1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/ADT/StringSwitch.h"
18 #include "llvm/AsmParser/Parser.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/CodeGen/MachineBasicBlock.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineModuleInfo.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/ModuleSlotTracker.h"
33 #include "llvm/IR/ValueSymbolTable.h"
34 #include "llvm/Support/SourceMgr.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetIntrinsicInfo.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 
40 using namespace llvm;
41 
42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
43     SourceMgr &SM, const SlotMapping &IRSlots)
44   : MF(MF), SM(&SM), IRSlots(IRSlots) {
45 }
46 
47 namespace {
48 
49 /// A wrapper struct around the 'MachineOperand' struct that includes a source
50 /// range and other attributes.
51 struct ParsedMachineOperand {
52   MachineOperand Operand;
53   StringRef::iterator Begin;
54   StringRef::iterator End;
55   Optional<unsigned> TiedDefIdx;
56 
57   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
58                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
59       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
60     if (TiedDefIdx)
61       assert(Operand.isReg() && Operand.isUse() &&
62              "Only used register operands can be tied");
63   }
64 };
65 
66 class MIParser {
67   MachineFunction &MF;
68   SMDiagnostic &Error;
69   StringRef Source, CurrentSource;
70   MIToken Token;
71   const PerFunctionMIParsingState &PFS;
72   /// Maps from instruction names to op codes.
73   StringMap<unsigned> Names2InstrOpCodes;
74   /// Maps from register names to registers.
75   StringMap<unsigned> Names2Regs;
76   /// Maps from register mask names to register masks.
77   StringMap<const uint32_t *> Names2RegMasks;
78   /// Maps from subregister names to subregister indices.
79   StringMap<unsigned> Names2SubRegIndices;
80   /// Maps from slot numbers to function's unnamed basic blocks.
81   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
82   /// Maps from slot numbers to function's unnamed values.
83   DenseMap<unsigned, const Value *> Slots2Values;
84   /// Maps from target index names to target indices.
85   StringMap<int> Names2TargetIndices;
86   /// Maps from direct target flag names to the direct target flag values.
87   StringMap<unsigned> Names2DirectTargetFlags;
88   /// Maps from direct target flag names to the bitmask target flag values.
89   StringMap<unsigned> Names2BitmaskTargetFlags;
90 
91 public:
92   MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
93            StringRef Source);
94 
95   /// \p SkipChar gives the number of characters to skip before looking
96   /// for the next token.
97   void lex(unsigned SkipChar = 0);
98 
99   /// Report an error at the current location with the given message.
100   ///
101   /// This function always return true.
102   bool error(const Twine &Msg);
103 
104   /// Report an error at the given location with the given message.
105   ///
106   /// This function always return true.
107   bool error(StringRef::iterator Loc, const Twine &Msg);
108 
109   bool
110   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
111   bool parseBasicBlocks();
112   bool parse(MachineInstr *&MI);
113   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
114   bool parseStandaloneNamedRegister(unsigned &Reg);
115   bool parseStandaloneVirtualRegister(unsigned &Reg);
116   bool parseStandaloneStackObject(int &FI);
117   bool parseStandaloneMDNode(MDNode *&Node);
118 
119   bool
120   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
121   bool parseBasicBlock(MachineBasicBlock &MBB);
122   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
123   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
124 
125   bool parseRegister(unsigned &Reg);
126   bool parseRegisterFlag(unsigned &Flags);
127   bool parseSubRegisterIndex(unsigned &SubReg);
128   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
129   bool parseRegisterOperand(MachineOperand &Dest,
130                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
131   bool parseImmediateOperand(MachineOperand &Dest);
132   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
133                        const Constant *&C);
134   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
135   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
136   bool parseTypedImmediateOperand(MachineOperand &Dest);
137   bool parseFPImmediateOperand(MachineOperand &Dest);
138   bool parseMBBReference(MachineBasicBlock *&MBB);
139   bool parseMBBOperand(MachineOperand &Dest);
140   bool parseStackFrameIndex(int &FI);
141   bool parseStackObjectOperand(MachineOperand &Dest);
142   bool parseFixedStackFrameIndex(int &FI);
143   bool parseFixedStackObjectOperand(MachineOperand &Dest);
144   bool parseGlobalValue(GlobalValue *&GV);
145   bool parseGlobalAddressOperand(MachineOperand &Dest);
146   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
147   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
148   bool parseJumpTableIndexOperand(MachineOperand &Dest);
149   bool parseExternalSymbolOperand(MachineOperand &Dest);
150   bool parseMDNode(MDNode *&Node);
151   bool parseMetadataOperand(MachineOperand &Dest);
152   bool parseCFIOffset(int &Offset);
153   bool parseCFIRegister(unsigned &Reg);
154   bool parseCFIOperand(MachineOperand &Dest);
155   bool parseIRBlock(BasicBlock *&BB, const Function &F);
156   bool parseBlockAddressOperand(MachineOperand &Dest);
157   bool parseIntrinsicOperand(MachineOperand &Dest);
158   bool parsePredicateOperand(MachineOperand &Dest);
159   bool parseTargetIndexOperand(MachineOperand &Dest);
160   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
161   bool parseMachineOperand(MachineOperand &Dest,
162                            Optional<unsigned> &TiedDefIdx);
163   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
164                                          Optional<unsigned> &TiedDefIdx);
165   bool parseOffset(int64_t &Offset);
166   bool parseAlignment(unsigned &Alignment);
167   bool parseOperandsOffset(MachineOperand &Op);
168   bool parseIRValue(const Value *&V);
169   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
170   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
171   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
172   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
173 
174 private:
175   /// Convert the integer literal in the current token into an unsigned integer.
176   ///
177   /// Return true if an error occurred.
178   bool getUnsigned(unsigned &Result);
179 
180   /// Convert the integer literal in the current token into an uint64.
181   ///
182   /// Return true if an error occurred.
183   bool getUint64(uint64_t &Result);
184 
185   /// If the current token is of the given kind, consume it and return false.
186   /// Otherwise report an error and return true.
187   bool expectAndConsume(MIToken::TokenKind TokenKind);
188 
189   /// If the current token is of the given kind, consume it and return true.
190   /// Otherwise return false.
191   bool consumeIfPresent(MIToken::TokenKind TokenKind);
192 
193   void initNames2InstrOpCodes();
194 
195   /// Try to convert an instruction name to an opcode. Return true if the
196   /// instruction name is invalid.
197   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
198 
199   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
200 
201   bool assignRegisterTies(MachineInstr &MI,
202                           ArrayRef<ParsedMachineOperand> Operands);
203 
204   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
205                               const MCInstrDesc &MCID);
206 
207   void initNames2Regs();
208 
209   /// Try to convert a register name to a register number. Return true if the
210   /// register name is invalid.
211   bool getRegisterByName(StringRef RegName, unsigned &Reg);
212 
213   void initNames2RegMasks();
214 
215   /// Check if the given identifier is a name of a register mask.
216   ///
217   /// Return null if the identifier isn't a register mask.
218   const uint32_t *getRegMask(StringRef Identifier);
219 
220   void initNames2SubRegIndices();
221 
222   /// Check if the given identifier is a name of a subregister index.
223   ///
224   /// Return 0 if the name isn't a subregister index class.
225   unsigned getSubRegIndex(StringRef Name);
226 
227   const BasicBlock *getIRBlock(unsigned Slot);
228   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
229 
230   const Value *getIRValue(unsigned Slot);
231 
232   void initNames2TargetIndices();
233 
234   /// Try to convert a name of target index to the corresponding target index.
235   ///
236   /// Return true if the name isn't a name of a target index.
237   bool getTargetIndex(StringRef Name, int &Index);
238 
239   void initNames2DirectTargetFlags();
240 
241   /// Try to convert a name of a direct target flag to the corresponding
242   /// target flag.
243   ///
244   /// Return true if the name isn't a name of a direct flag.
245   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
246 
247   void initNames2BitmaskTargetFlags();
248 
249   /// Try to convert a name of a bitmask target flag to the corresponding
250   /// target flag.
251   ///
252   /// Return true if the name isn't a name of a bitmask target flag.
253   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
254 };
255 
256 } // end anonymous namespace
257 
258 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
259                    StringRef Source)
260     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
261 {}
262 
263 void MIParser::lex(unsigned SkipChar) {
264   CurrentSource = lexMIToken(
265       CurrentSource.data() + SkipChar, Token,
266       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
267 }
268 
269 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
270 
271 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
272   const SourceMgr &SM = *PFS.SM;
273   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
274   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
275   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
276     // Create an ordinary diagnostic when the source manager's buffer is the
277     // source string.
278     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
279     return true;
280   }
281   // Create a diagnostic for a YAML string literal.
