment(BaseAlignment)) 2689 return true; 2690 break; 2691 case MIToken::kw_addrspace: 2692 if (parseAddrspace(Ptr.AddrSpace)) 2693 return true; 2694 break; 2695 case MIToken::md_tbaa: 2696 lex(); 2697 if (parseMDNode(AAInfo.TBAA)) 2698 return true; 2699 break; 2700 case MIToken::md_alias_scope: 2701 lex(); 2702 if (parseMDNode(AAInfo.Scope)) 2703 return true; 2704 break; 2705 case MIToken::md_noalias: 2706 lex(); 2707 if (parseMDNode(AAInfo.NoAlias)) 2708 return true; 2709 break; 2710 case MIToken::md_range: 2711 lex(); 2712 if (parseMDNode(Range)) 2713 return true; 2714 break; 2715 // TODO: Report an error on duplicate metadata nodes. 2716 default: 2717 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2718 "'!noalias' or '!range'"); 2719 } 2720 } 2721 if (expectAndConsume(MIToken::rparen)) 2722 return true; 2723 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2724 SSID, Order, FailureOrder); 2725 return false; 2726 } 2727 2728 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 2729 assert((Token.is(MIToken::kw_pre_instr_symbol) || 2730 Token.is(MIToken::kw_post_instr_symbol)) && 2731 "Invalid token for a pre- post-instruction symbol!"); 2732 lex(); 2733 if (Token.isNot(MIToken::MCSymbol)) 2734 return error("expected a symbol after 'pre-instr-symbol'"); 2735 Symbol = getOrCreateMCSymbol(Token.stringValue()); 2736 lex(); 2737 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 2738 Token.is(MIToken::lbrace)) 2739 return false; 2740 if (Token.isNot(MIToken::comma)) 2741 return error("expected ',' before the next machine operand"); 2742 lex(); 2743 return false; 2744 } 2745 2746 void MIParser::initNames2InstrOpCodes() { 2747 if (!Names2InstrOpCodes.empty()) 2748 return; 2749 const auto *TII = MF.getSubtarget().getInstrInfo(); 2750 assert(TII && "Expected target instruction info"); 2751 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2752 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2753 } 2754 2755 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2756 initNames2InstrOpCodes(); 2757 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2758 if (InstrInfo == Names2InstrOpCodes.end()) 2759 return true; 2760 OpCode = InstrInfo->getValue(); 2761 return false; 2762 } 2763 2764 void MIParser::initNames2Regs() { 2765 if (!Names2Regs.empty()) 2766 return; 2767 // The '%noreg' register is the register 0. 2768 Names2Regs.insert(std::make_pair("noreg", 0)); 2769 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2770 assert(TRI && "Expected target register info"); 2771 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2772 bool WasInserted = 2773 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2774 .second; 2775 (void)WasInserted; 2776 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2777 } 2778 } 2779 2780 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2781 initNames2Regs(); 2782 auto RegInfo = Names2Regs.find(RegName); 2783 if (RegInfo == Names2Regs.end()) 2784 return true; 2785 Reg = RegInfo->getValue(); 2786 return false; 2787 } 2788 2789 void MIParser::initNames2RegMasks() { 2790 if (!Names2RegMasks.empty()) 2791 return; 2792 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2793 assert(TRI && "Expected target register info"); 2794 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2795 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2796 assert(RegMasks.size() == RegMaskNames.size()); 2797 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2798 Names2RegMasks.insert( 2799 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2800 } 2801 2802 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2803 initNames2RegMasks(); 2804 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2805 if (RegMaskInfo == Names2RegMasks.end()) 2806 return nullptr; 2807 return RegMaskInfo->getValue(); 2808 } 2809 2810 void MIParser::initNames2SubRegIndices() { 2811 if (!Names2SubRegIndices.empty()) 2812 return; 2813 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2814 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2815 Names2SubRegIndices.insert( 2816 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2817 } 2818 2819 unsigned MIParser::getSubRegIndex(StringRef Name) { 2820 initNames2SubRegIndices(); 2821 auto SubRegInfo = Names2SubRegIndices.find(Name); 2822 if (SubRegInfo == Names2SubRegIndices.end()) 2823 return 0; 2824 return SubRegInfo->getValue(); 2825 } 2826 2827 static void initSlots2BasicBlocks( 2828 const Function &F, 2829 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2830 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2831 MST.incorporateFunction(F); 2832 for (auto &BB : F) { 2833 if (BB.hasName()) 2834 continue; 2835 int Slot = MST.getLocalSlot(&BB); 2836 if (Slot == -1) 2837 continue; 2838 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2839 } 2840 } 2841 2842 static const BasicBlock *getIRBlockFromSlot( 2843 unsigned Slot, 2844 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2845 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2846 if (BlockInfo == Slots2BasicBlocks.end()) 2847 return nullptr; 2848 return BlockInfo->second; 2849 } 2850 2851 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2852 if (Slots2BasicBlocks.empty()) 2853 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2854 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2855 } 2856 2857 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2858 if (&F == &MF.getFunction()) 2859 return getIRBlock(Slot); 2860 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2861 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2862 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2863 } 2864 2865 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2866 DenseMap<unsigned, const Value *> &Slots2Values) { 2867 int Slot = MST.getLocalSlot(V); 2868 if (Slot == -1) 2869 return; 2870 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2871 } 2872 2873 /// Creates the mapping from slot numbers to function's unnamed IR values. 