1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRFormatter.h"
32 #include "llvm/CodeGen/MIRPrinter.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineMemOperand.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetInstrInfo.h"
42 #include "llvm/CodeGen/TargetRegisterInfo.h"
43 #include "llvm/CodeGen/TargetSubtargetInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/MC/LaneBitmask.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCDwarf.h"
62 #include "llvm/MC/MCInstrDesc.h"
63 #include "llvm/MC/MCRegisterInfo.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/LowLevelTypeImpl.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/SMLoc.h"
71 #include "llvm/Support/SourceMgr.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetIntrinsicInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cctype>
78 #include <cstddef>
79 #include <cstdint>
80 #include <limits>
81 #include <string>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 void PerTargetMIParsingState::setTarget(
87   const TargetSubtargetInfo &NewSubtarget) {
88 
89   // If the subtarget changed, over conservatively assume everything is invalid.
90   if (&Subtarget == &NewSubtarget)
91     return;
92 
93   Names2InstrOpCodes.clear();
94   Names2Regs.clear();
95   Names2RegMasks.clear();
96   Names2SubRegIndices.clear();
97   Names2TargetIndices.clear();
98   Names2DirectTargetFlags.clear();
99   Names2BitmaskTargetFlags.clear();
100   Names2MMOTargetFlags.clear();
101 
102   initNames2RegClasses();
103   initNames2RegBanks();
104 }
105 
106 void PerTargetMIParsingState::initNames2Regs() {
107   if (!Names2Regs.empty())
108     return;
109 
110   // The '%noreg' register is the register 0.
111   Names2Regs.insert(std::make_pair("noreg", 0));
112   const auto *TRI = Subtarget.getRegisterInfo();
113   assert(TRI && "Expected target register info");
114 
115   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
116     bool WasInserted =
117         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
118             .second;
119     (void)WasInserted;
120     assert(WasInserted && "Expected registers to be unique case-insensitively");
121   }
122 }
123 
124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
125                                                 unsigned &Reg) {
126   initNames2Regs();
127   auto RegInfo = Names2Regs.find(RegName);
128   if (RegInfo == Names2Regs.end())
129     return true;
130   Reg = RegInfo->getValue();
131   return false;
132 }
133 
134 void PerTargetMIParsingState::initNames2InstrOpCodes() {
135   if (!Names2InstrOpCodes.empty())
136     return;
137   const auto *TII = Subtarget.getInstrInfo();
138   assert(TII && "Expected target instruction info");
139   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
140     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
141 }
142 
143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
144                                              unsigned &OpCode) {
145   initNames2InstrOpCodes();
146   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
147   if (InstrInfo == Names2InstrOpCodes.end())
148     return true;
149   OpCode = InstrInfo->getValue();
150   return false;
151 }
152 
153 void PerTargetMIParsingState::initNames2RegMasks() {
154   if (!Names2RegMasks.empty())
155     return;
156   const auto *TRI = Subtarget.getRegisterInfo();
157   assert(TRI && "Expected target register info");
158   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
159   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
160   assert(RegMasks.size() == RegMaskNames.size());
161   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
162     Names2RegMasks.insert(
163         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
164 }
165 
166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
167   initNames2RegMasks();
168   auto RegMaskInfo = Names2RegMasks.find(Identifier);
169   if (RegMaskInfo == Names2RegMasks.end())
170     return nullptr;
171   return RegMaskInfo->getValue();
172 }
173 
174 void PerTargetMIParsingState::initNames2SubRegIndices() {
175   if (!Names2SubRegIndices.empty())
176     return;
177   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
178   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
179     Names2SubRegIndices.insert(
180         std::make_pair(TRI->getSubRegIndexName(I), I));
181 }
182 
183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
184   initNames2SubRegIndices();
185   auto SubRegInfo = Names2SubRegIndices.find(Name);
186   if (SubRegInfo == Names2SubRegIndices.end())
187     return 0;
188   return SubRegInfo->getValue();
189 }
190 
191 void PerTargetMIParsingState::initNames2TargetIndices() {
192   if (!Names2TargetIndices.empty())
193     return;
194   const auto *TII = Subtarget.getInstrInfo();
195   assert(TII && "Expected target instruction info");
196   auto Indices = TII->getSerializableTargetIndices();
197   for (const auto &I : Indices)
198     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
199 }
200 
201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
202   initNames2TargetIndices();
203   auto IndexInfo = Names2TargetIndices.find(Name);
204   if (IndexInfo == Names2TargetIndices.end())
205     return true;
206   Index = IndexInfo->second;
207   return false;
208 }
209 
210 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
211   if (!Names2DirectTargetFlags.empty())
212     return;
213 
214   const auto *TII = Subtarget.getInstrInfo();
215   assert(TII && "Expected target instruction info");
216   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
217   for (const auto &I : Flags)
218     Names2DirectTargetFlags.insert(
219         std::make_pair(StringRef(I.second), I.first));
220 }
221 
222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
223                                                   unsigned &Flag) {
224   initNames2DirectTargetFlags();
225   auto FlagInfo = Names2DirectTargetFlags.find(Name);
226   if (FlagInfo == Names2DirectTargetFlags.end())
227     return true;
228   Flag = FlagInfo->second;
229   return false;
230 }
231 
232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
233   if (!Names2BitmaskTargetFlags.empty())
234     return;
235 
236   const auto *TII = Subtarget.getInstrInfo();
237   assert(TII && "Expected target instruction info");
238   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
