1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/DebugLoc.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstrTypes.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/ModuleSlotTracker.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/ValueSymbolTable.h"
56 #include "llvm/MC/LaneBitmask.h"
57 #include "llvm/MC/MCDwarf.h"
58 #include "llvm/MC/MCInstrDesc.h"
59 #include "llvm/MC/MCRegisterInfo.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/LowLevelTypeImpl.h"
65 #include "llvm/Support/MemoryBuffer.h"
66 #include "llvm/Support/SMLoc.h"
67 #include "llvm/Support/SourceMgr.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetIntrinsicInfo.h"
70 #include "llvm/Target/TargetMachine.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cctype>
74 #include <cstddef>
75 #include <cstdint>
76 #include <limits>
77 #include <string>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83     SourceMgr &SM, const SlotMapping &IRSlots,
84     const Name2RegClassMap &Names2RegClasses,
85     const Name2RegBankMap &Names2RegBanks)
86   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87     Names2RegBanks(Names2RegBanks) {
88 }
89 
90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92   if (I.second) {
93     MachineRegisterInfo &MRI = MF.getRegInfo();
94     VRegInfo *Info = new (Allocator) VRegInfo;
95     Info->VReg = MRI.createIncompleteVirtualRegister();
96     I.first->second = Info;
97   }
98   return *I.first->second;
99 }
100 
101 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
102   assert(RegName != "" && "Expected named reg.");
103 
104   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
105   if (I.second) {
106     VRegInfo *Info = new (Allocator) VRegInfo;
107     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
108     I.first->second = Info;
109   }
110   return *I.first->second;
111 }
112 
113 namespace {
114 
115 /// A wrapper struct around the 'MachineOperand' struct that includes a source
116 /// range and other attributes.
117 struct ParsedMachineOperand {
118   MachineOperand Operand;
119   StringRef::iterator Begin;
120   StringRef::iterator End;
121   Optional<unsigned> TiedDefIdx;
122 
123   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
124                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
125       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
126     if (TiedDefIdx)
127       assert(Operand.isReg() && Operand.isUse() &&
128              "Only used register operands can be tied");
129   }
130 };
131 
132 class MIParser {
133   MachineFunction &MF;
134   SMDiagnostic &Error;
135   StringRef Source, CurrentSource;
136   MIToken Token;
137   PerFunctionMIParsingState &PFS;
138   /// Maps from instruction names to op codes.
139   StringMap<unsigned> Names2InstrOpCodes;
140   /// Maps from register names to registers.
141   StringMap<unsigned> Names2Regs;
142   /// Maps from register mask names to register masks.
143   StringMap<const uint32_t *> Names2RegMasks;
144   /// Maps from subregister names to subregister indices.
145   StringMap<unsigned> Names2SubRegIndices;
146   /// Maps from slot numbers to function's unnamed basic blocks.
147   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
148   /// Maps from slot numbers to function's unnamed values.
149   DenseMap<unsigned, const Value *> Slots2Values;
150   /// Maps from target index names to target indices.
151   StringMap<int> Names2TargetIndices;
152   /// Maps from direct target flag names to the direct target flag values.
153   StringMap<unsigned> Names2DirectTargetFlags;
154   /// Maps from direct target flag names to the bitmask target flag values.
155   StringMap<unsigned> Names2BitmaskTargetFlags;
156   /// Maps from MMO target flag names to MMO target flag values.
157   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
158 
159 public:
160   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
161            StringRef Source);
162 
163   /// \p SkipChar gives the number of characters to skip before looking
164   /// for the next token.
165   void lex(unsigned SkipChar = 0);
166 
167   /// Report an error at the current location with the given message.
168   ///
169   /// This function always return true.
170   bool error(const Twine &Msg);
171 
172   /// Report an error at the given location with the given message.
173   ///
174   /// This function always return true.
175   bool error(StringRef::iterator Loc, const Twine &Msg);
176 
177   bool
178   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
179   bool parseBasicBlocks();
180   bool parse(MachineInstr *&MI);
181   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
182   bool parseStandaloneNamedRegister(unsigned &Reg);
183   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
184   bool parseStandaloneRegister(unsigned &Reg);
185   bool parseStandaloneStackObject(int &FI);
186   bool parseStandaloneMDNode(MDNode *&Node);
187 
188   bool
189   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
190   bool parseBasicBlock(MachineBasicBlock &MBB,
191                        MachineBasicBlock *&AddFalthroughFrom);
192   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
193   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
194 
195   bool parseNamedRegister(unsigned &Reg);
196   bool parseVirtualRegister(VRegInfo *&Info);
197   bool parseNamedVirtualRegister(VRegInfo *&Info);
198   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
199   bool parseRegisterFlag(unsigned &Flags);
200   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
201   bool parseSubRegisterIndex(unsigned &SubReg);
202   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
203   bool parseRegisterOperand(MachineOperand &Dest,
204                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
205   bool parseImmediateOperand(MachineOperand &Dest);
206   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
207                        const Constant *&C);
208   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
209   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
210   bool parseTypedImmediateOperand(MachineOperand &Dest);
211   bool parseFPImmediateOperand(MachineOperand &Dest);
212   bool parseMBBReference(MachineBasicBlock *&MBB);
213   bool parseMBBOperand(MachineOperand &Dest);
214   bool parseStackFrameIndex(int &FI);
215   bool parseStackObjectOperand(MachineOperand &Dest);
216   bool parseFixedStackFrameIndex(int &FI);
217   bool parseFixedStackObjectOperand(MachineOperand &Dest);
218   bool parseGlobalValue(GlobalValue *&GV);
219   bool parseGlobalAddressOperand(MachineOperand &Dest);
220   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
221   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
222   bool parseJumpTableIndexOperand(MachineOperand &Dest);
223   bool parseExternalSymbolOperand(MachineOperand &Dest);
224   bool parseMDNode(MDNode *&Node);
225   bool parseDIExpression(MDNode *&Node);
226   bool parseMetadataOperand(MachineOperand &Dest);
227   bool parseCFIOffset(int &Offset);
228   bool parseCFIRegister(unsigned &Reg);
229   bool parseCFIEscapeValues(std::string& Values);
230   bool parseCFIOperand(MachineOperand &Dest);
231   bool parseIRBlock(BasicBlock *&BB, const Function &F);
232   bool parseBlockAddressOperand(MachineOperand &Dest);
233   bool parseIntrinsicOperand(MachineOperand &Dest);
234   bool parsePredicateOperand(MachineOperand &Dest);
235   bool parseTargetIndexOperand(MachineOperand &Dest);
236   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
237   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
238   bool parseMachineOperand(MachineOperand &Dest,
239                            Optional<unsigned> &TiedDefIdx);
240   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
241                                          Optional<unsigned> &TiedDefIdx);
242   bool parseOffset(int64_t &Offset);
243   bool parseAlignment(unsigned &Alignment);
244   bool parseAddrspace(unsigned &Addrspace);
245   bool parseOperandsOffset(MachineOperand &Op);
246   bool parseIRValue(const Value *&V);
247   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
248   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
249   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
250   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
251   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
252   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
253 
254 private:
255   /// Convert the integer literal in the current token into an unsigned integer.
256   ///
257   /// Return true if an error occurred.
258   bool getUnsigned(unsigned &Result);
259 
260   /// Convert the integer literal in the current token into an uint64.
261   ///
262   /// Return true if an error occurred.
263   bool getUint64(uint64_t &Result);
264 
265   /// Convert the hexadecimal literal in the current token into an unsigned
266   ///  APInt with a minimum bitwidth required to represent the value.
267   ///
268   /// Return true if the literal does not represent an integer value.
269   bool getHexUint(APInt &Result);
270 
271   /// If the current token is of the given kind, consume it and return false.
272   /// Otherwise report an error and return true.
273   bool expectAndConsume(MIToken::TokenKind TokenKind);
274 
275   /// If the current token is of the given kind, consume it and return true.
276   /// Otherwise return false.
277   bool consumeIfPresent(MIToken::TokenKind TokenKind);
278 
279   void initNames2InstrOpCodes();
280 
281   /// Try to convert an instruction name to an opcode. Return true if the
282   /// instruction name is invalid.
283   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
284 
285   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
286 
287   bool assignRegisterTies(MachineInstr &MI,
288                           ArrayRef<ParsedMachineOperand> Operands);
289 
290   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
291                               const MCInstrDesc &MCID);
292 
293   void initNames2Regs();
294 
295   /// Try to convert a register name to a register number. Return true if the
296   /// register name is invalid.
297   bool getRegisterByName(StringRef RegName, unsigned &Reg);
298 
299   void initNames2RegMasks();
300 
301   /// Check if the given identifier is a name of a register mask.
302   ///
303   /// Return null if the identifier isn't a register mask.
304   const uint32_t *getRegMask(StringRef Identifier);
305 
306   void initNames2SubRegIndices();
307 
308   /// Check if the given identifier is a name of a subregister index.
309   ///
310   /// Return 0 if the name isn't a subregister index class.
311   unsigned getSubRegIndex(StringRef Name);
312 
313   const BasicBlock *getIRBlock(unsigned Slot);
314   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
315 
316   const Value *getIRValue(unsigned Slot);
317 
318   void initNames2TargetIndices();
319 
320   /// Try to convert a name of target index to the corresponding target index.
321   ///
322   /// Return true if the name isn't a name of a target index.
323   bool getTargetIndex(StringRef Name, int &Index);
324 
325   void initNames2DirectTargetFlags();
326 
327   /// Try to convert a name of a direct target flag to the corresponding
328   /// target flag.
329   ///
330   /// Return true if the name isn't a name of a direct flag.
331   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
332 
333   void initNames2BitmaskTargetFlags();
334 
335   /// Try to convert a name of a bitmask target flag to the corresponding
336   /// target flag.
337   ///
338   /// Return true if the name isn't a name of a bitmask target flag.
339   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
340 
341   void initNames2MMOTargetFlags();
342 
343   /// Try to convert a name of a MachineMemOperand target flag to the
344   /// corresponding target flag.
345   ///
346   /// Return true if the name isn't a name of a target MMO flag.
347   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
348 
349   /// parseStringConstant
350   ///   ::= StringConstant
351   bool parseStringConstant(std::string &Result);
352 };
353 
354 } // end anonymous namespace
355 
356 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
357                    StringRef Source)
358     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
359 {}
360 
361 void MIParser::lex(unsigned SkipChar) {
362   CurrentSource = lexMIToken(
363       CurrentSource.data() + SkipChar, Token,
364       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
365 }
366 
367 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
368 
369 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
370   const SourceMgr &SM = *PFS.SM;
371   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
372   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
373   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
374     // Create an ordinary diagnostic when the source manager's buffer is the
375     // source string.
376     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
377     return true;
378   }
379   // Create a diagnostic for a YAML string literal.
