1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/ADT/StringSwitch.h" 18 #include "llvm/AsmParser/Parser.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/CodeGen/MachineBasicBlock.h" 21 #include "llvm/CodeGen/MachineFrameInfo.h" 22 #include "llvm/CodeGen/MachineFunction.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineMemOperand.h" 26 #include "llvm/CodeGen/MachineModuleInfo.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/Module.h" 32 #include "llvm/IR/ModuleSlotTracker.h" 33 #include "llvm/IR/ValueSymbolTable.h" 34 #include "llvm/Support/SourceMgr.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetIntrinsicInfo.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 40 using namespace llvm; 41 42 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 43 SourceMgr &SM, const SlotMapping &IRSlots) 44 : MF(MF), SM(&SM), IRSlots(IRSlots) { 45 } 46 47 namespace { 48 49 /// A wrapper struct around the 'MachineOperand' struct that includes a source 50 /// range and other attributes. 51 struct ParsedMachineOperand { 52 MachineOperand Operand; 53 StringRef::iterator Begin; 54 StringRef::iterator End; 55 Optional<unsigned> TiedDefIdx; 56 57 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 58 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 59 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 60 if (TiedDefIdx) 61 assert(Operand.isReg() && Operand.isUse() && 62 "Only used register operands can be tied"); 63 } 64 }; 65 66 class MIParser { 67 MachineFunction &MF; 68 SMDiagnostic &Error; 69 StringRef Source, CurrentSource; 70 MIToken Token; 71 const PerFunctionMIParsingState &PFS; 72 /// Maps from instruction names to op codes. 73 StringMap<unsigned> Names2InstrOpCodes; 74 /// Maps from register names to registers. 75 StringMap<unsigned> Names2Regs; 76 /// Maps from register mask names to register masks. 77 StringMap<const uint32_t *> Names2RegMasks; 78 /// Maps from subregister names to subregister indices. 79 StringMap<unsigned> Names2SubRegIndices; 80 /// Maps from slot numbers to function's unnamed basic blocks. 81 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 82 /// Maps from slot numbers to function's unnamed values. 83 DenseMap<unsigned, const Value *> Slots2Values; 84 /// Maps from target index names to target indices. 85 StringMap<int> Names2TargetIndices; 86 /// Maps from direct target flag names to the direct target flag values. 87 StringMap<unsigned> Names2DirectTargetFlags; 88 /// Maps from direct target flag names to the bitmask target flag values. 89 StringMap<unsigned> Names2BitmaskTargetFlags; 90 91 public: 92 MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 93 StringRef Source); 94 95 /// \p SkipChar gives the number of characters to skip before looking 96 /// for the next token. 97 void lex(unsigned SkipChar = 0); 98 99 /// Report an error at the current location with the given message. 100 /// 101 /// This function always return true. 102 bool error(const Twine &Msg); 103 104 /// Report an error at the given location with the given message. 105 /// 106 /// This function always return true. 107 bool error(StringRef::iterator Loc, const Twine &Msg); 108 109 bool 110 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 111 bool parseBasicBlocks(); 112 bool parse(MachineInstr *&MI); 113 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 114 bool parseStandaloneNamedRegister(unsigned &Reg); 115 bool parseStandaloneVirtualRegister(unsigned &Reg); 116 bool parseStandaloneStackObject(int &FI); 117 bool parseStandaloneMDNode(MDNode *&Node); 118 119 bool 120 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 121 bool parseBasicBlock(MachineBasicBlock &MBB); 122 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 123 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 124 125 bool parseRegister(unsigned &Reg); 126 bool parseRegisterFlag(unsigned &Flags); 127 bool parseSubRegisterIndex(unsigned &SubReg); 128 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 129 bool parseRegisterOperand(MachineOperand &Dest, 130 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 131 bool parseImmediateOperand(MachineOperand &Dest); 132 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 133 const Constant *&C); 134 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 135 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 136 bool parseTypedImmediateOperand(MachineOperand &Dest); 137 bool parseFPImmediateOperand(MachineOperand &Dest); 138 bool parseMBBReference(MachineBasicBlock *&MBB); 139 bool parseMBBOperand(MachineOperand &Dest); 140 bool parseStackFrameIndex(int &FI); 141 bool parseStackObjectOperand(MachineOperand &Dest); 142 bool parseFixedStackFrameIndex(int &FI); 143 bool parseFixedStackObjectOperand(MachineOperand &Dest); 144 bool parseGlobalValue(GlobalValue *&GV); 145 bool parseGlobalAddressOperand(MachineOperand &Dest); 146 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 147 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 148 bool parseJumpTableIndexOperand(MachineOperand &Dest); 149 bool parseExternalSymbolOperand(MachineOperand &Dest); 150 bool parseMDNode(MDNode *&Node); 151 bool parseMetadataOperand(MachineOperand &Dest); 152 bool parseCFIOffset(int &Offset); 153 bool parseCFIRegister(unsigned &Reg); 154 bool parseCFIOperand(MachineOperand &Dest); 155 bool parseIRBlock(BasicBlock *&BB, const Function &F); 156 bool parseBlockAddressOperand(MachineOperand &Dest); 157 bool parseIntrinsicOperand(MachineOperand &Dest); 158 bool parsePredicateOperand(MachineOperand &Dest); 159 bool parseTargetIndexOperand(MachineOperand &Dest); 160 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 161 bool parseMachineOperand(MachineOperand &Dest, 162 Optional<unsigned> &TiedDefIdx); 163 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 164 Optional<unsigned> &TiedDefIdx); 165 bool parseOffset(int64_t &Offset); 166 bool parseAlignment(unsigned &Alignment); 167 bool parseOperandsOffset(MachineOperand &Op); 168 bool parseIRValue(const Value *&V); 169 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 170 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 171 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 172 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 173 174 private: 175 /// Convert the integer literal in the current token into an unsigned integer. 176 /// 177 /// Return true if an error occurred. 178 bool getUnsigned(unsigned &Result); 179 180 /// Convert the integer literal in the current token into an uint64. 181 /// 182 /// Return true if an error occurred. 183 bool getUint64(uint64_t &Result); 184 185 /// If the current token is of the given kind, consume it and return false. 186 /// Otherwise report an error and return true. 187 bool expectAndConsume(MIToken::TokenKind TokenKind); 188 189 /// If the current token is of the given kind, consume it and return true. 190 /// Otherwise return false. 191 bool consumeIfPresent(MIToken::TokenKind TokenKind); 192 193 void initNames2InstrOpCodes(); 194 195 /// Try to convert an instruction name to an opcode. Return true if the 196 /// instruction name is invalid. 197 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 198 199 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 200 201 bool assignRegisterTies(MachineInstr &MI, 202 ArrayRef<ParsedMachineOperand> Operands); 203 204 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 205 const MCInstrDesc &MCID); 206 207 void initNames2Regs(); 208 209 /// Try to convert a register name to a register number. Return true if the 210 /// register name is invalid. 211 bool getRegisterByName(StringRef RegName, unsigned &Reg); 212 213 void initNames2RegMasks(); 214 215 /// Check if the given identifier is a name of a register mask. 216 /// 217 /// Return null if the identifier isn't a register mask. 218 const uint32_t *getRegMask(StringRef Identifier); 219 220 void initNames2SubRegIndices(); 221 222 /// Check if the given identifier is a name of a subregister index. 223 /// 224 /// Return 0 if the name isn't a subregister index class. 225 unsigned getSubRegIndex(StringRef Name); 226 227 const BasicBlock *getIRBlock(unsigned Slot); 228 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 229 230 const Value *getIRValue(unsigned Slot); 231 232 void initNames2TargetIndices(); 233 234 /// Try to convert a name of target index to the corresponding target index. 235 /// 236 /// Return true if the name isn't a name of a target index. 