239   for (const auto &I : Flags)
240     Names2BitmaskTargetFlags.insert(
241         std::make_pair(StringRef(I.second), I.first));
242 }
243 
244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
245                                                    unsigned &Flag) {
246   initNames2BitmaskTargetFlags();
247   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
248   if (FlagInfo == Names2BitmaskTargetFlags.end())
249     return true;
250   Flag = FlagInfo->second;
251   return false;
252 }
253 
254 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
255   if (!Names2MMOTargetFlags.empty())
256     return;
257 
258   const auto *TII = Subtarget.getInstrInfo();
259   assert(TII && "Expected target instruction info");
260   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
261   for (const auto &I : Flags)
262     Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
263 }
264 
265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
266                                                MachineMemOperand::Flags &Flag) {
267   initNames2MMOTargetFlags();
268   auto FlagInfo = Names2MMOTargetFlags.find(Name);
269   if (FlagInfo == Names2MMOTargetFlags.end())
270     return true;
271   Flag = FlagInfo->second;
272   return false;
273 }
274 
275 void PerTargetMIParsingState::initNames2RegClasses() {
276   if (!Names2RegClasses.empty())
277     return;
278 
279   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
280   for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
281     const auto *RC = TRI->getRegClass(I);
282     Names2RegClasses.insert(
283         std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
284   }
285 }
286 
287 void PerTargetMIParsingState::initNames2RegBanks() {
288   if (!Names2RegBanks.empty())
289     return;
290 
291   const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
292   // If the target does not support GlobalISel, we may not have a
293   // register bank info.
294   if (!RBI)
295     return;
296 
297   for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
298     const auto &RegBank = RBI->getRegBank(I);
299     Names2RegBanks.insert(
300         std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
301   }
302 }
303 
304 const TargetRegisterClass *
305 PerTargetMIParsingState::getRegClass(StringRef Name) {
306   auto RegClassInfo = Names2RegClasses.find(Name);
307   if (RegClassInfo == Names2RegClasses.end())
308     return nullptr;
309   return RegClassInfo->getValue();
310 }
311 
312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
313   auto RegBankInfo = Names2RegBanks.find(Name);
314   if (RegBankInfo == Names2RegBanks.end())
315     return nullptr;
316   return RegBankInfo->getValue();
317 }
318 
319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
320     SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
321   : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
322 }
323 
324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
325   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
326   if (I.second) {
327     MachineRegisterInfo &MRI = MF.getRegInfo();
328     VRegInfo *Info = new (Allocator) VRegInfo;
329     Info->VReg = MRI.createIncompleteVirtualRegister();
330     I.first->second = Info;
331   }
332   return *I.first->second;
333 }
334 
335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
336   assert(RegName != "" && "Expected named reg.");
337 
338   auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
339   if (I.second) {
340     VRegInfo *Info = new (Allocator) VRegInfo;
341     Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
342     I.first->second = Info;
343   }
344   return *I.first->second;
345 }
346 
347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
348                            DenseMap<unsigned, const Value *> &Slots2Values) {
349   int Slot = MST.getLocalSlot(V);
350   if (Slot == -1)
351     return;
352   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
353 }
354 
355 /// Creates the mapping from slot numbers to function's unnamed IR values.
356 static void initSlots2Values(const Function &F,
357                              DenseMap<unsigned, const Value *> &Slots2Values) {
358   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
359   MST.incorporateFunction(F);
360   for (const auto &Arg : F.args())
361     mapValueToSlot(&Arg, MST, Slots2Values);
362   for (const auto &BB : F) {
363     mapValueToSlot(&BB, MST, Slots2Values);
364     for (const auto &I : BB)
365       mapValueToSlot(&I, MST, Slots2Values);
366   }
367 }
368 
369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
370   if (Slots2Values.empty())
371     initSlots2Values(MF.getFunction(), Slots2Values);
372   auto ValueInfo = Slots2Values.find(Slot);
373   if (ValueInfo == Slots2Values.end())
374     return nullptr;
375   return ValueInfo->second;
376 }
377 
378 namespace {
379 
380 /// A wrapper struct around the 'MachineOperand' struct that includes a source
381 /// range and other attributes.
382 struct ParsedMachineOperand {
383   MachineOperand Operand;
384   StringRef::iterator Begin;
385   StringRef::iterator End;
386   Optional<unsigned> TiedDefIdx;
387 
388   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
389                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
390       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
391     if (TiedDefIdx)
392       assert(Operand.isReg() && Operand.isUse() &&
393              "Only used register operands can be tied");
394   }
395 };
396 
397 class MIParser {
398   MachineFunction &MF;
399   SMDiagnostic &Error;
400   StringRef Source, CurrentSource;
401   MIToken Token;
402   PerFunctionMIParsingState &PFS;
403   /// Maps from slot numbers to function's unnamed basic blocks.
404   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
405 
406 public:
407   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
408            StringRef Source);
409 
410   /// \p SkipChar gives the number of characters to skip before looking
411   /// for the next token.
412   void lex(unsigned SkipChar = 0);
413 
414   /// Report an error at the current location with the given message.
415   ///
416   /// This function always return true.
417   bool error(const Twine &Msg);
418 
419   /// Report an error at the given location with the given message.
420   ///
421   /// This function always return true.