380   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
381                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
382                        Source, None, None);
383   return true;
384 }
385 
386 static const char *toString(MIToken::TokenKind TokenKind) {
387   switch (TokenKind) {
388   case MIToken::comma:
389     return "','";
390   case MIToken::equal:
391     return "'='";
392   case MIToken::colon:
393     return "':'";
394   case MIToken::lparen:
395     return "'('";
396   case MIToken::rparen:
397     return "')'";
398   default:
399     return "<unknown token>";
400   }
401 }
402 
403 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
404   if (Token.isNot(TokenKind))
405     return error(Twine("expected ") + toString(TokenKind));
406   lex();
407   return false;
408 }
409 
410 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
411   if (Token.isNot(TokenKind))
412     return false;
413   lex();
414   return true;
415 }
416 
417 bool MIParser::parseBasicBlockDefinition(
418     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
419   assert(Token.is(MIToken::MachineBasicBlockLabel));
420   unsigned ID = 0;
421   if (getUnsigned(ID))
422     return true;
423   auto Loc = Token.location();
424   auto Name = Token.stringValue();
425   lex();
426   bool HasAddressTaken = false;
427   bool IsLandingPad = false;
428   unsigned Alignment = 0;
429   BasicBlock *BB = nullptr;
430   if (consumeIfPresent(MIToken::lparen)) {
431     do {
432       // TODO: Report an error when multiple same attributes are specified.
433       switch (Token.kind()) {
434       case MIToken::kw_address_taken:
435         HasAddressTaken = true;
436         lex();
437         break;
438       case MIToken::kw_landing_pad:
439         IsLandingPad = true;
440         lex();
441         break;
442       case MIToken::kw_align:
443         if (parseAlignment(Alignment))
444           return true;
445         break;
446       case MIToken::IRBlock:
447         // TODO: Report an error when both name and ir block are specified.
448         if (parseIRBlock(BB, MF.getFunction()))
449           return true;
450         lex();
451         break;
452       default:
453         break;
454       }
455     } while (consumeIfPresent(MIToken::comma));
456     if (expectAndConsume(MIToken::rparen))
457       return true;
458   }
459   if (expectAndConsume(MIToken::colon))
460     return true;
461 
462   if (!Name.empty()) {
463     BB = dyn_cast_or_null<BasicBlock>(
464         MF.getFunction().getValueSymbolTable()->lookup(Name));
465     if (!BB)
466       return error(Loc, Twine("basic block '") + Name +
467                             "' is not defined in the function '" +
468                             MF.getName() + "'");
469   }
470   auto *MBB = MF.CreateMachineBasicBlock(BB);
471   MF.insert(MF.end(), MBB);
472   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
473   if (!WasInserted)
474     return error(Loc, Twine("redefinition of machine basic block with id #") +
475                           Twine(ID));
476   if (Alignment)
477     MBB->setAlignment(Alignment);
478   if (HasAddressTaken)
479     MBB->setHasAddressTaken();
480   MBB->setIsEHPad(IsLandingPad);
481   return false;
482 }
483 
484 bool MIParser::parseBasicBlockDefinitions(
485     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
486   lex();
487   // Skip until the first machine basic block.
488   while (Token.is(MIToken::Newline))
489     lex();
490   if (Token.isErrorOrEOF())
491     return Token.isError();
492   if (Token.isNot(MIToken::MachineBasicBlockLabel))
493     return error("expected a basic block definition before instructions");
494   unsigned BraceDepth = 0;
495   do {
496     if (parseBasicBlockDefinition(MBBSlots))
497       return true;
498     bool IsAfterNewline = false;
499     // Skip until the next machine basic block.
500     while (true) {
501       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
502           Token.isErrorOrEOF())
503         break;
504       else if (Token.is(MIToken::MachineBasicBlockLabel))
505         return error("basic block definition should be located at the start of "
506                      "the line");
507       else if (consumeIfPresent(MIToken::Newline)) {
508         IsAfterNewline = true;
509         continue;
510       }
511       IsAfterNewline = false;
512       if (Token.is(MIToken::lbrace))
513         ++BraceDepth;
514       if (Token.is(MIToken::rbrace)) {
515         if (!BraceDepth)
516           return error("extraneous closing brace ('}')");
517         --BraceDepth;
518       }
519       lex();
520     }
521     // Verify that we closed all of the '{' at the end of a file or a block.
522     if (!Token.isError() && BraceDepth)
523       return error("expected '}'"); // FIXME: Report a note that shows '{'.
524   } while (!Token.isErrorOrEOF());
525   return Token.isError();
526 }
527 
528 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
529   assert(Token.is(MIToken::kw_liveins));
530   lex();
531   if (expectAndConsume(MIToken::colon))
532     return true;
533   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
534     return false;
535   do {
536     if (Token.isNot(MIToken::NamedRegister))
537       return error("expected a named register");
538     unsigned Reg = 0;
539     if (parseNamedRegister(Reg))
540       return true;
541     lex();
542     LaneBitmask Mask = LaneBitmask::getAll();
543     if (consumeIfPresent(MIToken::colon)) {
544       // Parse lane mask.
545       if (Token.isNot(MIToken::IntegerLiteral) &&
546           Token.isNot(MIToken::HexLiteral))
547         return error("expected a lane mask");
548       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
549                     "Use correct get-function for lane mask");
550       LaneBitmask::Type V;
551       if (getUnsigned(V))
552         return error("invalid lane mask value");
553       Mask = LaneBitmask(V);
554       lex();
555     }
556     MBB.addLiveIn(Reg, Mask);
557   } while (consumeIfPresent(MIToken::comma));
558   return false;
559 }
560 
561 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
562   assert(Token.is(MIToken::kw_successors));
563   lex();
564   if (expectAndConsume(MIToken::colon))
565     return true;
566   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
567     return false;
568   do {
569     if (Token.isNot(MIToken::MachineBasicBlock))
570       return error("expected a machine basic block reference");
571     MachineBasicBlock *SuccMBB = nullptr;
572     if (parseMBBReference(SuccMBB))
573       return true;
574     lex();
575     unsigned Weight = 0;
576     if (consumeIfPresent(MIToken::lparen)) {
577       if (Token.isNot(MIToken::IntegerLiteral) &&
578           Token.isNot(MIToken::HexLiteral))
579         return error("expected an integer literal after '('");
580       if (getUnsigned(Weight))
581         return true;
582       lex();
583       if (expectAndConsume(MIToken::rparen))
584         return true;
585     }
586     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
587   } while (consumeIfPresent(MIToken::comma));
588   MBB.normalizeSuccProbs();
589   return false;
590 }
591 
592 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
593                                MachineBasicBlock *&AddFalthroughFrom) {
594   // Skip the definition.
595   assert(Token.is(MIToken::MachineBasicBlockLabel));
596   lex();
597   if (consumeIfPresent(MIToken::lparen)) {
598     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
599       lex();
600     consumeIfPresent(MIToken::rparen);
601   }
602   consumeIfPresent(MIToken::colon);
603 
604   // Parse the liveins and successors.
605   // N.B: Multiple lists of successors and liveins are allowed and they're
606   // merged into one.
607   // Example:
608   //   liveins: %edi
609   //   liveins: %esi
610   //
611   // is equivalent to
612   //   liveins: %edi, %esi
613   bool ExplicitSuccessors = false;
614   while (true) {
615     if (Token.is(MIToken::kw_successors)) {
616       if (parseBasicBlockSuccessors(MBB))
617         return true;
618       ExplicitSuccessors = true;
619     } else if (Token.is(MIToken::kw_liveins)) {
620       if (parseBasicBlockLiveins(MBB))
621         return true;
622     } else if (consumeIfPresent(MIToken::Newline)) {
623       continue;
624     } else
625       break;
626     if (!Token.isNewlineOrEOF())
627       return error("expected line break at the end of a list");
628     lex();
629   }
630 
631   // Parse the instructions.
632   bool IsInBundle = false;
633   MachineInstr *PrevMI = nullptr;
634   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
635          !Token.is(MIToken::Eof)) {
636     if (consumeIfPresent(MIToken::Newline))
637       continue;
638     if (consumeIfPresent(MIToken::rbrace)) {
639       // The first parsing pass should verify that all closing '}' have an
640       // opening '{'.
641       assert(IsInBundle);
642       IsInBundle = false;
643       continue;
644     }
645     MachineInstr *MI = nullptr;
646     if (parse(MI))
647       return true;
648     MBB.insert(MBB.end(), MI);
649     if (IsInBundle) {
650       PrevMI->setFlag(MachineInstr::BundledSucc);
651       MI->setFlag(MachineInstr::BundledPred);
652     }
653     PrevMI = MI;
654     if (Token.is(MIToken::lbrace)) {
655       if (IsInBundle)
656         return error("nested instruction bundles are not allowed");
657       lex();
658       // This instruction is the start of the bundle.
659       MI->setFlag(MachineInstr::BundledSucc);
660       IsInBundle = true;
661       if (!Token.is(MIToken::Newline))
662         // The next instruction can be on the same line.
663         continue;
664     }
665     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
666     lex();
667   }
668 
669   // Construct successor list by searching for basic block machine operands.
670   if (!ExplicitSuccessors) {
671     SmallVector<MachineBasicBlock*,4> Successors;
672     bool IsFallthrough;
673     guessSuccessors(MBB, Successors, IsFallthrough);
674     for (MachineBasicBlock *Succ : Successors)
675       MBB.addSuccessor(Succ);
676 
677     if (IsFallthrough) {
678       AddFalthroughFrom = &MBB;
679     } else {
680       MBB.normalizeSuccProbs();
681     }
682   }
683 
684   return false;
685 }
686 
687 bool MIParser::parseBasicBlocks() {
688   lex();
689   // Skip until the first machine basic block.
690   while (Token.is(MIToken::Newline))
691     lex();
692   if (Token.isErrorOrEOF())
693     return Token.isError();
694   // The first parsing pass should have verified that this token is a MBB label
695   // in the 'parseBasicBlockDefinitions' method.
696   assert(Token.is(MIToken::MachineBasicBlockLabel));
697   MachineBasicBlock *AddFalthroughFrom = nullptr;
698   do {
699     MachineBasicBlock *MBB = nullptr;
700     if (parseMBBReference(MBB))
701       return true;
702     if (AddFalthroughFrom) {
703       if (!AddFalthroughFrom->isSuccessor(MBB))
704         AddFalthroughFrom->addSuccessor(MBB);
705       AddFalthroughFrom->normalizeSuccProbs();
706       AddFalthroughFrom = nullptr;
707     }
708     if (parseBasicBlock(*MBB, AddFalthroughFrom))
709       return true;
710     // The method 'parseBasicBlock' should parse the whole block until the next
711     // block or the end of file.