237 bool getTargetIndex(StringRef Name, int &Index); 238 239 void initNames2DirectTargetFlags(); 240 241 /// Try to convert a name of a direct target flag to the corresponding 242 /// target flag. 243 /// 244 /// Return true if the name isn't a name of a direct flag. 245 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 246 247 void initNames2BitmaskTargetFlags(); 248 249 /// Try to convert a name of a bitmask target flag to the corresponding 250 /// target flag. 251 /// 252 /// Return true if the name isn't a name of a bitmask target flag. 253 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 254 }; 255 256 } // end anonymous namespace 257 258 MIParser::MIParser(const PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 259 StringRef Source) 260 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 261 {} 262 263 void MIParser::lex(unsigned SkipChar) { 264 CurrentSource = lexMIToken( 265 CurrentSource.data() + SkipChar, Token, 266 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 267 } 268 269 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 270 271 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 272 const SourceMgr &SM = *PFS.SM; 273 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 274 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 275 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 276 // Create an ordinary diagnostic when the source manager's buffer is the 277 // source string. 278 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 279 return true; 280 } 281 // Create a diagnostic for a YAML string literal. 282 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 283 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 284 Source, None, None); 285 return true; 286 } 287 288 static const char *toString(MIToken::TokenKind TokenKind) { 289 switch (TokenKind) { 290 case MIToken::comma: 291 return "','"; 292 case MIToken::equal: 293 return "'='"; 294 case MIToken::colon: 295 return "':'"; 296 case MIToken::lparen: 297 return "'('"; 298 case MIToken::rparen: 299 return "')'"; 300 default: 301 return "<unknown token>"; 302 } 303 } 304 305 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 306 if (Token.isNot(TokenKind)) 307 return error(Twine("expected ") + toString(TokenKind)); 308 lex(); 309 return false; 310 } 311 312 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 313 if (Token.isNot(TokenKind)) 314 return false; 315 lex(); 316 return true; 317 } 318 319 bool MIParser::parseBasicBlockDefinition( 320 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 321 assert(Token.is(MIToken::MachineBasicBlockLabel)); 322 unsigned ID = 0; 323 if (getUnsigned(ID)) 324 return true; 325 auto Loc = Token.location(); 326 auto Name = Token.stringValue(); 327 lex(); 328 bool HasAddressTaken = false; 329 bool IsLandingPad = false; 330 unsigned Alignment = 0; 331 BasicBlock *BB = nullptr; 332 if (consumeIfPresent(MIToken::lparen)) { 333 do { 334 // TODO: Report an error when multiple same attributes are specified. 335 switch (Token.kind()) { 336 case MIToken::kw_address_taken: 337 HasAddressTaken = true; 338 lex(); 339 break; 340 case MIToken::kw_landing_pad: 341 IsLandingPad = true; 342 lex(); 343 break; 344 case MIToken::kw_align: 345 if (parseAlignment(Alignment)) 346 return true; 347 break; 348 case MIToken::IRBlock: 349 // TODO: Report an error when both name and ir block are specified. 350 if (parseIRBlock(BB, *MF.getFunction())) 351 return true; 352 lex(); 353 break; 354 default: 355 break; 356 } 357 } while (consumeIfPresent(MIToken::comma)); 358 if (expectAndConsume(MIToken::rparen)) 359 return true; 360 } 361 if (expectAndConsume(MIToken::colon)) 362 return true; 363 364 if (!Name.empty()) { 365 BB = dyn_cast_or_null<BasicBlock>( 366 MF.getFunction()->getValueSymbolTable()->lookup(Name)); 367 if (!BB) 368 return error(Loc, Twine("basic block '") + Name + 369 "' is not defined in the function '" + 370 MF.getName() + "'"); 371 } 372 auto *MBB = MF.CreateMachineBasicBlock(BB); 373 MF.insert(MF.end(), MBB); 374 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 375 if (!WasInserted) 376 return error(Loc, Twine("redefinition of machine basic block with id #") + 377 Twine(ID)); 378 if (Alignment) 379 MBB->setAlignment(Alignment); 380 if (HasAddressTaken) 381 MBB->setHasAddressTaken(); 382 MBB->setIsEHPad(IsLandingPad); 383 return false; 384 } 385 386 bool MIParser::parseBasicBlockDefinitions( 387 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 388 lex(); 389 // Skip until the first machine basic block. 390 while (Token.is(MIToken::Newline)) 391 lex(); 392 if (Token.isErrorOrEOF()) 393 return Token.isError(); 394 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 395 return error("expected a basic block definition before instructions"); 396 unsigned BraceDepth = 0; 397 do { 398 if (parseBasicBlockDefinition(MBBSlots)) 399 return true; 400 bool IsAfterNewline = false; 401 // Skip until the next machine basic block. 402 while (true) { 403 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 404 Token.isErrorOrEOF()) 405 break; 406 else if (Token.is(MIToken::MachineBasicBlockLabel)) 407 return error("basic block definition should be located at the start of " 408 "the line"); 409 else if (consumeIfPresent(MIToken::Newline)) { 410 IsAfterNewline = true; 411 continue; 412 } 413 IsAfterNewline = false; 414 if (Token.is(MIToken::lbrace)) 415 ++BraceDepth; 416 if (Token.is(MIToken::rbrace)) { 417 if (!BraceDepth) 418 return error("extraneous closing brace ('}')"); 419 --BraceDepth; 420 } 421 lex(); 422 } 423 // Verify that we closed all of the '{' at the end of a file or a block. 424 if (!Token.isError() && BraceDepth) 425 return error("expected '}'"); // FIXME: Report a note that shows '{'. 426 } while (!Token.isErrorOrEOF()); 427 return Token.isError(); 428 } 429 430 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 431 assert(Token.is(MIToken::kw_liveins)); 432 lex(); 433 if (expectAndConsume(MIToken::colon)) 434 return true; 435 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 436 return false; 437 do { 438 if (Token.isNot(MIToken::NamedRegister)) 439 return error("expected a named register"); 440 unsigned Reg = 0; 441 if (parseRegister(Reg)) 442 return true; 443 MBB.addLiveIn(Reg); 444 lex(); 445 } while (consumeIfPresent(MIToken::comma)); 446 return false; 447 } 448 449 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 450 assert(Token.is(MIToken::kw_successors)); 451 lex(); 452 if (expectAndConsume(MIToken::colon)) 453 return true; 454 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 455 return false; 456 do { 457 if (Token.isNot(MIToken::MachineBasicBlock)) 458 return error("expected a machine basic block reference"); 459 MachineBasicBlock *SuccMBB = nullptr; 460 if (parseMBBReference(SuccMBB)) 461 return true; 462 lex(); 463 unsigned Weight = 0; 464 if (consumeIfPresent(MIToken::lparen)) { 465 if (Token.isNot(MIToken::IntegerLiteral)) 466 return error("expected an integer literal after '('"); 467 if (getUnsigned(Weight)) 468 return true; 469 lex(); 470 if (expectAndConsume(MIToken::rparen)) 471 return true; 472 } 473 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 474 } while (consumeIfPresent(MIToken::comma)); 475 MBB.normalizeSuccProbs(); 476 return false; 477 } 478 479 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 480 // Skip the definition. 481 assert(Token.is(MIToken::MachineBasicBlockLabel)); 482 lex(); 483 if (consumeIfPresent(MIToken::lparen)) { 484 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 485 lex(); 486 consumeIfPresent(MIToken::rparen); 487 } 488 consumeIfPresent(MIToken::colon); 489 490 // Parse the liveins and successors. 491 // N.B: Multiple lists of successors and liveins are allowed and they're 492 // merged into one. 493 // Example: 494 // liveins: %edi 495 // liveins: %esi 496 // 497 // is equivalent to 498 // liveins: %edi, %esi 499 while (true) { 500 if (Token.is(MIToken::kw_successors)) { 501 if (parseBasicBlockSuccessors(MBB)) 502 return true; 503 } else if (Token.is(MIToken::kw_liveins)) { 504 if (parseBasicBlockLiveins(MBB)) 505 return true; 506 } else if (consumeIfPresent(MIToken::Newline)) { 507 continue; 508 } else 509 break; 510 if (!Token.isNewlineOrEOF()) 511 return error("expected line break at the end of a list"); 512 lex(); 513 } 514 515 // Parse the instructions. 516 bool IsInBundle = false; 517 MachineInstr *PrevMI = nullptr; 518 while (true) { 519 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 520 return false; 521 else if (consumeIfPresent(MIToken::Newline)) 522 continue; 523 if (consumeIfPresent(MIToken::rbrace)) { 524 // The first parsing pass should verify that all closing '}' have an 525 // opening '{'. 526 assert(IsInBundle); 527 IsInBundle = false; 528 continue; 529 } 530 MachineInstr *MI = nullptr; 531 if (parse(MI)) 532 return true; 533 MBB.insert(MBB.end(), MI); 534 if (IsInBundle) { 535 PrevMI->setFlag(MachineInstr::BundledSucc); 536 MI->setFlag(MachineInstr::BundledPred); 537 } 538 PrevMI = MI; 539 if (Token.is(MIToken::lbrace)) { 540 if (IsInBundle) 541 return error("nested instruction bundles are not allowed"); 542 lex(); 543 // This instruction is the start of the bundle. 544 MI->setFlag(MachineInstr::BundledSucc); 545 IsInBundle = true; 546 if (!Token.is(MIToken::Newline)) 547 // The next instruction can be on the same line. 548 continue; 549 } 550 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 551 lex(); 552 } 553 return false; 554 } 555 556 bool MIParser::parseBasicBlocks() { 557 lex(); 558 // Skip until the first machine basic block. 