422   bool error(StringRef::iterator Loc, const Twine &Msg);
423 
424   bool
425   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
426   bool parseBasicBlocks();
427   bool parse(MachineInstr *&MI);
428   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
429   bool parseStandaloneNamedRegister(unsigned &Reg);
430   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
431   bool parseStandaloneRegister(unsigned &Reg);
432   bool parseStandaloneStackObject(int &FI);
433   bool parseStandaloneMDNode(MDNode *&Node);
434 
435   bool
436   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
437   bool parseBasicBlock(MachineBasicBlock &MBB,
438                        MachineBasicBlock *&AddFalthroughFrom);
439   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
440   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
441 
442   bool parseNamedRegister(unsigned &Reg);
443   bool parseVirtualRegister(VRegInfo *&Info);
444   bool parseNamedVirtualRegister(VRegInfo *&Info);
445   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
446   bool parseRegisterFlag(unsigned &Flags);
447   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
448   bool parseSubRegisterIndex(unsigned &SubReg);
449   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
450   bool parseRegisterOperand(MachineOperand &Dest,
451                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
452   bool parseImmediateOperand(MachineOperand &Dest);
453   bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
454                        const Constant *&C);
455   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
456   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
457   bool parseTypedImmediateOperand(MachineOperand &Dest);
458   bool parseFPImmediateOperand(MachineOperand &Dest);
459   bool parseMBBReference(MachineBasicBlock *&MBB);
460   bool parseMBBOperand(MachineOperand &Dest);
461   bool parseStackFrameIndex(int &FI);
462   bool parseStackObjectOperand(MachineOperand &Dest);
463   bool parseFixedStackFrameIndex(int &FI);
464   bool parseFixedStackObjectOperand(MachineOperand &Dest);
465   bool parseGlobalValue(GlobalValue *&GV);
466   bool parseGlobalAddressOperand(MachineOperand &Dest);
467   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
468   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
469   bool parseJumpTableIndexOperand(MachineOperand &Dest);
470   bool parseExternalSymbolOperand(MachineOperand &Dest);
471   bool parseMCSymbolOperand(MachineOperand &Dest);
472   bool parseMDNode(MDNode *&Node);
473   bool parseDIExpression(MDNode *&Expr);
474   bool parseDILocation(MDNode *&Expr);
475   bool parseMetadataOperand(MachineOperand &Dest);
476   bool parseCFIOffset(int &Offset);
477   bool parseCFIRegister(unsigned &Reg);
478   bool parseCFIEscapeValues(std::string& Values);
479   bool parseCFIOperand(MachineOperand &Dest);
480   bool parseIRBlock(BasicBlock *&BB, const Function &F);
481   bool parseBlockAddressOperand(MachineOperand &Dest);
482   bool parseIntrinsicOperand(MachineOperand &Dest);
483   bool parsePredicateOperand(MachineOperand &Dest);
484   bool parseShuffleMaskOperand(MachineOperand &Dest);
485   bool parseTargetIndexOperand(MachineOperand &Dest);
486   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
487   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
488   bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
489                            MachineOperand &Dest,
490                            Optional<unsigned> &TiedDefIdx);
491   bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
492                                          const unsigned OpIdx,
493                                          MachineOperand &Dest,
494                                          Optional<unsigned> &TiedDefIdx);
495   bool parseOffset(int64_t &Offset);
496   bool parseAlignment(unsigned &Alignment);
497   bool parseAddrspace(unsigned &Addrspace);
498   bool parseMBBS(MachineBasicBlockSection &T);
499   bool parseOperandsOffset(MachineOperand &Op);
500   bool parseIRValue(const Value *&V);
501   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
502   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
503   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
504   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
505   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
506   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
507   bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
508   bool parseHeapAllocMarker(MDNode *&Node);
509 
510   bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
511                               MachineOperand &Dest, const MIRFormatter &MF);
512 
513 private:
514   /// Convert the integer literal in the current token into an unsigned integer.
515   ///
516   /// Return true if an error occurred.
517   bool getUnsigned(unsigned &Result);
518 
519   /// Convert the integer literal in the current token into an uint64.
520   ///
521   /// Return true if an error occurred.
522   bool getUint64(uint64_t &Result);
523 
524   /// Convert the hexadecimal literal in the current token into an unsigned
525   ///  APInt with a minimum bitwidth required to represent the value.
526   ///
527   /// Return true if the literal does not represent an integer value.
528   bool getHexUint(APInt &Result);
529 
530   /// If the current token is of the given kind, consume it and return false.
531   /// Otherwise report an error and return true.
532   bool expectAndConsume(MIToken::TokenKind TokenKind);
533 
534   /// If the current token is of the given kind, consume it and return true.
535   /// Otherwise return false.
536   bool consumeIfPresent(MIToken::TokenKind TokenKind);
537 
538   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
539 
540   bool assignRegisterTies(MachineInstr &MI,
541                           ArrayRef<ParsedMachineOperand> Operands);
542 
543   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
544                               const MCInstrDesc &MCID);
545 
546   const BasicBlock *getIRBlock(unsigned Slot);
547   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
548 
549   /// Get or create an MCSymbol for a given name.