282   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
283                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
284                        Source, None, None);
285   return true;
286 }
287 
288 static const char *toString(MIToken::TokenKind TokenKind) {
289   switch (TokenKind) {
290   case MIToken::comma:
291     return "','";
292   case MIToken::equal:
293     return "'='";
294   case MIToken::colon:
295     return "':'";
296   case MIToken::lparen:
297     return "'('";
298   case MIToken::rparen:
299     return "')'";
300   default:
301     return "<unknown token>";
302   }
303 }
304 
305 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
306   if (Token.isNot(TokenKind))
307     return error(Twine("expected ") + toString(TokenKind));
308   lex();
309   return false;
310 }
311 
312 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
313   if (Token.isNot(TokenKind))
314     return false;
315   lex();
316   return true;
317 }
318 
319 bool MIParser::parseBasicBlockDefinition(
320     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
321   assert(Token.is(MIToken::MachineBasicBlockLabel));
322   unsigned ID = 0;
323   if (getUnsigned(ID))
324     return true;
325   auto Loc = Token.location();
326   auto Name = Token.stringValue();
327   lex();
328   bool HasAddressTaken = false;
329   bool IsLandingPad = false;
330   unsigned Alignment = 0;
331   BasicBlock *BB = nullptr;
332   if (consumeIfPresent(MIToken::lparen)) {
333     do {
334       // TODO: Report an error when multiple same attributes are specified.
335       switch (Token.kind()) {
336       case MIToken::kw_address_taken:
337         HasAddressTaken = true;
338         lex();
339         break;
340       case MIToken::kw_landing_pad:
341         IsLandingPad = true;
342         lex();
343         break;
344       case MIToken::kw_align:
345         if (parseAlignment(Alignment))
346           return true;
347         break;
348       case MIToken::IRBlock:
349         // TODO: Report an error when both name and ir block are specified.
350         if (parseIRBlock(BB, *MF.getFunction()))
351           return true;
352         lex();
353         break;
354       default:
355         break;
356       }
357     } while (consumeIfPresent(MIToken::comma));
358     if (expectAndConsume(MIToken::rparen))
359       return true;
360   }
361   if (expectAndConsume(MIToken::colon))
362     return true;
363 
364   if (!Name.empty()) {
365     BB = dyn_cast_or_null<BasicBlock>(
366         MF.getFunction()->getValueSymbolTable()->lookup(Name));
367     if (!BB)
368       return error(Loc, Twine("basic block '") + Name +
369                             "' is not defined in the function '" +
370                             MF.getName() + "'");
371   }
372   auto *MBB = MF.CreateMachineBasicBlock(BB);
373   MF.insert(MF.end(), MBB);
374   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
375   if (!WasInserted)
376     return error(Loc, Twine("redefinition of machine basic block with id #") +
377                           Twine(ID));
378   if (Alignment)
379     MBB->setAlignment(Alignment);
380   if (HasAddressTaken)
381     MBB->setHasAddressTaken();
382   MBB->setIsEHPad(IsLandingPad);
383   return false;
384 }
385 
386 bool MIParser::parseBasicBlockDefinitions(
387     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
388   lex();
389   // Skip until the first machine basic block.
390   while (Token.is(MIToken::Newline))
391     lex();
392   if (Token.isErrorOrEOF())
393     return Token.isError();
394   if (Token.isNot(MIToken::MachineBasicBlockLabel))
395     return error("expected a basic block definition before instructions");
396   unsigned BraceDepth = 0;
397   do {
398     if (parseBasicBlockDefinition(MBBSlots))
399       return true;
400     bool IsAfterNewline = false;
401     // Skip until the next machine basic block.
402     while (true) {
403       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
404           Token.isErrorOrEOF())
405         break;
406       else if (Token.is(MIToken::MachineBasicBlockLabel))
407         return error("basic block definition should be located at the start of "
408                      "the line");
409       else if (consumeIfPresent(MIToken::Newline)) {
410         IsAfterNewline = true;
411         continue;
412       }
413       IsAfterNewline = false;
414       if (Token.is(MIToken::lbrace))
415         ++BraceDepth;
416       if (Token.is(MIToken::rbrace)) {
417         if (!BraceDepth)
418           return error("extraneous closing brace ('}')");
419         --BraceDepth;
420       }
421       lex();
422     }
423     // Verify that we closed all of the '{' at the end of a file or a block.
424     if (!Token.isError() && BraceDepth)
425       return error("expected '}'"); // FIXME: Report a note that shows '{'.
426   } while (!Token.isErrorOrEOF());
427   return Token.isError();
428 }
429 
430 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
431   assert(Token.is(MIToken::kw_liveins));
432   lex();
433   if (expectAndConsume(MIToken::colon))
434     return true;
435   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
436     return false;
437   do {
438     if (Token.isNot(MIToken::NamedRegister))
439       return error("expected a named register");
440     unsigned Reg = 0;
441     if (parseRegister(Reg))
442       return true;
443     MBB.addLiveIn(Reg);
444     lex();
445   } while (consumeIfPresent(MIToken::comma));
446   return false;
447 }
448 
449 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
450   assert(Token.is(MIToken::kw_successors));
451   lex();
452   if (expectAndConsume(MIToken::colon))
453     return true;
454   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
455     return false;
456   do {
457     if (Token.isNot(MIToken::MachineBasicBlock))
458       return error("expected a machine basic block reference");
459     MachineBasicBlock *SuccMBB = nullptr;
460     if (parseMBBReference(SuccMBB))
461       return true;
462     lex();
463     unsigned Weight = 0;
464     if (consumeIfPresent(MIToken::lparen)) {
465       if (Token.isNot(MIToken::IntegerLiteral))
466         return error("expected an integer literal after '('");
467       if (getUnsigned(Weight))
468         return true;
469       lex();
470       if (expectAndConsume(MIToken::rparen))
471         return true;
472     }
473     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
474   } while (consumeIfPresent(MIToken::comma));
475   MBB.normalizeSuccProbs();
476   return false;
477 }
478 
479 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
480   // Skip the definition.
481   assert(Token.is(MIToken::MachineBasicBlockLabel));
482   lex();
483   if (consumeIfPresent(MIToken::lparen)) {
484     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
485       lex();
486     consumeIfPresent(MIToken::rparen);
487   }
488   consumeIfPresent(MIToken::colon);
489 
490   // Parse the liveins and successors.
491   // N.B: Multiple lists of successors and liveins are allowed and they're
492   // merged into one.
493   // Example:
494   //   liveins: %edi
495   //   liveins: %esi
496   //
497   // is equivalent to
498   //   liveins: %edi, %esi
499   while (true) {
500     if (Token.is(MIToken::kw_successors)) {
501       if (parseBasicBlockSuccessors(MBB))
502         return true;
503     } else if (Token.is(MIToken::kw_liveins)) {
504       if (parseBasicBlockLiveins(MBB))
505         return true;
506     } else if (consumeIfPresent(MIToken::Newline)) {
507       continue;
508     } else
509       break;
510     if (!Token.isNewlineOrEOF())
511       return error("expected line break at the end of a list");
512     lex();
513   }
514 
515   // Parse the instructions.
516   bool IsInBundle = false;
517   MachineInstr *PrevMI = nullptr;
518   while (true) {
519     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
520       return false;
521     else if (consumeIfPresent(MIToken::Newline))
522       continue;
523     if (consumeIfPresent(MIToken::rbrace)) {
524       // The first parsing pass should verify that all closing '}' have an
525       // opening '{'.
526       assert(IsInBundle);
527       IsInBundle = false;
528       continue;
529     }
530     MachineInstr *MI = nullptr;
531     if (parse(MI))
532       return true;
533     MBB.insert(MBB.end(), MI);
534     if (IsInBundle) {
535       PrevMI->setFlag(MachineInstr::BundledSucc);
536       MI->setFlag(MachineInstr::BundledPred);
537     }
538     PrevMI = MI;
539     if (Token.is(MIToken::lbrace)) {
540       if (IsInBundle)
541         return error("nested instruction bundles are not allowed");
542       lex();
543       // This instruction is the start of the bundle.
544       MI->setFlag(MachineInstr::BundledSucc);
545       IsInBundle = true;
546       if (!Token.is(MIToken::Newline))
547         // The next instruction can be on the same line.
548         continue;
549     }
550     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
551     lex();
552   }
553   return false;
554 }
555 
556 bool MIParser::parseBasicBlocks() {
557   lex();
558   // Skip until the first machine basic block.
559   while (Token.is(MIToken::Newline))
560     lex();
561   if (Token.isErrorOrEOF())
562     return Token.isError();
563   // The first parsing pass should have verified that this token is a MBB label
564   // in the 'parseBasicBlockDefinitions' method.