712     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
713   } while (Token.isNot(MIToken::Eof));
714   return false;
715 }
716 
717 bool MIParser::parse(MachineInstr *&MI) {
718   // Parse any register operands before '='
719   MachineOperand MO = MachineOperand::CreateImm(0);
720   SmallVector<ParsedMachineOperand, 8> Operands;
721   while (Token.isRegister() || Token.isRegisterFlag()) {
722     auto Loc = Token.location();
723     Optional<unsigned> TiedDefIdx;
724     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
725       return true;
726     Operands.push_back(
727         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
728     if (Token.isNot(MIToken::comma))
729       break;
730     lex();
731   }
732   if (!Operands.empty() && expectAndConsume(MIToken::equal))
733     return true;
734 
735   unsigned OpCode, Flags = 0;
736   if (Token.isError() || parseInstruction(OpCode, Flags))
737     return true;
738 
739   // Parse the remaining machine operands.
740   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
741          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
742     auto Loc = Token.location();
743     Optional<unsigned> TiedDefIdx;
744     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
745       return true;
746     Operands.push_back(
747         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
748     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
749         Token.is(MIToken::lbrace))
750       break;
751     if (Token.isNot(MIToken::comma))
752       return error("expected ',' before the next machine operand");
753     lex();
754   }
755 
756   DebugLoc DebugLocation;
757   if (Token.is(MIToken::kw_debug_location)) {
758     lex();
759     if (Token.isNot(MIToken::exclaim))
760       return error("expected a metadata node after 'debug-location'");
761     MDNode *Node = nullptr;
762     if (parseMDNode(Node))
763       return true;
764     DebugLocation = DebugLoc(Node);
765   }
766 
767   // Parse the machine memory operands.
768   SmallVector<MachineMemOperand *, 2> MemOperands;
769   if (Token.is(MIToken::coloncolon)) {
770     lex();
771     while (!Token.isNewlineOrEOF()) {
772       MachineMemOperand *MemOp = nullptr;
773       if (parseMachineMemoryOperand(MemOp))
774         return true;
775       MemOperands.push_back(MemOp);
776       if (Token.isNewlineOrEOF())
777         break;
778       if (Token.isNot(MIToken::comma))
779         return error("expected ',' before the next machine memory operand");
780       lex();
781     }
782   }
783 
784   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
785   if (!MCID.isVariadic()) {
786     // FIXME: Move the implicit operand verification to the machine verifier.
787     if (verifyImplicitOperands(Operands, MCID))
788       return true;
789   }
790 
791   // TODO: Check for extraneous machine operands.
792   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
793   MI->setFlags(Flags);
794   for (const auto &Operand : Operands)
795     MI->addOperand(MF, Operand.Operand);
796   if (assignRegisterTies(*MI, Operands))
797     return true;
798   if (MemOperands.empty())
799     return false;
800   MachineInstr::mmo_iterator MemRefs =
801       MF.allocateMemRefsArray(MemOperands.size());
802   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
803   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
804   return false;
805 }
806 
807 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
808   lex();
809   if (Token.isNot(MIToken::MachineBasicBlock))
810     return error("expected a machine basic block reference");
811   if (parseMBBReference(MBB))
812     return true;
813   lex();
814   if (Token.isNot(MIToken::Eof))
815     return error(
816         "expected end of string after the machine basic block reference");
817   return false;
818 }
819 
820 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
821   lex();
822   if (Token.isNot(MIToken::NamedRegister))
823     return error("expected a named register");
824   if (parseNamedRegister(Reg))
825     return true;
826   lex();
827   if (Token.isNot(MIToken::Eof))
828     return error("expected end of string after the register reference");
829   return false;
830 }
831 
832 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
833   lex();
834   if (Token.isNot(MIToken::VirtualRegister))
835     return error("expected a virtual register");
836   if (parseVirtualRegister(Info))
837     return true;
838   lex();
839   if (Token.isNot(MIToken::Eof))
840     return error("expected end of string after the register reference");
841   return false;
842 }
843 
844 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
845   lex();
846   if (Token.isNot(MIToken::NamedRegister) &&
847       Token.isNot(MIToken::VirtualRegister))
848     return error("expected either a named or virtual register");
849 
850   VRegInfo *Info;
851   if (parseRegister(Reg, Info))
852     return true;
853 
854   lex();
855   if (Token.isNot(MIToken::Eof))
856     return error("expected end of string after the register reference");
857   return false;
858 }
859 
860 bool MIParser::parseStandaloneStackObject(int &FI) {
861   lex();
862   if (Token.isNot(MIToken::StackObject))
863     return error("expected a stack object");
864   if (parseStackFrameIndex(FI))
865     return true;
866   if (Token.isNot(MIToken::Eof))
867     return error("expected end of string after the stack object reference");
868   return false;
869 }
870 
871 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
872   lex();
873   if (Token.is(MIToken::exclaim)) {
874     if (parseMDNode(Node))
875       return true;
876   } else if (Token.is(MIToken::md_diexpr)) {
877     if (parseDIExpression(Node))
878       return true;
879   } else
880     return error("expected a metadata node");
881   if (Token.isNot(MIToken::Eof))
882     return error("expected end of string after the metadata node");
883   return false;
884 }
885 
886 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
887   assert(MO.isImplicit());
888   return MO.isDef() ? "implicit-def" : "implicit";
889 }
890 
891 static std::string getRegisterName(const TargetRegisterInfo *TRI,
892                                    unsigned Reg) {
893   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
894   return StringRef(TRI->getName(Reg)).lower();
895 }
896 
897 /// Return true if the parsed machine operands contain a given machine operand.
898 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
899                                 ArrayRef<ParsedMachineOperand> Operands) {
900   for (const auto &I : Operands) {
901     if (ImplicitOperand.isIdenticalTo(I.Operand))
902       return true;
903   }
904   return false;
905 }
906 
907 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
908                                       const MCInstrDesc &MCID) {
909   if (MCID.isCall())
910     // We can't verify call instructions as they can contain arbitrary implicit
911     // register and register mask operands.
912     return false;
913 
914   // Gather all the expected implicit operands.
915   SmallVector<MachineOperand, 4> ImplicitOperands;
916   if (MCID.ImplicitDefs)
917     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
918       ImplicitOperands.push_back(
919           MachineOperand::CreateReg(*ImpDefs, true, true));
920   if (MCID.ImplicitUses)
921     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
922       ImplicitOperands.push_back(
923           MachineOperand::CreateReg(*ImpUses, false, true));
924 
925   const auto *TRI = MF.getSubtarget().getRegisterInfo();
926   assert(TRI && "Expected target register info");
927   for (const auto &I : ImplicitOperands) {
928     if (isImplicitOperandIn(I, Operands))
929       continue;
930     return error(Operands.empty() ? Token.location() : Operands.back().End,
931                  Twine("missing implicit register operand '") +
932                      printImplicitRegisterFlag(I) + " %" +
933                      getRegisterName(TRI, I.getReg()) + "'");
934   }
935   return false;
936 }
937 
938 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
939   // Allow both:
940   // * frame-setup frame-destroy OPCODE
941   // * frame-destroy frame-setup OPCODE
942   while (Token.is(MIToken::kw_frame_setup) ||
943          Token.is(MIToken::kw_frame_destroy)) {
944     Flags |= Token.is(MIToken::kw_frame_setup) ? MachineInstr::FrameSetup
945                                                : MachineInstr::FrameDestroy;
946     lex();
947   }
948   if (Token.isNot(MIToken::Identifier))
949     return error("expected a machine instruction");
950   StringRef InstrName = Token.stringValue();
951   if (parseInstrName(InstrName, OpCode))
952     return error(Twine("unknown machine instruction name '") + InstrName + "'");
953   lex();
954   return false;
955 }
956 
957 bool MIParser::parseNamedRegister(unsigned &Reg) {
958   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
959   StringRef Name = Token.stringValue();
960   if (getRegisterByName(Name, Reg))
961     return error(Twine("unknown register name '") + Name + "'");
962   return false;
963 }
964 
965 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
966   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
967   StringRef Name = Token.stringValue();
968   // TODO: Check that the VReg name is not the same as a physical register name.
969   //       If it is, then print a warning (when warnings are implemented).
970   Info = &PFS.getVRegInfoNamed(Name);
971   return false;
972 }
973 
974 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
975   if (Token.is(MIToken::NamedVirtualRegister))
976     return parseNamedVirtualRegister(Info);
977   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
978   unsigned ID;
979   if (getUnsigned(ID))
980     return true;
981   Info = &PFS.getVRegInfo(ID);
982   return false;
983 }
984 
985 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
986   switch (Token.kind()) {
987   case MIToken::underscore:
988     Reg = 0;
989     return false;
990   case MIToken::NamedRegister:
991     return parseNamedRegister(Reg);
992   case MIToken::NamedVirtualRegister:
993   case MIToken::VirtualRegister:
994     if (parseVirtualRegister(Info))
995       return true;
996     Reg = Info->VReg;
997     return false;
998   // TODO: Parse other register kinds.
999   default:
1000     llvm_unreachable("The current token should be a register");
1001   }
1002 }
1003 
1004 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1005   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1006     return error("expected '_', register class, or register bank name");
1007   StringRef::iterator Loc = Token.location();
1008   StringRef Name = Token.stringValue();
1009 
1010   // Was it a register class?
1011   auto RCNameI = PFS.Names2RegClasses.find(Name);
1012   if (RCNameI != PFS.Names2RegClasses.end()) {
1013     lex();
1014     const TargetRegisterClass &RC = *RCNameI->getValue();
1015 
1016     switch (RegInfo.Kind) {
1017     case VRegInfo::UNKNOWN:
1018     case VRegInfo::NORMAL:
1019       RegInfo.Kind = VRegInfo::NORMAL;
1020       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
1021         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1022         return error(Loc, Twine("conflicting register classes, previously: ") +
1023                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1024       }
1025       RegInfo.D.RC = &RC;
1026       RegInfo.Explicit = true;
1027       return false;
1028 
1029     case VRegInfo::GENERIC:
1030     case VRegInfo::REGBANK:
1031       return error(Loc, "register class specification on generic register");
1032     }
1033     llvm_unreachable("Unexpected register kind");
1034   }
1035 
1036   // Should be a register bank or a generic register.
1037   const RegisterBank *RegBank = nullptr;
1038   if (Name != "_") {
1039     auto RBNameI = PFS.Names2RegBanks.find(Name);
1040     if (RBNameI == PFS.Names2RegBanks.end())
1041       return error(Loc, "expected '_', register class, or register bank name");
1042     RegBank = RBNameI->getValue();
1043   }
1044 
1045   lex();
1046 
1047   switch (RegInfo.Kind) {
1048   case VRegInfo::UNKNOWN:
1049   case VRegInfo::GENERIC:
1050   case VRegInfo::REGBANK:
1051     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1052     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1053       return error(Loc, "conflicting generic register banks");
1054     RegInfo.D.RegBank = RegBank;
1055     RegInfo.Explicit = true;
1056     return false;
1057 
1058   case VRegInfo::NORMAL:
1059     return error(Loc, "register bank specification on normal register");
1060   }
1061   llvm_unreachable("Unexpected register kind");
1062 }
1063 
1064 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1065   const unsigned OldFlags = Flags;
1066   switch (Token.kind()) {
1067   case MIToken::kw_implicit:
1068     Flags |= RegState::Implicit;
1069     break;
1070   case MIToken::kw_implicit_define:
1071     Flags |= RegState::ImplicitDefine;
1072     break;
1073   case MIToken::kw_def:
1074     Flags |= RegState::Define;
1075     break;
1076   case MIToken::kw_dead:
1077     Flags |= RegState::Dead;
1078     break;
1079   case MIToken::kw_killed:
1080     Flags |= RegState::Kill;
1081     break;
1082   case MIToken::kw_undef:
1083     Flags |= RegState::Undef;
1084     break;
1085   case MIToken::kw_internal:
1086     Flags |= RegState::InternalRead;
1087     break;
1088   case MIToken::kw_early_clobber:
1089     Flags |= RegState::EarlyClobber;
1090     break;
1091   case MIToken::kw_debug_use:
1092     Flags |= RegState::Debug;
1093     break;
1094   case MIToken::kw_renamable:
1095     Flags |= RegState::Renamable;
1096     break;
1097   default:
1098     llvm_unreachable("The current token should be a register flag");
1099   }
1100   if (OldFlags == Flags)
1101     // We know that the same flag is specified more than once when the flags
1102     // weren't modified.