550   MCSymbol *getOrCreateMCSymbol(StringRef Name);
551 
552   /// parseStringConstant
553   ///   ::= StringConstant
554   bool parseStringConstant(std::string &Result);
555 };
556 
557 } // end anonymous namespace
558 
559 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
560                    StringRef Source)
561     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
562 {}
563 
564 void MIParser::lex(unsigned SkipChar) {
565   CurrentSource = lexMIToken(
566       CurrentSource.data() + SkipChar, Token,
567       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
568 }
569 
570 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
571 
572 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
573   const SourceMgr &SM = *PFS.SM;
574   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
575   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
576   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
577     // Create an ordinary diagnostic when the source manager's buffer is the
578     // source string.
579     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
580     return true;
581   }
582   // Create a diagnostic for a YAML string literal.
583   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
584                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
585                        Source, None, None);
586   return true;
587 }
588 
589 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
590     ErrorCallbackType;
591 
592 static const char *toString(MIToken::TokenKind TokenKind) {
593   switch (TokenKind) {
594   case MIToken::comma:
595     return "','";
596   case MIToken::equal:
597     return "'='";
598   case MIToken::colon:
599     return "':'";
600   case MIToken::lparen:
601     return "'('";
602   case MIToken::rparen:
603     return "')'";
604   default:
605     return "<unknown token>";
606   }
607 }
608 
609 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
610   if (Token.isNot(TokenKind))
611     return error(Twine("expected ") + toString(TokenKind));
612   lex();
613   return false;
614 }
615 
616 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
617   if (Token.isNot(TokenKind))
618     return false;
619   lex();
620   return true;
621 }
622 
623 // Parse Machine Basic Block Section Type.
624 bool MIParser::parseMBBS(MachineBasicBlockSection &T) {
625   assert(Token.is(MIToken::kw_bbsections));
626   lex();
627   const StringRef &S = Token.stringValue();
628   if (S == "Entry")
629     T = MBBS_Entry;
630   else if (S == "Exception")
631     T = MBBS_Exception;
632   else if (S == "Cold")
633     T = MBBS_Cold;
634   else if (S == "Unique")
635     T = MBBS_Unique;
636   else
637     return error("Unknown Section Type");
638   lex();
639   return false;
640 }
641 
642 bool MIParser::parseBasicBlockDefinition(
643     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
644   assert(Token.is(MIToken::MachineBasicBlockLabel));
645   unsigned ID = 0;
646   if (getUnsigned(ID))
647     return true;
648   auto Loc = Token.location();
649   auto Name = Token.stringValue();
650   lex();
651   bool HasAddressTaken = false;
652   bool IsLandingPad = false;
653   bool IsEHFuncletEntry = false;
654   MachineBasicBlockSection SectionType = MBBS_None;
655   unsigned Alignment = 0;
656   BasicBlock *BB = nullptr;
657   if (consumeIfPresent(MIToken::lparen)) {
658     do {
659       // TODO: Report an error when multiple same attributes are specified.
660       switch (Token.kind()) {
661       case MIToken::kw_address_taken:
662         HasAddressTaken = true;
663         lex();
664         break;
665       case MIToken::kw_landing_pad:
666         IsLandingPad = true;
667         lex();
668         break;
669       case MIToken::kw_ehfunclet_entry:
670         IsEHFuncletEntry = true;
671         lex();
672         break;
673       case MIToken::kw_align:
674         if (parseAlignment(Alignment))
675           return true;
676         break;
677       case MIToken::IRBlock:
678         // TODO: Report an error when both name and ir block are specified.
679         if (parseIRBlock(BB, MF.getFunction()))
680           return true;
681         lex();
682         break;
683       case MIToken::kw_bbsections:
684         if (parseMBBS(SectionType))
685           return true;
686         break;
687       default:
688         break;
689       }
690     } while (consumeIfPresent(MIToken::comma));
691     if (expectAndConsume(MIToken::rparen))
692       return true;
693   }
694   if (expectAndConsume(MIToken::colon))
695     return true;
696 
697   if (!Name.empty()) {
698     BB = dyn_cast_or_null<BasicBlock>(
699         MF.getFunction().getValueSymbolTable()->lookup(Name));
700     if (!BB)
701       return error(Loc, Twine("basic block '") + Name +
702                             "' is not defined in the function '" +
703                             MF.getName() + "'");
704   }
705   auto *MBB = MF.CreateMachineBasicBlock(BB);
706   MF.insert(MF.end(), MBB);
707   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
708   if (!WasInserted)
709     return error(Loc, Twine("redefinition of machine basic block with id #") +
710                           Twine(ID));
711   if (Alignment)
712     MBB->setAlignment(Align(Alignment));
713   if (HasAddressTaken)
714     MBB->setHasAddressTaken();
715   MBB->setIsEHPad(IsLandingPad);
716   MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
717   if (SectionType != MBBS_None) {
718     MBB->setSectionType(SectionType);
719     MF.setBBSectionsType(BasicBlockSection::List);
720   }
721   return false;
722 }
723 
724 bool MIParser::parseBasicBlockDefinitions(
725     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
726   lex();
727   // Skip until the first machine basic block.
728   while (Token.is(MIToken::Newline))
729     lex();
730   if (Token.isErrorOrEOF())
731     return Token.isError();
732   if (Token.isNot(MIToken::MachineBasicBlockLabel))
733     return error("expected a basic block definition before instructions");
734   unsigned BraceDepth = 0;
735   do {
736     if (parseBasicBlockDefinition(MBBSlots))
737       return true;
738     bool IsAfterNewline = false;
739     // Skip until the next machine basic block.