559 while (Token.is(MIToken::Newline)) 560 lex(); 561 if (Token.isErrorOrEOF()) 562 return Token.isError(); 563 // The first parsing pass should have verified that this token is a MBB label 564 // in the 'parseBasicBlockDefinitions' method. 565 assert(Token.is(MIToken::MachineBasicBlockLabel)); 566 do { 567 MachineBasicBlock *MBB = nullptr; 568 if (parseMBBReference(MBB)) 569 return true; 570 if (parseBasicBlock(*MBB)) 571 return true; 572 // The method 'parseBasicBlock' should parse the whole block until the next 573 // block or the end of file. 574 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 575 } while (Token.isNot(MIToken::Eof)); 576 return false; 577 } 578 579 bool MIParser::parse(MachineInstr *&MI) { 580 // Parse any register operands before '=' 581 MachineOperand MO = MachineOperand::CreateImm(0); 582 SmallVector<ParsedMachineOperand, 8> Operands; 583 while (Token.isRegister() || Token.isRegisterFlag()) { 584 auto Loc = Token.location(); 585 Optional<unsigned> TiedDefIdx; 586 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 587 return true; 588 Operands.push_back( 589 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 590 if (Token.isNot(MIToken::comma)) 591 break; 592 lex(); 593 } 594 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 595 return true; 596 597 unsigned OpCode, Flags = 0; 598 if (Token.isError() || parseInstruction(OpCode, Flags)) 599 return true; 600 601 // Parse the remaining machine operands. 602 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 603 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 604 auto Loc = Token.location(); 605 Optional<unsigned> TiedDefIdx; 606 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 607 return true; 608 Operands.push_back( 609 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 610 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 611 Token.is(MIToken::lbrace)) 612 break; 613 if (Token.isNot(MIToken::comma)) 614 return error("expected ',' before the next machine operand"); 615 lex(); 616 } 617 618 DebugLoc DebugLocation; 619 if (Token.is(MIToken::kw_debug_location)) { 620 lex(); 621 if (Token.isNot(MIToken::exclaim)) 622 return error("expected a metadata node after 'debug-location'"); 623 MDNode *Node = nullptr; 624 if (parseMDNode(Node)) 625 return true; 626 DebugLocation = DebugLoc(Node); 627 } 628 629 // Parse the machine memory operands. 630 SmallVector<MachineMemOperand *, 2> MemOperands; 631 if (Token.is(MIToken::coloncolon)) { 632 lex(); 633 while (!Token.isNewlineOrEOF()) { 634 MachineMemOperand *MemOp = nullptr; 635 if (parseMachineMemoryOperand(MemOp)) 636 return true; 637 MemOperands.push_back(MemOp); 638 if (Token.isNewlineOrEOF()) 639 break; 640 if (Token.isNot(MIToken::comma)) 641 return error("expected ',' before the next machine memory operand"); 642 lex(); 643 } 644 } 645 646 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 647 if (!MCID.isVariadic()) { 648 // FIXME: Move the implicit operand verification to the machine verifier. 649 if (verifyImplicitOperands(Operands, MCID)) 650 return true; 651 } 652 653 // TODO: Check for extraneous machine operands. 654 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 655 MI->setFlags(Flags); 656 for (const auto &Operand : Operands) 657 MI->addOperand(MF, Operand.Operand); 658 if (assignRegisterTies(*MI, Operands)) 659 return true; 660 if (MemOperands.empty()) 661 return false; 662 MachineInstr::mmo_iterator MemRefs = 663 MF.allocateMemRefsArray(MemOperands.size()); 664 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 665 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 666 return false; 667 } 668 669 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 670 lex(); 671 if (Token.isNot(MIToken::MachineBasicBlock)) 672 return error("expected a machine basic block reference"); 673 if (parseMBBReference(MBB)) 674 return true; 675 lex(); 676 if (Token.isNot(MIToken::Eof)) 677 return error( 678 "expected end of string after the machine basic block reference"); 679 return false; 680 } 681 682 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 683 lex(); 684 if (Token.isNot(MIToken::NamedRegister)) 685 return error("expected a named register"); 686 if (parseRegister(Reg)) 687 return true; 688 lex(); 689 if (Token.isNot(MIToken::Eof)) 690 return error("expected end of string after the register reference"); 691 return false; 692 } 693 694 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 695 lex(); 696 if (Token.isNot(MIToken::VirtualRegister)) 697 return error("expected a virtual register"); 698 if (parseRegister(Reg)) 699 return true; 700 lex(); 701 if (Token.isNot(MIToken::Eof)) 702 return error("expected end of string after the register reference"); 703 return false; 704 } 705 706 bool MIParser::parseStandaloneStackObject(int &FI) { 707 lex(); 708 if (Token.isNot(MIToken::StackObject)) 709 return error("expected a stack object"); 710 if (parseStackFrameIndex(FI)) 711 return true; 712 if (Token.isNot(MIToken::Eof)) 713 return error("expected end of string after the stack object reference"); 714 return false; 715 } 716 717 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 718 lex(); 719 if (Token.isNot(MIToken::exclaim)) 720 return error("expected a metadata node"); 721 if (parseMDNode(Node)) 722 return true; 723 if (Token.isNot(MIToken::Eof)) 724 return error("expected end of string after the metadata node"); 725 return false; 726 } 727 728 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 729 assert(MO.isImplicit()); 730 return MO.isDef() ? "implicit-def" : "implicit"; 731 } 732 733 static std::string getRegisterName(const TargetRegisterInfo *TRI, 734 unsigned Reg) { 735 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 736 return StringRef(TRI->getName(Reg)).lower(); 737 } 738 739 /// Return true if the parsed machine operands contain a given machine operand. 740 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 741 ArrayRef<ParsedMachineOperand> Operands) { 742 for (const auto &I : Operands) { 743 if (ImplicitOperand.isIdenticalTo(I.Operand)) 744 return true; 745 } 746 return false; 747 } 748 749 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 750 const MCInstrDesc &MCID) { 751 if (MCID.isCall()) 752 // We can't verify call instructions as they can contain arbitrary implicit 753 // register and register mask operands. 754 return false; 755 756 // Gather all the expected implicit operands. 757 SmallVector<MachineOperand, 4> ImplicitOperands; 758 if (MCID.ImplicitDefs) 759 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 760 ImplicitOperands.push_back( 761 MachineOperand::CreateReg(*ImpDefs, true, true)); 762 if (MCID.ImplicitUses) 763 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 764 ImplicitOperands.push_back( 765 MachineOperand::CreateReg(*ImpUses, false, true)); 766 767 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 768 assert(TRI && "Expected target register info"); 769 for (const auto &I : ImplicitOperands) { 770 if (isImplicitOperandIn(I, Operands)) 771 continue; 772 return error(Operands.empty() ? Token.location() : Operands.back().End, 773 Twine("missing implicit register operand '") + 774 printImplicitRegisterFlag(I) + " %" + 775 getRegisterName(TRI, I.getReg()) + "'"); 776 } 777 return false; 778 } 779 780 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 781 if (Token.is(MIToken::kw_frame_setup)) { 782 Flags |= MachineInstr::FrameSetup; 783 lex(); 784 } 785 if (Token.isNot(MIToken::Identifier)) 786 return error("expected a machine instruction"); 787 StringRef InstrName = Token.stringValue(); 788 if (parseInstrName(InstrName, OpCode)) 789 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 790 lex(); 791 return false; 792 } 793 794 bool MIParser::parseRegister(unsigned &Reg) { 795 switch (Token.kind()) { 796 case MIToken::underscore: 797 Reg = 0; 798 break; 799 case MIToken::NamedRegister: { 800 StringRef Name = Token.stringValue(); 801 if (getRegisterByName(Name, Reg)) 802 return error(Twine("unknown register name '") + Name + "'"); 803 break; 804 } 805 case MIToken::VirtualRegister: { 806 unsigned ID; 807 if (getUnsigned(ID)) 808 return true; 809 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 810 if (RegInfo == PFS.VirtualRegisterSlots.end()) 811 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 812 "'"); 813 Reg = RegInfo->second; 814 break; 815 } 816 // TODO: Parse other register kinds. 