1103     return error("duplicate '" + Token.stringValue() + "' register flag");
1104   lex();
1105   return false;
1106 }
1107 
1108 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1109   assert(Token.is(MIToken::dot));
1110   lex();
1111   if (Token.isNot(MIToken::Identifier))
1112     return error("expected a subregister index after '.'");
1113   auto Name = Token.stringValue();
1114   SubReg = getSubRegIndex(Name);
1115   if (!SubReg)
1116     return error(Twine("use of unknown subregister index '") + Name + "'");
1117   lex();
1118   return false;
1119 }
1120 
1121 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1122   if (!consumeIfPresent(MIToken::kw_tied_def))
1123     return true;
1124   if (Token.isNot(MIToken::IntegerLiteral))
1125     return error("expected an integer literal after 'tied-def'");
1126   if (getUnsigned(TiedDefIdx))
1127     return true;
1128   lex();
1129   if (expectAndConsume(MIToken::rparen))
1130     return true;
1131   return false;
1132 }
1133 
1134 bool MIParser::assignRegisterTies(MachineInstr &MI,
1135                                   ArrayRef<ParsedMachineOperand> Operands) {
1136   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1137   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1138     if (!Operands[I].TiedDefIdx)
1139       continue;
1140     // The parser ensures that this operand is a register use, so we just have
1141     // to check the tied-def operand.
1142     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1143     if (DefIdx >= E)
1144       return error(Operands[I].Begin,
1145                    Twine("use of invalid tied-def operand index '" +
1146                          Twine(DefIdx) + "'; instruction has only ") +
1147                        Twine(E) + " operands");
1148     const auto &DefOperand = Operands[DefIdx].Operand;
1149     if (!DefOperand.isReg() || !DefOperand.isDef())
1150       // FIXME: add note with the def operand.
1151       return error(Operands[I].Begin,
1152                    Twine("use of invalid tied-def operand index '") +
1153                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1154                        " isn't a defined register");
1155     // Check that the tied-def operand wasn't tied elsewhere.
1156     for (const auto &TiedPair : TiedRegisterPairs) {
1157       if (TiedPair.first == DefIdx)
1158         return error(Operands[I].Begin,
1159                      Twine("the tied-def operand #") + Twine(DefIdx) +
1160                          " is already tied with another register operand");
1161     }
1162     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1163   }
1164   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1165   // indices must be less than tied max.
1166   for (const auto &TiedPair : TiedRegisterPairs)
1167     MI.tieOperands(TiedPair.first, TiedPair.second);
1168   return false;
1169 }
1170 
1171 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1172                                     Optional<unsigned> &TiedDefIdx,
1173                                     bool IsDef) {
1174   unsigned Flags = IsDef ? RegState::Define : 0;
1175   while (Token.isRegisterFlag()) {
1176     if (parseRegisterFlag(Flags))
1177       return true;
1178   }
1179   if (!Token.isRegister())
1180     return error("expected a register after register flags");
1181   unsigned Reg;
1182   VRegInfo *RegInfo;
1183   if (parseRegister(Reg, RegInfo))
1184     return true;
1185   lex();
1186   unsigned SubReg = 0;
1187   if (Token.is(MIToken::dot)) {
1188     if (parseSubRegisterIndex(SubReg))
1189       return true;
1190     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1191       return error("subregister index expects a virtual register");
1192   }
1193   if (Token.is(MIToken::colon)) {
1194     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1195       return error("register class specification expects a virtual register");
1196     lex();
1197     if (parseRegisterClassOrBank(*RegInfo))
1198         return true;
1199   }
1200   MachineRegisterInfo &MRI = MF.getRegInfo();
1201   if ((Flags & RegState::Define) == 0) {
1202     if (consumeIfPresent(MIToken::lparen)) {
1203       unsigned Idx;
1204       if (!parseRegisterTiedDefIndex(Idx))
1205         TiedDefIdx = Idx;
1206       else {
1207         // Try a redundant low-level type.
1208         LLT Ty;
1209         if (parseLowLevelType(Token.location(), Ty))
1210           return error("expected tied-def or low-level type after '('");
1211 
1212         if (expectAndConsume(MIToken::rparen))
1213           return true;
1214 
1215         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1216           return error("inconsistent type for generic virtual register");
1217 
1218         MRI.setType(Reg, Ty);
1219       }
1220     }
1221   } else if (consumeIfPresent(MIToken::lparen)) {
1222     // Virtual registers may have a tpe with GlobalISel.
1223     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1224       return error("unexpected type on physical register");
1225 
1226     LLT Ty;
1227     if (parseLowLevelType(Token.location(), Ty))
1228       return true;
1229 
1230     if (expectAndConsume(MIToken::rparen))
1231       return true;
1232 
1233     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1234       return error("inconsistent type for generic virtual register");
1235 
1236     MRI.setType(Reg, Ty);
1237   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1238     // Generic virtual registers must have a type.
1239     // If we end up here this means the type hasn't been specified and
1240     // this is bad!
1241     if (RegInfo->Kind == VRegInfo::GENERIC ||
1242         RegInfo->Kind == VRegInfo::REGBANK)
1243       return error("generic virtual registers must have a type");
1244   }
1245   Dest = MachineOperand::CreateReg(
1246       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1247       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1248       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1249       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1250 
1251   return false;
1252 }
1253 
1254 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1255   assert(Token.is(MIToken::IntegerLiteral));
1256   const APSInt &Int = Token.integerValue();
1257   if (Int.getMinSignedBits() > 64)
1258     return error("integer literal is too large to be an immediate operand");
1259   Dest = MachineOperand::CreateImm(Int.getExtValue());
1260   lex();
1261   return false;
1262 }
1263 
1264 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1265                                const Constant *&C) {
1266   auto Source = StringValue.str(); // The source has to be null terminated.
1267   SMDiagnostic Err;
1268   C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1269                          &PFS.IRSlots);
1270   if (!C)
1271     return error(Loc + Err.getColumnNo(), Err.getMessage());
1272   return false;
1273 }
1274 
1275 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1276   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1277     return true;
1278   lex();
1279   return false;
1280 }
1281 
1282 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1283   if (Token.is(MIToken::ScalarType)) {
1284     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1285     lex();
1286     return false;
1287   } else if (Token.is(MIToken::PointerType)) {
1288     const DataLayout &DL = MF.getDataLayout();
1289     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1290     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1291     lex();
1292     return false;
1293   }
1294 
1295   // Now we're looking for a vector.
1296   if (Token.isNot(MIToken::less))
1297     return error(Loc,
1298                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1299 
1300   lex();
1301 
1302   if (Token.isNot(MIToken::IntegerLiteral))
1303     return error(Loc, "expected <N x sM> for vctor type");
1304   uint64_t NumElements = Token.integerValue().getZExtValue();
1305   lex();
1306 
1307   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1308     return error(Loc, "expected '<N x sM>' for vector type");
1309   lex();
1310 
1311   if (Token.isNot(MIToken::ScalarType))
1312     return error(Loc, "expected '<N x sM>' for vector type");
1313   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1314   lex();
1315 
1316   if (Token.isNot(MIToken::greater))
1317     return error(Loc, "expected '<N x sM>' for vector type");
1318   lex();
1319 
1320   Ty = LLT::vector(NumElements, ScalarSize);
1321   return false;
1322 }
1323 
1324 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1325   assert(Token.is(MIToken::IntegerType));
1326   auto Loc = Token.location();
1327   lex();
1328   if (Token.isNot(MIToken::IntegerLiteral))
1329     return error("expected an integer literal");
1330   const Constant *C = nullptr;
1331   if (parseIRConstant(Loc, C))
1332     return true;
1333   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1334   return false;
1335 }
1336 
1337 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1338   auto Loc = Token.location();
1339   lex();
1340   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1341       Token.isNot(MIToken::HexLiteral))
1342     return error("expected a floating point literal");
1343   const Constant *C = nullptr;
1344   if (parseIRConstant(Loc, C))
1345     return true;
1346   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1347   return false;
1348 }
1349 
1350 bool MIParser::getUnsigned(unsigned &Result) {
1351   if (Token.hasIntegerValue()) {
1352     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1353     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1354     if (Val64 == Limit)
1355       return error("expected 32-bit integer (too large)");
1356     Result = Val64;
1357     return false;
1358   }
1359   if (Token.is(MIToken::HexLiteral)) {
1360     APInt A;
1361     if (getHexUint(A))
1362       return true;
1363     if (A.getBitWidth() > 32)
1364       return error("expected 32-bit integer (too large)");
1365     Result = A.getZExtValue();
1366     return false;
1367   }
1368   return true;
1369 }
1370 
1371 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1372   assert(Token.is(MIToken::MachineBasicBlock) ||
1373          Token.is(MIToken::MachineBasicBlockLabel));
1374   unsigned Number;
1375   if (getUnsigned(Number))
1376     return true;
1377   auto MBBInfo = PFS.MBBSlots.find(Number);
1378   if (MBBInfo == PFS.MBBSlots.end())
1379     return error(Twine("use of undefined machine basic block #") +
1380                  Twine(Number));
1381   MBB = MBBInfo->second;
1382   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1383   // we drop the <irname> from the bb.<id>.<irname> format.