740     while (true) {
741       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
742           Token.isErrorOrEOF())
743         break;
744       else if (Token.is(MIToken::MachineBasicBlockLabel))
745         return error("basic block definition should be located at the start of "
746                      "the line");
747       else if (consumeIfPresent(MIToken::Newline)) {
748         IsAfterNewline = true;
749         continue;
750       }
751       IsAfterNewline = false;
752       if (Token.is(MIToken::lbrace))
753         ++BraceDepth;
754       if (Token.is(MIToken::rbrace)) {
755         if (!BraceDepth)
756           return error("extraneous closing brace ('}')");
757         --BraceDepth;
758       }
759       lex();
760     }
761     // Verify that we closed all of the '{' at the end of a file or a block.
762     if (!Token.isError() && BraceDepth)
763       return error("expected '}'"); // FIXME: Report a note that shows '{'.
764   } while (!Token.isErrorOrEOF());
765   return Token.isError();
766 }
767 
768 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
769   assert(Token.is(MIToken::kw_liveins));
770   lex();
771   if (expectAndConsume(MIToken::colon))
772     return true;
773   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
774     return false;
775   do {
776     if (Token.isNot(MIToken::NamedRegister))
777       return error("expected a named register");
778     unsigned Reg = 0;
779     if (parseNamedRegister(Reg))
780       return true;
781     lex();
782     LaneBitmask Mask = LaneBitmask::getAll();
783     if (consumeIfPresent(MIToken::colon)) {
784       // Parse lane mask.
785       if (Token.isNot(MIToken::IntegerLiteral) &&
786           Token.isNot(MIToken::HexLiteral))
787         return error("expected a lane mask");
788       static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
789                     "Use correct get-function for lane mask");
790       LaneBitmask::Type V;
791       if (getUint64(V))
792         return error("invalid lane mask value");
793       Mask = LaneBitmask(V);
794       lex();
795     }
796     MBB.addLiveIn(Reg, Mask);
797   } while (consumeIfPresent(MIToken::comma));
798   return false;
799 }
800 
801 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
802   assert(Token.is(MIToken::kw_successors));
803   lex();
804   if (expectAndConsume(MIToken::colon))
805     return true;
806   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
807     return false;
808   do {
809     if (Token.isNot(MIToken::MachineBasicBlock))
810       return error("expected a machine basic block reference");
811     MachineBasicBlock *SuccMBB = nullptr;
812     if (parseMBBReference(SuccMBB))
813       return true;
814     lex();
815     unsigned Weight = 0;
816     if (consumeIfPresent(MIToken::lparen)) {
817       if (Token.isNot(MIToken::IntegerLiteral) &&
818           Token.isNot(MIToken::HexLiteral))
819         return error("expected an integer literal after '('");
820       if (getUnsigned(Weight))
821         return true;
822       lex();
823       if (expectAndConsume(MIToken::rparen))
824         return true;
825     }
826     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
827   } while (consumeIfPresent(MIToken::comma));
828   MBB.normalizeSuccProbs();
829   return false;
830 }
831 
832 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
833                                MachineBasicBlock *&AddFalthroughFrom) {
834   // Skip the definition.
835   assert(Token.is(MIToken::MachineBasicBlockLabel));
836   lex();
837   if (consumeIfPresent(MIToken::lparen)) {
838     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
839       lex();
840     consumeIfPresent(MIToken::rparen);
841   }
842   consumeIfPresent(MIToken::colon);
843 
844   // Parse the liveins and successors.
845   // N.B: Multiple lists of successors and liveins are allowed and they're
846   // merged into one.
847   // Example:
848   //   liveins: %edi
849   //   liveins: %esi
850   //
851   // is equivalent to
852   //   liveins: %edi, %esi
853   bool ExplicitSuccessors = false;
854   while (true) {
855     if (Token.is(MIToken::kw_successors)) {
856       if (parseBasicBlockSuccessors(MBB))
857         return true;
858       ExplicitSuccessors = true;
859     } else if (Token.is(MIToken::kw_liveins)) {
860       if (parseBasicBlockLiveins(MBB))
861         return true;
862     } else if (consumeIfPresent(MIToken::Newline)) {
863       continue;
864     } else
865       break;
866     if (!Token.isNewlineOrEOF())
867       return error("expected line break at the end of a list");
868     lex();
869   }
870 
871   // Parse the instructions.
872   bool IsInBundle = false;
873   MachineInstr *PrevMI = nullptr;
874   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
875          !Token.is(MIToken::Eof)) {
876     if (consumeIfPresent(MIToken::Newline))
877       continue;
878     if (consumeIfPresent(MIToken::rbrace)) {
879       // The first parsing pass should verify that all closing '}' have an
880       // opening '{'.
881       assert(IsInBundle);
882       IsInBundle = false;
883       continue;
884     }
885     MachineInstr *MI = nullptr;
886     if (parse(MI))
887       return true;
888     MBB.insert(MBB.end(), MI);
889     if (IsInBundle) {
890       PrevMI->setFlag(MachineInstr::BundledSucc);
891       MI->setFlag(MachineInstr::BundledPred);
892     }
893     PrevMI = MI;
894     if (Token.is(MIToken::lbrace)) {
895       if (IsInBundle)
896         return error("nested instruction bundles are not allowed");
897       lex();
898       // This instruction is the start of the bundle.
