1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/APSInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringMap.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/StringSwitch.h" 26 #include "llvm/ADT/Twine.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/MIRPrinter.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/TargetInstrInfo.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/DebugInfoMetadata.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/InstrTypes.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/ModuleSlotTracker.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/IR/ValueSymbolTable.h" 56 #include "llvm/MC/LaneBitmask.h" 57 #include "llvm/MC/MCDwarf.h" 58 #include "llvm/MC/MCInstrDesc.h" 59 #include "llvm/MC/MCRegisterInfo.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/LowLevelTypeImpl.h" 65 #include "llvm/Support/MemoryBuffer.h" 66 #include "llvm/Support/SMLoc.h" 67 #include "llvm/Support/SourceMgr.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Target/TargetIntrinsicInfo.h" 70 #include "llvm/Target/TargetMachine.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cctype> 74 #include <cstddef> 75 #include <cstdint> 76 #include <limits> 77 #include <string> 78 #include <utility> 79 80 using namespace llvm; 81 82 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 83 SourceMgr &SM, const SlotMapping &IRSlots, 84 const Name2RegClassMap &Names2RegClasses, 85 const Name2RegBankMap &Names2RegBanks) 86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses), 87 Names2RegBanks(Names2RegBanks) { 88 } 89 90 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) { 91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 92 if (I.second) { 93 MachineRegisterInfo &MRI = MF.getRegInfo(); 94 VRegInfo *Info = new (Allocator) VRegInfo; 95 Info->VReg = MRI.createIncompleteVirtualRegister(); 96 I.first->second = Info; 97 } 98 return *I.first->second; 99 } 100 101 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 102 assert(RegName != "" && "Expected named reg."); 103 104 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 105 if (I.second) { 106 VRegInfo *Info = new (Allocator) VRegInfo; 107 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 108 I.first->second = Info; 109 } 110 return *I.first->second; 111 } 112 113 namespace { 114 115 /// A wrapper struct around the 'MachineOperand' struct that includes a source 116 /// range and other attributes. 117 struct ParsedMachineOperand { 118 MachineOperand Operand; 119 StringRef::iterator Begin; 120 StringRef::iterator End; 121 Optional<unsigned> TiedDefIdx; 122 123 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 124 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 125 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 126 if (TiedDefIdx) 127 assert(Operand.isReg() && Operand.isUse() && 128 "Only used register operands can be tied"); 129 } 130 }; 131 132 class MIParser { 133 MachineFunction &MF; 134 SMDiagnostic &Error; 135 StringRef Source, CurrentSource; 136 MIToken Token; 137 PerFunctionMIParsingState &PFS; 138 /// Maps from instruction names to op codes. 139 StringMap<unsigned> Names2InstrOpCodes; 140 /// Maps from register names to registers. 141 StringMap<unsigned> Names2Regs; 142 /// Maps from register mask names to register masks. 143 StringMap<const uint32_t *> Names2RegMasks; 144 /// Maps from subregister names to subregister indices. 145 StringMap<unsigned> Names2SubRegIndices; 146 /// Maps from slot numbers to function's unnamed basic blocks. 147 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 148 /// Maps from slot numbers to function's unnamed values. 149 DenseMap<unsigned, const Value *> Slots2Values; 150 /// Maps from target index names to target indices. 151 StringMap<int> Names2TargetIndices; 152 /// Maps from direct target flag names to the direct target flag values. 153 StringMap<unsigned> Names2DirectTargetFlags; 154 /// Maps from direct target flag names to the bitmask target flag values. 155 StringMap<unsigned> Names2BitmaskTargetFlags; 156 /// Maps from MMO target flag names to MMO target flag values. 157 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags; 158 159 public: 160 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 161 StringRef Source); 162 163 /// \p SkipChar gives the number of characters to skip before looking 164 /// for the next token. 165 void lex(unsigned SkipChar = 0); 166 167 /// Report an error at the current location with the given message. 168 /// 169 /// This function always return true. 170 bool error(const Twine &Msg); 171 172 /// Report an error at the given location with the given message. 173 /// 174 /// This function always return true. 175 bool error(StringRef::iterator Loc, const Twine &Msg); 176 177 bool 178 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 179 bool parseBasicBlocks(); 180 bool parse(MachineInstr *&MI); 181 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 182 bool parseStandaloneNamedRegister(unsigned &Reg); 183 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 184 bool parseStandaloneRegister(unsigned &Reg); 185 bool parseStandaloneStackObject(int &FI); 186 bool parseStandaloneMDNode(MDNode *&Node); 187 188 bool 189 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 190 bool parseBasicBlock(MachineBasicBlock &MBB, 191 MachineBasicBlock *&AddFalthroughFrom); 192 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 193 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 194 195 bool parseNamedRegister(unsigned &Reg); 196 bool parseVirtualRegister(VRegInfo *&Info); 197 bool parseNamedVirtualRegister(VRegInfo *&Info); 198 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo); 199 bool parseRegisterFlag(unsigned &Flags); 200 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 201 bool parseSubRegisterIndex(unsigned &SubReg); 202 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 203 bool parseRegisterOperand(MachineOperand &Dest, 204 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 205 bool parseImmediateOperand(MachineOperand &Dest); 206 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 207 const Constant *&C); 208 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 209 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 210 bool parseTypedImmediateOperand(MachineOperand &Dest); 211 bool parseFPImmediateOperand(MachineOperand &Dest); 212 bool parseMBBReference(MachineBasicBlock *&MBB); 213 bool parseMBBOperand(MachineOperand &Dest); 214 bool parseStackFrameIndex(int &FI); 215 bool parseStackObjectOperand(MachineOperand &Dest); 216 bool parseFixedStackFrameIndex(int &FI); 217 bool parseFixedStackObjectOperand(MachineOperand &Dest); 218 bool parseGlobalValue(GlobalValue *&GV); 219 bool parseGlobalAddressOperand(MachineOperand &Dest); 220 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 221 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 222 bool parseJumpTableIndexOperand(MachineOperand &Dest); 223 bool parseExternalSymbolOperand(MachineOperand &Dest); 224 bool parseMDNode(MDNode *&Node); 225 bool parseDIExpression(MDNode *&Node); 226 bool parseMetadataOperand(MachineOperand &Dest); 227 bool parseCFIOffset(int &Offset); 228 bool parseCFIRegister(unsigned &Reg); 229 bool parseCFIEscapeValues(std::string& Values); 230 bool parseCFIOperand(MachineOperand &Dest); 231 bool parseIRBlock(BasicBlock *&BB, const Function &F); 232 bool parseBlockAddressOperand(MachineOperand &Dest); 233 bool parseIntrinsicOperand(MachineOperand &Dest); 234 bool parsePredicateOperand(MachineOperand &Dest); 235 bool parseTargetIndexOperand(MachineOperand &Dest); 236 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 237 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 238 bool parseMachineOperand(MachineOperand &Dest, 239 Optional<unsigned> &TiedDefIdx); 240 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 241 Optional<unsigned> &TiedDefIdx); 242 bool parseOffset(int64_t &Offset); 243 bool parseAlignment(unsigned &Alignment); 244 bool parseAddrspace(unsigned &Addrspace); 245 bool parseOperandsOffset(MachineOperand &Op); 246 bool parseIRValue(const Value *&V); 247 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 248 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 249 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 250 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 251 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 252 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 253 254 private: 255 /// Convert the integer literal in the current token into an unsigned integer. 256 /// 257 /// Return true if an error occurred. 258 bool getUnsigned(unsigned &Result); 259 260 /// Convert the integer literal in the current token into an uint64. 261 /// 262 /// Return true if an error occurred. 263 bool getUint64(uint64_t &Result); 264 265 /// Convert the hexadecimal literal in the current token into an unsigned 266 /// APInt with a minimum bitwidth required to represent the value. 267 /// 268 /// Return true if the literal does not represent an integer value. 269 bool getHexUint(APInt &Result); 270 271 /// If the current token is of the given kind, consume it and return false. 272 /// Otherwise report an error and return true. 273 bool expectAndConsume(MIToken::TokenKind TokenKind); 274 275 /// If the current token is of the given kind, consume it and return true. 276 /// Otherwise return false. 277 bool consumeIfPresent(MIToken::TokenKind TokenKind); 278 279 void initNames2InstrOpCodes(); 280 281 /// Try to convert an instruction name to an opcode. Return true if the 282 /// instruction name is invalid. 283 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 284 285 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 286 287 bool assignRegisterTies(MachineInstr &MI, 288 ArrayRef<ParsedMachineOperand> Operands); 289 290 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 291 const MCInstrDesc &MCID); 292 293 void initNames2Regs(); 294 295 /// Try to convert a register name to a register number. Return true if the 296 /// register name is invalid. 297 bool getRegisterByName(StringRef RegName, unsigned &Reg); 298 299 void initNames2RegMasks(); 300 301 /// Check if the given identifier is a name of a register mask. 302 /// 303 /// Return null if the identifier isn't a register mask. 304 const uint32_t *getRegMask(StringRef Identifier); 305 306 void initNames2SubRegIndices(); 307 308 /// Check if the given identifier is a name of a subregister index. 309 /// 310 /// Return 0 if the name isn't a subregister index class. 311 unsigned getSubRegIndex(StringRef Name); 312 313 const BasicBlock *getIRBlock(unsigned Slot); 314 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 315 316 const Value *getIRValue(unsigned Slot); 317 318 void initNames2TargetIndices(); 319 320 /// Try to convert a name of target index to the corresponding target index. 321 /// 322 /// Return true if the name isn't a name of a target index. 