817 default: 818 llvm_unreachable("The current token should be a register"); 819 } 820 return false; 821 } 822 823 bool MIParser::parseRegisterFlag(unsigned &Flags) { 824 const unsigned OldFlags = Flags; 825 switch (Token.kind()) { 826 case MIToken::kw_implicit: 827 Flags |= RegState::Implicit; 828 break; 829 case MIToken::kw_implicit_define: 830 Flags |= RegState::ImplicitDefine; 831 break; 832 case MIToken::kw_def: 833 Flags |= RegState::Define; 834 break; 835 case MIToken::kw_dead: 836 Flags |= RegState::Dead; 837 break; 838 case MIToken::kw_killed: 839 Flags |= RegState::Kill; 840 break; 841 case MIToken::kw_undef: 842 Flags |= RegState::Undef; 843 break; 844 case MIToken::kw_internal: 845 Flags |= RegState::InternalRead; 846 break; 847 case MIToken::kw_early_clobber: 848 Flags |= RegState::EarlyClobber; 849 break; 850 case MIToken::kw_debug_use: 851 Flags |= RegState::Debug; 852 break; 853 default: 854 llvm_unreachable("The current token should be a register flag"); 855 } 856 if (OldFlags == Flags) 857 // We know that the same flag is specified more than once when the flags 858 // weren't modified. 859 return error("duplicate '" + Token.stringValue() + "' register flag"); 860 lex(); 861 return false; 862 } 863 864 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 865 assert(Token.is(MIToken::dot)); 866 lex(); 867 if (Token.isNot(MIToken::Identifier)) 868 return error("expected a subregister index after '.'"); 869 auto Name = Token.stringValue(); 870 SubReg = getSubRegIndex(Name); 871 if (!SubReg) 872 return error(Twine("use of unknown subregister index '") + Name + "'"); 873 lex(); 874 return false; 875 } 876 877 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 878 if (!consumeIfPresent(MIToken::kw_tied_def)) 879 return true; 880 if (Token.isNot(MIToken::IntegerLiteral)) 881 return error("expected an integer literal after 'tied-def'"); 882 if (getUnsigned(TiedDefIdx)) 883 return true; 884 lex(); 885 if (expectAndConsume(MIToken::rparen)) 886 return true; 887 return false; 888 } 889 890 bool MIParser::assignRegisterTies(MachineInstr &MI, 891 ArrayRef<ParsedMachineOperand> Operands) { 892 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 893 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 894 if (!Operands[I].TiedDefIdx) 895 continue; 896 // The parser ensures that this operand is a register use, so we just have 897 // to check the tied-def operand. 898 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 899 if (DefIdx >= E) 900 return error(Operands[I].Begin, 901 Twine("use of invalid tied-def operand index '" + 902 Twine(DefIdx) + "'; instruction has only ") + 903 Twine(E) + " operands"); 904 const auto &DefOperand = Operands[DefIdx].Operand; 905 if (!DefOperand.isReg() || !DefOperand.isDef()) 906 // FIXME: add note with the def operand. 907 return error(Operands[I].Begin, 908 Twine("use of invalid tied-def operand index '") + 909 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 910 " isn't a defined register"); 911 // Check that the tied-def operand wasn't tied elsewhere. 912 for (const auto &TiedPair : TiedRegisterPairs) { 913 if (TiedPair.first == DefIdx) 914 return error(Operands[I].Begin, 915 Twine("the tied-def operand #") + Twine(DefIdx) + 916 " is already tied with another register operand"); 917 } 918 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 919 } 920 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 921 // indices must be less than tied max. 922 for (const auto &TiedPair : TiedRegisterPairs) 923 MI.tieOperands(TiedPair.first, TiedPair.second); 924 return false; 925 } 926 927 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 928 Optional<unsigned> &TiedDefIdx, 929 bool IsDef) { 930 unsigned Reg; 931 unsigned Flags = IsDef ? RegState::Define : 0; 932 while (Token.isRegisterFlag()) { 933 if (parseRegisterFlag(Flags)) 934 return true; 935 } 936 if (!Token.isRegister()) 937 return error("expected a register after register flags"); 938 if (parseRegister(Reg)) 939 return true; 940 lex(); 941 unsigned SubReg = 0; 942 if (Token.is(MIToken::dot)) { 943 if (parseSubRegisterIndex(SubReg)) 944 return true; 945 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 946 return error("subregister index expects a virtual register"); 947 } 948 MachineRegisterInfo &MRI = MF.getRegInfo(); 949 if ((Flags & RegState::Define) == 0) { 950 if (consumeIfPresent(MIToken::lparen)) { 951 unsigned Idx; 952 if (!parseRegisterTiedDefIndex(Idx)) 953 TiedDefIdx = Idx; 954 else { 955 // Try a redundant low-level type. 956 LLT Ty; 957 if (parseLowLevelType(Token.location(), Ty)) 958 return error("expected tied-def or low-level type after '('"); 959 960 if (expectAndConsume(MIToken::rparen)) 961 return true; 962 963 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 964 return error("inconsistent type for generic virtual register"); 965 966 MRI.setType(Reg, Ty); 967 } 968 } 969 } else if (consumeIfPresent(MIToken::lparen)) { 970 // Virtual registers may have a size with GlobalISel. 971 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 972 return error("unexpected size on physical register"); 973 if (MRI.getRegClassOrRegBank(Reg).is<const TargetRegisterClass *>()) 974 return error("unexpected size on non-generic virtual register"); 975 976 LLT Ty; 977 if (parseLowLevelType(Token.location(), Ty)) 978 return true; 979 980 if (expectAndConsume(MIToken::rparen)) 981 return true; 982 983 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 984 return error("inconsistent type for generic virtual register"); 985 986 MRI.setType(Reg, Ty); 987 } else if (PFS.GenericVRegs.count(Reg)) { 988 // Generic virtual registers must have a size. 989 // If we end up here this means the size hasn't been specified and 990 // this is bad! 991 return error("generic virtual registers must have a size"); 992 } 993 Dest = MachineOperand::CreateReg( 994 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 995 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 996 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 997 Flags & RegState::InternalRead); 998 return false; 999 } 1000 1001 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1002 assert(Token.is(MIToken::IntegerLiteral)); 1003 const APSInt &Int = Token.integerValue(); 1004 if (Int.getMinSignedBits() > 64) 1005 return error("integer literal is too large to be an immediate operand"); 1006 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1007 lex(); 1008 return false; 1009 } 1010 1011 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1012 const Constant *&C) { 1013 auto Source = StringValue.str(); // The source has to be null terminated. 1014 SMDiagnostic Err; 1015 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 1016 &PFS.IRSlots); 1017 if (!C) 1018 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1019 return false; 1020 } 1021 1022 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1023 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1024 return true; 1025 lex(); 1026 return false; 1027 } 1028 1029 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1030 if (Token.is(MIToken::ScalarType)) { 1031 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1032 lex(); 1033 return false; 1034 } else if (Token.is(MIToken::PointerType)) { 1035 const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout(); 1036 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1037 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1038 lex(); 1039 return false; 1040 } 1041 1042 // Now we're looking for a vector. 1043 if (Token.isNot(MIToken::less)) 1044 return error(Loc, 1045 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1046 1047 lex(); 1048 1049 if (Token.isNot(MIToken::IntegerLiteral)) 1050 return error(Loc, "expected <N x sM> for vctor type"); 1051 uint64_t NumElements = Token.integerValue().getZExtValue(); 1052 lex(); 1053 1054 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1055 return error(Loc, "expected '<N x sM>' for vector type"); 1056 lex(); 1057 1058 if (Token.isNot(MIToken::ScalarType)) 1059 return error(Loc, "expected '<N x sM>' for vector type"); 1060 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1061 lex(); 1062 1063 if (Token.isNot(MIToken::greater)) 1064 return error(Loc, "expected '<N x sM>' for vector type"); 1065 lex(); 1066 1067 Ty = LLT::vector(NumElements, ScalarSize); 1068 return false; 1069 } 1070 1071 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1072 assert(Token.is(MIToken::IntegerType)); 1073 auto Loc = Token.location(); 1074 lex(); 1075 if (Token.isNot(MIToken::IntegerLiteral)) 1076 return error("expected an integer literal"); 1077 const Constant *C = nullptr; 1078 if (parseIRConstant(Loc, C)) 1079 return true; 1080 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1081 return false; 1082 } 1083 1084 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1085 auto Loc = Token.location(); 1086 lex(); 1087 if (Token.isNot(MIToken::FloatingPointLiteral)) 1088 return error("expected a floating point literal"); 1089 const Constant *C = nullptr; 1090 if (parseIRConstant(Loc, C)) 1091 return true; 1092 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1093 return false; 1094 } 1095 1096 bool MIParser::getUnsigned(unsigned &Result) { 1097 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1098 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1099 