899       MI->setFlag(MachineInstr::BundledSucc);
900       IsInBundle = true;
901       if (!Token.is(MIToken::Newline))
902         // The next instruction can be on the same line.
903         continue;
904     }
905     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
906     lex();
907   }
908 
909   // Construct successor list by searching for basic block machine operands.
910   if (!ExplicitSuccessors) {
911     SmallVector<MachineBasicBlock*,4> Successors;
912     bool IsFallthrough;
913     guessSuccessors(MBB, Successors, IsFallthrough);
914     for (MachineBasicBlock *Succ : Successors)
915       MBB.addSuccessor(Succ);
916 
917     if (IsFallthrough) {
918       AddFalthroughFrom = &MBB;
919     } else {
920       MBB.normalizeSuccProbs();
921     }
922   }
923 
924   return false;
925 }
926 
927 bool MIParser::parseBasicBlocks() {
928   lex();
929   // Skip until the first machine basic block.
930   while (Token.is(MIToken::Newline))
931     lex();
932   if (Token.isErrorOrEOF())
933     return Token.isError();
934   // The first parsing pass should have verified that this token is a MBB label
935   // in the 'parseBasicBlockDefinitions' method.
936   assert(Token.is(MIToken::MachineBasicBlockLabel));
937   MachineBasicBlock *AddFalthroughFrom = nullptr;
938   do {
939     MachineBasicBlock *MBB = nullptr;
940     if (parseMBBReference(MBB))
941       return true;
942     if (AddFalthroughFrom) {
943       if (!AddFalthroughFrom->isSuccessor(MBB))
944         AddFalthroughFrom->addSuccessor(MBB);
945       AddFalthroughFrom->normalizeSuccProbs();
946       AddFalthroughFrom = nullptr;
947     }
948     if (parseBasicBlock(*MBB, AddFalthroughFrom))
949       return true;
950     // The method 'parseBasicBlock' should parse the whole block until the next
951     // block or the end of file.
952     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
953   } while (Token.isNot(MIToken::Eof));
954   return false;
955 }
956 
957 bool MIParser::parse(MachineInstr *&MI) {
958   // Parse any register operands before '='
959   MachineOperand MO = MachineOperand::CreateImm(0);
960   SmallVector<ParsedMachineOperand, 8> Operands;
961   while (Token.isRegister() || Token.isRegisterFlag()) {
962     auto Loc = Token.location();
963     Optional<unsigned> TiedDefIdx;
964     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
965       return true;
966     Operands.push_back(
967         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
968     if (Token.isNot(MIToken::comma))
969       break;
970     lex();
971   }
972   if (!Operands.empty() && expectAndConsume(MIToken::equal))
973     return true;
974 
975   unsigned OpCode, Flags = 0;
976   if (Token.isError() || parseInstruction(OpCode, Flags))
977     return true;
978 
979   // Parse the remaining machine operands.
980   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
981          Token.isNot(MIToken::kw_post_instr_symbol) &&
982          Token.isNot(MIToken::kw_heap_alloc_marker) &&
983          Token.isNot(MIToken::kw_debug_location) &&
984          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
985     auto Loc = Token.location();
986     Optional<unsigned> TiedDefIdx;
987     if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx))
988       return true;
989     if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
990       MO.setIsDebug();
991     Operands.push_back(
992         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
993     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
994         Token.is(MIToken::lbrace))
995       break;
996     if (Token.isNot(MIToken::comma))
997       return error("expected ',' before the next machine operand");
998     lex();
999   }
1000 
1001   MCSymbol *PreInstrSymbol = nullptr;
1002   if (Token.is(MIToken::kw_pre_instr_symbol))
1003     if (parsePreOrPostInstrSymbol(PreInstrSymbol))
1004       return true;
1005   MCSymbol *PostInstrSymbol = nullptr;
1006   if (Token.is(MIToken::kw_post_instr_symbol))
1007     if (parsePreOrPostInstrSymbol(PostInstrSymbol))
1008       return true;
1009   MDNode *HeapAllocMarker = nullptr;
1010   if (Token.is(MIToken::kw_heap_alloc_marker))
1011     if (parseHeapAllocMarker(HeapAllocMarker))
1012       return true;
1013 
1014   DebugLoc DebugLocation;
1015   if (Token.is(MIToken::kw_debug_location)) {
1016     lex();
1017     MDNode *Node = nullptr;
1018     if (Token.is(MIToken::exclaim)) {
1019       if (parseMDNode(Node))
1020         return true;
1021     } else if (Token.is(MIToken::md_dilocation)) {
1022       if (parseDILocation(Node))
1023         return true;
1024     } else
1025       return error("expected a metadata node after 'debug-location'");
1026     if (!isa<DILocation>(Node))
1027       return error("referenced metadata is not a DILocation");
1028     DebugLocation = DebugLoc(Node);
1029   }
1030 
1031   // Parse the machine memory operands.
1032   SmallVector<MachineMemOperand *, 2> MemOperands;
1033   if (Token.is(MIToken::coloncolon)) {
1034     lex();
1035     while (!Token.isNewlineOrEOF()) {
1036       MachineMemOperand *MemOp = nullptr;
1037       if (parseMachineMemoryOperand(MemOp))
1038         return true;
1039       MemOperands.push_back(MemOp);
1040       if (Token.isNewlineOrEOF())
1041         break;
1042       if (Token.isNot(MIToken::comma))
1043         return error("expected ',' before the next machine memory operand");
1044       lex();
1045     }
1046   }
1047 
1048   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
1049   if (!MCID.isVariadic()) {
1050     // FIXME: Move the implicit operand verification to the machine verifier.