565   assert(Token.is(MIToken::MachineBasicBlockLabel));
566   do {
567     MachineBasicBlock *MBB = nullptr;
568     if (parseMBBReference(MBB))
569       return true;
570     if (parseBasicBlock(*MBB))
571       return true;
572     // The method 'parseBasicBlock' should parse the whole block until the next
573     // block or the end of file.
574     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
575   } while (Token.isNot(MIToken::Eof));
576   return false;
577 }
578 
579 bool MIParser::parse(MachineInstr *&MI) {
580   // Parse any register operands before '='
581   MachineOperand MO = MachineOperand::CreateImm(0);
582   SmallVector<ParsedMachineOperand, 8> Operands;
583   while (Token.isRegister() || Token.isRegisterFlag()) {
584     auto Loc = Token.location();
585     Optional<unsigned> TiedDefIdx;
586     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
587       return true;
588     Operands.push_back(
589         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
590     if (Token.isNot(MIToken::comma))
591       break;
592     lex();
593   }
594   if (!Operands.empty() && expectAndConsume(MIToken::equal))
595     return true;
596 
597   unsigned OpCode, Flags = 0;
598   if (Token.isError() || parseInstruction(OpCode, Flags))
599     return true;
600 
601   // Parse the remaining machine operands.
602   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
603          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
604     auto Loc = Token.location();
605     Optional<unsigned> TiedDefIdx;
606     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
607       return true;
608     Operands.push_back(
609         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
610     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
611         Token.is(MIToken::lbrace))
612       break;
613     if (Token.isNot(MIToken::comma))
614       return error("expected ',' before the next machine operand");
615     lex();
616   }
617 
618   DebugLoc DebugLocation;
619   if (Token.is(MIToken::kw_debug_location)) {
620     lex();
621     if (Token.isNot(MIToken::exclaim))
622       return error("expected a metadata node after 'debug-location'");
623     MDNode *Node = nullptr;
624     if (parseMDNode(Node))
625       return true;
626     DebugLocation = DebugLoc(Node);
627   }
628 
629   // Parse the machine memory operands.
630   SmallVector<MachineMemOperand *, 2> MemOperands;
631   if (Token.is(MIToken::coloncolon)) {
632     lex();
633     while (!Token.isNewlineOrEOF()) {
634       MachineMemOperand *MemOp = nullptr;
635       if (parseMachineMemoryOperand(MemOp))
636         return true;
637       MemOperands.push_back(MemOp);
638       if (Token.isNewlineOrEOF())
639         break;
640       if (Token.isNot(MIToken::comma))
641         return error("expected ',' before the next machine memory operand");
642       lex();
643     }
644   }
645 
646   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
647   if (!MCID.isVariadic()) {
648     // FIXME: Move the implicit operand verification to the machine verifier.
649     if (verifyImplicitOperands(Operands, MCID))
650       return true;
651   }
652 
653   // TODO: Check for extraneous machine operands.
654   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
655   MI->setFlags(Flags);
656   for (const auto &Operand : Operands)
657     MI->addOperand(MF, Operand.Operand);
658   if (assignRegisterTies(*MI, Operands))
659     return true;
660   if (MemOperands.empty())
661     return false;
662   MachineInstr::mmo_iterator MemRefs =
663       MF.allocateMemRefsArray(MemOperands.size());
664   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
665   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
666   return false;
667 }
668 
669 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
670   lex();
671   if (Token.isNot(MIToken::MachineBasicBlock))
672     return error("expected a machine basic block reference");
673   if (parseMBBReference(MBB))
674     return true;
675   lex();
676   if (Token.isNot(MIToken::Eof))
677     return error(
678         "expected end of string after the machine basic block reference");
679   return false;
680 }
681 
682 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
683   lex();
684   if (Token.isNot(MIToken::NamedRegister))
685     return error("expected a named register");
686   if (parseRegister(Reg))
687     return true;
688   lex();
689   if (Token.isNot(MIToken::Eof))
690     return error("expected end of string after the register reference");
691   return false;
692 }
693 
694 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
695   lex();
696   if (Token.isNot(MIToken::VirtualRegister))
697     return error("expected a virtual register");
698   if (parseRegister(Reg))
699     return true;
700   lex();
701   if (Token.isNot(MIToken::Eof))
702     return error("expected end of string after the register reference");
703   return false;
704 }
705 
706 bool MIParser::parseStandaloneStackObject(int &FI) {
707   lex();
708   if (Token.isNot(MIToken::StackObject))
709     return error("expected a stack object");
710   if (parseStackFrameIndex(FI))
711     return true;
712   if (Token.isNot(MIToken::Eof))
713     return error("expected end of string after the stack object reference");
714   return false;
715 }
716 
717 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
718   lex();
719   if (Token.isNot(MIToken::exclaim))
720     return error("expected a metadata node");
721   if (parseMDNode(Node))
722     return true;
723   if (Token.isNot(MIToken::Eof))
724     return error("expected end of string after the metadata node");
725   return false;
726 }
727 
728 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
729   assert(MO.isImplicit());
730   return MO.isDef() ? "implicit-def" : "implicit";
731 }
732 
733 static std::string getRegisterName(const TargetRegisterInfo *TRI,
734                                    unsigned Reg) {
735   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
736   return StringRef(TRI->getName(Reg)).lower();
737 }
738 
739 /// Return true if the parsed machine operands contain a given machine operand.
740 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
741                                 ArrayRef<ParsedMachineOperand> Operands) {
742   for (const auto &I : Operands) {
743     if (ImplicitOperand.isIdenticalTo(I.Operand))
744       return true;
745   }
746   return false;
747 }
748 
749 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
750                                       const MCInstrDesc &MCID) {
751   if (MCID.isCall())
752     // We can't verify call instructions as they can contain arbitrary implicit
753     // register and register mask operands.
754     return false;
755 
756   // Gather all the expected implicit operands.
757   SmallVector<MachineOperand, 4> ImplicitOperands;
758   if (MCID.ImplicitDefs)
759     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
760       ImplicitOperands.push_back(
761           MachineOperand::CreateReg(*ImpDefs, true, true));
762   if (MCID.ImplicitUses)
763     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
764       ImplicitOperands.push_back(
765           MachineOperand::CreateReg(*ImpUses, false, true));
766 
767   const auto *TRI = MF.getSubtarget().getRegisterInfo();
768   assert(TRI && "Expected target register info");
769   for (const auto &I : ImplicitOperands) {
770     if (isImplicitOperandIn(I, Operands))
771       continue;
772     return error(Operands.empty() ? Token.location() : Operands.back().End,
773                  Twine("missing implicit register operand '") +
774                      printImplicitRegisterFlag(I) + " %" +
775                      getRegisterName(TRI, I.getReg()) + "'");
776   }
777   return false;
778 }
779 
780 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
781   if (Token.is(MIToken::kw_frame_setup)) {
782     Flags |= MachineInstr::FrameSetup;
783     lex();
784   }
785   if (Token.isNot(MIToken::Identifier))
786     return error("expected a machine instruction");
787   StringRef InstrName = Token.stringValue();
788   if (parseInstrName(InstrName, OpCode))
789     return error(Twine("unknown machine instruction name '") + InstrName + "'");
790   lex();
791   return false;
792 }
793 
794 bool MIParser::parseRegister(unsigned &Reg) {
795   switch (Token.kind()) {
796   case MIToken::underscore:
797     Reg = 0;
798     break;
799   case MIToken::NamedRegister: {
800     StringRef Name = Token.stringValue();
801     if (getRegisterByName(Name, Reg))
802       return error(Twine("unknown register name '") + Name + "'");
803     break;
804   }
805   case MIToken::VirtualRegister: {
806     unsigned ID;
807     if (getUnsigned(ID))
808       return true;
809     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
810     if (RegInfo == PFS.VirtualRegisterSlots.end())
811       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
812                    "'");
813     Reg = RegInfo->second;
814     break;
815   }
816   // TODO: Parse other register kinds.
817   default:
818     llvm_unreachable("The current token should be a register");
819   }
820   return false;
821 }
822 
823 bool MIParser::parseRegisterFlag(unsigned &Flags) {
824   const unsigned OldFlags = Flags;
825   switch (Token.kind()) {
826   case MIToken::kw_implicit:
827     Flags |= RegState::Implicit;
828     break;
829   case MIToken::kw_implicit_define:
830     Flags |= RegState::ImplicitDefine;
831     break;
832   case MIToken::kw_def:
833     Flags |= RegState::Define;
834     break;
835   case MIToken::kw_dead:
836     Flags |= RegState::Dead;
837     break;
838   case MIToken::kw_killed:
839     Flags |= RegState::Kill;
840     break;
841   case MIToken::kw_undef:
842     Flags |= RegState::Undef;
843     break;
844   case MIToken::kw_internal:
845     Flags |= RegState::InternalRead;
846     break;
847   case MIToken::kw_early_clobber:
848     Flags |= RegState::EarlyClobber;
849     break;
850   case MIToken::kw_debug_use:
851     Flags |= RegState::Debug;
852     break;
853   default:
854     llvm_unreachable("The current token should be a register flag");
855   }
856   if (OldFlags == Flags)
857     // We know that the same flag is specified more than once when the flags
858     // weren't modified.