323 bool getTargetIndex(StringRef Name, int &Index); 324 325 void initNames2DirectTargetFlags(); 326 327 /// Try to convert a name of a direct target flag to the corresponding 328 /// target flag. 329 /// 330 /// Return true if the name isn't a name of a direct flag. 331 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 332 333 void initNames2BitmaskTargetFlags(); 334 335 /// Try to convert a name of a bitmask target flag to the corresponding 336 /// target flag. 337 /// 338 /// Return true if the name isn't a name of a bitmask target flag. 339 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 340 341 void initNames2MMOTargetFlags(); 342 343 /// Try to convert a name of a MachineMemOperand target flag to the 344 /// corresponding target flag. 345 /// 346 /// Return true if the name isn't a name of a target MMO flag. 347 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag); 348 349 /// parseStringConstant 350 /// ::= StringConstant 351 bool parseStringConstant(std::string &Result); 352 }; 353 354 } // end anonymous namespace 355 356 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 357 StringRef Source) 358 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 359 {} 360 361 void MIParser::lex(unsigned SkipChar) { 362 CurrentSource = lexMIToken( 363 CurrentSource.data() + SkipChar, Token, 364 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 365 } 366 367 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 368 369 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 370 const SourceMgr &SM = *PFS.SM; 371 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 372 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 373 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 374 // Create an ordinary diagnostic when the source manager's buffer is the 375 // source string. 376 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 377 return true; 378 } 379 // Create a diagnostic for a YAML string literal. 380 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 381 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 382 Source, None, None); 383 return true; 384 } 385 386 static const char *toString(MIToken::TokenKind TokenKind) { 387 switch (TokenKind) { 388 case MIToken::comma: 389 return "','"; 390 case MIToken::equal: 391 return "'='"; 392 case MIToken::colon: 393 return "':'"; 394 case MIToken::lparen: 395 return "'('"; 396 case MIToken::rparen: 397 return "')'"; 398 default: 399 return "<unknown token>"; 400 } 401 } 402 403 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 404 if (Token.isNot(TokenKind)) 405 return error(Twine("expected ") + toString(TokenKind)); 406 lex(); 407 return false; 408 } 409 410 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 411 if (Token.isNot(TokenKind)) 412 return false; 413 lex(); 414 return true; 415 } 416 417 bool MIParser::parseBasicBlockDefinition( 418 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 419 assert(Token.is(MIToken::MachineBasicBlockLabel)); 420 unsigned ID = 0; 421 if (getUnsigned(ID)) 422 return true; 423 auto Loc = Token.location(); 424 auto Name = Token.stringValue(); 425 lex(); 426 bool HasAddressTaken = false; 427 bool IsLandingPad = false; 428 unsigned Alignment = 0; 429 BasicBlock *BB = nullptr; 430 if (consumeIfPresent(MIToken::lparen)) { 431 do { 432 // TODO: Report an error when multiple same attributes are specified. 433 switch (Token.kind()) { 434 case MIToken::kw_address_taken: 435 HasAddressTaken = true; 436 lex(); 437 break; 438 case MIToken::kw_landing_pad: 439 IsLandingPad = true; 440 lex(); 441 break; 442 case MIToken::kw_align: 443 if (parseAlignment(Alignment)) 444 return true; 445 break; 446 case MIToken::IRBlock: 447 // TODO: Report an error when both name and ir block are specified. 448 if (parseIRBlock(BB, MF.getFunction())) 449 return true; 450 lex(); 451 break; 452 default: 453 break; 454 } 455 } while (consumeIfPresent(MIToken::comma)); 456 if (expectAndConsume(MIToken::rparen)) 457 return true; 458 } 459 if (expectAndConsume(MIToken::colon)) 460 return true; 461 462 if (!Name.empty()) { 463 BB = dyn_cast_or_null<BasicBlock>( 464 MF.getFunction().getValueSymbolTable()->lookup(Name)); 465 if (!BB) 466 return error(Loc, Twine("basic block '") + Name + 467 "' is not defined in the function '" + 468 MF.getName() + "'"); 469 } 470 auto *MBB = MF.CreateMachineBasicBlock(BB); 471 MF.insert(MF.end(), MBB); 472 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 473 if (!WasInserted) 474 return error(Loc, Twine("redefinition of machine basic block with id #") + 475 Twine(ID)); 476 if (Alignment) 477 MBB->setAlignment(Alignment); 478 if (HasAddressTaken) 479 MBB->setHasAddressTaken(); 480 MBB->setIsEHPad(IsLandingPad); 481 return false; 482 } 483 484 bool MIParser::parseBasicBlockDefinitions( 485 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 486 lex(); 487 // Skip until the first machine basic block. 488 while (Token.is(MIToken::Newline)) 489 lex(); 490 if (Token.isErrorOrEOF()) 491 return Token.isError(); 492 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 493 return error("expected a basic block definition before instructions"); 494 unsigned BraceDepth = 0; 495 do { 496 if (parseBasicBlockDefinition(MBBSlots)) 497 return true; 498 bool IsAfterNewline = false; 499 // Skip until the next machine basic block. 500 while (true) { 501 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 502 Token.isErrorOrEOF()) 503 break; 504 else if (Token.is(MIToken::MachineBasicBlockLabel)) 505 return error("basic block definition should be located at the start of " 506 "the line"); 507 else if (consumeIfPresent(MIToken::Newline)) { 508 IsAfterNewline = true; 509 continue; 510 } 511 IsAfterNewline = false; 512 if (Token.is(MIToken::lbrace)) 513 ++BraceDepth; 514 if (Token.is(MIToken::rbrace)) { 515 if (!BraceDepth) 516 return error("extraneous closing brace ('}')"); 517 --BraceDepth; 518 } 519 lex(); 520 } 521 // Verify that we closed all of the '{' at the end of a file or a block. 522 if (!Token.isError() && BraceDepth) 523 return error("expected '}'"); // FIXME: Report a note that shows '{'. 524 } while (!Token.isErrorOrEOF()); 525 return Token.isError(); 526 } 527 528 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 529 assert(Token.is(MIToken::kw_liveins)); 530 lex(); 531 if (expectAndConsume(MIToken::colon)) 532 return true; 533 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 534 return false; 535 do { 536 if (Token.isNot(MIToken::NamedRegister)) 537 return error("expected a named register"); 538 unsigned Reg = 0; 539 if (parseNamedRegister(Reg)) 540 return true; 541 lex(); 542 LaneBitmask Mask = LaneBitmask::getAll(); 543 if (consumeIfPresent(MIToken::colon)) { 544 // Parse lane mask. 545 if (Token.isNot(MIToken::IntegerLiteral) && 546 Token.isNot(MIToken::HexLiteral)) 547 return error("expected a lane mask"); 548 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned), 549 "Use correct get-function for lane mask"); 550 LaneBitmask::Type V; 551 if (getUnsigned(V)) 552 return error("invalid lane mask value"); 553 Mask = LaneBitmask(V); 554 lex(); 555 } 556 MBB.addLiveIn(Reg, Mask); 557 } while (consumeIfPresent(MIToken::comma)); 558 return false; 559 } 560 561 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 562 assert(Token.is(MIToken::kw_successors)); 563 lex(); 564 if (expectAndConsume(MIToken::colon)) 565 return true; 566 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 567 return false; 568 do { 569 if (Token.isNot(MIToken::MachineBasicBlock)) 570 return error("expected a machine basic block reference"); 571 MachineBasicBlock *SuccMBB = nullptr; 572 if (parseMBBReference(SuccMBB)) 573 return true; 574 lex(); 575 unsigned Weight = 0; 576 if (consumeIfPresent(MIToken::lparen)) { 577 if (Token.isNot(MIToken::IntegerLiteral) && 578 Token.isNot(MIToken::HexLiteral)) 579 return error("expected an integer literal after '('"); 580 if (getUnsigned(Weight)) 581 return true; 582 lex(); 583 if (expectAndConsume(MIToken::rparen)) 584 return true; 585 } 586 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 587 } while (consumeIfPresent(MIToken::comma)); 588 MBB.normalizeSuccProbs(); 589 return false; 590 } 591 592 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 593 MachineBasicBlock *&AddFalthroughFrom) { 594 // Skip the definition. 595 assert(Token.is(MIToken::MachineBasicBlockLabel)); 596 lex(); 597 if (consumeIfPresent(MIToken::lparen)) { 598 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 599 lex(); 600 consumeIfPresent(MIToken::rparen); 601 } 602 consumeIfPresent(MIToken::colon); 603 604 // Parse the liveins and successors. 605 // N.B: Multiple lists of successors and liveins are allowed and they're 606 // merged into one. 607 // Example: 608 // liveins: %edi 609 // liveins: %esi 610 // 611 // is equivalent to 612 // liveins: %edi, %esi 613 bool ExplicitSuccessors = false; 614 while (true) { 615 if (Token.is(MIToken::kw_successors)) { 616 if (parseBasicBlockSuccessors(MBB)) 617 return true; 618 ExplicitSuccessors = true; 619 } else if (Token.is(MIToken::kw_liveins)) { 620 if (parseBasicBlockLiveins(MBB)) 621 return true; 622 } else if (consumeIfPresent(MIToken::Newline)) { 623 continue; 624 } else 625 break; 626 if (!Token.isNewlineOrEOF()) 627 return error("expected line break at the end of a list"); 628 lex(); 629 } 630 631 // Parse the instructions. 632 bool IsInBundle = false; 633 MachineInstr *PrevMI = nullptr; 634 while (!Token.is(MIToken::MachineBasicBlockLabel) && 635 !Token.is(MIToken::Eof)) { 636 if (consumeIfPresent(MIToken::Newline)) 637 continue; 638 if (consumeIfPresent(MIToken::rbrace)) { 639 // The first parsing pass should verify that all closing '}' have an 640 // opening '{'. 641 assert(IsInBundle); 642 IsInBundle = false; 643 continue; 644 } 645 MachineInstr *MI = nullptr; 646 if (parse(MI)) 647 return true; 648 MBB.insert(MBB.end(), MI); 649 if (IsInBundle) { 650 PrevMI->setFlag(MachineInstr::BundledSucc); 651 MI->setFlag(MachineInstr::BundledPred); 652 } 653 PrevMI = MI; 654 if (Token.is(MIToken::lbrace)) { 655 if (IsInBundle) 656 return error("nested instruction bundles are not allowed"); 657 lex(); 658 // This instruction is the start of the bundle. 659 MI->setFlag(MachineInstr::BundledSucc); 660 IsInBundle = true; 661 if (!Token.is(MIToken::Newline)) 662 // The next instruction can be on the same line. 663 continue; 664 } 665 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 666 lex(); 667 } 668 669 // Construct successor list by searching for basic block machine operands. 670 if (!ExplicitSuccessors) { 671 SmallVector<MachineBasicBlock*,4> Successors; 672 bool IsFallthrough; 673 guessSuccessors(MBB, Successors, IsFallthrough); 674 for (MachineBasicBlock *Succ : Successors) 675 MBB.addSuccessor(Succ); 676 677 if (IsFallthrough) { 678 AddFalthroughFrom = &MBB; 679 } else { 680 MBB.normalizeSuccProbs(); 681 } 682 } 683 684 return false; 685 } 686 687 bool MIParser::parseBasicBlocks() { 688 lex(); 689 // Skip until the first machine basic block. 690 while (Token.is(MIToken::Newline)) 691 lex(); 692 if (Token.isErrorOrEOF()) 693 return Token.isError(); 694 // The first parsing pass should have verified that this token is a MBB label 695 // in the 'parseBasicBlockDefinitions' method. 