1051     if (verifyImplicitOperands(Operands, MCID))
1052       return true;
1053   }
1054 
1055   // TODO: Check for extraneous machine operands.
1056   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
1057   MI->setFlags(Flags);
1058   for (const auto &Operand : Operands)
1059     MI->addOperand(MF, Operand.Operand);
1060   if (assignRegisterTies(*MI, Operands))
1061     return true;
1062   if (PreInstrSymbol)
1063     MI->setPreInstrSymbol(MF, PreInstrSymbol);
1064   if (PostInstrSymbol)
1065     MI->setPostInstrSymbol(MF, PostInstrSymbol);
1066   if (HeapAllocMarker)
1067     MI->setHeapAllocMarker(MF, HeapAllocMarker);
1068   if (!MemOperands.empty())
1069     MI->setMemRefs(MF, MemOperands);
1070   return false;
1071 }
1072 
1073 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1074   lex();
1075   if (Token.isNot(MIToken::MachineBasicBlock))
1076     return error("expected a machine basic block reference");
1077   if (parseMBBReference(MBB))
1078     return true;
1079   lex();
1080   if (Token.isNot(MIToken::Eof))
1081     return error(
1082         "expected end of string after the machine basic block reference");
1083   return false;
1084 }
1085 
1086 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
1087   lex();
1088   if (Token.isNot(MIToken::NamedRegister))
1089     return error("expected a named register");
1090   if (parseNamedRegister(Reg))
1091     return true;
1092   lex();
1093   if (Token.isNot(MIToken::Eof))
1094     return error("expected end of string after the register reference");
1095   return false;
1096 }
1097 
1098 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1099   lex();
1100   if (Token.isNot(MIToken::VirtualRegister))
1101     return error("expected a virtual register");
1102   if (parseVirtualRegister(Info))
1103     return true;
1104   lex();
1105   if (Token.isNot(MIToken::Eof))
1106     return error("expected end of string after the register reference");
1107   return false;
1108 }
1109 
1110 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
1111   lex();
1112   if (Token.isNot(MIToken::NamedRegister) &&
1113       Token.isNot(MIToken::VirtualRegister))
1114     return error("expected either a named or virtual register");
1115 
1116   VRegInfo *Info;
1117   if (parseRegister(Reg, Info))
1118     return true;
1119 
1120   lex();
1121   if (Token.isNot(MIToken::Eof))
1122     return error("expected end of string after the register reference");
1123   return false;
1124 }
1125 
1126 bool MIParser::parseStandaloneStackObject(int &FI) {
1127   lex();
1128   if (Token.isNot(MIToken::StackObject))
1129     return error("expected a stack object");
1130   if (parseStackFrameIndex(FI))
1131     return true;
1132   if (Token.isNot(MIToken::Eof))
1133     return error("expected end of string after the stack object reference");
1134   return false;
1135 }
1136 
1137 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1138   lex();
1139   if (Token.is(MIToken::exclaim)) {
1140     if (parseMDNode(Node))
1141       return true;
1142   } else if (Token.is(MIToken::md_diexpr)) {
1143     if (parseDIExpression(Node))
1144       return true;
1145   } else if (Token.is(MIToken::md_dilocation)) {
1146     if (parseDILocation(Node))
1147       return true;
1148   } else
1149     return error("expected a metadata node");
1150   if (Token.isNot(MIToken::Eof))
1151     return error("expected end of string after the metadata node");
1152   return false;
1153 }
1154 
1155 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1156   assert(MO.isImplicit());
1157   return MO.isDef() ? "implicit-def" : "implicit";
1158 }
1159 
1160 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1161                                    unsigned Reg) {
1162   assert(Register::isPhysicalRegister(Reg) && "expected phys reg");
1163   return StringRef(TRI->getName(Reg)).lower();
1164 }
1165 
1166 /// Return true if the parsed machine operands contain a given machine operand.
1167 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1168                                 ArrayRef<ParsedMachineOperand> Operands) {
1169   for (const auto &I : Operands) {
1170     if (ImplicitOperand.isIdenticalTo(I.Operand))
1171       return true;
1172   }
1173   return false;
1174 }
1175 
1176 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1177                                       const MCInstrDesc &MCID) {
1178   if (MCID.isCall())
1179     // We can't verify call instructions as they can contain arbitrary implicit
1180     // register and register mask operands.
1181     return false;
1182 
1183   // Gather all the expected implicit operands.