859     return error("duplicate '" + Token.stringValue() + "' register flag");
860   lex();
861   return false;
862 }
863 
864 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
865   assert(Token.is(MIToken::dot));
866   lex();
867   if (Token.isNot(MIToken::Identifier))
868     return error("expected a subregister index after '.'");
869   auto Name = Token.stringValue();
870   SubReg = getSubRegIndex(Name);
871   if (!SubReg)
872     return error(Twine("use of unknown subregister index '") + Name + "'");
873   lex();
874   return false;
875 }
876 
877 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
878   if (!consumeIfPresent(MIToken::kw_tied_def))
879     return true;
880   if (Token.isNot(MIToken::IntegerLiteral))
881     return error("expected an integer literal after 'tied-def'");
882   if (getUnsigned(TiedDefIdx))
883     return true;
884   lex();
885   if (expectAndConsume(MIToken::rparen))
886     return true;
887   return false;
888 }
889 
890 bool MIParser::assignRegisterTies(MachineInstr &MI,
891                                   ArrayRef<ParsedMachineOperand> Operands) {
892   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
893   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
894     if (!Operands[I].TiedDefIdx)
895       continue;
896     // The parser ensures that this operand is a register use, so we just have
897     // to check the tied-def operand.
898     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
899     if (DefIdx >= E)
900       return error(Operands[I].Begin,
901                    Twine("use of invalid tied-def operand index '" +
902                          Twine(DefIdx) + "'; instruction has only ") +
903                        Twine(E) + " operands");
904     const auto &DefOperand = Operands[DefIdx].Operand;
905     if (!DefOperand.isReg() || !DefOperand.isDef())
906       // FIXME: add note with the def operand.
907       return error(Operands[I].Begin,
908                    Twine("use of invalid tied-def operand index '") +
909                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
910                        " isn't a defined register");
911     // Check that the tied-def operand wasn't tied elsewhere.
912     for (const auto &TiedPair : TiedRegisterPairs) {
913       if (TiedPair.first == DefIdx)
914         return error(Operands[I].Begin,
915                      Twine("the tied-def operand #") + Twine(DefIdx) +
916                          " is already tied with another register operand");
917     }
918     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
919   }
920   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
921   // indices must be less than tied max.
922   for (const auto &TiedPair : TiedRegisterPairs)
923     MI.tieOperands(TiedPair.first, TiedPair.second);
924   return false;
925 }
926 
927 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
928                                     Optional<unsigned> &TiedDefIdx,
929                                     bool IsDef) {
930   unsigned Reg;
931   unsigned Flags = IsDef ? RegState::Define : 0;
932   while (Token.isRegisterFlag()) {
933     if (parseRegisterFlag(Flags))
934       return true;
935   }
936   if (!Token.isRegister())
937     return error("expected a register after register flags");
938   if (parseRegister(Reg))
939     return true;
940   lex();
941   unsigned SubReg = 0;
942   if (Token.is(MIToken::dot)) {
943     if (parseSubRegisterIndex(SubReg))
944       return true;
945     if (!TargetRegisterInfo::isVirtualRegister(Reg))
946       return error("subregister index expects a virtual register");
947   }
948   MachineRegisterInfo &MRI = MF.getRegInfo();
949   if ((Flags & RegState::Define) == 0) {
950     if (consumeIfPresent(MIToken::lparen)) {
951       unsigned Idx;
952       if (!parseRegisterTiedDefIndex(Idx))
953         TiedDefIdx = Idx;
954       else {
955         // Try a redundant low-level type.
956         LLT Ty;
957         if (parseLowLevelType(Token.location(), Ty))
958           return error("expected tied-def or low-level type after '('");
959 
960         if (expectAndConsume(MIToken::rparen))
961           return true;
962 
963         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
964           return error("inconsistent type for generic virtual register");
965 
966         MRI.setType(Reg, Ty);
967       }
968     }
969   } else if (consumeIfPresent(MIToken::lparen)) {
970     // Virtual registers may have a size with GlobalISel.
971     if (!TargetRegisterInfo::isVirtualRegister(Reg))
972       return error("unexpected size on physical register");
973     if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>())
974       return error("unexpected size on non-generic virtual register");
975 
976     LLT Ty;
977     if (parseLowLevelType(Token.location(), Ty))
978       return true;
979 
980     if (expectAndConsume(MIToken::rparen))
981       return true;
982 
983     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
984       return error("inconsistent type for generic virtual register");
985 
986     MRI.setType(Reg, Ty);
987   } else if (PFS.GenericVRegs.count(Reg)) {
988     // Generic virtual registers must have a size.
989     // If we end up here this means the size hasn't been specified and
990     // this is bad!
991     return error("generic virtual registers must have a size");
992   }
993   Dest = MachineOperand::CreateReg(
994       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
995       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
996       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
997       Flags & RegState::InternalRead);
998   return false;
999 }
1000 
1001 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1002   assert(Token.is(MIToken::IntegerLiteral));
1003   const APSInt &Int = Token.integerValue();
1004   if (Int.getMinSignedBits() > 64)
1005     return error("integer literal is too large to be an immediate operand");
1006   Dest = MachineOperand::CreateImm(Int.getExtValue());
1007   lex();
1008   return false;
1009 }
1010 
1011 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1012                                const Constant *&C) {
1013   auto Source = StringValue.str(); // The source has to be null terminated.
1014   SMDiagnostic Err;
1015   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
1016                          &PFS.IRSlots);
1017   if (!C)
1018     return error(Loc + Err.getColumnNo(), Err.getMessage());
1019   return false;
1020 }
1021 
1022 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1023   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1024     return true;
1025   lex();
1026   return false;
1027 }
1028 
1029 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1030   if (Token.is(MIToken::ScalarType)) {
1031     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1032     lex();
1033     return false;
1034   } else if (Token.is(MIToken::PointerType)) {
1035     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1036     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1037     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1038     lex();
1039     return false;
1040   }
1041 
1042   // Now we're looking for a vector.