2874 static void initSlots2Values(const Function &F, 2875 DenseMap<unsigned, const Value *> &Slots2Values) { 2876 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2877 MST.incorporateFunction(F); 2878 for (const auto &Arg : F.args()) 2879 mapValueToSlot(&Arg, MST, Slots2Values); 2880 for (const auto &BB : F) { 2881 mapValueToSlot(&BB, MST, Slots2Values); 2882 for (const auto &I : BB) 2883 mapValueToSlot(&I, MST, Slots2Values); 2884 } 2885 } 2886 2887 const Value *MIParser::getIRValue(unsigned Slot) { 2888 if (Slots2Values.empty()) 2889 initSlots2Values(MF.getFunction(), Slots2Values); 2890 auto ValueInfo = Slots2Values.find(Slot); 2891 if (ValueInfo == Slots2Values.end()) 2892 return nullptr; 2893 return ValueInfo->second; 2894 } 2895 2896 void MIParser::initNames2TargetIndices() { 2897 if (!Names2TargetIndices.empty()) 2898 return; 2899 const auto *TII = MF.getSubtarget().getInstrInfo(); 2900 assert(TII && "Expected target instruction info"); 2901 auto Indices = TII->getSerializableTargetIndices(); 2902 for (const auto &I : Indices) 2903 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2904 } 2905 2906 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2907 initNames2TargetIndices(); 2908 auto IndexInfo = Names2TargetIndices.find(Name); 2909 if (IndexInfo == Names2TargetIndices.end()) 2910 return true; 2911 Index = IndexInfo->second; 2912 return false; 2913 } 2914 2915 void MIParser::initNames2DirectTargetFlags() { 2916 if (!Names2DirectTargetFlags.empty()) 2917 return; 2918 const auto *TII = MF.getSubtarget().getInstrInfo(); 2919 assert(TII && "Expected target instruction info"); 2920 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2921 for (const auto &I : Flags) 2922 Names2DirectTargetFlags.insert( 2923 std::make_pair(StringRef(I.second), I.first)); 2924 } 2925 2926 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2927 initNames2DirectTargetFlags(); 2928 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2929 if (FlagInfo == Names2DirectTargetFlags.end()) 2930 return true; 2931 Flag = FlagInfo->second; 2932 return false; 2933 } 2934 2935 void MIParser::initNames2BitmaskTargetFlags() { 2936 if (!Names2BitmaskTargetFlags.empty()) 2937 return; 2938 const auto *TII = MF.getSubtarget().getInstrInfo(); 2939 assert(TII && "Expected target instruction info"); 2940 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2941 for (const auto &I : Flags) 2942 Names2BitmaskTargetFlags.insert( 2943 std::make_pair(StringRef(I.second), I.first)); 2944 } 2945 2946 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2947 initNames2BitmaskTargetFlags(); 2948 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2949 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2950 return true; 2951 Flag = FlagInfo->second; 2952 return false; 2953 } 2954 2955 void MIParser::initNames2MMOTargetFlags() { 2956 if (!Names2MMOTargetFlags.empty()) 2957 return; 2958 const auto *TII = MF.getSubtarget().getInstrInfo(); 2959 assert(TII && "Expected target instruction info"); 2960 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2961 for (const auto &I : Flags) 2962 Names2MMOTargetFlags.insert( 2963 std::make_pair(StringRef(I.second), I.first)); 2964 } 2965 2966 bool MIParser::getMMOTargetFlag(StringRef Name, 2967 MachineMemOperand::Flags &Flag) { 2968 initNames2MMOTargetFlags(); 2969 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2970 if (FlagInfo == Names2MMOTargetFlags.end()) 2971 return true; 2972 Flag = FlagInfo->second; 2973 return false; 2974 } 2975 2976 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 2977 // FIXME: Currently we can't recognize temporary or local symbols and call all 2978 // of the appropriate forms to create them. However, this handles basic cases 2979 // well as most of the special aspects are recognized by a prefix on their 2980 // name, and the input names should already be unique. For test cases, keeping 2981 // the symbol name out of the symbol table isn't terribly important. 2982 return MF.getContext().getOrCreateSymbol(Name); 2983 } 2984 2985 bool MIParser::parseStringConstant(std::string &Result) { 2986 if (Token.isNot(MIToken::StringConstant)) 2987 return error("expected string constant"); 2988 Result = Token.stringValue(); 2989 lex(); 2990 return false; 2991 } 2992 2993 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2994 StringRef Src, 2995 SMDiagnostic &Error) { 2996 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2997 } 2998 2999 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3000 StringRef Src, SMDiagnostic &Error) { 3001 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3002 } 3003 3004 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3005 MachineBasicBlock *&MBB, StringRef Src, 3006 SMDiagnostic &Error) { 3007 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3008 } 3009 3010 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3011 unsigned &Reg, StringRef Src, 3012 SMDiagnostic &Error) { 3013 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3014 } 3015 3016 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3017 unsigned &Reg, StringRef Src, 3018 SMDiagnostic &Error) { 3019 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3020 } 3021 3022 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3023 VRegInfo *&Info, StringRef Src, 3024 SMDiagnostic &Error) { 3025 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3026 } 3027 3028 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3029 int &FI, StringRef Src, 3030 SMDiagnostic &Error) { 3031 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3032 } 3033 3034 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3035 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3036 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3037 } 3038