696 assert(Token.is(MIToken::MachineBasicBlockLabel)); 697 MachineBasicBlock *AddFalthroughFrom = nullptr; 698 do { 699 MachineBasicBlock *MBB = nullptr; 700 if (parseMBBReference(MBB)) 701 return true; 702 if (AddFalthroughFrom) { 703 if (!AddFalthroughFrom->isSuccessor(MBB)) 704 AddFalthroughFrom->addSuccessor(MBB); 705 AddFalthroughFrom->normalizeSuccProbs(); 706 AddFalthroughFrom = nullptr; 707 } 708 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 709 return true; 710 // The method 'parseBasicBlock' should parse the whole block until the next 711 // block or the end of file. 712 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 713 } while (Token.isNot(MIToken::Eof)); 714 return false; 715 } 716 717 bool MIParser::parse(MachineInstr *&MI) { 718 // Parse any register operands before '=' 719 MachineOperand MO = MachineOperand::CreateImm(0); 720 SmallVector<ParsedMachineOperand, 8> Operands; 721 while (Token.isRegister() || Token.isRegisterFlag()) { 722 auto Loc = Token.location(); 723 Optional<unsigned> TiedDefIdx; 724 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 725 return true; 726 Operands.push_back( 727 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 728 if (Token.isNot(MIToken::comma)) 729 break; 730 lex(); 731 } 732 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 733 return true; 734 735 unsigned OpCode, Flags = 0; 736 if (Token.isError() || parseInstruction(OpCode, Flags)) 737 return true; 738 739 // Parse the remaining machine operands. 740 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 741 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 742 auto Loc = Token.location(); 743 Optional<unsigned> TiedDefIdx; 744 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 745 return true; 746 Operands.push_back( 747 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 748 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 749 Token.is(MIToken::lbrace)) 750 break; 751 if (Token.isNot(MIToken::comma)) 752 return error("expected ',' before the next machine operand"); 753 lex(); 754 } 755 756 DebugLoc DebugLocation; 757 if (Token.is(MIToken::kw_debug_location)) { 758 lex(); 759 if (Token.isNot(MIToken::exclaim)) 760 return error("expected a metadata node after 'debug-location'"); 761 MDNode *Node = nullptr; 762 if (parseMDNode(Node)) 763 return true; 764 DebugLocation = DebugLoc(Node); 765 } 766 767 // Parse the machine memory operands. 768 SmallVector<MachineMemOperand *, 2> MemOperands; 769 if (Token.is(MIToken::coloncolon)) { 770 lex(); 771 while (!Token.isNewlineOrEOF()) { 772 MachineMemOperand *MemOp = nullptr; 773 if (parseMachineMemoryOperand(MemOp)) 774 return true; 775 MemOperands.push_back(MemOp); 776 if (Token.isNewlineOrEOF()) 777 break; 778 if (Token.isNot(MIToken::comma)) 779 return error("expected ',' before the next machine memory operand"); 780 lex(); 781 } 782 } 783 784 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 785 if (!MCID.isVariadic()) { 786 // FIXME: Move the implicit operand verification to the machine verifier. 787 if (verifyImplicitOperands(Operands, MCID)) 788 return true; 789 } 790 791 // TODO: Check for extraneous machine operands. 792 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 793 MI->setFlags(Flags); 794 for (const auto &Operand : Operands) 795 MI->addOperand(MF, Operand.Operand); 796 if (assignRegisterTies(*MI, Operands)) 797 return true; 798 if (MemOperands.empty()) 799 return false; 800 MachineInstr::mmo_iterator MemRefs = 801 MF.allocateMemRefsArray(MemOperands.size()); 802 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 803 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 804 return false; 805 } 806 807 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 808 lex(); 809 if (Token.isNot(MIToken::MachineBasicBlock)) 810 return error("expected a machine basic block reference"); 811 if (parseMBBReference(MBB)) 812 return true; 813 lex(); 814 if (Token.isNot(MIToken::Eof)) 815 return error( 816 "expected end of string after the machine basic block reference"); 817 return false; 818 } 819 820 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 821 lex(); 822 if (Token.isNot(MIToken::NamedRegister)) 823 return error("expected a named register"); 824 if (parseNamedRegister(Reg)) 825 return true; 826 lex(); 827 if (Token.isNot(MIToken::Eof)) 828 return error("expected end of string after the register reference"); 829 return false; 830 } 831 832 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 833 lex(); 834 if (Token.isNot(MIToken::VirtualRegister)) 835 return error("expected a virtual register"); 836 if (parseVirtualRegister(Info)) 837 return true; 838 lex(); 839 if (Token.isNot(MIToken::Eof)) 840 return error("expected end of string after the register reference"); 841 return false; 842 } 843 844 bool MIParser::parseStandaloneRegister(unsigned &Reg) { 845 lex(); 846 if (Token.isNot(MIToken::NamedRegister) && 847 Token.isNot(MIToken::VirtualRegister)) 848 return error("expected either a named or virtual register"); 849 850 VRegInfo *Info; 851 if (parseRegister(Reg, Info)) 852 return true; 853 854 lex(); 855 if (Token.isNot(MIToken::Eof)) 856 return error("expected end of string after the register reference"); 857 return false; 858 } 859 860 bool MIParser::parseStandaloneStackObject(int &FI) { 861 lex(); 862 if (Token.isNot(MIToken::StackObject)) 863 return error("expected a stack object"); 864 if (parseStackFrameIndex(FI)) 865 return true; 866 if (Token.isNot(MIToken::Eof)) 867 return error("expected end of string after the stack object reference"); 868 return false; 869 } 870 871 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 872 lex(); 873 if (Token.is(MIToken::exclaim)) { 874 if (parseMDNode(Node)) 875 return true; 876 } else if (Token.is(MIToken::md_diexpr)) { 877 if (parseDIExpression(Node)) 878 return true; 879 } else 880 return error("expected a metadata node"); 881 if (Token.isNot(MIToken::Eof)) 882 return error("expected end of string after the metadata node"); 883 return false; 884 } 885 886 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 887 assert(MO.isImplicit()); 888 return MO.isDef() ? "implicit-def" : "implicit"; 889 } 890 891 static std::string getRegisterName(const TargetRegisterInfo *TRI, 892 unsigned Reg) { 893 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 894 return StringRef(TRI->getName(Reg)).lower(); 895 } 896 897 /// Return true if the parsed machine operands contain a given machine operand. 898 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 899 ArrayRef<ParsedMachineOperand> Operands) { 900 for (const auto &I : Operands) { 901 if (ImplicitOperand.isIdenticalTo(I.Operand)) 902 return true; 903 } 904 return false; 905 } 906 907 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 908 const MCInstrDesc &MCID) { 909 if (MCID.isCall()) 910 // We can't verify call instructions as they can contain arbitrary implicit 911 // register and register mask operands. 912 return false; 913 914 // Gather all the expected implicit operands. 915 SmallVector<MachineOperand, 4> ImplicitOperands; 916 if (MCID.ImplicitDefs) 917 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 918 ImplicitOperands.push_back( 919 MachineOperand::CreateReg(*ImpDefs, true, true)); 920 if (MCID.ImplicitUses) 921 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 922 ImplicitOperands.push_back( 923 MachineOperand::CreateReg(*ImpUses, false, true)); 924 925 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 926 assert(TRI && "Expected target register info"); 927 for (const auto &I : ImplicitOperands) { 928 if (isImplicitOperandIn(I, Operands)) 929 continue; 930 return error(Operands.empty() ? Token.location() : Operands.back().End, 931 Twine("missing implicit register operand '") + 932 printImplicitRegisterFlag(I) + " %" + 933 getRegisterName(TRI, I.getReg()) + "'"); 934 } 935 return false; 936 } 937 938 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 939 // Allow both: 940 // * frame-setup frame-destroy OPCODE 941 // * frame-destroy frame-setup OPCODE 942 while (Token.is(MIToken::kw_frame_setup) || 943 Token.is(MIToken::kw_frame_destroy)) { 944 Flags |= Token.is(MIToken::kw_frame_setup) ? MachineInstr::FrameSetup 945 : MachineInstr::FrameDestroy; 946 lex(); 947 } 948 if (Token.isNot(MIToken::Identifier)) 949 return error("expected a machine instruction"); 950 StringRef InstrName = Token.stringValue(); 951 if (parseInstrName(InstrName, OpCode)) 952 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 953 lex(); 954 return false; 955 } 956 957 bool MIParser::parseNamedRegister(unsigned &Reg) { 958 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 959 StringRef Name = Token.stringValue(); 960 if (getRegisterByName(Name, Reg)) 961 return error(Twine("unknown register name '") + Name + "'"); 962 return false; 963 } 964 965 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 966 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 967 StringRef Name = Token.stringValue(); 968 // TODO: Check that the VReg name is not the same as a physical register name. 969 // If it is, then print a warning (when warnings are implemented). 970 Info = &PFS.getVRegInfoNamed(Name); 971 return false; 972 } 973 974 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 975 if (Token.is(MIToken::NamedVirtualRegister)) 976 return parseNamedVirtualRegister(Info); 977 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 978 unsigned ID; 979 if (getUnsigned(ID)) 980 return true; 981 Info = &PFS.getVRegInfo(ID); 982 return false; 983 } 984 985 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) { 986 switch (Token.kind()) { 987 case MIToken::underscore: 988 Reg = 0; 989 return false; 990 case MIToken::NamedRegister: 991 return parseNamedRegister(Reg); 992 case MIToken::NamedVirtualRegister: 993 case MIToken::VirtualRegister: 994 if (parseVirtualRegister(Info)) 995 return true; 996 Reg = Info->VReg; 997 return false; 998 // TODO: Parse other register kinds. 999 default: 1000 llvm_unreachable("The current token should be a register"); 1001 } 1002 } 1003 1004 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1005 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1006 return error("expected '_', register class, or register bank name"); 1007 StringRef::iterator Loc = Token.location(); 1008 StringRef Name = Token.stringValue(); 1009 1010 // Was it a register class? 1011 auto RCNameI = PFS.Names2RegClasses.find(Name); 1012 if (RCNameI != PFS.Names2RegClasses.end()) { 1013 lex(); 1014 const TargetRegisterClass &RC = *RCNameI->getValue(); 1015 1016 switch (RegInfo.Kind) { 1017 case VRegInfo::UNKNOWN: 1018 case VRegInfo::NORMAL: 1019 RegInfo.Kind = VRegInfo::NORMAL; 1020 if (RegInfo.Explicit && RegInfo.D.RC != &RC) { 1021 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1022 return error(Loc, Twine("conflicting register classes, previously: ") + 1023 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1024 } 1025 RegInfo.D.RC = &RC; 1026 RegInfo.Explicit = true; 1027 return false; 1028 1029 case VRegInfo::GENERIC: 1030 case VRegInfo::REGBANK: 1031 return error(Loc, "register class specification on generic register"); 1032 } 1033 llvm_unreachable("Unexpected register kind"); 1034 } 1035 1036 // Should be a register bank or a generic register. 