1043   if (Token.isNot(MIToken::less))
1044     return error(Loc,
1045                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1046 
1047   lex();
1048 
1049   if (Token.isNot(MIToken::IntegerLiteral))
1050     return error(Loc, "expected <N x sM> for vctor type");
1051   uint64_t NumElements = Token.integerValue().getZExtValue();
1052   lex();
1053 
1054   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1055     return error(Loc, "expected '<N x sM>' for vector type");
1056   lex();
1057 
1058   if (Token.isNot(MIToken::ScalarType))
1059     return error(Loc, "expected '<N x sM>' for vector type");
1060   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1061   lex();
1062 
1063   if (Token.isNot(MIToken::greater))
1064     return error(Loc, "expected '<N x sM>' for vector type");
1065   lex();
1066 
1067   Ty = LLT::vector(NumElements, ScalarSize);
1068   return false;
1069 }
1070 
1071 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1072   assert(Token.is(MIToken::IntegerType));
1073   auto Loc = Token.location();
1074   lex();
1075   if (Token.isNot(MIToken::IntegerLiteral))
1076     return error("expected an integer literal");
1077   const Constant *C = nullptr;
1078   if (parseIRConstant(Loc, C))
1079     return true;
1080   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1081   return false;
1082 }
1083 
1084 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1085   auto Loc = Token.location();
1086   lex();
1087   if (Token.isNot(MIToken::FloatingPointLiteral))
1088     return error("expected a floating point literal");
1089   const Constant *C = nullptr;
1090   if (parseIRConstant(Loc, C))
1091     return true;
1092   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1093   return false;
1094 }
1095 
1096 bool MIParser::getUnsigned(unsigned &Result) {
1097   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1098   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1099   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1100   if (Val64 == Limit)
1101     return error("expected 32-bit integer (too large)");
1102   Result = Val64;
1103   return false;
1104 }
1105 
1106 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1107   assert(Token.is(MIToken::MachineBasicBlock) ||
1108          Token.is(MIToken::MachineBasicBlockLabel));
1109   unsigned Number;
1110   if (getUnsigned(Number))
1111     return true;
1112   auto MBBInfo = PFS.MBBSlots.find(Number);
1113   if (MBBInfo == PFS.MBBSlots.end())
1114     return error(Twine("use of undefined machine basic block #") +
1115                  Twine(Number));
1116   MBB = MBBInfo->second;
1117   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1118     return error(Twine("the name of machine basic block #") + Twine(Number) +
1119                  " isn't '" + Token.stringValue() + "'");
1120   return false;
1121 }
1122 
1123 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1124   MachineBasicBlock *MBB;
1125   if (parseMBBReference(MBB))
1126     return true;
1127   Dest = MachineOperand::CreateMBB(MBB);
1128   lex();
1129   return false;
1130 }
1131 
1132 bool MIParser::parseStackFrameIndex(int &FI) {
1133   assert(Token.is(MIToken::StackObject));
1134   unsigned ID;
1135   if (getUnsigned(ID))
1136     return true;
1137   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1138   if (ObjectInfo == PFS.StackObjectSlots.end())
1139     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1140                  "'");
1141   StringRef Name;
1142   if (const auto *Alloca =
1143           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1144     Name = Alloca->getName();
1145   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1146     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1147                  "' isn't '" + Token.stringValue() + "'");
1148   lex();
1149   FI = ObjectInfo->second;
1150   return false;
1151 }
1152 
1153 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1154   int FI;
1155   if (parseStackFrameIndex(FI))
1156     return true;
1157   Dest = MachineOperand::CreateFI(FI);
1158   return false;
1159 }
1160 
1161 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1162   assert(Token.is(MIToken::FixedStackObject));
1163   unsigned ID;
1164   if (getUnsigned(ID))
1165     return true;
1166   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1167   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1168     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1169                  Twine(ID) + "'");
1170   lex();
1171   FI = ObjectInfo->second;
1172   return false;
1173 }
1174 
1175 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1176   int FI;
1177   if (parseFixedStackFrameIndex(FI))
1178     return true;
1179   Dest = MachineOperand::CreateFI(FI);
1180   return false;
1181 }
1182 
1183 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1184   switch (Token.kind()) {
1185   case MIToken::NamedGlobalValue: {
1186     const Module *M = MF.getFunction()->getParent();
1187     GV = M->getNamedValue(Token.stringValue());
1188     if (!GV)
1189       return error(Twine("use of undefined global value '") + Token.range() +
1190                    "'");
1191     break;
1192   }
1193   case MIToken::GlobalValue: {
1194     unsigned GVIdx;
1195     if (getUnsigned(GVIdx))
1196       return true;
1197     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1198       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1199                    "'");
1200     GV = PFS.IRSlots.GlobalValues[GVIdx];
1201     break;
1202   }
1203   default:
1204     llvm_unreachable("The current token should be a global value");
1205   }
1206   return false;
1207 }
1208 
1209 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1210   GlobalValue *GV = nullptr;
1211   if (parseGlobalValue(GV))
1212     return true;
1213   lex();
1214   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1215   if (parseOperandsOffset(Dest))
1216     return true;
1217   return false;
1218 }
1219 
1220 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1221   assert(Token.is(MIToken::ConstantPoolItem));
1222   unsigned ID;
1223   if (getUnsigned(ID))
1224     return true;
1225   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1226   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1227     return error("use of undefined constant '%const." + Twine(ID) + "'");
1228   lex();
1229   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1230   if (parseOperandsOffset(Dest))
1231     return true;
1232   return false;
1233 }
1234 
1235 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1236   assert(Token.is(MIToken::JumpTableIndex));
1237   unsigned ID;
1238   if (getUnsigned(ID))
1239     return true;
1240   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1241   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1242     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1243   lex();
1244   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1245   return false;
1246 }
1247 
1248 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1249   assert(Token.is(MIToken::ExternalSymbol));
1250   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1251   lex();
1252   Dest = MachineOperand::CreateES(Symbol);
1253   if (parseOperandsOffset(Dest))
1254     return true;
1255   return false;
1256 }
1257 
1258 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1259   assert(Token.is(MIToken::SubRegisterIndex));
1260   StringRef Name = Token.stringValue();
1261   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1262   if (SubRegIndex == 0)
1263     return error(Twine("unknown subregister index '") + Name + "'");
1264   lex();
1265   Dest = MachineOperand::CreateImm(SubRegIndex);
1266   return false;
1267 }
1268 
1269 bool MIParser::parseMDNode(MDNode *&Node) {
1270   assert(Token.is(MIToken::exclaim));
1271   auto Loc = Token.location();
1272   lex();
1273   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1274     return error("expected metadata id after '!'");
1275   unsigned ID;
1276   if (getUnsigned(ID))
1277     return true;
1278   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1279   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1280     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1281   lex();
1282   Node = NodeInfo->second.get();
1283   return false;
1284 }
1285 
1286 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1287   MDNode *Node = nullptr;
1288   if (parseMDNode(Node))
1289     return true;
1290   Dest = MachineOperand::CreateMetadata(Node);
1291   return false;
1292 }
1293 
1294 bool MIParser::parseCFIOffset(int &Offset) {
1295   if (Token.isNot(MIToken::IntegerLiteral))
1296     return error("expected a cfi offset");
1297   if (Token.integerValue().getMinSignedBits() > 32)
1298     return error("expected a 32 bit integer (the cfi offset is too large)");
1299   Offset = (int)Token.integerValue().getExtValue();
1300   lex();
1301   return false;
1302 }
1303 
1304 bool MIParser::parseCFIRegister(unsigned &Reg) {
1305   if (Token.isNot(MIToken::NamedRegister))
1306     return error("expected a cfi register");
1307   unsigned LLVMReg;
1308   if (parseRegister(LLVMReg))
1309     return true;
1310   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1311   assert(TRI && "Expected target register info");
1312   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1313   if (DwarfReg < 0)
1314     return error("invalid DWARF register");
1315   Reg = (unsigned)DwarfReg;
1316   lex();
1317   return false;
1318 }
1319 
1320 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1321   auto Kind = Token.kind();
1322   lex();
1323   auto &MMI = MF.getMMI();
1324   int Offset;
1325   unsigned Reg;
1326   unsigned CFIIndex;
1327   switch (Kind) {
1328   case MIToken::kw_cfi_same_value:
1329     if (parseCFIRegister(Reg))
1330       return true;
1331     CFIIndex =
1332         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1333     break;
1334   case MIToken::kw_cfi_offset:
1335     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1336         parseCFIOffset(Offset))
1337       return true;
1338     CFIIndex =
1339         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1340     break;
1341   case MIToken::kw_cfi_def_cfa_register:
1342     if (parseCFIRegister(Reg))
1343       return true;
1344     CFIIndex =
1345         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1346     break;
1347   case MIToken::kw_cfi_def_cfa_offset:
1348     if (parseCFIOffset(Offset))
1349       return true;
1350     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1351     CFIIndex = MMI.addFrameInst(
1352         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1353     break;
1354   case MIToken::kw_cfi_def_cfa:
1355     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1356         parseCFIOffset(Offset))
1357       return true;
1358     // NB: MCCFIInstruction::createDefCfa negates the offset.
1359     CFIIndex =
1360         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1361     break;
1362   default:
1363     // TODO: Parse the other CFI operands.
1364     llvm_unreachable("The current token should be a cfi operand");
1365   }
1366   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1367   return false;
1368 }
1369 
1370 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1371   switch (Token.kind()) {
1372   case MIToken::NamedIRBlock: {
1373     BB = dyn_cast_or_null<BasicBlock>(
1374         F.getValueSymbolTable()->lookup(Token.stringValue()));
1375     if (!BB)
1376       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1377     break;
1378   }
1379   case MIToken::IRBlock: {
1380     unsigned SlotNumber = 0;
1381     if (getUnsigned(SlotNumber))
1382       return true;
1383     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1384     if (!BB)
1385       return error(Twine("use of undefined IR block '%ir-block.") +
1386                    Twine(SlotNumber) + "'");
1387     break;
1388   }
1389   default:
1390     llvm_unreachable("The current token should be an IR block reference");
1391   }
1392   return false;
1393 }
1394 
1395 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1396   assert(Token.is(MIToken::kw_blockaddress));
1397   lex();
1398   if (expectAndConsume(MIToken::lparen))
1399     return true;
1400   if (Token.isNot(MIToken::GlobalValue) &&
1401       Token.isNot(MIToken::NamedGlobalValue))
1402     return error("expected a global value");
1403   GlobalValue *GV = nullptr;
1404   if (parseGlobalValue(GV))
1405     return true;
1406   auto *F = dyn_cast<Function>(GV);
1407   if (!F)
1408     return error("expected an IR function reference");
1409   lex();
1410   if (expectAndConsume(MIToken::comma))
1411     return true;
1412   BasicBlock *BB = nullptr;
1413   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1414     return error("expected an IR block reference");
1415   if (parseIRBlock(BB, *F))
1416     return true;
1417   lex();
1418   if (expectAndConsume(MIToken::rparen))
1419     return true;
1420   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1421   if (parseOperandsOffset(Dest))
1422     return true;
1423   return false;
1424 }
1425 
1426 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1427   assert(Token.is(MIToken::kw_intrinsic));
1428   lex();
1429   if (expectAndConsume(MIToken::lparen))
1430     return error("expected syntax intrinsic(@llvm.whatever)");
1431 
1432   if (Token.isNot(MIToken::NamedGlobalValue))
1433     return error("expected syntax intrinsic(@llvm.whatever)");
1434 
1435   std::string Name = Token.stringValue();
1436   lex();
1437 
1438   if (expectAndConsume(MIToken::rparen))
1439     return error("expected ')' to terminate intrinsic name");
1440 
1441   // Find out what intrinsic we're dealing with, first try the global namespace
1442   // and then the target's private intrinsics if that fails.