1384   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1385     return error(Twine("the name of machine basic block #") + Twine(Number) +
1386                  " isn't '" + Token.stringValue() + "'");
1387   return false;
1388 }
1389 
1390 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1391   MachineBasicBlock *MBB;
1392   if (parseMBBReference(MBB))
1393     return true;
1394   Dest = MachineOperand::CreateMBB(MBB);
1395   lex();
1396   return false;
1397 }
1398 
1399 bool MIParser::parseStackFrameIndex(int &FI) {
1400   assert(Token.is(MIToken::StackObject));
1401   unsigned ID;
1402   if (getUnsigned(ID))
1403     return true;
1404   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1405   if (ObjectInfo == PFS.StackObjectSlots.end())
1406     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1407                  "'");
1408   StringRef Name;
1409   if (const auto *Alloca =
1410           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1411     Name = Alloca->getName();
1412   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1413     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1414                  "' isn't '" + Token.stringValue() + "'");
1415   lex();
1416   FI = ObjectInfo->second;
1417   return false;
1418 }
1419 
1420 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1421   int FI;
1422   if (parseStackFrameIndex(FI))
1423     return true;
1424   Dest = MachineOperand::CreateFI(FI);
1425   return false;
1426 }
1427 
1428 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1429   assert(Token.is(MIToken::FixedStackObject));
1430   unsigned ID;
1431   if (getUnsigned(ID))
1432     return true;
1433   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1434   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1435     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1436                  Twine(ID) + "'");
1437   lex();
1438   FI = ObjectInfo->second;
1439   return false;
1440 }
1441 
1442 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1443   int FI;
1444   if (parseFixedStackFrameIndex(FI))
1445     return true;
1446   Dest = MachineOperand::CreateFI(FI);
1447   return false;
1448 }
1449 
1450 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1451   switch (Token.kind()) {
1452   case MIToken::NamedGlobalValue: {
1453     const Module *M = MF.getFunction().getParent();
1454     GV = M->getNamedValue(Token.stringValue());
1455     if (!GV)
1456       return error(Twine("use of undefined global value '") + Token.range() +
1457                    "'");
1458     break;
1459   }
1460   case MIToken::GlobalValue: {
1461     unsigned GVIdx;
1462     if (getUnsigned(GVIdx))
1463       return true;
1464     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1465       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1466                    "'");
1467     GV = PFS.IRSlots.GlobalValues[GVIdx];
1468     break;
1469   }
1470   default:
1471     llvm_unreachable("The current token should be a global value");
1472   }
1473   return false;
1474 }
1475 
1476 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1477   GlobalValue *GV = nullptr;
1478   if (parseGlobalValue(GV))
1479     return true;
1480   lex();
1481   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1482   if (parseOperandsOffset(Dest))
1483     return true;
1484   return false;
1485 }
1486 
1487 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1488   assert(Token.is(MIToken::ConstantPoolItem));
1489   unsigned ID;
1490   if (getUnsigned(ID))
1491     return true;
1492   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1493   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1494     return error("use of undefined constant '%const." + Twine(ID) + "'");
1495   lex();
1496   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1497   if (parseOperandsOffset(Dest))
1498     return true;
1499   return false;
1500 }
1501 
1502 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1503   assert(Token.is(MIToken::JumpTableIndex));
1504   unsigned ID;
1505   if (getUnsigned(ID))
1506     return true;
1507   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1508   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1509     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1510   lex();
1511   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1512   return false;
1513 }
1514 
1515 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1516   assert(Token.is(MIToken::ExternalSymbol));
1517   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1518   lex();
1519   Dest = MachineOperand::CreateES(Symbol);
1520   if (parseOperandsOffset(Dest))
1521     return true;
1522   return false;
1523 }
1524 
1525 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1526   assert(Token.is(MIToken::SubRegisterIndex));
1527   StringRef Name = Token.stringValue();
1528   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1529   if (SubRegIndex == 0)
1530     return error(Twine("unknown subregister index '") + Name + "'");
1531   lex();
1532   Dest = MachineOperand::CreateImm(SubRegIndex);
1533   return false;
1534 }
1535 
1536 bool MIParser::parseMDNode(MDNode *&Node) {
1537   assert(Token.is(MIToken::exclaim));
1538 
1539   auto Loc = Token.location();
1540   lex();
1541   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1542     return error("expected metadata id after '!'");
1543   unsigned ID;
1544   if (getUnsigned(ID))
1545     return true;
1546   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1547   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1548     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1549   lex();
1550   Node = NodeInfo->second.get();
1551   return false;
1552 }
1553 
1554 bool MIParser::parseDIExpression(MDNode *&Expr) {
1555   assert(Token.is(MIToken::md_diexpr));
1556   lex();
1557 
1558   // FIXME: Share this parsing with the IL parser.
1559   SmallVector<uint64_t, 8> Elements;
1560 
1561   if (expectAndConsume(MIToken::lparen))
1562     return true;
1563 
1564   if (Token.isNot(MIToken::rparen)) {
1565     do {
1566       if (Token.is(MIToken::Identifier)) {
1567         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1568           lex();
1569           Elements.push_back(Op);
1570           continue;
1571         }
1572         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1573       }
1574 
1575       if (Token.isNot(MIToken::IntegerLiteral) ||
1576           Token.integerValue().isSigned())
1577         return error("expected unsigned integer");
1578 
1579       auto &U = Token.integerValue();
1580       if (U.ugt(UINT64_MAX))
1581         return error("element too large, limit is " + Twine(UINT64_MAX));
1582       Elements.push_back(U.getZExtValue());
1583       lex();
1584 
1585     } while (consumeIfPresent(MIToken::comma));
1586   }
1587 
1588   if (expectAndConsume(MIToken::rparen))
1589     return true;
1590 
1591   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1592   return false;
1593 }
1594 
1595 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1596   MDNode *Node = nullptr;
1597   if (Token.is(MIToken::exclaim)) {
1598     if (parseMDNode(Node))
1599       return true;
1600   } else if (Token.is(MIToken::md_diexpr)) {
1601     if (parseDIExpression(Node))
1602       return true;
1603   }
1604   Dest = MachineOperand::CreateMetadata(Node);
1605   return false;
1606 }
1607 
1608 bool MIParser::parseCFIOffset(int &Offset) {
1609   if (Token.isNot(MIToken::IntegerLiteral))
1610     return error("expected a cfi offset");
1611   if (Token.integerValue().getMinSignedBits() > 32)
1612     return error("expected a 32 bit integer (the cfi offset is too large)");
1613   Offset = (int)Token.integerValue().getExtValue();
1614   lex();
1615   return false;
1616 }
1617 
1618 bool MIParser::parseCFIRegister(unsigned &Reg) {
1619   if (Token.isNot(MIToken::NamedRegister))
1620     return error("expected a cfi register");
1621   unsigned LLVMReg;
1622   if (parseNamedRegister(LLVMReg))
1623     return true;
1624   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1625   assert(TRI && "Expected target register info");
1626   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1627   if (DwarfReg < 0)
1628     return error("invalid DWARF register");
1629   Reg = (unsigned)DwarfReg;
1630   lex();
1631   return false;
1632 }
1633 
1634 bool MIParser::parseCFIEscapeValues(std::string &Values) {
1635   do {
1636     if (Token.isNot(MIToken::HexLiteral))
1637       return error("expected a hexadecimal literal");
1638     unsigned Value;
1639     if (getUnsigned(Value))
1640       return true;
1641     if (Value > UINT8_MAX)
1642       return error("expected a 8-bit integer (too large)");
1643     Values.push_back(static_cast<uint8_t>(Value));
1644     lex();
1645   } while (consumeIfPresent(MIToken::comma));
1646   return false;
1647 }
1648 
1649 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1650   auto Kind = Token.kind();
1651   lex();
1652   int Offset;
1653   unsigned Reg;
1654   unsigned CFIIndex;
1655   switch (Kind) {
1656   case MIToken::kw_cfi_same_value:
1657     if (parseCFIRegister(Reg))
1658       return true;
1659     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1660     break;
1661   case MIToken::kw_cfi_offset:
1662     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1663         parseCFIOffset(Offset))
1664       return true;
1665     CFIIndex =
1666         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1667     break;
1668   case MIToken::kw_cfi_rel_offset:
1669     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1670         parseCFIOffset(Offset))
1671       return true;
1672     CFIIndex = MF.addFrameInst(
1673         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1674     break;
1675   case MIToken::kw_cfi_def_cfa_register:
1676     if (parseCFIRegister(Reg))
1677       return true;
1678     CFIIndex =
1679         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1680     break;
1681   case MIToken::kw_cfi_def_cfa_offset:
1682     if (parseCFIOffset(Offset))
1683       return true;
1684     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1685     CFIIndex = MF.addFrameInst(
1686         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1687     break;
1688   case MIToken::kw_cfi_adjust_cfa_offset:
1689     if (parseCFIOffset(Offset))
1690       return true;
1691     CFIIndex = MF.addFrameInst(
1692         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1693     break;
1694   case MIToken::kw_cfi_def_cfa:
1695     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1696         parseCFIOffset(Offset))
1697       return true;
1698     // NB: MCCFIInstruction::createDefCfa negates the offset.
1699     CFIIndex =
1700         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1701     break;
1702   case MIToken::kw_cfi_remember_state:
1703     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1704     break;
1705   case MIToken::kw_cfi_restore:
1706     if (parseCFIRegister(Reg))
1707       return true;
1708     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1709     break;
1710   case MIToken::kw_cfi_restore_state:
1711     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1712     break;
1713   case MIToken::kw_cfi_undefined:
1714     if (parseCFIRegister(Reg))
1715       return true;
1716     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1717     break;
1718   case MIToken::kw_cfi_register: {
1719     unsigned Reg2;
1720     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1721         parseCFIRegister(Reg2))
1722       return true;
1723 
1724     CFIIndex =
1725         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1726     break;
1727   }
1728   case MIToken::kw_cfi_window_save:
1729     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1730     break;
1731   case MIToken::kw_cfi_escape: {
1732     std::string Values;
1733     if (parseCFIEscapeValues(Values))
1734       return true;
1735     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1736     break;
1737   }
1738   default:
1739     // TODO: Parse the other CFI operands.
1740     llvm_unreachable("The current token should be a cfi operand");
1741   }
1742   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1743   return false;
1744 }
1745 
1746 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1747   switch (Token.kind()) {
1748   case MIToken::NamedIRBlock: {
1749     BB = dyn_cast_or_null<BasicBlock>(
1750         F.getValueSymbolTable()->lookup(Token.stringValue()));
1751     if (!BB)
1752       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1753     break;
1754   }
1755   case MIToken::IRBlock: {
1756     unsigned SlotNumber = 0;
1757     if (getUnsigned(SlotNumber))
1758       return true;
1759     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1760     if (!BB)
1761       return error(Twine("use of undefined IR block '%ir-block.") +
1762                    Twine(SlotNumber) + "'");
1763     break;
1764   }
1765   default:
1766     llvm_unreachable("The current token should be an IR block reference");
1767   }
1768   return false;
1769 }
1770 
1771 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1772   assert(Token.is(MIToken::kw_blockaddress));
1773   lex();
1774   if (expectAndConsume(MIToken::lparen))
1775     return true;
1776   if (Token.isNot(MIToken::GlobalValue) &&
1777       Token.isNot(MIToken::NamedGlobalValue))
1778     return error("expected a global value");
1779   GlobalValue *GV = nullptr;
1780   if (parseGlobalValue(GV))
1781     return true;
1782   auto *F = dyn_cast<Function>(GV);
1783   if (!F)
1784     return error("expected an IR function reference");
1785   lex();
1786   if (expectAndConsume(MIToken::comma))
1787     return true;
1788   BasicBlock *BB = nullptr;
1789   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1790     return error("expected an IR block reference");
1791   if (parseIRBlock(BB, *F))
1792     return true;
1793   lex();
1794   if (expectAndConsume(MIToken::rparen))
1795     return true;
1796   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1797   if (parseOperandsOffset(Dest))
1798     return true;
1799   return false;
1800 }
1801 
1802 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1803   assert(Token.is(MIToken::kw_intrinsic));
1804   lex();
1805   if (expectAndConsume(MIToken::lparen))
1806     return error("expected syntax intrinsic(@llvm.whatever)");
1807 
1808   if (Token.isNot(MIToken::NamedGlobalValue))
1809     return error("expected syntax intrinsic(@llvm.whatever)");
1810 
1811   std::string Name = Token.stringValue();
1812   lex();
1813 
1814   if (expectAndConsume(MIToken::rparen))
1815     return error("expected ')' to terminate intrinsic name");
1816 
1817   // Find out what intrinsic we're dealing with, first try the global namespace
1818   // and then the target's private intrinsics if that fails.