1037 const RegisterBank *RegBank = nullptr; 1038 if (Name != "_") { 1039 auto RBNameI = PFS.Names2RegBanks.find(Name); 1040 if (RBNameI == PFS.Names2RegBanks.end()) 1041 return error(Loc, "expected '_', register class, or register bank name"); 1042 RegBank = RBNameI->getValue(); 1043 } 1044 1045 lex(); 1046 1047 switch (RegInfo.Kind) { 1048 case VRegInfo::UNKNOWN: 1049 case VRegInfo::GENERIC: 1050 case VRegInfo::REGBANK: 1051 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1052 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1053 return error(Loc, "conflicting generic register banks"); 1054 RegInfo.D.RegBank = RegBank; 1055 RegInfo.Explicit = true; 1056 return false; 1057 1058 case VRegInfo::NORMAL: 1059 return error(Loc, "register bank specification on normal register"); 1060 } 1061 llvm_unreachable("Unexpected register kind"); 1062 } 1063 1064 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1065 const unsigned OldFlags = Flags; 1066 switch (Token.kind()) { 1067 case MIToken::kw_implicit: 1068 Flags |= RegState::Implicit; 1069 break; 1070 case MIToken::kw_implicit_define: 1071 Flags |= RegState::ImplicitDefine; 1072 break; 1073 case MIToken::kw_def: 1074 Flags |= RegState::Define; 1075 break; 1076 case MIToken::kw_dead: 1077 Flags |= RegState::Dead; 1078 break; 1079 case MIToken::kw_killed: 1080 Flags |= RegState::Kill; 1081 break; 1082 case MIToken::kw_undef: 1083 Flags |= RegState::Undef; 1084 break; 1085 case MIToken::kw_internal: 1086 Flags |= RegState::InternalRead; 1087 break; 1088 case MIToken::kw_early_clobber: 1089 Flags |= RegState::EarlyClobber; 1090 break; 1091 case MIToken::kw_debug_use: 1092 Flags |= RegState::Debug; 1093 break; 1094 case MIToken::kw_renamable: 1095 Flags |= RegState::Renamable; 1096 break; 1097 default: 1098 llvm_unreachable("The current token should be a register flag"); 1099 } 1100 if (OldFlags == Flags) 1101 // We know that the same flag is specified more than once when the flags 1102 // weren't modified. 1103 return error("duplicate '" + Token.stringValue() + "' register flag"); 1104 lex(); 1105 return false; 1106 } 1107 1108 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1109 assert(Token.is(MIToken::dot)); 1110 lex(); 1111 if (Token.isNot(MIToken::Identifier)) 1112 return error("expected a subregister index after '.'"); 1113 auto Name = Token.stringValue(); 1114 SubReg = getSubRegIndex(Name); 1115 if (!SubReg) 1116 return error(Twine("use of unknown subregister index '") + Name + "'"); 1117 lex(); 1118 return false; 1119 } 1120 1121 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1122 if (!consumeIfPresent(MIToken::kw_tied_def)) 1123 return true; 1124 if (Token.isNot(MIToken::IntegerLiteral)) 1125 return error("expected an integer literal after 'tied-def'"); 1126 if (getUnsigned(TiedDefIdx)) 1127 return true; 1128 lex(); 1129 if (expectAndConsume(MIToken::rparen)) 1130 return true; 1131 return false; 1132 } 1133 1134 bool MIParser::assignRegisterTies(MachineInstr &MI, 1135 ArrayRef<ParsedMachineOperand> Operands) { 1136 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1137 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1138 if (!Operands[I].TiedDefIdx) 1139 continue; 1140 // The parser ensures that this operand is a register use, so we just have 1141 // to check the tied-def operand. 1142 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1143 if (DefIdx >= E) 1144 return error(Operands[I].Begin, 1145 Twine("use of invalid tied-def operand index '" + 1146 Twine(DefIdx) + "'; instruction has only ") + 1147 Twine(E) + " operands"); 1148 const auto &DefOperand = Operands[DefIdx].Operand; 1149 if (!DefOperand.isReg() || !DefOperand.isDef()) 1150 // FIXME: add note with the def operand. 1151 return error(Operands[I].Begin, 1152 Twine("use of invalid tied-def operand index '") + 1153 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1154 " isn't a defined register"); 1155 // Check that the tied-def operand wasn't tied elsewhere. 1156 for (const auto &TiedPair : TiedRegisterPairs) { 1157 if (TiedPair.first == DefIdx) 1158 return error(Operands[I].Begin, 1159 Twine("the tied-def operand #") + Twine(DefIdx) + 1160 " is already tied with another register operand"); 1161 } 1162 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1163 } 1164 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1165 // indices must be less than tied max. 1166 for (const auto &TiedPair : TiedRegisterPairs) 1167 MI.tieOperands(TiedPair.first, TiedPair.second); 1168 return false; 1169 } 1170 1171 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1172 Optional<unsigned> &TiedDefIdx, 1173 bool IsDef) { 1174 unsigned Flags = IsDef ? RegState::Define : 0; 1175 while (Token.isRegisterFlag()) { 1176 if (parseRegisterFlag(Flags)) 1177 return true; 1178 } 1179 if (!Token.isRegister()) 1180 return error("expected a register after register flags"); 1181 unsigned Reg; 1182 VRegInfo *RegInfo; 1183 if (parseRegister(Reg, RegInfo)) 1184 return true; 1185 lex(); 1186 unsigned SubReg = 0; 1187 if (Token.is(MIToken::dot)) { 1188 if (parseSubRegisterIndex(SubReg)) 1189 return true; 1190 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1191 return error("subregister index expects a virtual register"); 1192 } 1193 if (Token.is(MIToken::colon)) { 1194 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1195 return error("register class specification expects a virtual register"); 1196 lex(); 1197 if (parseRegisterClassOrBank(*RegInfo)) 1198 return true; 1199 } 1200 MachineRegisterInfo &MRI = MF.getRegInfo(); 1201 if ((Flags & RegState::Define) == 0) { 1202 if (consumeIfPresent(MIToken::lparen)) { 1203 unsigned Idx; 1204 if (!parseRegisterTiedDefIndex(Idx)) 1205 TiedDefIdx = Idx; 1206 else { 1207 // Try a redundant low-level type. 1208 LLT Ty; 1209 if (parseLowLevelType(Token.location(), Ty)) 1210 return error("expected tied-def or low-level type after '('"); 1211 1212 if (expectAndConsume(MIToken::rparen)) 1213 return true; 1214 1215 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1216 return error("inconsistent type for generic virtual register"); 1217 1218 MRI.setType(Reg, Ty); 1219 } 1220 } 1221 } else if (consumeIfPresent(MIToken::lparen)) { 1222 // Virtual registers may have a tpe with GlobalISel. 1223 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1224 return error("unexpected type on physical register"); 1225 1226 LLT Ty; 1227 if (parseLowLevelType(Token.location(), Ty)) 1228 return true; 1229 1230 if (expectAndConsume(MIToken::rparen)) 1231 return true; 1232 1233 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1234 return error("inconsistent type for generic virtual register"); 1235 1236 MRI.setType(Reg, Ty); 1237 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1238 // Generic virtual registers must have a type. 1239 // If we end up here this means the type hasn't been specified and 1240 // this is bad! 1241 if (RegInfo->Kind == VRegInfo::GENERIC || 1242 RegInfo->Kind == VRegInfo::REGBANK) 1243 return error("generic virtual registers must have a type"); 1244 } 1245 Dest = MachineOperand::CreateReg( 1246 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1247 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1248 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1249 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1250 1251 return false; 1252 } 1253 1254 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1255 assert(Token.is(MIToken::IntegerLiteral)); 1256 const APSInt &Int = Token.integerValue(); 1257 if (Int.getMinSignedBits() > 64) 1258 return error("integer literal is too large to be an immediate operand"); 1259 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1260 lex(); 1261 return false; 1262 } 1263 1264 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1265 const Constant *&C) { 1266 auto Source = StringValue.str(); // The source has to be null terminated. 1267 SMDiagnostic Err; 1268 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(), 1269 &PFS.IRSlots); 1270 if (!C) 1271 return error(Loc + Err.getColumnNo(), Err.getMessage()); 1272 return false; 1273 } 1274 1275 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1276 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1277 return true; 1278 lex(); 1279 return false; 1280 } 1281 1282 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1283 if (Token.is(MIToken::ScalarType)) { 1284 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue()); 1285 lex(); 1286 return false; 1287 } else if (Token.is(MIToken::PointerType)) { 1288 const DataLayout &DL = MF.getDataLayout(); 1289 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue(); 1290 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1291 lex(); 1292 return false; 1293 } 1294 1295 // Now we're looking for a vector. 1296 if (Token.isNot(MIToken::less)) 1297 return error(Loc, 1298 "expected unsized, pN, sN or <N x sM> for GlobalISel type"); 1299 1300 lex(); 1301 1302 if (Token.isNot(MIToken::IntegerLiteral)) 1303 return error(Loc, "expected <N x sM> for vctor type"); 1304 uint64_t NumElements = Token.integerValue().getZExtValue(); 1305 lex(); 1306 1307 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1308 return error(Loc, "expected '<N x sM>' for vector type"); 1309 lex(); 1310 1311 if (Token.isNot(MIToken::ScalarType)) 1312 return error(Loc, "expected '<N x sM>' for vector type"); 1313 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1314 lex(); 1315 1316 if (Token.isNot(MIToken::greater)) 1317 return error(Loc, "expected '<N x sM>' for vector type"); 1318 lex(); 1319 1320 Ty = LLT::vector(NumElements, ScalarSize); 1321 return false; 1322 } 1323 1324 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1325 assert(Token.is(MIToken::IntegerType)); 1326 auto Loc = Token.location(); 1327 lex(); 1328 if (Token.isNot(MIToken::IntegerLiteral)) 1329 return error("expected an integer literal"); 1330 const Constant *C = nullptr; 1331 if (parseIRConstant(Loc, C)) 1332 return true; 1333 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1334 return false; 1335 } 1336 1337 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1338 auto Loc = Token.location(); 1339 lex(); 1340 if (Token.isNot(MIToken::FloatingPointLiteral) && 1341 Token.isNot(MIToken::HexLiteral)) 1342 return error("expected a floating point literal"); 1343 const Constant *C = nullptr; 1344 if (parseIRConstant(Loc, C)) 1345 return true; 1346 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1347 return false; 1348 } 1349 1350 bool MIParser::getUnsigned(unsigned &Result) { 1351 if (Token.hasIntegerValue()) { 1352 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1353 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1354 if (Val64 == Limit) 1355 return error("expected 32-bit integer (too large)"); 1356 Result = Val64; 1357 return false; 1358 } 1359 if (Token.is(MIToken::HexLiteral)) { 1360 APInt A; 1361 if (getHexUint(A)) 1362 return true; 1363 if (A.getBitWidth() > 32) 1364 return error("expected 32-bit integer (too large)"); 1365 Result = A.getZExtValue(); 1366 return false; 1367 } 1368 return true; 1369 } 1370 1371 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1372 assert(Token.is(MIToken::MachineBasicBlock) || 1373 Token.is(MIToken::MachineBasicBlockLabel)); 1374 unsigned Number; 1375 if (getUnsigned(Number)) 1376 return true; 1377 auto MBBInfo = PFS.MBBSlots.find(Number); 1378 if (MBBInfo == PFS.MBBSlots.end()) 1379 return error(Twine("use of undefined machine basic block #") + 1380 Twine(Number)); 1381 MBB = MBBInfo->second; 1382 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1383 // we drop the <irname> from the bb.