1443   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1444   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1445   if (ID == Intrinsic::not_intrinsic && TII)
1446     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1447 
1448   if (ID == Intrinsic::not_intrinsic)
1449     return error("unknown intrinsic name");
1450   Dest = MachineOperand::CreateIntrinsicID(ID);
1451 
1452   return false;
1453 }
1454 
1455 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1456   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1457   bool IsFloat = Token.is(MIToken::kw_floatpred);
1458   lex();
1459 
1460   if (expectAndConsume(MIToken::lparen))
1461     return error("expected syntax intpred(whatever) or floatpred(whatever");
1462 
1463   if (Token.isNot(MIToken::Identifier))
1464     return error("whatever");
1465 
1466   CmpInst::Predicate Pred;
1467   if (IsFloat) {
1468     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1469                .Case("false", CmpInst::FCMP_FALSE)
1470                .Case("oeq", CmpInst::FCMP_OEQ)
1471                .Case("ogt", CmpInst::FCMP_OGT)
1472                .Case("oge", CmpInst::FCMP_OGE)
1473                .Case("olt", CmpInst::FCMP_OLT)
1474                .Case("ole", CmpInst::FCMP_OLE)
1475                .Case("one", CmpInst::FCMP_ONE)
1476                .Case("ord", CmpInst::FCMP_ORD)
1477                .Case("uno", CmpInst::FCMP_UNO)
1478                .Case("ueq", CmpInst::FCMP_UEQ)
1479                .Case("ugt", CmpInst::FCMP_UGT)
1480                .Case("uge", CmpInst::FCMP_UGE)
1481                .Case("ult", CmpInst::FCMP_ULT)
1482                .Case("ule", CmpInst::FCMP_ULE)
1483                .Case("une", CmpInst::FCMP_UNE)
1484                .Case("true", CmpInst::FCMP_TRUE)
1485                .Default(CmpInst::BAD_FCMP_PREDICATE);
1486     if (!CmpInst::isFPPredicate(Pred))
1487       return error("invalid floating-point predicate");
1488   } else {
1489     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1490                .Case("eq", CmpInst::ICMP_EQ)
1491                .Case("ne", CmpInst::ICMP_NE)
1492                .Case("sgt", CmpInst::ICMP_SGT)
1493                .Case("sge", CmpInst::ICMP_SGE)
1494                .Case("slt", CmpInst::ICMP_SLT)
1495                .Case("sle", CmpInst::ICMP_SLE)
1496                .Case("ugt", CmpInst::ICMP_UGT)
1497                .Case("uge", CmpInst::ICMP_UGE)
1498                .Case("ult", CmpInst::ICMP_ULT)
1499                .Case("ule", CmpInst::ICMP_ULE)
1500                .Default(CmpInst::BAD_ICMP_PREDICATE);
1501     if (!CmpInst::isIntPredicate(Pred))
1502       return error("invalid integer predicate");
1503   }
1504 
1505   lex();
1506   Dest = MachineOperand::CreatePredicate(Pred);
1507   if (expectAndConsume(MIToken::rparen))
1508     return error("predicate should be terminated by ')'.");
1509 
1510   return false;
1511 }
1512 
1513 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1514   assert(Token.is(MIToken::kw_target_index));
1515   lex();
1516   if (expectAndConsume(MIToken::lparen))
1517     return true;
1518   if (Token.isNot(MIToken::Identifier))
1519     return error("expected the name of the target index");
1520   int Index = 0;
1521   if (getTargetIndex(Token.stringValue(), Index))
1522     return error("use of undefined target index '" + Token.stringValue() + "'");
1523   lex();
1524   if (expectAndConsume(MIToken::rparen))
1525     return true;
1526   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1527   if (parseOperandsOffset(Dest))
1528     return true;
1529   return false;
1530 }
1531 
1532 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1533   assert(Token.is(MIToken::kw_liveout));
1534   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1535   assert(TRI && "Expected target register info");
1536   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1537   lex();
1538   if (expectAndConsume(MIToken::lparen))
1539     return true;
1540   while (true) {
1541     if (Token.isNot(MIToken::NamedRegister))
1542       return error("expected a named register");
1543     unsigned Reg = 0;
1544     if (parseRegister(Reg))
1545       return true;
1546     lex();
1547     Mask[Reg / 32] |= 1U << (Reg % 32);
1548     // TODO: Report an error if the same register is used more than once.
1549     if (Token.isNot(MIToken::comma))
1550       break;
1551     lex();
1552   }
1553   if (expectAndConsume(MIToken::rparen))
1554     return true;
1555   Dest = MachineOperand::CreateRegLiveOut(Mask);
1556   return false;
1557 }
1558 
1559 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1560                                    Optional<unsigned> &TiedDefIdx) {
1561   switch (Token.kind()) {
1562   case MIToken::kw_implicit:
1563   case MIToken::kw_implicit_define:
1564   case MIToken::kw_def:
1565   case MIToken::kw_dead:
1566   case MIToken::kw_killed:
1567   case MIToken::kw_undef:
1568   case MIToken::kw_internal:
1569   case MIToken::kw_early_clobber:
1570   case MIToken::kw_debug_use:
1571   case MIToken::underscore:
1572   case MIToken::NamedRegister:
1573   case MIToken::VirtualRegister:
1574     return parseRegisterOperand(Dest, TiedDefIdx);
1575   case MIToken::IntegerLiteral:
1576     return parseImmediateOperand(Dest);
1577   case MIToken::IntegerType:
1578     return parseTypedImmediateOperand(Dest);
1579   case MIToken::kw_half:
1580   case MIToken::kw_float:
1581   case MIToken::kw_double:
1582   case MIToken::kw_x86_fp80:
1583   case MIToken::kw_fp128:
1584   case MIToken::kw_ppc_fp128:
1585     return parseFPImmediateOperand(Dest);
1586   case MIToken::MachineBasicBlock:
1587     return parseMBBOperand(Dest);
1588   case MIToken::StackObject:
1589     return parseStackObjectOperand(Dest);
1590   case MIToken::FixedStackObject:
1591     return parseFixedStackObjectOperand(Dest);
1592   case MIToken::GlobalValue:
1593   case MIToken::NamedGlobalValue:
1594     return parseGlobalAddressOperand(Dest);
1595   case MIToken::ConstantPoolItem:
1596     return parseConstantPoolIndexOperand(Dest);
1597   case MIToken::JumpTableIndex:
1598     return parseJumpTableIndexOperand(Dest);
1599   case MIToken::ExternalSymbol:
1600     return parseExternalSymbolOperand(Dest);
1601   case MIToken::SubRegisterIndex:
1602     return parseSubRegisterIndexOperand(Dest);
1603   case MIToken::exclaim:
1604     return parseMetadataOperand(Dest);
1605   case MIToken::kw_cfi_same_value:
1606   case MIToken::kw_cfi_offset:
1607   case MIToken::kw_cfi_def_cfa_register:
1608   case MIToken::kw_cfi_def_cfa_offset:
1609   case MIToken::kw_cfi_def_cfa:
1610     return parseCFIOperand(Dest);
1611   case MIToken::kw_blockaddress:
1612     return parseBlockAddressOperand(Dest);
1613   case MIToken::kw_intrinsic:
1614     return parseIntrinsicOperand(Dest);
1615   case MIToken::kw_target_index:
1616     return parseTargetIndexOperand(Dest);
1617   case MIToken::kw_liveout:
1618     return parseLiveoutRegisterMaskOperand(Dest);
1619   case MIToken::kw_floatpred:
1620   case MIToken::kw_intpred:
1621     return parsePredicateOperand(Dest);
1622   case MIToken::Error:
1623     return true;
1624   case MIToken::Identifier:
1625     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1626       Dest = MachineOperand::CreateRegMask(RegMask);
1627       lex();
1628       break;
1629     }
1630     LLVM_FALLTHROUGH;
1631   default:
1632     // FIXME: Parse the MCSymbol machine operand.