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1100 if (Val64 == Limit) 1101 return error("expected 32-bit integer (too large)"); 1102 Result = Val64; 1103 return false; 1104 } 1105 1106 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1107 assert(Token.is(MIToken::MachineBasicBlock) || 1108 Token.is(MIToken::MachineBasicBlockLabel)); 1109 unsigned Number; 1110 if (getUnsigned(Number)) 1111 return true; 1112 auto MBBInfo = PFS.MBBSlots.find(Number); 1113 if (MBBInfo == PFS.MBBSlots.end()) 1114 return error(Twine("use of undefined machine basic block #") + 1115 Twine(Number)); 1116 MBB = MBBInfo->second; 1117 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1118 return error(Twine("the name of machine basic block #") + Twine(Number) + 1119 " isn't '" + Token.stringValue() + "'"); 1120 return false; 1121 } 1122 1123 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1124 MachineBasicBlock *MBB; 1125 if (parseMBBReference(MBB)) 1126 return true; 1127 Dest = MachineOperand::CreateMBB(MBB); 1128 lex(); 1129 return false; 1130 } 1131 1132 bool MIParser::parseStackFrameIndex(int &FI) { 1133 assert(Token.is(MIToken::StackObject)); 1134 unsigned ID; 1135 if (getUnsigned(ID)) 1136 return true; 1137 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1138 if (ObjectInfo == PFS.StackObjectSlots.end()) 1139 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1140 "'"); 1141 StringRef Name; 1142 if (const auto *Alloca = 1143 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1144 Name = Alloca->getName(); 1145 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1146 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1147 "' isn't '" + Token.stringValue() + "'"); 1148 lex(); 1149 FI = ObjectInfo->second; 1150 return false; 1151 } 1152 1153 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1154 int FI; 1155 if (parseStackFrameIndex(FI)) 1156 return true; 1157 Dest = MachineOperand::CreateFI(FI); 1158 return false; 1159 } 1160 1161 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1162 assert(Token.is(MIToken::FixedStackObject)); 1163 unsigned ID; 1164 if (getUnsigned(ID)) 1165 return true; 1166 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1167 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1168 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1169 Twine(ID) + "'"); 1170 lex(); 1171 FI = ObjectInfo->second; 1172 return false; 1173 } 1174 1175 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1176 int FI; 1177 if (parseFixedStackFrameIndex(FI)) 1178 return true; 1179 Dest = MachineOperand::CreateFI(FI); 1180 return false; 1181 } 1182 1183 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1184 switch (Token.kind()) { 1185 case MIToken::NamedGlobalValue: { 1186 const Module *M = MF.getFunction()->getParent(); 1187 GV = M->getNamedValue(Token.stringValue()); 1188 if (!GV) 1189 return error(Twine("use of undefined global value '") + Token.range() + 1190 "'"); 1191 break; 1192 } 1193 case MIToken::GlobalValue: { 1194 unsigned GVIdx; 1195 if (getUnsigned(GVIdx)) 1196 return true; 1197 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1198 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1199 "'"); 1200 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1201 break; 1202 } 1203 default: 1204 llvm_unreachable("The current token should be a global value"); 1205 } 1206 return false; 1207 } 1208 1209 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1210 GlobalValue *GV = nullptr; 1211 if (parseGlobalValue(GV)) 1212 return true; 1213 lex(); 1214 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1215 if (parseOperandsOffset(Dest)) 1216 return true; 1217 return false; 1218 } 1219 1220 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1221 assert(Token.is(MIToken::ConstantPoolItem)); 1222 unsigned ID; 1223 if (getUnsigned(ID)) 1224 return true; 1225 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1226 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1227 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1228 lex(); 1229 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1230 if (parseOperandsOffset(Dest)) 1231 return true; 1232 return false; 1233 } 1234 1235 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1236 assert(Token.is(MIToken::JumpTableIndex)); 1237 unsigned ID; 1238 if (getUnsigned(ID)) 1239 return true; 1240 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1241 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1242 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1243 lex(); 1244 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1245 return false; 1246 } 1247 1248 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1249 assert(Token.is(MIToken::ExternalSymbol)); 1250 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1251 lex(); 1252 Dest = MachineOperand::CreateES(Symbol); 1253 if (parseOperandsOffset(Dest)) 1254 return true; 1255 return false; 1256 } 1257 1258 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1259 assert(Token.is(MIToken::SubRegisterIndex)); 1260 StringRef Name = Token.stringValue(); 1261 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1262 if (SubRegIndex == 0) 1263 return error(Twine("unknown subregister index '") + Name + "'"); 1264 lex(); 1265 Dest = MachineOperand::CreateImm(SubRegIndex); 1266 return false; 1267 } 1268 1269 bool MIParser::parseMDNode(MDNode *&Node) { 1270 assert(Token.is(MIToken::exclaim)); 1271 auto Loc = Token.location(); 1272 lex(); 1273 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1274 return error("expected metadata id after '!'"); 1275 unsigned ID; 1276 if (getUnsigned(ID)) 1277 return true; 1278 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1279 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1280 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1281 lex(); 1282 Node = NodeInfo->second.get(); 1283 return false; 1284 } 1285 1286 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1287 MDNode *Node = nullptr; 1288 if (parseMDNode(Node)) 1289 return true; 1290 Dest = MachineOperand::CreateMetadata(Node); 1291 return false; 1292 } 1293 1294 bool MIParser::parseCFIOffset(int &Offset) { 1295 if (Token.isNot(MIToken::IntegerLiteral)) 1296 return error("expected a cfi offset"); 1297 if (Token.integerValue().getMinSignedBits() > 32) 1298 return error("expected a 32 bit integer (the cfi offset is too large)"); 1299 Offset = (int)Token.integerValue().getExtValue(); 1300 lex(); 1301 return false; 1302 } 1303 1304 bool MIParser::parseCFIRegister(unsigned &Reg) { 1305 if (Token.isNot(MIToken::NamedRegister)) 1306 return error("expected a cfi register"); 1307 unsigned LLVMReg; 1308 if (parseRegister(LLVMReg)) 1309 return true; 1310 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1311 assert(TRI && "Expected target register info"); 1312 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1313 if (DwarfReg < 0) 1314 return error("invalid DWARF register"); 1315 Reg = (unsigned)DwarfReg; 1316 lex(); 1317 return false; 1318 } 1319 1320 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1321 auto Kind = Token.kind(); 1322 lex(); 1323 auto &MMI = MF.getMMI(); 1324 int Offset; 1325 unsigned Reg; 1326 unsigned CFIIndex; 1327 switch (Kind) { 1328 case MIToken::kw_cfi_same_value: 1329 if (parseCFIRegister(Reg)) 1330 return true; 1331 CFIIndex = 1332 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1333 break; 1334 case MIToken::kw_cfi_offset: 1335 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1336 parseCFIOffset(Offset)) 1337 return true; 1338 CFIIndex = 1339 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1340 break; 1341 case MIToken::kw_cfi_def_cfa_register: 1342 if (parseCFIRegister(Reg)) 1343 return true; 1344 CFIIndex = 1345 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1346 break; 1347 case MIToken::kw_cfi_def_cfa_offset: 1348 if (parseCFIOffset(Offset)) 1349 return true; 1350 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1351 CFIIndex = MMI.addFrameInst( 1352 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1353 break; 1354 case MIToken::kw_cfi_def_cfa: 1355 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1356 parseCFIOffset(Offset)) 1357 return true; 1358 // NB: MCCFIInstruction::createDefCfa negates the offset. 1359 CFIIndex = 1360 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1361 break; 1362 default: 1363 // TODO: Parse the other CFI operands. 