1819   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1820   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1821   if (ID == Intrinsic::not_intrinsic && TII)
1822     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1823 
1824   if (ID == Intrinsic::not_intrinsic)
1825     return error("unknown intrinsic name");
1826   Dest = MachineOperand::CreateIntrinsicID(ID);
1827 
1828   return false;
1829 }
1830 
1831 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1832   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1833   bool IsFloat = Token.is(MIToken::kw_floatpred);
1834   lex();
1835 
1836   if (expectAndConsume(MIToken::lparen))
1837     return error("expected syntax intpred(whatever) or floatpred(whatever");
1838 
1839   if (Token.isNot(MIToken::Identifier))
1840     return error("whatever");
1841 
1842   CmpInst::Predicate Pred;
1843   if (IsFloat) {
1844     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1845                .Case("false", CmpInst::FCMP_FALSE)
1846                .Case("oeq", CmpInst::FCMP_OEQ)
1847                .Case("ogt", CmpInst::FCMP_OGT)
1848                .Case("oge", CmpInst::FCMP_OGE)
1849                .Case("olt", CmpInst::FCMP_OLT)
1850                .Case("ole", CmpInst::FCMP_OLE)
1851                .Case("one", CmpInst::FCMP_ONE)
1852                .Case("ord", CmpInst::FCMP_ORD)
1853                .Case("uno", CmpInst::FCMP_UNO)
1854                .Case("ueq", CmpInst::FCMP_UEQ)
1855                .Case("ugt", CmpInst::FCMP_UGT)
1856                .Case("uge", CmpInst::FCMP_UGE)
1857                .Case("ult", CmpInst::FCMP_ULT)
1858                .Case("ule", CmpInst::FCMP_ULE)
1859                .Case("une", CmpInst::FCMP_UNE)
1860                .Case("true", CmpInst::FCMP_TRUE)
1861                .Default(CmpInst::BAD_FCMP_PREDICATE);
1862     if (!CmpInst::isFPPredicate(Pred))
1863       return error("invalid floating-point predicate");
1864   } else {
1865     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1866                .Case("eq", CmpInst::ICMP_EQ)
1867                .Case("ne", CmpInst::ICMP_NE)
1868                .Case("sgt", CmpInst::ICMP_SGT)
1869                .Case("sge", CmpInst::ICMP_SGE)
1870                .Case("slt", CmpInst::ICMP_SLT)
1871                .Case("sle", CmpInst::ICMP_SLE)
1872                .Case("ugt", CmpInst::ICMP_UGT)
1873                .Case("uge", CmpInst::ICMP_UGE)
1874                .Case("ult", CmpInst::ICMP_ULT)
1875                .Case("ule", CmpInst::ICMP_ULE)
1876                .Default(CmpInst::BAD_ICMP_PREDICATE);
1877     if (!CmpInst::isIntPredicate(Pred))
1878       return error("invalid integer predicate");
1879   }
1880 
1881   lex();
1882   Dest = MachineOperand::CreatePredicate(Pred);
1883   if (expectAndConsume(MIToken::rparen))
1884     return error("predicate should be terminated by ')'.");
1885 
1886   return false;
1887 }
1888 
1889 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1890   assert(Token.is(MIToken::kw_target_index));
1891   lex();
1892   if (expectAndConsume(MIToken::lparen))
1893     return true;
1894   if (Token.isNot(MIToken::Identifier))
1895     return error("expected the name of the target index");
1896   int Index = 0;
1897   if (getTargetIndex(Token.stringValue(), Index))
1898     return error("use of undefined target index '" + Token.stringValue() + "'");
1899   lex();
1900   if (expectAndConsume(MIToken::rparen))
1901     return true;
1902   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1903   if (parseOperandsOffset(Dest))
1904     return true;
1905   return false;
1906 }
1907 
1908 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1909   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1910   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1911   assert(TRI && "Expected target register info");
1912   lex();
1913   if (expectAndConsume(MIToken::lparen))
1914     return true;
1915 
1916   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1917   while (true) {
1918     if (Token.isNot(MIToken::NamedRegister))
1919       return error("expected a named register");
1920     unsigned Reg;
1921     if (parseNamedRegister(Reg))
1922       return true;
1923     lex();
1924     Mask[Reg / 32] |= 1U << (Reg % 32);
1925     // TODO: Report an error if the same register is used more than once.
1926     if (Token.isNot(MIToken::comma))
1927       break;
1928     lex();
1929   }
1930 
1931   if (expectAndConsume(MIToken::rparen))
1932     return true;
1933   Dest = MachineOperand::CreateRegMask(Mask);
1934   return false;
1935 }
1936 
1937 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1938   assert(Token.is(MIToken::kw_liveout));
1939   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1940   assert(TRI && "Expected target register info");
1941   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1942   lex();
1943   if (expectAndConsume(MIToken::lparen))
1944     return true;
1945   while (true) {
1946     if (Token.isNot(MIToken::NamedRegister))
1947       return error("expected a named register");
1948     unsigned Reg;
1949     if (parseNamedRegister(Reg))
1950       return true;
1951     lex();
1952     Mask[Reg / 32] |= 1U << (Reg % 32);
1953     // TODO: Report an error if the same register is used more than once.
1954     if (Token.isNot(MIToken::comma))
1955       break;
1956     lex();
1957   }
1958   if (expectAndConsume(MIToken::rparen))
1959     return true;
1960   Dest = MachineOperand::CreateRegLiveOut(Mask);
1961   return false;
1962 }
1963 
1964 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1965                                    Optional<unsigned> &TiedDefIdx) {
1966   switch (Token.kind()) {
1967   case MIToken::kw_implicit:
1968   case MIToken::kw_implicit_define:
1969   case MIToken::kw_def:
1970   case MIToken::kw_dead:
1971   case MIToken::kw_killed:
1972   case MIToken::kw_undef:
1973   case MIToken::kw_internal:
1974   case MIToken::kw_early_clobber:
1975   case MIToken::kw_debug_use:
1976   case MIToken::kw_renamable:
1977   case MIToken::underscore:
1978   case MIToken::NamedRegister:
1979   case MIToken::VirtualRegister:
1980   case MIToken::NamedVirtualRegister:
1981     return parseRegisterOperand(Dest, TiedDefIdx);
1982   case MIToken::IntegerLiteral:
1983     return parseImmediateOperand(Dest);
1984   case MIToken::IntegerType:
1985     return parseTypedImmediateOperand(Dest);
1986   case MIToken::kw_half:
1987   case MIToken::kw_float:
1988   case MIToken::kw_double:
1989   case MIToken::kw_x86_fp80:
1990   case MIToken::kw_fp128:
1991   case MIToken::kw_ppc_fp128:
1992     return parseFPImmediateOperand(Dest);
1993   case MIToken::MachineBasicBlock:
1994     return parseMBBOperand(Dest);
1995   case MIToken::StackObject:
1996     return parseStackObjectOperand(Dest);
1997   case MIToken::FixedStackObject:
1998     return parseFixedStackObjectOperand(Dest);
1999   case MIToken::GlobalValue:
2000   case MIToken::NamedGlobalValue:
2001     return parseGlobalAddressOperand(Dest);
2002   case MIToken::ConstantPoolItem:
2003     return parseConstantPoolIndexOperand(Dest);
2004   case MIToken::JumpTableIndex:
2005     return parseJumpTableIndexOperand(Dest);
2006   case MIToken::ExternalSymbol:
2007     return parseExternalSymbolOperand(Dest);
2008   case MIToken::SubRegisterIndex:
2009     return parseSubRegisterIndexOperand(Dest);
2010   case MIToken::md_diexpr:
2011   case MIToken::exclaim:
2012     return parseMetadataOperand(Dest);
2013   case MIToken::kw_cfi_same_value:
2014   case MIToken::kw_cfi_offset:
2015   case MIToken::kw_cfi_rel_offset:
2016   case MIToken::kw_cfi_def_cfa_register:
2017   case MIToken::kw_cfi_def_cfa_offset:
2018   case MIToken::kw_cfi_adjust_cfa_offset:
2019   case MIToken::kw_cfi_escape:
2020   case MIToken::kw_cfi_def_cfa:
2021   case MIToken::kw_cfi_register:
2022   case MIToken::kw_cfi_remember_state:
2023   case MIToken::kw_cfi_restore:
2024   case MIToken::kw_cfi_restore_state:
2025   case MIToken::kw_cfi_undefined:
2026   case MIToken::kw_cfi_window_save:
2027     return parseCFIOperand(Dest);
2028   case MIToken::kw_blockaddress:
2029     return parseBlockAddressOperand(Dest);
2030   case MIToken::kw_intrinsic:
2031     return parseIntrinsicOperand(Dest);
2032   case MIToken::kw_target_index:
2033     return parseTargetIndexOperand(Dest);
2034   case MIToken::kw_liveout:
2035     return parseLiveoutRegisterMaskOperand(Dest);
2036   case MIToken::kw_floatpred:
2037   case MIToken::kw_intpred:
2038     return parsePredicateOperand(Dest);
2039   case MIToken::Error:
2040     return true;
2041   case MIToken::Identifier:
2042     if (const auto *RegMask = getRegMask(Token.stringValue())) {
2043       Dest = MachineOperand::CreateRegMask(RegMask);
2044       lex();
2045       break;
2046     } else
2047       return parseCustomRegisterMaskOperand(Dest);
2048   default:
2049     // FIXME: Parse the MCSymbol machine operand.