1633     return error("expected a machine operand");
1634   }
1635   return false;
1636 }
1637 
1638 bool MIParser::parseMachineOperandAndTargetFlags(
1639     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1640   unsigned TF = 0;
1641   bool HasTargetFlags = false;
1642   if (Token.is(MIToken::kw_target_flags)) {
1643     HasTargetFlags = true;
1644     lex();
1645     if (expectAndConsume(MIToken::lparen))
1646       return true;
1647     if (Token.isNot(MIToken::Identifier))
1648       return error("expected the name of the target flag");
1649     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1650       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1651         return error("use of undefined target flag '" + Token.stringValue() +
1652                      "'");
1653     }
1654     lex();
1655     while (Token.is(MIToken::comma)) {
1656       lex();
1657       if (Token.isNot(MIToken::Identifier))
1658         return error("expected the name of the target flag");
1659       unsigned BitFlag = 0;
1660       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1661         return error("use of undefined target flag '" + Token.stringValue() +
1662                      "'");
1663       // TODO: Report an error when using a duplicate bit target flag.
1664       TF |= BitFlag;
1665       lex();
1666     }
1667     if (expectAndConsume(MIToken::rparen))
1668       return true;
1669   }
1670   auto Loc = Token.location();
1671   if (parseMachineOperand(Dest, TiedDefIdx))
1672     return true;
1673   if (!HasTargetFlags)
1674     return false;
1675   if (Dest.isReg())
1676     return error(Loc, "register operands can't have target flags");
1677   Dest.setTargetFlags(TF);
1678   return false;
1679 }
1680 
1681 bool MIParser::parseOffset(int64_t &Offset) {
1682   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1683     return false;
1684   StringRef Sign = Token.range();
1685   bool IsNegative = Token.is(MIToken::minus);
1686   lex();
1687   if (Token.isNot(MIToken::IntegerLiteral))
1688     return error("expected an integer literal after '" + Sign + "'");
1689   if (Token.integerValue().getMinSignedBits() > 64)
1690     return error("expected 64-bit integer (too large)");
1691   Offset = Token.integerValue().getExtValue();
1692   if (IsNegative)
1693     Offset = -Offset;
1694   lex();
1695   return false;
1696 }
1697 
1698 bool MIParser::parseAlignment(unsigned &Alignment) {
1699   assert(Token.is(MIToken::kw_align));
1700   lex();
1701   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1702     return error("expected an integer literal after 'align'");
1703   if (getUnsigned(Alignment))
1704     return true;
1705   lex();
1706   return false;
1707 }
1708 
1709 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1710   int64_t Offset = 0;
1711   if (parseOffset(Offset))
1712     return true;
1713   Op.setOffset(Offset);
1714   return false;
1715 }
1716 
1717 bool MIParser::parseIRValue(const Value *&V) {
1718   switch (Token.kind()) {
1719   case MIToken::NamedIRValue: {
1720     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
1721     break;
1722   }
1723   case MIToken::IRValue: {
1724     unsigned SlotNumber = 0;
1725     if (getUnsigned(SlotNumber))
1726       return true;
1727     V = getIRValue(SlotNumber);
1728     break;
1729   }
1730   case MIToken::NamedGlobalValue:
1731   case MIToken::GlobalValue: {
1732     GlobalValue *GV = nullptr;
1733     if (parseGlobalValue(GV))
1734       return true;
1735     V = GV;
1736     break;
1737   }
1738   case MIToken::QuotedIRValue: {
1739     const Constant *C = nullptr;
1740     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1741       return true;
1742     V = C;
1743     break;
1744   }
1745   default:
1746     llvm_unreachable("The current token should be an IR block reference");
1747   }
1748   if (!V)
1749     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1750   return false;
1751 }
1752 
1753 bool MIParser::getUint64(uint64_t &Result) {
1754   assert(Token.hasIntegerValue());
1755   if (Token.integerValue().getActiveBits() > 64)
1756     return error("expected 64-bit integer (too large)");
1757   Result = Token.integerValue().getZExtValue();
1758   return false;
1759 }
1760 
1761 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
1762   const auto OldFlags = Flags;
1763   switch (Token.kind()) {
1764   case MIToken::kw_volatile:
1765     Flags |= MachineMemOperand::MOVolatile;
1766     break;
1767   case MIToken::kw_non_temporal:
1768     Flags |= MachineMemOperand::MONonTemporal;
1769     break;
1770   case MIToken::kw_dereferenceable:
1771     Flags |= MachineMemOperand::MODereferenceable;
1772     break;
1773   case MIToken::kw_invariant:
1774     Flags |= MachineMemOperand::MOInvariant;
1775     break;
1776   // TODO: parse the target specific memory operand flags.
1777   default:
1778     llvm_unreachable("The current token should be a memory operand flag");
1779   }
1780   if (OldFlags == Flags)
1781     // We know that the same flag is specified more than once when the flags
1782     // weren't modified.
1783     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1784   lex();
1785   return false;
1786 }
1787 
1788 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1789   switch (Token.kind()) {
1790   case MIToken::kw_stack:
1791     PSV = MF.getPSVManager().getStack();
1792     break;
1793   case MIToken::kw_got:
1794     PSV = MF.getPSVManager().getGOT();
1795     break;
1796   case MIToken::kw_jump_table:
1797     PSV = MF.getPSVManager().getJumpTable();
1798     break;
1799   case MIToken::kw_constant_pool:
1800     PSV = MF.getPSVManager().getConstantPool();
1801     break;
1802   case MIToken::FixedStackObject: {
1803     int FI;
1804     if (parseFixedStackFrameIndex(FI))
1805       return true;
1806     PSV = MF.getPSVManager().getFixedStack(FI);
1807     // The token was already consumed, so use return here instead of break.
1808     return false;
1809   }
1810   case MIToken::StackObject: {
1811     int FI;
1812     if (parseStackFrameIndex(FI))
1813       return true;
1814     PSV = MF.getPSVManager().getFixedStack(FI);
1815     // The token was already consumed, so use return here instead of break.
1816     return false;
1817   }
1818   case MIToken::kw_call_entry: {
1819     lex();
1820     switch (Token.kind()) {
1821     case MIToken::GlobalValue:
1822     case MIToken::NamedGlobalValue: {
1823       GlobalValue *GV = nullptr;
1824       if (parseGlobalValue(GV))
1825         return true;
1826       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1827       break;
1828     }
1829     case MIToken::ExternalSymbol:
1830       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1831           MF.createExternalSymbolName(Token.stringValue()));
1832       break;
1833     default:
1834       return error(
1835           "expected a global value or an external symbol after 'call-entry'");
1836     }
1837     break;
1838   }
1839   default:
1840     llvm_unreachable("The current token should be pseudo source value");
1841   }
1842   lex();
1843   return false;
1844 }
1845 
1846 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1847   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1848       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1849       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
1850       Token.is(MIToken::kw_call_entry)) {
1851     const PseudoSourceValue *PSV = nullptr;
1852     if (parseMemoryPseudoSourceValue(PSV))
1853       return true;
1854     int64_t Offset = 0;
1855     if (parseOffset(Offset))
1856       return true;
1857     Dest = MachinePointerInfo(PSV, Offset);
1858     return false;
1859   }
1860   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1861       Token.isNot(MIToken::GlobalValue) &&
1862       Token.isNot(MIToken::NamedGlobalValue) &&
1863       Token.isNot(MIToken::QuotedIRValue))
1864     return error("expected an IR value reference");
1865   const Value *V = nullptr;
1866   if (parseIRValue(V))
1867     return true;
1868   if (!V->getType()->isPointerTy())
1869     return error("expected a pointer IR value");
1870   lex();
1871   int64_t Offset = 0;
1872   if (parseOffset(Offset))
1873     return true;
1874   Dest = MachinePointerInfo(V, Offset);
1875   return false;
1876 }
1877 
1878 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1879   if (expectAndConsume(MIToken::lparen))
1880     return true;
1881   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
1882   while (Token.isMemoryOperandFlag()) {
1883     if (parseMemoryOperandFlag(Flags))
1884       return true;
1885   }
1886   if (Token.isNot(MIToken::Identifier) ||
1887       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1888     return error("expected 'load' or 'store' memory operation");
1889   if (Token.stringValue() == "load")
1890     Flags |= MachineMemOperand::MOLoad;
1891   else
1892     Flags |= MachineMemOperand::MOStore;
1893   lex();
1894 
1895   if (Token.isNot(MIToken::IntegerLiteral))
1896     return error("expected the size integer literal after memory operation");
1897   uint64_t Size;
1898   if (getUint64(Size))
1899     return true;
1900   lex();
1901 
1902   MachinePointerInfo Ptr = MachinePointerInfo();
1903   if (Token.is(MIToken::Identifier)) {
1904     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1905     if (Token.stringValue() != Word)
1906       return error(Twine("expected '") + Word + "'");
1907     lex();
1908 
1909     if (parseMachinePointerInfo(Ptr))
1910       return true;
1911   }
1912   unsigned BaseAlignment = Size;
1913   AAMDNodes AAInfo;
1914   MDNode *Range = nullptr;
1915   while (consumeIfPresent(MIToken::comma)) {
1916     switch (Token.kind()) {
1917     case MIToken::kw_align:
1918       if (parseAlignment(BaseAlignment))
1919         return true;
1920       break;
1921     case MIToken::md_tbaa:
1922       lex();
1923       if (parseMDNode(AAInfo.TBAA))
1924         return true;
1925       break;
1926     case MIToken::md_alias_scope:
1927       lex();
1928       if (parseMDNode(AAInfo.Scope))
1929         return true;
1930       break;
1931     case MIToken::md_noalias:
1932       lex();
1933       if (parseMDNode(AAInfo.NoAlias))
1934         return true;
1935       break;
1936     case MIToken::md_range:
1937       lex();
1938       if (parseMDNode(Range))
1939         return true;
1940       break;
1941     // TODO: Report an error on duplicate metadata nodes.