1364 llvm_unreachable("The current token should be a cfi operand"); 1365 } 1366 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1367 return false; 1368 } 1369 1370 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1371 switch (Token.kind()) { 1372 case MIToken::NamedIRBlock: { 1373 BB = dyn_cast_or_null<BasicBlock>( 1374 F.getValueSymbolTable()->lookup(Token.stringValue())); 1375 if (!BB) 1376 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1377 break; 1378 } 1379 case MIToken::IRBlock: { 1380 unsigned SlotNumber = 0; 1381 if (getUnsigned(SlotNumber)) 1382 return true; 1383 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1384 if (!BB) 1385 return error(Twine("use of undefined IR block '%ir-block.") + 1386 Twine(SlotNumber) + "'"); 1387 break; 1388 } 1389 default: 1390 llvm_unreachable("The current token should be an IR block reference"); 1391 } 1392 return false; 1393 } 1394 1395 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1396 assert(Token.is(MIToken::kw_blockaddress)); 1397 lex(); 1398 if (expectAndConsume(MIToken::lparen)) 1399 return true; 1400 if (Token.isNot(MIToken::GlobalValue) && 1401 Token.isNot(MIToken::NamedGlobalValue)) 1402 return error("expected a global value"); 1403 GlobalValue *GV = nullptr; 1404 if (parseGlobalValue(GV)) 1405 return true; 1406 auto *F = dyn_cast<Function>(GV); 1407 if (!F) 1408 return error("expected an IR function reference"); 1409 lex(); 1410 if (expectAndConsume(MIToken::comma)) 1411 return true; 1412 BasicBlock *BB = nullptr; 1413 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1414 return error("expected an IR block reference"); 1415 if (parseIRBlock(BB, *F)) 1416 return true; 1417 lex(); 1418 if (expectAndConsume(MIToken::rparen)) 1419 return true; 1420 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1421 if (parseOperandsOffset(Dest)) 1422 return true; 1423 return false; 1424 } 1425 1426 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1427 assert(Token.is(MIToken::kw_intrinsic)); 1428 lex(); 1429 if (expectAndConsume(MIToken::lparen)) 1430 return error("expected syntax intrinsic(@llvm.whatever)"); 1431 1432 if (Token.isNot(MIToken::NamedGlobalValue)) 1433 return error("expected syntax intrinsic(@llvm.whatever)"); 1434 1435 std::string Name = Token.stringValue(); 1436 lex(); 1437 1438 if (expectAndConsume(MIToken::rparen)) 1439 return error("expected ')' to terminate intrinsic name"); 1440 1441 // Find out what intrinsic we're dealing with, first try the global namespace 1442 // and then the target's private intrinsics if that fails. 1443 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1444 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1445 if (ID == Intrinsic::not_intrinsic && TII) 1446 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1447 1448 if (ID == Intrinsic::not_intrinsic) 1449 return error("unknown intrinsic name"); 1450 Dest = MachineOperand::CreateIntrinsicID(ID); 1451 1452 return false; 1453 } 1454 1455 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1456 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1457 bool IsFloat = Token.is(MIToken::kw_floatpred); 1458 lex(); 1459 1460 if (expectAndConsume(MIToken::lparen)) 1461 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1462 1463 if (Token.isNot(MIToken::Identifier)) 1464 return error("whatever"); 1465 1466 CmpInst::Predicate Pred; 1467 if (IsFloat) { 1468 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1469 .Case("false", CmpInst::FCMP_FALSE) 1470 .Case("oeq", CmpInst::FCMP_OEQ) 1471 .Case("ogt", CmpInst::FCMP_OGT) 1472 .Case("oge", CmpInst::FCMP_OGE) 1473 .Case("olt", CmpInst::FCMP_OLT) 1474 .Case("ole", CmpInst::FCMP_OLE) 1475 .Case("one", CmpInst::FCMP_ONE) 1476 .Case("ord", CmpInst::FCMP_ORD) 1477 .Case("uno", CmpInst::FCMP_UNO) 1478 .Case("ueq", CmpInst::FCMP_UEQ) 1479 .Case("ugt", CmpInst::FCMP_UGT) 1480 .Case("uge", CmpInst::FCMP_UGE) 1481 .Case("ult", CmpInst::FCMP_ULT) 1482 .Case("ule", CmpInst::FCMP_ULE) 1483 .Case("une", CmpInst::FCMP_UNE) 1484 .Case("true", CmpInst::FCMP_TRUE) 1485 .Default(CmpInst::BAD_FCMP_PREDICATE); 1486 if (!CmpInst::isFPPredicate(Pred)) 1487 return error("invalid floating-point predicate"); 1488 } else { 1489 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1490 .Case("eq", CmpInst::ICMP_EQ) 1491 .Case("ne", CmpInst::ICMP_NE) 1492 .Case("sgt", CmpInst::ICMP_SGT) 1493 .Case("sge", CmpInst::ICMP_SGE) 1494 .Case("slt", CmpInst::ICMP_SLT) 1495 .Case("sle", CmpInst::ICMP_SLE) 1496 .Case("ugt", CmpInst::ICMP_UGT) 1497 .Case("uge", CmpInst::ICMP_UGE) 1498 .Case("ult", CmpInst::ICMP_ULT) 1499 .Case("ule", CmpInst::ICMP_ULE) 1500 .Default(CmpInst::BAD_ICMP_PREDICATE); 1501 if (!CmpInst::isIntPredicate(Pred)) 1502 return error("invalid integer predicate"); 1503 } 1504 1505 lex(); 1506 Dest = MachineOperand::CreatePredicate(Pred); 1507 if (expectAndConsume(MIToken::rparen)) 1508 return error("predicate should be terminated by ')'."); 1509 1510 return false; 1511 } 1512 1513 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1514 assert(Token.is(MIToken::kw_target_index)); 1515 lex(); 1516 if (expectAndConsume(MIToken::lparen)) 1517 return true; 1518 if (Token.isNot(MIToken::Identifier)) 1519 return error("expected the name of the target index"); 1520 int Index = 0; 1521 if (getTargetIndex(Token.stringValue(), Index)) 1522 return error("use of undefined target index '" + Token.stringValue() + "'"); 1523 lex(); 1524 if (expectAndConsume(MIToken::rparen)) 1525 return true; 1526 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1527 if (parseOperandsOffset(Dest)) 1528 return true; 1529 return false; 1530 } 1531 1532 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1533 assert(Token.is(MIToken::kw_liveout)); 1534 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1535 assert(TRI && "Expected target register info"); 1536 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1537 lex(); 1538 if (expectAndConsume(MIToken::lparen)) 1539 return true; 1540 while (true) { 1541 if (Token.isNot(MIToken::NamedRegister)) 1542 return error("expected a named register"); 1543 unsigned Reg = 0; 1544 if (parseRegister(Reg)) 1545 return true; 1546 lex(); 1547 Mask[Reg / 32] |= 1U << (Reg % 32); 1548 // TODO: Report an error if the same register is used more than once. 1549 if (Token.isNot(MIToken::comma)) 1550 break; 1551 lex(); 1552 } 1553 if (expectAndConsume(MIToken::rparen)) 1554 return true; 1555 Dest = MachineOperand::CreateRegLiveOut(Mask); 1556 return false; 1557 } 1558 1559 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1560 Optional<unsigned> &TiedDefIdx) { 1561 switch (Token.kind()) { 1562 case MIToken::kw_implicit: 1563 case MIToken::kw_implicit_define: 1564 case MIToken::kw_def: 1565 case MIToken::kw_dead: 1566 case MIToken::kw_killed: 1567 case MIToken::kw_undef: 1568 case MIToken::kw_internal: 1569 case MIToken::kw_early_clobber: 1570 case MIToken::kw_debug_use: 1571 case MIToken::underscore: 1572 case MIToken::NamedRegister: 1573 case MIToken::VirtualRegister: 1574 return parseRegisterOperand(Dest, TiedDefIdx); 1575 case MIToken::IntegerLiteral: 1576 return parseImmediateOperand(Dest); 1577 case MIToken::IntegerType: 1578 return parseTypedImmediateOperand(Dest); 1579 case MIToken::kw_half: 1580 case MIToken::kw_float: 1581 case MIToken::kw_double: 1582 case MIToken::kw_x86_fp80: 1583 case MIToken::kw_fp128: 1584 case MIToken::kw_ppc_fp128: 1585 return parseFPImmediateOperand(Dest); 1586 case MIToken::MachineBasicBlock: 1587 return parseMBBOperand(Dest); 1588 case MIToken::StackObject: 1589 return parseStackObjectOperand(Dest); 1590 case MIToken::FixedStackObject: 1591 return parseFixedStackObjectOperand(Dest); 1592 case MIToken::GlobalValue: 1593 case MIToken::NamedGlobalValue: 1594 return parseGlobalAddressOperand(Dest); 1595 case MIToken::ConstantPoolItem: 1596 return parseConstantPoolIndexOperand(Dest); 1597 case MIToken::JumpTableIndex: 1598 return parseJumpTableIndexOperand(Dest); 1599 case MIToken::ExternalSymbol: 1600 return parseExternalSymbolOperand(Dest); 1601 case MIToken::SubRegisterIndex: 1602 return parseSubRegisterIndexOperand(Dest); 1603 case MIToken::exclaim: 1604 return parseMetadataOperand(Dest); 1605 case MIToken::kw_cfi_same_value: 1606 case MIToken::kw_cfi_offset: 1607 case MIToken::kw_cfi_def_cfa_register: 1608 case MIToken::kw_cfi_def_cfa_offset: 1609 case MIToken::kw_cfi_def_cfa: 1610 return parseCFIOperand(Dest); 1611 case MIToken::kw_blockaddress: 1612 return parseBlockAddressOperand(Dest); 1613 case MIToken::kw_intrinsic: 1614 return parseIntrinsicOperand(Dest); 1615 case MIToken::kw_target_index: 1616 return parseTargetIndexOperand(Dest); 1617 case MIToken::kw_liveout: 1618 return parseLiveoutRegisterMaskOperand(Dest); 1619 case MIToken::kw_floatpred: 1620 case MIToken::kw_intpred: 1621 return parsePredicateOperand(Dest); 1622 case MIToken::Error: 1623 return true; 1624 case MIToken::Identifier: 1625 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1626 Dest = MachineOperand::CreateRegMask(RegMask); 1627 lex(); 1628 break; 1629 } 1630 LLVM_FALLTHROUGH; 1631 default: 1632 // FIXME: Parse the MCSymbol machine operand. 