2050     return error("expected a machine operand");
2051   }
2052   return false;
2053 }
2054 
2055 bool MIParser::parseMachineOperandAndTargetFlags(
2056     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2057   unsigned TF = 0;
2058   bool HasTargetFlags = false;
2059   if (Token.is(MIToken::kw_target_flags)) {
2060     HasTargetFlags = true;
2061     lex();
2062     if (expectAndConsume(MIToken::lparen))
2063       return true;
2064     if (Token.isNot(MIToken::Identifier))
2065       return error("expected the name of the target flag");
2066     if (getDirectTargetFlag(Token.stringValue(), TF)) {
2067       if (getBitmaskTargetFlag(Token.stringValue(), TF))
2068         return error("use of undefined target flag '" + Token.stringValue() +
2069                      "'");
2070     }
2071     lex();
2072     while (Token.is(MIToken::comma)) {
2073       lex();
2074       if (Token.isNot(MIToken::Identifier))
2075         return error("expected the name of the target flag");
2076       unsigned BitFlag = 0;
2077       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2078         return error("use of undefined target flag '" + Token.stringValue() +
2079                      "'");
2080       // TODO: Report an error when using a duplicate bit target flag.
2081       TF |= BitFlag;
2082       lex();
2083     }
2084     if (expectAndConsume(MIToken::rparen))
2085       return true;
2086   }
2087   auto Loc = Token.location();
2088   if (parseMachineOperand(Dest, TiedDefIdx))
2089     return true;
2090   if (!HasTargetFlags)
2091     return false;
2092   if (Dest.isReg())
2093     return error(Loc, "register operands can't have target flags");
2094   Dest.setTargetFlags(TF);
2095   return false;
2096 }
2097 
2098 bool MIParser::parseOffset(int64_t &Offset) {
2099   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2100     return false;
2101   StringRef Sign = Token.range();
2102   bool IsNegative = Token.is(MIToken::minus);
2103   lex();
2104   if (Token.isNot(MIToken::IntegerLiteral))
2105     return error("expected an integer literal after '" + Sign + "'");
2106   if (Token.integerValue().getMinSignedBits() > 64)
2107     return error("expected 64-bit integer (too large)");
2108   Offset = Token.integerValue().getExtValue();
2109   if (IsNegative)
2110     Offset = -Offset;
2111   lex();
2112   return false;
2113 }
2114 
2115 bool MIParser::parseAlignment(unsigned &Alignment) {
2116   assert(Token.is(MIToken::kw_align));
2117   lex();
2118   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2119     return error("expected an integer literal after 'align'");
2120   if (getUnsigned(Alignment))
2121     return true;
2122   lex();
2123   return false;
2124 }
2125 
2126 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2127   assert(Token.is(MIToken::kw_addrspace));
2128   lex();
2129   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2130     return error("expected an integer literal after 'addrspace'");
2131   if (getUnsigned(Addrspace))
2132     return true;
2133   lex();
2134   return false;
2135 }
2136 
2137 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2138   int64_t Offset = 0;
2139   if (parseOffset(Offset))
2140     return true;
2141   Op.setOffset(Offset);
2142   return false;
2143 }
2144 
2145 bool MIParser::parseIRValue(const Value *&V) {
2146   switch (Token.kind()) {
2147   case MIToken::NamedIRValue: {
2148     V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2149     break;
2150   }
2151   case MIToken::IRValue: {
2152     unsigned SlotNumber = 0;
2153     if (getUnsigned(SlotNumber))
2154       return true;
2155     V = getIRValue(SlotNumber);
2156     break;
2157   }
2158   case MIToken::NamedGlobalValue:
2159   case MIToken::GlobalValue: {
2160     GlobalValue *GV = nullptr;
2161     if (parseGlobalValue(GV))
2162       return true;
2163     V = GV;
2164     break;
2165   }
2166   case MIToken::QuotedIRValue: {
2167     const Constant *C = nullptr;
2168     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2169       return true;
2170     V = C;
2171     break;
2172   }
2173   default:
2174     llvm_unreachable("The current token should be an IR block reference");
2175   }
2176   if (!V)
2177     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2178   return false;
2179 }
2180 
2181 bool MIParser::getUint64(uint64_t &Result) {
2182   if (Token.hasIntegerValue()) {
2183     if (Token.integerValue().getActiveBits() > 64)
2184       return error("expected 64-bit integer (too large)");
2185     Result = Token.integerValue().getZExtValue();
2186     return false;
2187   }
2188   if (Token.is(MIToken::HexLiteral)) {
2189     APInt A;
2190     if (getHexUint(A))
2191       return true;
2192     if (A.getBitWidth() > 64)
2193       return error("expected 64-bit integer (too large)");
2194     Result = A.getZExtValue();
2195     return false;
2196   }
2197   return true;
2198 }
2199 
2200 bool MIParser::getHexUint(APInt &Result) {
2201   assert(Token.is(MIToken::HexLiteral));
2202   StringRef S = Token.range();
2203   assert(S[0] == '0' && tolower(S[1]) == 'x');
2204   // This could be a floating point literal with a special prefix.
2205   if (!isxdigit(S[2]))
2206     return true;
2207   StringRef V = S.substr(2);
2208   APInt A(V.size()*4, V, 16);
2209 
2210   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2211   // sure it isn't the case before constructing result.
2212   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2213   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2214   return false;
2215 }
2216 
2217 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2218   const auto OldFlags = Flags;
2219   switch (Token.kind()) {
2220   case MIToken::kw_volatile:
2221     Flags |= MachineMemOperand::MOVolatile;
2222     break;
2223   case MIToken::kw_non_temporal:
2224     Flags |= MachineMemOperand::MONonTemporal;
2225     break;
2226   case MIToken::kw_dereferenceable:
2227     Flags |= MachineMemOperand::MODereferenceable;
2228     break;
2229   case MIToken::kw_invariant:
2230     Flags |= MachineMemOperand::MOInvariant;
2231     break;
2232   case MIToken::StringConstant: {
2233     MachineMemOperand::Flags TF;
2234     if (getMMOTargetFlag(Token.stringValue(), TF))
2235       return error("use of undefined target MMO flag '" + Token.stringValue() +
2236                    "'");
2237     Flags |= TF;
2238     break;
2239   }
2240   default:
2241     llvm_unreachable("The current token should be a memory operand flag");
2242   }
2243   if (OldFlags == Flags)
2244     // We know that the same flag is specified more than once when the flags
2245     // weren't modified.
2246     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2247   lex();
2248   return false;
2249 }
2250 
2251 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2252   switch (Token.kind()) {
2253   case MIToken::kw_stack:
2254     PSV = MF.getPSVManager().getStack();
2255     break;
2256   case MIToken::kw_got:
2257     PSV = MF.getPSVManager().getGOT();
2258     break;
2259   case MIToken::kw_jump_table:
2260     PSV = MF.getPSVManager().getJumpTable();
2261     break;
2262   case MIToken::kw_constant_pool:
2263     PSV = MF.getPSVManager().getConstantPool();
2264     break;
2265   case MIToken::FixedStackObject: {
2266     int FI;
2267     if (parseFixedStackFrameIndex(FI))
2268       return true;
2269     PSV = MF.getPSVManager().getFixedStack(FI);
2270     // The token was already consumed, so use return here instead of break.
2271     return false;
2272   }
2273   case MIToken::StackObject: {
2274     int FI;
2275     if (parseStackFrameIndex(FI))
2276       return true;
2277     PSV = MF.getPSVManager().getFixedStack(FI);
2278     // The token was already consumed, so use return here instead of break.
2279     return false;
2280   }
2281   case MIToken::kw_call_entry:
2282     lex();
2283     switch (Token.kind()) {
2284     case MIToken::GlobalValue:
2285     case MIToken::NamedGlobalValue: {
2286       GlobalValue *GV = nullptr;
2287       if (parseGlobalValue(GV))
2288         return true;
2289       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2290       break;
2291     }
2292     case MIToken::ExternalSymbol:
2293       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2294           MF.createExternalSymbolName(Token.stringValue()));
2295       break;
2296     default:
2297       return error(
2298           "expected a global value or an external symbol after 'call-entry'");
2299     }
2300     break;
2301   default:
2302     llvm_unreachable("The current token should be pseudo source value");
2303   }
2304   lex();
2305   return false;
2306 }
2307 
2308 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2309   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2310       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2311       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2312       Token.is(MIToken::kw_call_entry)) {
2313     const PseudoSourceValue *PSV = nullptr;
2314     if (parseMemoryPseudoSourceValue(PSV))
2315       return true;
2316     int64_t Offset = 0;
2317     if (parseOffset(Offset))
2318       return true;
2319     Dest = MachinePointerInfo(PSV, Offset);
2320     return false;
2321   }
2322   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2323       Token.isNot(MIToken::GlobalValue) &&
2324       Token.isNot(MIToken::NamedGlobalValue) &&
2325       Token.isNot(MIToken::QuotedIRValue))
2326     return error("expected an IR value reference");
2327   const Value *V = nullptr;
2328   if (parseIRValue(V))
2329     return true;
2330   if (!V->getType()->isPointerTy())
2331     return error("expected a pointer IR value");
2332   lex();
2333   int64_t Offset = 0;
2334   if (parseOffset(Offset))
2335     return true;
2336   Dest = MachinePointerInfo(V, Offset);
2337   return false;
2338 }
2339 
2340 bool MIParser::parseOptionalScope(LLVMContext &Context,
2341                                   SyncScope::ID &SSID) {
2342   SSID = SyncScope::System;
2343   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2344     lex();
2345     if (expectAndConsume(MIToken::lparen))
2346       return error("expected '(' in syncscope");
2347 
2348     std::string SSN;
2349     if (parseStringConstant(SSN))
2350       return true;
2351 
2352     SSID = Context.getOrInsertSyncScopeID(SSN);
2353     if (expectAndConsume(MIToken::rparen))
2354       return error("expected ')' in syncscope");
2355   }
2356 
2357   return false;
2358 }
2359 
2360 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2361   Order = AtomicOrdering::NotAtomic;
2362   if (Token.isNot(MIToken::Identifier))
2363     return false;
2364 
2365   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2366               .Case("unordered", AtomicOrdering::Unordered)
2367               .Case("monotonic", AtomicOrdering::Monotonic)
2368               .Case("acquire", AtomicOrdering::Acquire)
2369               .Case("release", AtomicOrdering::Release)
2370               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2371               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2372               .Default(AtomicOrdering::NotAtomic);
2373 
2374   if (Order != AtomicOrdering::NotAtomic) {
2375     lex();
2376     return false;
2377   }
2378 
2379   return error("expected an atomic scope, ordering or a size integer literal");
2380 }
2381 
2382 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2383   if (expectAndConsume(MIToken::lparen))
2384     return true;
2385   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2386   while (Token.isMemoryOperandFlag()) {
2387     if (parseMemoryOperandFlag(Flags))
2388       return true;
2389   }
2390   if (Token.isNot(MIToken::Identifier) ||
2391       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2392     return error("expected 'load' or 'store' memory operation");
2393   if (Token.stringValue() == "load")
2394     Flags |= MachineMemOperand::MOLoad;
2395   else
2396     Flags |= MachineMemOperand::MOStore;
2397   lex();
2398 
2399   // Optional 'store' for operands that both load and store.
2400   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2401     Flags |= MachineMemOperand::MOStore;
2402     lex();
2403   }
2404 
2405   // Optional synchronization scope.