<id>.<irname> format. 1384 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1385 return error(Twine("the name of machine basic block #") + Twine(Number) + 1386 " isn't '" + Token.stringValue() + "'"); 1387 return false; 1388 } 1389 1390 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1391 MachineBasicBlock *MBB; 1392 if (parseMBBReference(MBB)) 1393 return true; 1394 Dest = MachineOperand::CreateMBB(MBB); 1395 lex(); 1396 return false; 1397 } 1398 1399 bool MIParser::parseStackFrameIndex(int &FI) { 1400 assert(Token.is(MIToken::StackObject)); 1401 unsigned ID; 1402 if (getUnsigned(ID)) 1403 return true; 1404 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1405 if (ObjectInfo == PFS.StackObjectSlots.end()) 1406 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1407 "'"); 1408 StringRef Name; 1409 if (const auto *Alloca = 1410 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1411 Name = Alloca->getName(); 1412 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1413 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1414 "' isn't '" + Token.stringValue() + "'"); 1415 lex(); 1416 FI = ObjectInfo->second; 1417 return false; 1418 } 1419 1420 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1421 int FI; 1422 if (parseStackFrameIndex(FI)) 1423 return true; 1424 Dest = MachineOperand::CreateFI(FI); 1425 return false; 1426 } 1427 1428 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1429 assert(Token.is(MIToken::FixedStackObject)); 1430 unsigned ID; 1431 if (getUnsigned(ID)) 1432 return true; 1433 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1434 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1435 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1436 Twine(ID) + "'"); 1437 lex(); 1438 FI = ObjectInfo->second; 1439 return false; 1440 } 1441 1442 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1443 int FI; 1444 if (parseFixedStackFrameIndex(FI)) 1445 return true; 1446 Dest = MachineOperand::CreateFI(FI); 1447 return false; 1448 } 1449 1450 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1451 switch (Token.kind()) { 1452 case MIToken::NamedGlobalValue: { 1453 const Module *M = MF.getFunction().getParent(); 1454 GV = M->getNamedValue(Token.stringValue()); 1455 if (!GV) 1456 return error(Twine("use of undefined global value '") + Token.range() + 1457 "'"); 1458 break; 1459 } 1460 case MIToken::GlobalValue: { 1461 unsigned GVIdx; 1462 if (getUnsigned(GVIdx)) 1463 return true; 1464 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1465 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1466 "'"); 1467 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1468 break; 1469 } 1470 default: 1471 llvm_unreachable("The current token should be a global value"); 1472 } 1473 return false; 1474 } 1475 1476 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1477 GlobalValue *GV = nullptr; 1478 if (parseGlobalValue(GV)) 1479 return true; 1480 lex(); 1481 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1482 if (parseOperandsOffset(Dest)) 1483 return true; 1484 return false; 1485 } 1486 1487 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1488 assert(Token.is(MIToken::ConstantPoolItem)); 1489 unsigned ID; 1490 if (getUnsigned(ID)) 1491 return true; 1492 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1493 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1494 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1495 lex(); 1496 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1497 if (parseOperandsOffset(Dest)) 1498 return true; 1499 return false; 1500 } 1501 1502 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1503 assert(Token.is(MIToken::JumpTableIndex)); 1504 unsigned ID; 1505 if (getUnsigned(ID)) 1506 return true; 1507 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1508 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1509 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1510 lex(); 1511 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1512 return false; 1513 } 1514 1515 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1516 assert(Token.is(MIToken::ExternalSymbol)); 1517 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1518 lex(); 1519 Dest = MachineOperand::CreateES(Symbol); 1520 if (parseOperandsOffset(Dest)) 1521 return true; 1522 return false; 1523 } 1524 1525 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1526 assert(Token.is(MIToken::SubRegisterIndex)); 1527 StringRef Name = Token.stringValue(); 1528 unsigned SubRegIndex = getSubRegIndex(Token.stringValue()); 1529 if (SubRegIndex == 0) 1530 return error(Twine("unknown subregister index '") + Name + "'"); 1531 lex(); 1532 Dest = MachineOperand::CreateImm(SubRegIndex); 1533 return false; 1534 } 1535 1536 bool MIParser::parseMDNode(MDNode *&Node) { 1537 assert(Token.is(MIToken::exclaim)); 1538 1539 auto Loc = Token.location(); 1540 lex(); 1541 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1542 return error("expected metadata id after '!'"); 1543 unsigned ID; 1544 if (getUnsigned(ID)) 1545 return true; 1546 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 1547 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 1548 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1549 lex(); 1550 Node = NodeInfo->second.get(); 1551 return false; 1552 } 1553 1554 bool MIParser::parseDIExpression(MDNode *&Expr) { 1555 assert(Token.is(MIToken::md_diexpr)); 1556 lex(); 1557 1558 // FIXME: Share this parsing with the IL parser. 1559 SmallVector<uint64_t, 8> Elements; 1560 1561 if (expectAndConsume(MIToken::lparen)) 1562 return true; 1563 1564 if (Token.isNot(MIToken::rparen)) { 1565 do { 1566 if (Token.is(MIToken::Identifier)) { 1567 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 1568 lex(); 1569 Elements.push_back(Op); 1570 continue; 1571 } 1572 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 1573 } 1574 1575 if (Token.isNot(MIToken::IntegerLiteral) || 1576 Token.integerValue().isSigned()) 1577 return error("expected unsigned integer"); 1578 1579 auto &U = Token.integerValue(); 1580 if (U.ugt(UINT64_MAX)) 1581 return error("element too large, limit is " + Twine(UINT64_MAX)); 1582 Elements.push_back(U.getZExtValue()); 1583 lex(); 1584 1585 } while (consumeIfPresent(MIToken::comma)); 1586 } 1587 1588 if (expectAndConsume(MIToken::rparen)) 1589 return true; 1590 1591 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 1592 return false; 1593 } 1594 1595 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1596 MDNode *Node = nullptr; 1597 if (Token.is(MIToken::exclaim)) { 1598 if (parseMDNode(Node)) 1599 return true; 1600 } else if (Token.is(MIToken::md_diexpr)) { 1601 if (parseDIExpression(Node)) 1602 return true; 1603 } 1604 Dest = MachineOperand::CreateMetadata(Node); 1605 return false; 1606 } 1607 1608 bool MIParser::parseCFIOffset(int &Offset) { 1609 if (Token.isNot(MIToken::IntegerLiteral)) 1610 return error("expected a cfi offset"); 1611 if (Token.integerValue().getMinSignedBits() > 32) 1612 return error("expected a 32 bit integer (the cfi offset is too large)"); 1613 Offset = (int)Token.integerValue().getExtValue(); 1614 lex(); 1615 return false; 1616 } 1617 1618 bool MIParser::parseCFIRegister(unsigned &Reg) { 1619 if (Token.isNot(MIToken::NamedRegister)) 1620 return error("expected a cfi register"); 1621 unsigned LLVMReg; 1622 if (parseNamedRegister(LLVMReg)) 1623 return true; 1624 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1625 assert(TRI && "Expected target register info"); 1626 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1627 if (DwarfReg < 0) 1628 return error("invalid DWARF register"); 1629 Reg = (unsigned)DwarfReg; 1630 lex(); 1631 return false; 1632 } 1633 1634 bool MIParser::parseCFIEscapeValues(std::string &Values) { 1635 do { 1636 if (Token.isNot(MIToken::HexLiteral)) 1637 return error("expected a hexadecimal literal"); 1638 unsigned Value; 1639 if (getUnsigned(Value)) 1640 return true; 1641 if (Value > UINT8_MAX) 1642 return error("expected a 8-bit integer (too large)"); 1643 Values.push_back(static_cast<uint8_t>(Value)); 1644 lex(); 1645 } while (consumeIfPresent(MIToken::comma)); 1646 return false; 1647 } 1648 1649 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1650 auto Kind = Token.kind(); 1651 lex(); 1652 int Offset; 1653 unsigned Reg; 1654 unsigned CFIIndex; 1655 switch (Kind) { 1656 case MIToken::kw_cfi_same_value: 1657 if (parseCFIRegister(Reg)) 1658 return true; 1659 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1660 break; 1661 case MIToken::kw_cfi_offset: 1662 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1663 parseCFIOffset(Offset)) 1664 return true; 1665 CFIIndex = 1666 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1667 break; 1668 case MIToken::kw_cfi_rel_offset: 1669 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1670 parseCFIOffset(Offset)) 1671 return true; 1672 CFIIndex = MF.addFrameInst( 1673 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 1674 break; 1675 case MIToken::kw_cfi_def_cfa_register: 1676 if (parseCFIRegister(Reg)) 1677 return true; 1678 CFIIndex = 1679 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1680 break; 1681 case MIToken::kw_cfi_def_cfa_offset: 1682 if (parseCFIOffset(Offset)) 1683 return true; 1684 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1685 CFIIndex = MF.addFrameInst( 1686 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1687 break; 1688 case MIToken::kw_cfi_adjust_cfa_offset: 1689 if (parseCFIOffset(Offset)) 1690 return true; 1691 CFIIndex = MF.addFrameInst( 1692 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 1693 break; 1694 case MIToken::kw_cfi_def_cfa: 1695 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1696 parseCFIOffset(Offset)) 1697 return true; 1698 // NB: MCCFIInstruction::createDefCfa negates the offset. 1699 CFIIndex = 1700 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1701 break; 1702 case MIToken::kw_cfi_remember_state: 1703 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 1704 break; 1705 case MIToken::kw_cfi_restore: 1706 if (parseCFIRegister(Reg)) 1707 return true; 1708 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 1709 break; 1710 case MIToken::kw_cfi_restore_state: 1711 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 1712 break; 1713 case MIToken::kw_cfi_undefined: 1714 if (parseCFIRegister(Reg)) 1715 return true; 1716 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 1717 break; 1718 case MIToken::kw_cfi_register: { 1719 unsigned Reg2; 1720 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1721 parseCFIRegister(Reg2)) 1722 return true; 1723 1724 CFIIndex = 1725 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 1726 break; 1727 } 1728 case MIToken::kw_cfi_window_save: 1729 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 1730 break; 1731 case MIToken::kw_cfi_escape: { 1732 std::string Values; 1733 if (parseCFIEscapeValues(Values)) 1734 return true; 1735 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 1736 break; 1737 } 1738 default: 1739 // TODO: Parse the other CFI operands. 