1633 return error("expected a machine operand"); 1634 } 1635 return false; 1636 } 1637 1638 bool MIParser::parseMachineOperandAndTargetFlags( 1639 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1640 unsigned TF = 0; 1641 bool HasTargetFlags = false; 1642 if (Token.is(MIToken::kw_target_flags)) { 1643 HasTargetFlags = true; 1644 lex(); 1645 if (expectAndConsume(MIToken::lparen)) 1646 return true; 1647 if (Token.isNot(MIToken::Identifier)) 1648 return error("expected the name of the target flag"); 1649 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1650 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1651 return error("use of undefined target flag '" + Token.stringValue() + 1652 "'"); 1653 } 1654 lex(); 1655 while (Token.is(MIToken::comma)) { 1656 lex(); 1657 if (Token.isNot(MIToken::Identifier)) 1658 return error("expected the name of the target flag"); 1659 unsigned BitFlag = 0; 1660 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1661 return error("use of undefined target flag '" + Token.stringValue() + 1662 "'"); 1663 // TODO: Report an error when using a duplicate bit target flag. 1664 TF |= BitFlag; 1665 lex(); 1666 } 1667 if (expectAndConsume(MIToken::rparen)) 1668 return true; 1669 } 1670 auto Loc = Token.location(); 1671 if (parseMachineOperand(Dest, TiedDefIdx)) 1672 return true; 1673 if (!HasTargetFlags) 1674 return false; 1675 if (Dest.isReg()) 1676 return error(Loc, "register operands can't have target flags"); 1677 Dest.setTargetFlags(TF); 1678 return false; 1679 } 1680 1681 bool MIParser::parseOffset(int64_t &Offset) { 1682 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1683 return false; 1684 StringRef Sign = Token.range(); 1685 bool IsNegative = Token.is(MIToken::minus); 1686 lex(); 1687 if (Token.isNot(MIToken::IntegerLiteral)) 1688 return error("expected an integer literal after '" + Sign + "'"); 1689 if (Token.integerValue().getMinSignedBits() > 64) 1690 return error("expected 64-bit integer (too large)"); 1691 Offset = Token.integerValue().getExtValue(); 1692 if (IsNegative) 1693 Offset = -Offset; 1694 lex(); 1695 return false; 1696 } 1697 1698 bool MIParser::parseAlignment(unsigned &Alignment) { 1699 assert(Token.is(MIToken::kw_align)); 1700 lex(); 1701 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1702 return error("expected an integer literal after 'align'"); 1703 if (getUnsigned(Alignment)) 1704 return true; 1705 lex(); 1706 return false; 1707 } 1708 1709 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1710 int64_t Offset = 0; 1711 if (parseOffset(Offset)) 1712 return true; 1713 Op.setOffset(Offset); 1714 return false; 1715 } 1716 1717 bool MIParser::parseIRValue(const Value *&V) { 1718 switch (Token.kind()) { 1719 case MIToken::NamedIRValue: { 1720 V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue()); 1721 break; 1722 } 1723 case MIToken::IRValue: { 1724 unsigned SlotNumber = 0; 1725 if (getUnsigned(SlotNumber)) 1726 return true; 1727 V = getIRValue(SlotNumber); 1728 break; 1729 } 1730 case MIToken::NamedGlobalValue: 1731 case MIToken::GlobalValue: { 1732 GlobalValue *GV = nullptr; 1733 if (parseGlobalValue(GV)) 1734 return true; 1735 V = GV; 1736 break; 1737 } 1738 case MIToken::QuotedIRValue: { 1739 const Constant *C = nullptr; 1740 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1741 return true; 1742 V = C; 1743 break; 1744 } 1745 default: 1746 llvm_unreachable("The current token should be an IR block reference"); 1747 } 1748 if (!V) 1749 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1750 return false; 1751 } 1752 1753 bool MIParser::getUint64(uint64_t &Result) { 1754 assert(Token.hasIntegerValue()); 1755 if (Token.integerValue().getActiveBits() > 64) 1756 return error("expected 64-bit integer (too large)"); 1757 Result = Token.integerValue().getZExtValue(); 1758 return false; 1759 } 1760 1761 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 1762 const auto OldFlags = Flags; 1763 switch (Token.kind()) { 1764 case MIToken::kw_volatile: 1765 Flags |= MachineMemOperand::MOVolatile; 1766 break; 1767 case MIToken::kw_non_temporal: 1768 Flags |= MachineMemOperand::MONonTemporal; 1769 break; 1770 case MIToken::kw_dereferenceable: 1771 Flags |= MachineMemOperand::MODereferenceable; 1772 break; 1773 case MIToken::kw_invariant: 1774 Flags |= MachineMemOperand::MOInvariant; 1775 break; 1776 // TODO: parse the target specific memory operand flags. 1777 default: 1778 llvm_unreachable("The current token should be a memory operand flag"); 1779 } 1780 if (OldFlags == Flags) 1781 // We know that the same flag is specified more than once when the flags 1782 // weren't modified. 1783 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1784 lex(); 1785 return false; 1786 } 1787 1788 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1789 switch (Token.kind()) { 1790 case MIToken::kw_stack: 1791 PSV = MF.getPSVManager().getStack(); 1792 break; 1793 case MIToken::kw_got: 1794 PSV = MF.getPSVManager().getGOT(); 1795 break; 1796 case MIToken::kw_jump_table: 1797 PSV = MF.getPSVManager().getJumpTable(); 1798 break; 1799 case MIToken::kw_constant_pool: 1800 PSV = MF.getPSVManager().getConstantPool(); 1801 break; 1802 case MIToken::FixedStackObject: { 1803 int FI; 1804 if (parseFixedStackFrameIndex(FI)) 1805 return true; 1806 PSV = MF.getPSVManager().getFixedStack(FI); 1807 // The token was already consumed, so use return here instead of break. 1808 return false; 1809 } 1810 case MIToken::StackObject: { 1811 int FI; 1812 if (parseStackFrameIndex(FI)) 1813 return true; 1814 PSV = MF.getPSVManager().getFixedStack(FI); 1815 // The token was already consumed, so use return here instead of break. 1816 return false; 1817 } 1818 case MIToken::kw_call_entry: { 1819 lex(); 1820 switch (Token.kind()) { 1821 case MIToken::GlobalValue: 1822 case MIToken::NamedGlobalValue: { 1823 GlobalValue *GV = nullptr; 1824 if (parseGlobalValue(GV)) 1825 return true; 1826 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1827 break; 1828 } 1829 case MIToken::ExternalSymbol: 1830 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1831 MF.createExternalSymbolName(Token.stringValue())); 1832 break; 1833 default: 1834 return error( 1835 "expected a global value or an external symbol after 'call-entry'"); 1836 } 1837 break; 1838 } 1839 default: 1840 llvm_unreachable("The current token should be pseudo source value"); 1841 } 1842 lex(); 1843 return false; 1844 } 1845 1846 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1847 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1848 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1849 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 1850 Token.is(MIToken::kw_call_entry)) { 1851 const PseudoSourceValue *PSV = nullptr; 1852 if (parseMemoryPseudoSourceValue(PSV)) 1853 return true; 1854 int64_t Offset = 0; 1855 if (parseOffset(Offset)) 1856 return true; 1857 Dest = MachinePointerInfo(PSV, Offset); 1858 return false; 1859 } 1860 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1861 Token.isNot(MIToken::GlobalValue) && 1862 Token.isNot(MIToken::NamedGlobalValue) && 1863 Token.isNot(MIToken::QuotedIRValue)) 1864 return error("expected an IR value reference"); 1865 const Value *V = nullptr; 1866 if (parseIRValue(V)) 1867 return true; 1868 if (!V->getType()->isPointerTy()) 1869 return error("expected a pointer IR value"); 1870 lex(); 1871 int64_t Offset = 0; 1872 if (parseOffset(Offset)) 1873 return true; 1874 Dest = MachinePointerInfo(V, Offset); 1875 return false; 1876 } 1877 1878 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1879 if (expectAndConsume(MIToken::lparen)) 1880 return true; 1881 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 1882 while (Token.isMemoryOperandFlag()) { 1883 if (parseMemoryOperandFlag(Flags)) 1884 return true; 1885 } 1886 if (Token.isNot(MIToken::Identifier) || 1887 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1888 return error("expected 'load' or 'store' memory operation"); 1889 if (Token.stringValue() == "load") 1890 Flags |= MachineMemOperand::MOLoad; 1891 else 1892 Flags |= MachineMemOperand::MOStore; 1893 lex(); 1894 1895 if (Token.isNot(MIToken::IntegerLiteral)) 1896 return error("expected the size integer literal after memory operation"); 1897 uint64_t Size; 1898 if (getUint64(Size)) 1899 return true; 1900 lex(); 1901 1902 MachinePointerInfo Ptr = MachinePointerInfo(); 1903 if (Token.is(MIToken::Identifier)) { 1904 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1905 if (Token.stringValue() != Word) 1906 return error(Twine("expected '") + Word + "'"); 1907 lex(); 1908 1909 if (parseMachinePointerInfo(Ptr)) 1910 return true; 1911 } 1912 unsigned BaseAlignment = Size; 1913 AAMDNodes AAInfo; 1914 MDNode *Range = nullptr; 1915 while (consumeIfPresent(MIToken::comma)) { 1916 switch (Token.kind()) { 1917 case MIToken::kw_align: 1918 if (parseAlignment(BaseAlignment)) 1919 return true; 1920 break; 1921 case MIToken::md_tbaa: 1922 lex(); 1923 if (parseMDNode(AAInfo.TBAA)) 1924 return true; 1925 break; 1926 case MIToken::md_alias_scope: 1927 lex(); 1928 if (parseMDNode(AAInfo.Scope)) 1929 return true; 1930 break; 1931 case MIToken::md_noalias: 1932 lex(); 1933 if (parseMDNode(AAInfo.NoAlias)) 1934 return true; 1935 break; 1936 case MIToken::md_range: 1937 lex(); 1938 if (parseMDNode(Range)) 1939 return true; 1940 break; 1941 // TODO: Report an error on duplicate metadata nodes. 