2406   SyncScope::ID SSID;
2407   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2408     return true;
2409 
2410   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2411   AtomicOrdering Order, FailureOrder;
2412   if (parseOptionalAtomicOrdering(Order))
2413     return true;
2414 
2415   if (parseOptionalAtomicOrdering(FailureOrder))
2416     return true;
2417 
2418   if (Token.isNot(MIToken::IntegerLiteral))
2419     return error("expected the size integer literal after memory operation");
2420   uint64_t Size;
2421   if (getUint64(Size))
2422     return true;
2423   lex();
2424 
2425   MachinePointerInfo Ptr = MachinePointerInfo();
2426   if (Token.is(MIToken::Identifier)) {
2427     const char *Word =
2428         ((Flags & MachineMemOperand::MOLoad) &&
2429          (Flags & MachineMemOperand::MOStore))
2430             ? "on"
2431             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2432     if (Token.stringValue() != Word)
2433       return error(Twine("expected '") + Word + "'");
2434     lex();
2435 
2436     if (parseMachinePointerInfo(Ptr))
2437       return true;
2438   }
2439   unsigned BaseAlignment = Size;
2440   AAMDNodes AAInfo;
2441   MDNode *Range = nullptr;
2442   while (consumeIfPresent(MIToken::comma)) {
2443     switch (Token.kind()) {
2444     case MIToken::kw_align:
2445       if (parseAlignment(BaseAlignment))
2446         return true;
2447       break;
2448     case MIToken::kw_addrspace:
2449       if (parseAddrspace(Ptr.AddrSpace))
2450         return true;
2451       break;
2452     case MIToken::md_tbaa:
2453       lex();
2454       if (parseMDNode(AAInfo.TBAA))
2455         return true;
2456       break;
2457     case MIToken::md_alias_scope:
2458       lex();
2459       if (parseMDNode(AAInfo.Scope))
2460         return true;
2461       break;
2462     case MIToken::md_noalias:
2463       lex();
2464       if (parseMDNode(AAInfo.NoAlias))
2465         return true;
2466       break;
2467     case MIToken::md_range:
2468       lex();
2469       if (parseMDNode(Range))
2470         return true;
2471       break;
2472     // TODO: Report an error on duplicate metadata nodes.
2473     default:
2474       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2475                    "'!noalias' or '!range'");
2476     }
2477   }
2478   if (expectAndConsume(MIToken::rparen))
2479     return true;
2480   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2481                                  SSID, Order, FailureOrder);
2482   return false;
2483 }
2484 
2485 void MIParser::initNames2InstrOpCodes() {
2486   if (!Names2InstrOpCodes.empty())
2487     return;
2488   const auto *TII = MF.getSubtarget().getInstrInfo();
2489   assert(TII && "Expected target instruction info");
2490   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2491     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2492 }
2493 
2494 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2495   initNames2InstrOpCodes();
2496   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2497   if (InstrInfo == Names2InstrOpCodes.end())
2498     return true;
2499   OpCode = InstrInfo->getValue();
2500   return false;
2501 }
2502 
2503 void MIParser::initNames2Regs() {
2504   if (!Names2Regs.empty())
2505     return;
2506   // The '%noreg' register is the register 0.
2507   Names2Regs.insert(std::make_pair("noreg", 0));
2508   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2509   assert(TRI && "Expected target register info");
2510   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2511     bool WasInserted =
2512         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2513             .second;
2514     (void)WasInserted;
2515     assert(WasInserted && "Expected registers to be unique case-insensitively");
2516   }
2517 }
2518 
2519 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2520   initNames2Regs();
2521   auto RegInfo = Names2Regs.find(RegName);
2522   if (RegInfo == Names2Regs.end())
2523     return true;
2524   Reg = RegInfo->getValue();
2525   return false;
2526 }
2527 
2528 void MIParser::initNames2RegMasks() {
2529   if (!Names2RegMasks.empty())
2530     return;
2531   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2532   assert(TRI && "Expected target register info");
2533   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2534   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2535   assert(RegMasks.size() == RegMaskNames.size());
2536   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2537     Names2RegMasks.insert(
2538         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2539 }
2540 
2541 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2542   initNames2RegMasks();
2543   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2544   if (RegMaskInfo == Names2RegMasks.end())
2545     return nullptr;
2546   return RegMaskInfo->getValue();
2547 }
2548 
2549 void MIParser::initNames2SubRegIndices() {
2550   if (!Names2SubRegIndices.empty())
2551     return;
2552   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2553   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2554     Names2SubRegIndices.insert(
2555         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2556 }
2557 
2558 unsigned MIParser::getSubRegIndex(StringRef Name) {
2559   initNames2SubRegIndices();
2560   auto SubRegInfo = Names2SubRegIndices.find(Name);
2561   if (SubRegInfo == Names2SubRegIndices.end())
2562     return 0;
2563   return SubRegInfo->getValue();
2564 }
2565 
2566 static void initSlots2BasicBlocks(
2567     const Function &F,
2568     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2569   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2570   MST.incorporateFunction(F);
2571   for (auto &BB : F) {
2572     if (BB.hasName())
2573       continue;
2574     int Slot = MST.getLocalSlot(&BB);
2575     if (Slot == -1)
2576       continue;
2577     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2578   }
2579 }
2580 
2581 static const BasicBlock *getIRBlockFromSlot(
2582     unsigned Slot,
2583     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2584   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2585   if (BlockInfo == Slots2BasicBlocks.end())
2586     return nullptr;
2587   return BlockInfo->second;
2588 }
2589 
2590 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2591   if (Slots2BasicBlocks.empty())
2592     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2593   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2594 }
2595 
2596 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2597   if (&F == &MF.getFunction())
2598     return getIRBlock(Slot);
2599   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2600   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2601   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2602 }
2603 
2604 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2605                            DenseMap<unsigned, const Value *> &Slots2Values) {
2606   int Slot = MST.getLocalSlot(V);
2607   if (Slot == -1)
2608     return;
2609   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2610 }
2611 
2612 /// Creates the mapping from slot numbers to function's unnamed IR values.
2613 static void initSlots2Values(const Function &F,
2614                              DenseMap<unsigned, const Value *> &Slots2Values) {
2615   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2616   MST.incorporateFunction(F);
2617   for (const auto &Arg : F.args())
2618     mapValueToSlot(&Arg, MST, Slots2Values);
2619   for (const auto &BB : F) {
2620     mapValueToSlot(&BB, MST, Slots2Values);
2621     for (const auto &I : BB)
2622       mapValueToSlot(&I, MST, Slots2Values);
2623   }
2624 }
2625 
2626 const Value *MIParser::getIRValue(unsigned Slot) {
2627   if (Slots2Values.empty())
2628     initSlots2Values(MF.getFunction(), Slots2Values);
2629   auto ValueInfo = Slots2Values.find(Slot);
2630   if (ValueInfo == Slots2Values.end())
2631     return nullptr;
2632   return ValueInfo->second;
2633 }
2634 
2635 void MIParser::initNames2TargetIndices() {
2636   if (!Names2TargetIndices.empty())
2637     return;
2638   const auto *TII = MF.getSubtarget().getInstrInfo();
2639   assert(TII && "Expected target instruction info");
2640   auto Indices = TII->getSerializableTargetIndices();
2641   for (const auto &I : Indices)
2642     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2643 }
2644 
2645 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2646   initNames2TargetIndices();
2647   auto IndexInfo = Names2TargetIndices.find(Name);
2648   if (IndexInfo == Names2TargetIndices.end())
2649     return true;
2650   Index = IndexInfo->second;
2651   return false;
2652 }
2653 
2654 void MIParser::initNames2DirectTargetFlags() {
2655   if (!Names2DirectTargetFlags.empty())
2656     return;
2657   const auto *TII = MF.getSubtarget().getInstrInfo();
2658   assert(TII && "Expected target instruction info");
2659   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2660   for (const auto &I : Flags)
2661     Names2DirectTargetFlags.insert(
2662         std::make_pair(StringRef(I.second), I.first));
2663 }
2664 
2665 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2666   initNames2DirectTargetFlags();
2667   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2668   if (FlagInfo == Names2DirectTargetFlags.end())
2669     return true;
2670   Flag = FlagInfo->second;
2671   return false;
2672 }
2673 
2674 void MIParser::initNames2BitmaskTargetFlags() {
2675   if (!Names2BitmaskTargetFlags.empty())
2676     return;
2677   const auto *TII = MF.getSubtarget().getInstrInfo();
2678   assert(TII && "Expected target instruction info");
2679   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2680   for (const auto &I : Flags)
2681     Names2BitmaskTargetFlags.insert(
2682         std::make_pair(StringRef(I.second), I.first));
2683 }
2684 
2685 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2686   initNames2BitmaskTargetFlags();
2687   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2688   if (FlagInfo == Names2BitmaskTargetFlags.end())
2689     return true;
2690   Flag = FlagInfo->second;
2691   return false;
2692 }
2693 
2694 void MIParser::initNames2MMOTargetFlags() {
2695   if (!Names2MMOTargetFlags.empty())
2696     return;
2697   const auto *TII = MF.getSubtarget().getInstrInfo();
2698   assert(TII && "Expected target instruction info");
2699   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2700   for (const auto &I : Flags)
2701     Names2MMOTargetFlags.insert(
2702         std::make_pair(StringRef(I.second), I.first));
2703 }
2704 
2705 bool MIParser::getMMOTargetFlag(StringRef Name,
2706                                 MachineMemOperand::Flags &Flag) {
2707   initNames2MMOTargetFlags();
2708   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2709   if (FlagInfo == Names2MMOTargetFlags.end())
2710     return true;
2711   Flag = FlagInfo->second;
2712   return false;
2713 }
2714 
2715 bool MIParser::parseStringConstant(std::string &Result) {
2716   if (Token.isNot(MIToken::StringConstant))
2717     return error("expected string constant");
2718   Result = Token.stringValue();
2719   lex();
2720   return false;
2721 }
2722 
2723 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2724                                              StringRef Src,
2725                                              SMDiagnostic &Error) {
2726   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2727 }
2728 
2729 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2730                                     StringRef Src, SMDiagnostic &Error) {
2731   return MIParser(PFS, Error, Src).parseBasicBlocks();
2732 }
2733 
2734 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2735                              MachineBasicBlock *&MBB, StringRef Src,
2736                              SMDiagnostic &Error) {
2737   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2738 }
2739 
2740 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2741                                   unsigned &Reg, StringRef Src,
2742                                   SMDiagnostic &Error) {
2743   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2744 }
2745 
2746 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2747                                        unsigned &Reg, StringRef Src,
2748                                        SMDiagnostic &Error) {
2749   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2750 }
2751 
2752 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2753                                          VRegInfo *&Info, StringRef Src,
2754                                          SMDiagnostic &Error) {
2755   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2756 }
2757 
2758 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2759                                      int &FI, StringRef Src,
2760                                      SMDiagnostic &Error) {
2761   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2762 }
2763 
2764 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2765                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2766   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2767 }
2768