1740 llvm_unreachable("The current token should be a cfi operand"); 1741 } 1742 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1743 return false; 1744 } 1745 1746 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1747 switch (Token.kind()) { 1748 case MIToken::NamedIRBlock: { 1749 BB = dyn_cast_or_null<BasicBlock>( 1750 F.getValueSymbolTable()->lookup(Token.stringValue())); 1751 if (!BB) 1752 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1753 break; 1754 } 1755 case MIToken::IRBlock: { 1756 unsigned SlotNumber = 0; 1757 if (getUnsigned(SlotNumber)) 1758 return true; 1759 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1760 if (!BB) 1761 return error(Twine("use of undefined IR block '%ir-block.") + 1762 Twine(SlotNumber) + "'"); 1763 break; 1764 } 1765 default: 1766 llvm_unreachable("The current token should be an IR block reference"); 1767 } 1768 return false; 1769 } 1770 1771 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1772 assert(Token.is(MIToken::kw_blockaddress)); 1773 lex(); 1774 if (expectAndConsume(MIToken::lparen)) 1775 return true; 1776 if (Token.isNot(MIToken::GlobalValue) && 1777 Token.isNot(MIToken::NamedGlobalValue)) 1778 return error("expected a global value"); 1779 GlobalValue *GV = nullptr; 1780 if (parseGlobalValue(GV)) 1781 return true; 1782 auto *F = dyn_cast<Function>(GV); 1783 if (!F) 1784 return error("expected an IR function reference"); 1785 lex(); 1786 if (expectAndConsume(MIToken::comma)) 1787 return true; 1788 BasicBlock *BB = nullptr; 1789 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1790 return error("expected an IR block reference"); 1791 if (parseIRBlock(BB, *F)) 1792 return true; 1793 lex(); 1794 if (expectAndConsume(MIToken::rparen)) 1795 return true; 1796 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1797 if (parseOperandsOffset(Dest)) 1798 return true; 1799 return false; 1800 } 1801 1802 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 1803 assert(Token.is(MIToken::kw_intrinsic)); 1804 lex(); 1805 if (expectAndConsume(MIToken::lparen)) 1806 return error("expected syntax intrinsic(@llvm.whatever)"); 1807 1808 if (Token.isNot(MIToken::NamedGlobalValue)) 1809 return error("expected syntax intrinsic(@llvm.whatever)"); 1810 1811 std::string Name = Token.stringValue(); 1812 lex(); 1813 1814 if (expectAndConsume(MIToken::rparen)) 1815 return error("expected ')' to terminate intrinsic name"); 1816 1817 // Find out what intrinsic we're dealing with, first try the global namespace 1818 // and then the target's private intrinsics if that fails. 1819 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 1820 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 1821 if (ID == Intrinsic::not_intrinsic && TII) 1822 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 1823 1824 if (ID == Intrinsic::not_intrinsic) 1825 return error("unknown intrinsic name"); 1826 Dest = MachineOperand::CreateIntrinsicID(ID); 1827 1828 return false; 1829 } 1830 1831 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 1832 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 1833 bool IsFloat = Token.is(MIToken::kw_floatpred); 1834 lex(); 1835 1836 if (expectAndConsume(MIToken::lparen)) 1837 return error("expected syntax intpred(whatever) or floatpred(whatever"); 1838 1839 if (Token.isNot(MIToken::Identifier)) 1840 return error("whatever"); 1841 1842 CmpInst::Predicate Pred; 1843 if (IsFloat) { 1844 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1845 .Case("false", CmpInst::FCMP_FALSE) 1846 .Case("oeq", CmpInst::FCMP_OEQ) 1847 .Case("ogt", CmpInst::FCMP_OGT) 1848 .Case("oge", CmpInst::FCMP_OGE) 1849 .Case("olt", CmpInst::FCMP_OLT) 1850 .Case("ole", CmpInst::FCMP_OLE) 1851 .Case("one", CmpInst::FCMP_ONE) 1852 .Case("ord", CmpInst::FCMP_ORD) 1853 .Case("uno", CmpInst::FCMP_UNO) 1854 .Case("ueq", CmpInst::FCMP_UEQ) 1855 .Case("ugt", CmpInst::FCMP_UGT) 1856 .Case("uge", CmpInst::FCMP_UGE) 1857 .Case("ult", CmpInst::FCMP_ULT) 1858 .Case("ule", CmpInst::FCMP_ULE) 1859 .Case("une", CmpInst::FCMP_UNE) 1860 .Case("true", CmpInst::FCMP_TRUE) 1861 .Default(CmpInst::BAD_FCMP_PREDICATE); 1862 if (!CmpInst::isFPPredicate(Pred)) 1863 return error("invalid floating-point predicate"); 1864 } else { 1865 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 1866 .Case("eq", CmpInst::ICMP_EQ) 1867 .Case("ne", CmpInst::ICMP_NE) 1868 .Case("sgt", CmpInst::ICMP_SGT) 1869 .Case("sge", CmpInst::ICMP_SGE) 1870 .Case("slt", CmpInst::ICMP_SLT) 1871 .Case("sle", CmpInst::ICMP_SLE) 1872 .Case("ugt", CmpInst::ICMP_UGT) 1873 .Case("uge", CmpInst::ICMP_UGE) 1874 .Case("ult", CmpInst::ICMP_ULT) 1875 .Case("ule", CmpInst::ICMP_ULE) 1876 .Default(CmpInst::BAD_ICMP_PREDICATE); 1877 if (!CmpInst::isIntPredicate(Pred)) 1878 return error("invalid integer predicate"); 1879 } 1880 1881 lex(); 1882 Dest = MachineOperand::CreatePredicate(Pred); 1883 if (expectAndConsume(MIToken::rparen)) 1884 return error("predicate should be terminated by ')'."); 1885 1886 return false; 1887 } 1888 1889 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1890 assert(Token.is(MIToken::kw_target_index)); 1891 lex(); 1892 if (expectAndConsume(MIToken::lparen)) 1893 return true; 1894 if (Token.isNot(MIToken::Identifier)) 1895 return error("expected the name of the target index"); 1896 int Index = 0; 1897 if (getTargetIndex(Token.stringValue(), Index)) 1898 return error("use of undefined target index '" + Token.stringValue() + "'"); 1899 lex(); 1900 if (expectAndConsume(MIToken::rparen)) 1901 return true; 1902 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1903 if (parseOperandsOffset(Dest)) 1904 return true; 1905 return false; 1906 } 1907 1908 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 1909 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 1910 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1911 assert(TRI && "Expected target register info"); 1912 lex(); 1913 if (expectAndConsume(MIToken::lparen)) 1914 return true; 1915 1916 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1917 while (true) { 1918 if (Token.isNot(MIToken::NamedRegister)) 1919 return error("expected a named register"); 1920 unsigned Reg; 1921 if (parseNamedRegister(Reg)) 1922 return true; 1923 lex(); 1924 Mask[Reg / 32] |= 1U << (Reg % 32); 1925 // TODO: Report an error if the same register is used more than once. 1926 if (Token.isNot(MIToken::comma)) 1927 break; 1928 lex(); 1929 } 1930 1931 if (expectAndConsume(MIToken::rparen)) 1932 return true; 1933 Dest = MachineOperand::CreateRegMask(Mask); 1934 return false; 1935 } 1936 1937 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1938 assert(Token.is(MIToken::kw_liveout)); 1939 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1940 assert(TRI && "Expected target register info"); 1941 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1942 lex(); 1943 if (expectAndConsume(MIToken::lparen)) 1944 return true; 1945 while (true) { 1946 if (Token.isNot(MIToken::NamedRegister)) 1947 return error("expected a named register"); 1948 unsigned Reg; 1949 if (parseNamedRegister(Reg)) 1950 return true; 1951 lex(); 1952 Mask[Reg / 32] |= 1U << (Reg % 32); 1953 // TODO: Report an error if the same register is used more than once. 1954 if (Token.isNot(MIToken::comma)) 1955 break; 1956 lex(); 1957 } 1958 if (expectAndConsume(MIToken::rparen)) 1959 return true; 1960 Dest = MachineOperand::CreateRegLiveOut(Mask); 1961 return false; 1962 } 1963 1964 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1965 Optional<unsigned> &TiedDefIdx) { 1966 switch (Token.kind()) { 1967 case MIToken::kw_implicit: 1968 case MIToken::kw_implicit_define: 1969 case MIToken::kw_def: 1970 case MIToken::kw_dead: 1971 case MIToken::kw_killed: 1972 case MIToken::kw_undef: 1973 case MIToken::kw_internal: 1974 case MIToken::kw_early_clobber: 1975 case MIToken::kw_debug_use: 1976 case MIToken::kw_renamable: 1977 case MIToken::underscore: 1978 case MIToken::NamedRegister: 1979 case MIToken::VirtualRegister: 1980 case MIToken::NamedVirtualRegister: 1981 return parseRegisterOperand(Dest, TiedDefIdx); 1982 case MIToken::IntegerLiteral: 1983 return parseImmediateOperand(Dest); 1984 case MIToken::IntegerType: 1985 return parseTypedImmediateOperand(Dest); 1986 case MIToken::kw_half: 1987 case MIToken::kw_float: 1988 case MIToken::kw_double: 1989 case MIToken::kw_x86_fp80: 1990 case MIToken::kw_fp128: 1991 case MIToken::kw_ppc_fp128: 1992 return parseFPImmediateOperand(Dest); 1993 case MIToken::MachineBasicBlock: 1994 return parseMBBOperand(Dest); 1995 case MIToken::StackObject: 1996 return parseStackObjectOperand(Dest); 1997 case MIToken::FixedStackObject: 1998 return parseFixedStackObjectOperand(Dest); 1999 case MIToken::GlobalValue: 2000 case MIToken::NamedGlobalValue: 2001 return parseGlobalAddressOperand(Dest); 2002 case MIToken::ConstantPoolItem: 2003 return parseConstantPoolIndexOperand(Dest); 2004 case MIToken::JumpTableIndex: 2005 return parseJumpTableIndexOperand(Dest); 2006 case MIToken::ExternalSymbol: 2007 return parseExternalSymbolOperand(Dest); 2008 case MIToken::SubRegisterIndex: 2009 return parseSubRegisterIndexOperand(Dest); 2010 case MIToken::md_diexpr: 2011 case MIToken::exclaim: 2012 return parseMetadataOperand(Dest); 2013 case MIToken::kw_cfi_same_value: 2014 case MIToken::kw_cfi_offset: 2015 case MIToken::kw_cfi_rel_offset: 2016 case MIToken::kw_cfi_def_cfa_register: 2017 case MIToken::kw_cfi_def_cfa_offset: 2018 case MIToken::kw_cfi_adjust_cfa_offset: 2019 case MIToken::kw_cfi_escape: 2020 case MIToken::kw_cfi_def_cfa: 2021 case MIToken::kw_cfi_register: 2022 case MIToken::kw_cfi_remember_state: 2023 case MIToken::kw_cfi_restore: 2024 case MIToken::kw_cfi_restore_state: 2025 case MIToken::kw_cfi_undefined: 2026 case MIToken::kw_cfi_window_save: 2027 return parseCFIOperand(Dest); 2028 case MIToken::kw_blockaddress: 2029 return parseBlockAddressOperand(Dest); 2030 case MIToken::kw_intrinsic: 2031 return parseIntrinsicOperand(Dest); 2032 case MIToken::kw_target_index: 2033 return parseTargetIndexOperand(Dest); 2034 case MIToken::kw_liveout: 2035 return parseLiveoutRegisterMaskOperand(Dest); 2036 case MIToken::kw_floatpred: 2037 case MIToken::kw_intpred: 2038 return parsePredicateOperand(Dest); 2039 case MIToken::Error: 2040 return true; 2041 case MIToken::Identifier: 2042 if (const auto *RegMask = getRegMask(Token.stringValue())) { 2043 Dest = MachineOperand::CreateRegMask(RegMask); 2044 lex(); 2045 break; 2046 } else 2047 return parseCustomRegisterMaskOperand(Dest); 2048 default: 2049 // FIXME: Parse the MCSymbol machine operand. 