1942 default: 1943 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1944 "'!noalias' or '!range'"); 1945 } 1946 } 1947 if (expectAndConsume(MIToken::rparen)) 1948 return true; 1949 Dest = 1950 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1951 return false; 1952 } 1953 1954 void MIParser::initNames2InstrOpCodes() { 1955 if (!Names2InstrOpCodes.empty()) 1956 return; 1957 const auto *TII = MF.getSubtarget().getInstrInfo(); 1958 assert(TII && "Expected target instruction info"); 1959 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1960 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1961 } 1962 1963 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1964 initNames2InstrOpCodes(); 1965 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1966 if (InstrInfo == Names2InstrOpCodes.end()) 1967 return true; 1968 OpCode = InstrInfo->getValue(); 1969 return false; 1970 } 1971 1972 void MIParser::initNames2Regs() { 1973 if (!Names2Regs.empty()) 1974 return; 1975 // The '%noreg' register is the register 0. 1976 Names2Regs.insert(std::make_pair("noreg", 0)); 1977 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1978 assert(TRI && "Expected target register info"); 1979 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1980 bool WasInserted = 1981 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1982 .second; 1983 (void)WasInserted; 1984 assert(WasInserted && "Expected registers to be unique case-insensitively"); 1985 } 1986 } 1987 1988 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 1989 initNames2Regs(); 1990 auto RegInfo = Names2Regs.find(RegName); 1991 if (RegInfo == Names2Regs.end()) 1992 return true; 1993 Reg = RegInfo->getValue(); 1994 return false; 1995 } 1996 1997 void MIParser::initNames2RegMasks() { 1998 if (!Names2RegMasks.empty()) 1999 return; 2000 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2001 assert(TRI && "Expected target register info"); 2002 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2003 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2004 assert(RegMasks.size() == RegMaskNames.size()); 2005 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2006 Names2RegMasks.insert( 2007 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2008 } 2009 2010 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2011 initNames2RegMasks(); 2012 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2013 if (RegMaskInfo == Names2RegMasks.end()) 2014 return nullptr; 2015 return RegMaskInfo->getValue(); 2016 } 2017 2018 void MIParser::initNames2SubRegIndices() { 2019 if (!Names2SubRegIndices.empty()) 2020 return; 2021 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2022 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2023 Names2SubRegIndices.insert( 2024 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2025 } 2026 2027 unsigned MIParser::getSubRegIndex(StringRef Name) { 2028 initNames2SubRegIndices(); 2029 auto SubRegInfo = Names2SubRegIndices.find(Name); 2030 if (SubRegInfo == Names2SubRegIndices.end()) 2031 return 0; 2032 return SubRegInfo->getValue(); 2033 } 2034 2035 static void initSlots2BasicBlocks( 2036 const Function &F, 2037 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2038 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2039 MST.incorporateFunction(F); 2040 for (auto &BB : F) { 2041 if (BB.hasName()) 2042 continue; 2043 int Slot = MST.getLocalSlot(&BB); 2044 if (Slot == -1) 2045 continue; 2046 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2047 } 2048 } 2049 2050 static const BasicBlock *getIRBlockFromSlot( 2051 unsigned Slot, 2052 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2053 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2054 if (BlockInfo == Slots2BasicBlocks.end()) 2055 return nullptr; 2056 return BlockInfo->second; 2057 } 2058 2059 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2060 if (Slots2BasicBlocks.empty()) 2061 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 2062 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2063 } 2064 2065 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2066 if (&F == MF.getFunction()) 2067 return getIRBlock(Slot); 2068 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2069 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2070 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2071 } 2072 2073 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2074 DenseMap<unsigned, const Value *> &Slots2Values) { 2075 int Slot = MST.getLocalSlot(V); 2076 if (Slot == -1) 2077 return; 2078 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2079 } 2080 2081 /// Creates the mapping from slot numbers to function's unnamed IR values. 2082 static void initSlots2Values(const Function &F, 2083 DenseMap<unsigned, const Value *> &Slots2Values) { 2084 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2085 MST.incorporateFunction(F); 2086 for (const auto &Arg : F.args()) 2087 mapValueToSlot(&Arg, MST, Slots2Values); 2088 for (const auto &BB : F) { 2089 mapValueToSlot(&BB, MST, Slots2Values); 2090 for (const auto &I : BB) 2091 mapValueToSlot(&I, MST, Slots2Values); 2092 } 2093 } 2094 2095 const Value *MIParser::getIRValue(unsigned Slot) { 2096 if (Slots2Values.empty()) 2097 initSlots2Values(*MF.getFunction(), Slots2Values); 2098 auto ValueInfo = Slots2Values.find(Slot); 2099 if (ValueInfo == Slots2Values.end()) 2100 return nullptr; 2101 return ValueInfo->second; 2102 } 2103 2104 void MIParser::initNames2TargetIndices() { 2105 if (!Names2TargetIndices.empty()) 2106 return; 2107 const auto *TII = MF.getSubtarget().getInstrInfo(); 2108 assert(TII && "Expected target instruction info"); 2109 auto Indices = TII->getSerializableTargetIndices(); 2110 for (const auto &I : Indices) 2111 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2112 } 2113 2114 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2115 initNames2TargetIndices(); 2116 auto IndexInfo = Names2TargetIndices.find(Name); 2117 if (IndexInfo == Names2TargetIndices.end()) 2118 return true; 2119 Index = IndexInfo->second; 2120 return false; 2121 } 2122 2123 void MIParser::initNames2DirectTargetFlags() { 2124 if (!Names2DirectTargetFlags.empty()) 2125 return; 2126 const auto *TII = MF.getSubtarget().getInstrInfo(); 2127 assert(TII && "Expected target instruction info"); 2128 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2129 for (const auto &I : Flags) 2130 Names2DirectTargetFlags.insert( 2131 std::make_pair(StringRef(I.second), I.first)); 2132 } 2133 2134 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2135 initNames2DirectTargetFlags(); 2136 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2137 if (FlagInfo == Names2DirectTargetFlags.end()) 2138 return true; 2139 Flag = FlagInfo->second; 2140 return false; 2141 } 2142 2143 void MIParser::initNames2BitmaskTargetFlags() { 2144 if (!Names2BitmaskTargetFlags.empty()) 2145 return; 2146 const auto *TII = MF.getSubtarget().getInstrInfo(); 2147 assert(TII && "Expected target instruction info"); 2148 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2149 for (const auto &I : Flags) 2150 Names2BitmaskTargetFlags.insert( 2151 std::make_pair(StringRef(I.second), I.first)); 2152 } 2153 2154 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2155 initNames2BitmaskTargetFlags(); 2156 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2157 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2158 return true; 2159 Flag = FlagInfo->second; 2160 return false; 2161 } 2162 2163 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2164 StringRef Src, 2165 SMDiagnostic &Error) { 2166 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2167 } 2168 2169 bool llvm::parseMachineInstructions(const PerFunctionMIParsingState &PFS, 2170 StringRef Src, SMDiagnostic &Error) { 2171 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2172 } 2173 2174 bool llvm::parseMBBReference(const PerFunctionMIParsingState &PFS, 2175 MachineBasicBlock *&MBB, StringRef Src, 2176 SMDiagnostic &Error) { 2177 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2178 } 2179 2180 bool llvm::parseNamedRegisterReference(const PerFunctionMIParsingState &PFS, 2181 unsigned &Reg, StringRef Src, 2182 SMDiagnostic &Error) { 2183 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2184 } 2185 2186 bool llvm::parseVirtualRegisterReference(const PerFunctionMIParsingState &PFS, 2187 unsigned &Reg, StringRef Src, 2188 SMDiagnostic &Error) { 2189 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Reg); 2190 } 2191 2192 bool llvm::parseStackObjectReference(const PerFunctionMIParsingState &PFS, 2193 int &FI, StringRef Src, 2194 SMDiagnostic &Error) { 2195 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2196 } 2197 2198 bool llvm::parseMDNode(const PerFunctionMIParsingState &PFS, 2199 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2200 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2201 } 2202