1942     default:
1943       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1944                    "'!noalias' or '!range'");
1945     }
1946   }
1947   if (expectAndConsume(MIToken::rparen))
1948     return true;
1949   Dest =
1950       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1951   return false;
1952 }
1953 
1954 void MIParser::initNames2InstrOpCodes() {
1955   if (!Names2InstrOpCodes.empty())
1956     return;
1957   const auto *TII = MF.getSubtarget().getInstrInfo();
1958   assert(TII && "Expected target instruction info");
1959   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1960     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1961 }
1962 
1963 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1964   initNames2InstrOpCodes();
1965   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1966   if (InstrInfo == Names2InstrOpCodes.end())
1967     return true;
1968   OpCode = InstrInfo->getValue();
1969   return false;
1970 }
1971 
1972 void MIParser::initNames2Regs() {
1973   if (!Names2Regs.empty())
1974     return;
1975   // The '%noreg' register is the register 0.
1976   Names2Regs.insert(std::make_pair("noreg", 0));
1977   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1978   assert(TRI && "Expected target register info");
1979   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1980     bool WasInserted =
1981         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1982             .second;
1983     (void)WasInserted;
1984     assert(WasInserted && "Expected registers to be unique case-insensitively");
1985   }
1986 }
1987 
1988 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1989   initNames2Regs();
1990   auto RegInfo = Names2Regs.find(RegName);
1991   if (RegInfo == Names2Regs.end())
1992     return true;
1993   Reg = RegInfo->getValue();
1994   return false;
1995 }
1996 
1997 void MIParser::initNames2RegMasks() {
1998   if (!Names2RegMasks.empty())
1999     return;
2000   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2001   assert(TRI && "Expected target register info");
2002   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2003   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2004   assert(RegMasks.size() == RegMaskNames.size());
2005   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2006     Names2RegMasks.insert(
2007         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2008 }
2009 
2010 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2011   initNames2RegMasks();
2012   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2013   if (RegMaskInfo == Names2RegMasks.end())
2014     return nullptr;
2015   return RegMaskInfo->getValue();
2016 }
2017 
2018 void MIParser::initNames2SubRegIndices() {
2019   if (!Names2SubRegIndices.empty())
2020     return;
2021   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2022   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2023     Names2SubRegIndices.insert(
2024         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2025 }
2026 
2027 unsigned MIParser::getSubRegIndex(StringRef Name) {
2028   initNames2SubRegIndices();
2029   auto SubRegInfo = Names2SubRegIndices.find(Name);
2030   if (SubRegInfo == Names2SubRegIndices.end())
2031     return 0;
2032   return SubRegInfo->getValue();
2033 }
2034 
2035 static void initSlots2BasicBlocks(
2036     const Function &F,
2037     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2038   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2039   MST.incorporateFunction(F);
2040   for (auto &BB : F) {
2041     if (BB.hasName())
2042       continue;
2043     int Slot = MST.getLocalSlot(&BB);
2044     if (Slot == -1)
2045       continue;
2046     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2047   }
2048 }
2049 
2050 static const BasicBlock *getIRBlockFromSlot(
2051     unsigned Slot,
2052     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2053   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2054   if (BlockInfo == Slots2BasicBlocks.end())
2055     return nullptr;
2056   return BlockInfo->second;
2057 }
2058 
2059 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2060   if (Slots2BasicBlocks.empty())
2061     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2062   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2063 }
2064 
2065 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2066   if (&F == MF.getFunction())
2067     return getIRBlock(Slot);
2068   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2069   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2070   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2071 }
2072 
2073 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2074                            DenseMap<unsigned, const Value *> &Slots2Values) {
2075   int Slot = MST.getLocalSlot(V);
2076   if (Slot == -1)
2077     return;
2078   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2079 }
2080 
2081 /// Creates the mapping from slot numbers to function's unnamed IR values.
2082 static void initSlots2Values(const Function &F,
2083                              DenseMap<unsigned, const Value *> &Slots2Values) {
2084   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2085   MST.incorporateFunction(F);
2086   for (const auto &Arg : F.args())
2087     mapValueToSlot(&Arg, MST, Slots2Values);
2088   for (const auto &BB : F) {
2089     mapValueToSlot(&BB, MST, Slots2Values);
2090     for (const auto &I : BB)
2091       mapValueToSlot(&I, MST, Slots2Values);
2092   }
2093 }
2094 
2095 const Value *MIParser::getIRValue(unsigned Slot) {
2096   if (Slots2Values.empty())
2097     initSlots2Values(*MF.getFunction(), Slots2Values);
2098   auto ValueInfo = Slots2Values.find(Slot);
2099   if (ValueInfo == Slots2Values.end())
2100     return nullptr;
2101   return ValueInfo->second;
2102 }
2103 
2104 void MIParser::initNames2TargetIndices() {
2105   if (!Names2TargetIndices.empty())
2106     return;
2107   const auto *TII = MF.getSubtarget().getInstrInfo();
2108   assert(TII && "Expected target instruction info");
2109   auto Indices = TII->getSerializableTargetIndices();
2110   for (const auto &I : Indices)
2111     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2112 }
2113 
2114 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2115   initNames2TargetIndices();
2116   auto IndexInfo = Names2TargetIndices.find(Name);
2117   if (IndexInfo == Names2TargetIndices.end())
2118     return true;
2119   Index = IndexInfo->second;
2120   return false;
2121 }
2122 
2123 void MIParser::initNames2DirectTargetFlags() {
2124   if (!Names2DirectTargetFlags.empty())
2125     return;
2126   const auto *TII = MF.getSubtarget().getInstrInfo();
2127   assert(TII && "Expected target instruction info");
2128   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2129   for (const auto &I : Flags)
2130     Names2DirectTargetFlags.insert(
2131         std::make_pair(StringRef(I.second), I.first));
2132 }
2133 
2134 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2135   initNames2DirectTargetFlags();
2136   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2137   if (FlagInfo == Names2DirectTargetFlags.end())
2138     return true;
2139   Flag = FlagInfo->second;
2140   return false;
2141 }
2142 
2143 void MIParser::initNames2BitmaskTargetFlags() {
2144   if (!Names2BitmaskTargetFlags.empty())
2145     return;
2146   const auto *TII = MF.getSubtarget().getInstrInfo();
2147   assert(TII && "Expected target instruction info");
2148   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2149   for (const auto &I : Flags)
2150     Names2BitmaskTargetFlags.insert(
2151         std::make_pair(StringRef(I.second), I.first));
2152 }
2153 
2154 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2155   initNames2BitmaskTargetFlags();
2156   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2157   if (FlagInfo == Names2BitmaskTargetFlags.end())
2158     return true;
2159   Flag = FlagInfo->second;
2160   return false;
2161 }
2162 
2163 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2164                                              StringRef Src,
2165                                              SMDiagnostic &Error) {
2166   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2167 }
2168 
2169 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS,
2170                                     StringRef Src, SMDiagnostic &Error) {
2171   return MIParser(PFS, Error, Src).parseBasicBlocks();
2172 }
2173 
2174 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS,
2175                              MachineBasicBlock *&MBB, StringRef Src,
2176                              SMDiagnostic &Error) {
2177   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2178 }
2179 
2180 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS,
2181                                        unsigned &Reg, StringRef Src,
2182                                        SMDiagnostic &Error) {
2183   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2184 }
2185 
2186 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS,
2187                                          unsigned &Reg, StringRef Src,
2188                                          SMDiagnostic &Error) {
2189   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg);
2190 }
2191 
2192 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS,
2193                                      int &FI, StringRef Src,
2194                                      SMDiagnostic &Error) {
2195   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2196 }
2197 
2198 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS,
2199                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2200   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2201 }
2202