2050 return error("expected a machine operand"); 2051 } 2052 return false; 2053 } 2054 2055 bool MIParser::parseMachineOperandAndTargetFlags( 2056 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 2057 unsigned TF = 0; 2058 bool HasTargetFlags = false; 2059 if (Token.is(MIToken::kw_target_flags)) { 2060 HasTargetFlags = true; 2061 lex(); 2062 if (expectAndConsume(MIToken::lparen)) 2063 return true; 2064 if (Token.isNot(MIToken::Identifier)) 2065 return error("expected the name of the target flag"); 2066 if (getDirectTargetFlag(Token.stringValue(), TF)) { 2067 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 2068 return error("use of undefined target flag '" + Token.stringValue() + 2069 "'"); 2070 } 2071 lex(); 2072 while (Token.is(MIToken::comma)) { 2073 lex(); 2074 if (Token.isNot(MIToken::Identifier)) 2075 return error("expected the name of the target flag"); 2076 unsigned BitFlag = 0; 2077 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2078 return error("use of undefined target flag '" + Token.stringValue() + 2079 "'"); 2080 // TODO: Report an error when using a duplicate bit target flag. 2081 TF |= BitFlag; 2082 lex(); 2083 } 2084 if (expectAndConsume(MIToken::rparen)) 2085 return true; 2086 } 2087 auto Loc = Token.location(); 2088 if (parseMachineOperand(Dest, TiedDefIdx)) 2089 return true; 2090 if (!HasTargetFlags) 2091 return false; 2092 if (Dest.isReg()) 2093 return error(Loc, "register operands can't have target flags"); 2094 Dest.setTargetFlags(TF); 2095 return false; 2096 } 2097 2098 bool MIParser::parseOffset(int64_t &Offset) { 2099 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2100 return false; 2101 StringRef Sign = Token.range(); 2102 bool IsNegative = Token.is(MIToken::minus); 2103 lex(); 2104 if (Token.isNot(MIToken::IntegerLiteral)) 2105 return error("expected an integer literal after '" + Sign + "'"); 2106 if (Token.integerValue().getMinSignedBits() > 64) 2107 return error("expected 64-bit integer (too large)"); 2108 Offset = Token.integerValue().getExtValue(); 2109 if (IsNegative) 2110 Offset = -Offset; 2111 lex(); 2112 return false; 2113 } 2114 2115 bool MIParser::parseAlignment(unsigned &Alignment) { 2116 assert(Token.is(MIToken::kw_align)); 2117 lex(); 2118 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2119 return error("expected an integer literal after 'align'"); 2120 if (getUnsigned(Alignment)) 2121 return true; 2122 lex(); 2123 return false; 2124 } 2125 2126 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2127 assert(Token.is(MIToken::kw_addrspace)); 2128 lex(); 2129 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2130 return error("expected an integer literal after 'addrspace'"); 2131 if (getUnsigned(Addrspace)) 2132 return true; 2133 lex(); 2134 return false; 2135 } 2136 2137 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2138 int64_t Offset = 0; 2139 if (parseOffset(Offset)) 2140 return true; 2141 Op.setOffset(Offset); 2142 return false; 2143 } 2144 2145 bool MIParser::parseIRValue(const Value *&V) { 2146 switch (Token.kind()) { 2147 case MIToken::NamedIRValue: { 2148 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2149 break; 2150 } 2151 case MIToken::IRValue: { 2152 unsigned SlotNumber = 0; 2153 if (getUnsigned(SlotNumber)) 2154 return true; 2155 V = getIRValue(SlotNumber); 2156 break; 2157 } 2158 case MIToken::NamedGlobalValue: 2159 case MIToken::GlobalValue: { 2160 GlobalValue *GV = nullptr; 2161 if (parseGlobalValue(GV)) 2162 return true; 2163 V = GV; 2164 break; 2165 } 2166 case MIToken::QuotedIRValue: { 2167 const Constant *C = nullptr; 2168 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 2169 return true; 2170 V = C; 2171 break; 2172 } 2173 default: 2174 llvm_unreachable("The current token should be an IR block reference"); 2175 } 2176 if (!V) 2177 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 2178 return false; 2179 } 2180 2181 bool MIParser::getUint64(uint64_t &Result) { 2182 if (Token.hasIntegerValue()) { 2183 if (Token.integerValue().getActiveBits() > 64) 2184 return error("expected 64-bit integer (too large)"); 2185 Result = Token.integerValue().getZExtValue(); 2186 return false; 2187 } 2188 if (Token.is(MIToken::HexLiteral)) { 2189 APInt A; 2190 if (getHexUint(A)) 2191 return true; 2192 if (A.getBitWidth() > 64) 2193 return error("expected 64-bit integer (too large)"); 2194 Result = A.getZExtValue(); 2195 return false; 2196 } 2197 return true; 2198 } 2199 2200 bool MIParser::getHexUint(APInt &Result) { 2201 assert(Token.is(MIToken::HexLiteral)); 2202 StringRef S = Token.range(); 2203 assert(S[0] == '0' && tolower(S[1]) == 'x'); 2204 // This could be a floating point literal with a special prefix. 2205 if (!isxdigit(S[2])) 2206 return true; 2207 StringRef V = S.substr(2); 2208 APInt A(V.size()*4, V, 16); 2209 2210 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 2211 // sure it isn't the case before constructing result. 2212 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 2213 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 2214 return false; 2215 } 2216 2217 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2218 const auto OldFlags = Flags; 2219 switch (Token.kind()) { 2220 case MIToken::kw_volatile: 2221 Flags |= MachineMemOperand::MOVolatile; 2222 break; 2223 case MIToken::kw_non_temporal: 2224 Flags |= MachineMemOperand::MONonTemporal; 2225 break; 2226 case MIToken::kw_dereferenceable: 2227 Flags |= MachineMemOperand::MODereferenceable; 2228 break; 2229 case MIToken::kw_invariant: 2230 Flags |= MachineMemOperand::MOInvariant; 2231 break; 2232 case MIToken::StringConstant: { 2233 MachineMemOperand::Flags TF; 2234 if (getMMOTargetFlag(Token.stringValue(), TF)) 2235 return error("use of undefined target MMO flag '" + Token.stringValue() + 2236 "'"); 2237 Flags |= TF; 2238 break; 2239 } 2240 default: 2241 llvm_unreachable("The current token should be a memory operand flag"); 2242 } 2243 if (OldFlags == Flags) 2244 // We know that the same flag is specified more than once when the flags 2245 // weren't modified. 2246 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2247 lex(); 2248 return false; 2249 } 2250 2251 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2252 switch (Token.kind()) { 2253 case MIToken::kw_stack: 2254 PSV = MF.getPSVManager().getStack(); 2255 break; 2256 case MIToken::kw_got: 2257 PSV = MF.getPSVManager().getGOT(); 2258 break; 2259 case MIToken::kw_jump_table: 2260 PSV = MF.getPSVManager().getJumpTable(); 2261 break; 2262 case MIToken::kw_constant_pool: 2263 PSV = MF.getPSVManager().getConstantPool(); 2264 break; 2265 case MIToken::FixedStackObject: { 2266 int FI; 2267 if (parseFixedStackFrameIndex(FI)) 2268 return true; 2269 PSV = MF.getPSVManager().getFixedStack(FI); 2270 // The token was already consumed, so use return here instead of break. 2271 return false; 2272 } 2273 case MIToken::StackObject: { 2274 int FI; 2275 if (parseStackFrameIndex(FI)) 2276 return true; 2277 PSV = MF.getPSVManager().getFixedStack(FI); 2278 // The token was already consumed, so use return here instead of break. 2279 return false; 2280 } 2281 case MIToken::kw_call_entry: 2282 lex(); 2283 switch (Token.kind()) { 2284 case MIToken::GlobalValue: 2285 case MIToken::NamedGlobalValue: { 2286 GlobalValue *GV = nullptr; 2287 if (parseGlobalValue(GV)) 2288 return true; 2289 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2290 break; 2291 } 2292 case MIToken::ExternalSymbol: 2293 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2294 MF.createExternalSymbolName(Token.stringValue())); 2295 break; 2296 default: 2297 return error( 2298 "expected a global value or an external symbol after 'call-entry'"); 2299 } 2300 break; 2301 default: 2302 llvm_unreachable("The current token should be pseudo source value"); 2303 } 2304 lex(); 2305 return false; 2306 } 2307 2308 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2309 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2310 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2311 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2312 Token.is(MIToken::kw_call_entry)) { 2313 const PseudoSourceValue *PSV = nullptr; 2314 if (parseMemoryPseudoSourceValue(PSV)) 2315 return true; 2316 int64_t Offset = 0; 2317 if (parseOffset(Offset)) 2318 return true; 2319 Dest = MachinePointerInfo(PSV, Offset); 2320 return false; 2321 } 2322 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2323 Token.isNot(MIToken::GlobalValue) && 2324 Token.isNot(MIToken::NamedGlobalValue) && 2325 Token.isNot(MIToken::QuotedIRValue)) 2326 return error("expected an IR value reference"); 2327 const Value *V = nullptr; 2328 if (parseIRValue(V)) 2329 return true; 2330 if (!V->getType()->isPointerTy()) 2331 return error("expected a pointer IR value"); 2332 lex(); 2333 int64_t Offset = 0; 2334 if (parseOffset(Offset)) 2335 return true; 2336 Dest = MachinePointerInfo(V, Offset); 2337 return false; 2338 } 2339 2340 bool MIParser::parseOptionalScope(LLVMContext &Context, 2341 SyncScope::ID &SSID) { 2342 SSID = SyncScope::System; 2343 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2344 lex(); 2345 if (expectAndConsume(MIToken::lparen)) 2346 return error("expected '(' in syncscope"); 2347 2348 std::string SSN; 2349 if (parseStringConstant(SSN)) 2350 return true; 2351 2352 SSID = Context.getOrInsertSyncScopeID(SSN); 2353 if (expectAndConsume(MIToken::rparen)) 2354 return error("expected ')' in syncscope"); 2355 } 2356 2357 return false; 2358 } 2359 2360 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 2361 Order = AtomicOrdering::NotAtomic; 2362 if (Token.isNot(MIToken::Identifier)) 2363 return false; 2364 2365 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 2366 .Case("unordered", AtomicOrdering::Unordered) 2367 .Case("monotonic", AtomicOrdering::Monotonic) 2368 .Case("acquire", AtomicOrdering::Acquire) 2369 .Case("release", AtomicOrdering::Release) 2370 .Case("acq_rel", AtomicOrdering::AcquireRelease) 2371 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 2372 .Default(AtomicOrdering::NotAtomic); 2373 2374 if (Order != AtomicOrdering::NotAtomic) { 2375 lex(); 2376 return false; 2377 } 2378 2379 return error("expected an atomic scope, ordering or a size integer literal"); 2380 } 2381 2382 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 2383 if (expectAndConsume(MIToken::lparen)) 2384 return true; 2385 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 2386 while (Token.isMemoryOperandFlag()) { 2387 if (parseMemoryOperandFlag(Flags)) 2388 return true; 2389 } 2390 if (Token.isNot(MIToken::Identifier) || 2391 (Token.stringValue() != "load" && Token.stringValue() != "store")) 2392 return error("expected 'load' or 'store' memory operation"); 2393 if (Token.stringValue() == "load") 2394 Flags |= MachineMemOperand::MOLoad; 2395 else 2396 Flags |= MachineMemOperand::MOStore; 2397 lex(); 2398 2399 // Optional 'store' for operands that both load and store. 2400 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 2401 Flags |= MachineMemOperand::MOStore; 2402 lex(); 2403 } 2404 2405 // Optional synchronization scope. 2406 SyncScope::ID SSID; 2407 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 2408 return true; 2409 2410 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 2411 AtomicOrdering Order, FailureOrder; 2412 if (parseOptionalAtomicOrdering(Order)) 2413 return true; 2414 2415 if (parseOptionalAtomicOrdering(FailureOrder)) 2416 return true; 2417 2418 if (Token.isNot(MIToken::IntegerLiteral)) 2419 return error("expected the size integer literal after memory operation"); 2420 uint64_t Size; 2421 if (getUint64(Size)) 2422 return true; 2423 lex(); 2424 2425 MachinePointerInfo Ptr = MachinePointerInfo(); 2426 if (Token.is(MIToken::Identifier)) { 2427 const char *Word = 2428 ((Flags & MachineMemOperand::MOLoad) && 2429 (Flags & MachineMemOperand::MOStore)) 2430 ? "on" 2431 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 2432 if (Token.stringValue() != Word) 2433 return error(Twine("expected '") + Word + "'"); 2434 lex(); 2435 2436 if (parseMachinePointerInfo(Ptr)) 2437 return true; 2438 } 2439 unsigned BaseAlignment = Size; 2440 AAMDNodes AAInfo; 2441 MDNode *Range = nullptr; 2442 while (consumeIfPresent(MIToken::comma)) { 2443 switch (Token.kind()) { 2444 case MIToken::kw_align: 2445 if (parseAlignment(BaseAlignment)) 2446 return true; 2447 break; 2448 case MIToken::kw_addrspace: 2449 if (parseAddrspace(Ptr.AddrSpace)) 2450 return true; 2451 break; 2452 case MIToken::md_tbaa: 2453 lex(); 2454 if (parseMDNode(AAInfo.TBAA)) 2455 return true; 2456 break; 2457 case MIToken::md_alias_scope: 2458 lex(); 2459 if (parseMDNode(AAInfo.Scope)) 2460 return true; 2461 break; 2462 case MIToken::md_noalias: 2463 lex(); 2464 if (parseMDNode(AAInfo.NoAlias)) 2465 return true; 2466 break; 2467 case MIToken::md_range: 2468 lex(); 2469 if (parseMDNode(Range)) 2470 return true; 2471 break; 2472 // TODO: Report an error on duplicate metadata nodes. 2473 default: 2474 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 2475 "'!noalias' or '!range'"); 2476 } 2477 } 2478 if (expectAndConsume(MIToken::rparen)) 2479 return true; 2480 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range, 2481 SSID, Order, FailureOrder); 2482 return false; 2483 } 2484 2485 void MIParser::initNames2InstrOpCodes() { 2486 if (!Names2InstrOpCodes.empty()) 2487 return; 2488 const auto *TII = MF.getSubtarget().getInstrInfo(); 2489 assert(TII && "Expected target instruction info"); 2490 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 2491 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 2492 } 2493 2494 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 2495 initNames2InstrOpCodes(); 2496 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 2497 if (InstrInfo == Names2InstrOpCodes.end()) 2498 return true; 2499 OpCode = InstrInfo->getValue(); 2500 return false; 2501 } 2502 2503 void MIParser::initNames2Regs() { 2504 if (!Names2Regs.empty()) 2505 return; 2506 // The '%noreg' register is the register 0. 2507 Names2Regs.insert(std::make_pair("noreg", 0)); 2508 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2509 assert(TRI && "Expected target register info"); 2510 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 2511 bool WasInserted = 2512 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 2513 .second; 2514 (void)WasInserted; 2515 assert(WasInserted && "Expected registers to be unique case-insensitively"); 2516 } 2517 } 2518 2519 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 2520 initNames2Regs(); 2521 auto RegInfo = Names2Regs.find(RegName); 2522 if (RegInfo == Names2Regs.end()) 2523 return true; 2524 Reg = RegInfo->getValue(); 2525 return false; 2526 } 2527 2528 void MIParser::initNames2RegMasks() { 2529 if (!Names2RegMasks.empty()) 2530 return; 2531 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2532 assert(TRI && "Expected target register info"); 2533 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 2534 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 2535 assert(RegMasks.size() == RegMaskNames.size()); 2536 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 2537 Names2RegMasks.insert( 2538 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 2539 } 2540 2541 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 2542 initNames2RegMasks(); 2543 auto RegMaskInfo = Names2RegMasks.find(Identifier); 2544 if (RegMaskInfo == Names2RegMasks.end()) 2545 return nullptr; 2546 return RegMaskInfo->getValue(); 2547 } 2548 2549 void MIParser::initNames2SubRegIndices() { 2550 if (!Names2SubRegIndices.empty()) 2551 return; 2552 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2553 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 2554 Names2SubRegIndices.insert( 2555 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 2556 } 2557 2558 unsigned MIParser::getSubRegIndex(StringRef Name) { 2559 initNames2SubRegIndices(); 2560 auto SubRegInfo = Names2SubRegIndices.find(Name); 2561 if (SubRegInfo == Names2SubRegIndices.end()) 2562 return 0; 2563 return SubRegInfo->getValue(); 2564 } 2565 2566 static void initSlots2BasicBlocks( 2567 const Function &F, 2568 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2569 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2570 MST.incorporateFunction(F); 2571 for (auto &BB : F) { 2572 if (BB.hasName()) 2573 continue; 2574 int Slot = MST.getLocalSlot(&BB); 2575 if (Slot == -1) 2576 continue; 2577 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 2578 } 2579 } 2580 2581 static const BasicBlock *getIRBlockFromSlot( 2582 unsigned Slot, 2583 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 2584 auto BlockInfo = Slots2BasicBlocks.find(Slot); 2585 if (BlockInfo == Slots2BasicBlocks.end()) 2586 return nullptr; 2587 return BlockInfo->second; 2588 } 2589 2590 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 2591 if (Slots2BasicBlocks.empty()) 2592 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 2593 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 2594 } 2595 2596 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 2597 if (&F == &MF.getFunction()) 2598 return getIRBlock(Slot); 2599 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 2600 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 2601 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 2602 } 2603 2604 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 2605 DenseMap<unsigned, const Value *> &Slots2Values) { 2606 int Slot = MST.getLocalSlot(V); 2607 if (Slot == -1) 2608 return; 2609 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 2610 } 2611 2612 /// Creates the mapping from slot numbers to function's unnamed IR values. 2613 static void initSlots2Values(const Function &F, 2614 DenseMap<unsigned, const Value *> &Slots2Values) { 2615 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 2616 MST.incorporateFunction(F); 2617 for (const auto &Arg : F.args()) 2618 mapValueToSlot(&Arg, MST, Slots2Values); 2619 for (const auto &BB : F) { 2620 mapValueToSlot(&BB, MST, Slots2Values); 2621 for (const auto &I : BB) 2622 mapValueToSlot(&I, MST, Slots2Values); 2623 } 2624 } 2625 2626 const Value *MIParser::getIRValue(unsigned Slot) { 2627 if (Slots2Values.empty()) 2628 initSlots2Values(MF.getFunction(), Slots2Values); 2629 auto ValueInfo = Slots2Values.find(Slot); 2630 if (ValueInfo == Slots2Values.end()) 2631 return nullptr; 2632 return ValueInfo->second; 2633 } 2634 2635 void MIParser::initNames2TargetIndices() { 2636 if (!Names2TargetIndices.empty()) 2637 return; 2638 const auto *TII = MF.getSubtarget().getInstrInfo(); 2639 assert(TII && "Expected target instruction info"); 2640 auto Indices = TII->getSerializableTargetIndices(); 2641 for (const auto &I : Indices) 2642 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 2643 } 2644 2645 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 2646 initNames2TargetIndices(); 2647 auto IndexInfo = Names2TargetIndices.find(Name); 2648 if (IndexInfo == Names2TargetIndices.end()) 2649 return true; 2650 Index = IndexInfo->second; 2651 return false; 2652 } 2653 2654 void MIParser::initNames2DirectTargetFlags() { 2655 if (!Names2DirectTargetFlags.empty()) 2656 return; 2657 const auto *TII = MF.getSubtarget().getInstrInfo(); 2658 assert(TII && "Expected target instruction info"); 2659 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 2660 for (const auto &I : Flags) 2661 Names2DirectTargetFlags.insert( 2662 std::make_pair(StringRef(I.second), I.first)); 2663 } 2664 2665 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 2666 initNames2DirectTargetFlags(); 2667 auto FlagInfo = Names2DirectTargetFlags.find(Name); 2668 if (FlagInfo == Names2DirectTargetFlags.end()) 2669 return true; 2670 Flag = FlagInfo->second; 2671 return false; 2672 } 2673 2674 void MIParser::initNames2BitmaskTargetFlags() { 2675 if (!Names2BitmaskTargetFlags.empty()) 2676 return; 2677 const auto *TII = MF.getSubtarget().getInstrInfo(); 2678 assert(TII && "Expected target instruction info"); 2679 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 2680 for (const auto &I : Flags) 2681 Names2BitmaskTargetFlags.insert( 2682 std::make_pair(StringRef(I.second), I.first)); 2683 } 2684 2685 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 2686 initNames2BitmaskTargetFlags(); 2687 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 2688 if (FlagInfo == Names2BitmaskTargetFlags.end()) 2689 return true; 2690 Flag = FlagInfo->second; 2691 return false; 2692 } 2693 2694 void MIParser::initNames2MMOTargetFlags() { 2695 if (!Names2MMOTargetFlags.empty()) 2696 return; 2697 const auto *TII = MF.getSubtarget().getInstrInfo(); 2698 assert(TII && "Expected target instruction info"); 2699 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 2700 for (const auto &I : Flags) 2701 Names2MMOTargetFlags.insert( 2702 std::make_pair(StringRef(I.second), I.first)); 2703 } 2704 2705 bool MIParser::getMMOTargetFlag(StringRef Name, 2706 MachineMemOperand::Flags &Flag) { 2707 initNames2MMOTargetFlags(); 2708 auto FlagInfo = Names2MMOTargetFlags.find(Name); 2709 if (FlagInfo == Names2MMOTargetFlags.end()) 2710 return true; 2711 Flag = FlagInfo->second; 2712 return false; 2713 } 2714 2715 bool MIParser::parseStringConstant(std::string &Result) { 2716 if (Token.isNot(MIToken::StringConstant)) 2717 return error("expected string constant"); 2718 Result = Token.stringValue(); 2719 lex(); 2720 return false; 2721 } 2722 2723 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 2724 StringRef Src, 2725 SMDiagnostic &Error) { 2726 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 2727 } 2728 2729 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 2730 StringRef Src, SMDiagnostic &Error) { 2731 return MIParser(PFS, Error, Src).parseBasicBlocks(); 2732 } 2733 2734 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 2735 MachineBasicBlock *&MBB, StringRef Src, 2736 SMDiagnostic &Error) { 2737 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 2738 } 2739 2740 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 2741 unsigned &Reg, StringRef Src, 2742 SMDiagnostic &Error) { 2743 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 2744 } 2745 2746 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 2747 unsigned &Reg, StringRef Src, 2748 SMDiagnostic &Error) { 2749 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 2750 } 2751 2752 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 2753 VRegInfo *&Info, StringRef Src, 2754 SMDiagnostic &Error) { 2755 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 2756 } 2757 2758 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 2759 int &FI, StringRef Src, 2760 SMDiagnostic &Error) { 2761 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 2762 } 2763 2764 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 2765 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 2766 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 2767 } 2768