1184   SmallVector<MachineOperand, 4> ImplicitOperands;
1185   if (MCID.ImplicitDefs)
1186     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1187       ImplicitOperands.push_back(
1188           MachineOperand::CreateReg(*ImpDefs, true, true));
1189   if (MCID.ImplicitUses)
1190     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1191       ImplicitOperands.push_back(
1192           MachineOperand::CreateReg(*ImpUses, false, true));
1193 
1194   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1195   assert(TRI && "Expected target register info");
1196   for (const auto &I : ImplicitOperands) {
1197     if (isImplicitOperandIn(I, Operands))
1198       continue;
1199     return error(Operands.empty() ? Token.location() : Operands.back().End,
1200                  Twine("missing implicit register operand '") +
1201                      printImplicitRegisterFlag(I) + " $" +
1202                      getRegisterName(TRI, I.getReg()) + "'");
1203   }
1204   return false;
1205 }
1206 
1207 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1208   // Allow frame and fast math flags for OPCODE
1209   while (Token.is(MIToken::kw_frame_setup) ||
1210          Token.is(MIToken::kw_frame_destroy) ||
1211          Token.is(MIToken::kw_nnan) ||
1212          Token.is(MIToken::kw_ninf) ||
1213          Token.is(MIToken::kw_nsz) ||
1214          Token.is(MIToken::kw_arcp) ||
1215          Token.is(MIToken::kw_contract) ||
1216          Token.is(MIToken::kw_afn) ||
1217          Token.is(MIToken::kw_reassoc) ||
1218          Token.is(MIToken::kw_nuw) ||
1219          Token.is(MIToken::kw_nsw) ||
1220          Token.is(MIToken::kw_exact) ||
1221          Token.is(MIToken::kw_nofpexcept)) {
1222     // Mine frame and fast math flags
1223     if (Token.is(MIToken::kw_frame_setup))
1224       Flags |= MachineInstr::FrameSetup;
1225     if (Token.is(MIToken::kw_frame_destroy))
1226       Flags |= MachineInstr::FrameDestroy;
1227     if (Token.is(MIToken::kw_nnan))
1228       Flags |= MachineInstr::FmNoNans;
1229     if (Token.is(MIToken::kw_ninf))
1230       Flags |= MachineInstr::FmNoInfs;
1231     if (Token.is(MIToken::kw_nsz))
1232       Flags |= MachineInstr::FmNsz;
1233     if (Token.is(MIToken::kw_arcp))
1234       Flags |= MachineInstr::FmArcp;
1235     if (Token.is(MIToken::kw_contract))
1236       Flags |= MachineInstr::FmContract;
1237     if (Token.is(MIToken::kw_afn))
1238       Flags |= MachineInstr::FmAfn;
1239     if (Token.is(MIToken::kw_reassoc))
1240       Flags |= MachineInstr::FmReassoc;
1241     if (Token.is(MIToken::kw_nuw))
1242       Flags |= MachineInstr::NoUWrap;
1243     if (Token.is(MIToken::kw_nsw))
1244       Flags |= MachineInstr::NoSWrap;
1245     if (Token.is(MIToken::kw_exact))
1246       Flags |= MachineInstr::IsExact;
1247     if (Token.is(MIToken::kw_nofpexcept))
1248       Flags |= MachineInstr::NoFPExcept;
1249 
1250     lex();
1251   }
1252   if (Token.isNot(MIToken::Identifier))
1253     return error("expected a machine instruction");
1254   StringRef InstrName = Token.stringValue();
1255   if (PFS.Target.parseInstrName(InstrName, OpCode))
1256     return error(Twine("unknown machine instruction name '") + InstrName + "'");
1257   lex();
1258   return false;
1259 }
1260 
1261 bool MIParser::parseNamedRegister(unsigned &Reg) {
1262   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1263   StringRef Name = Token.stringValue();
1264   if (PFS.Target.getRegisterByName(Name, Reg))
1265     return error(Twine("unknown register name '") + Name + "'");
1266   return false;
1267 }
1268 
1269 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1270   assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1271   StringRef Name = Token.stringValue();
1272   // TODO: Check that the VReg name is not the same as a physical register name.
1273   //       If it is, then print a warning (when warnings are implemented).
1274   Info = &PFS.getVRegInfoNamed(Name);
1275   return false;
1276 }
1277 
1278 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1279   if (Token.is(MIToken::NamedVirtualRegister))
1280     return parseNamedVirtualRegister(Info);
1281   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1282   unsigned ID;
1283   if (getUnsigned(ID))
1284     return true;
1285   Info = &PFS.getVRegInfo(ID);
1286   return false;
1287 }
1288 
1289 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1290   switch (Token.kind()) {
1291   case MIToken::underscore:
1292     Reg = 0;
1293     return false;
1294   case MIToken::NamedRegister:
1295     return parseNamedRegister(Reg);
1296   case MIToken::NamedVirtualRegister:
1297   case MIToken::VirtualRegister:
1298     if (parseVirtualRegister(Info))
1299       return true;
1300     Reg = Info->VReg;
1301     return false;
1302   // TODO: Parse other register kinds.
1303   default:
1304     llvm_unreachable("The current token should be a register");
1305   }
1306 }
1307 
1308 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1309   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1310     return error("expected '_', register class, or register bank name");
1311   StringRef::iterator Loc = Token.location();
1312   StringRef Name = Token.stringValue();
1313 
1314   // Was it a register class?
1315   const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1316   if (RC) {
1317     lex();
1318 
1319     switch (RegInfo.Kind) {
1320     case VRegInfo::UNKNOWN:
1321     case VRegInfo::NORMAL:
1322       RegInfo.Kind = VRegInfo::NORMAL;
1323       if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1324         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1325         return error(Loc, Twine("conflicting register classes, previously: ") +
1326                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
1327       }
1328       RegInfo.D.RC = RC;
1329       RegInfo.Explicit = true;
1330       return false;
1331 
1332     case VRegInfo::GENERIC:
1333     case VRegInfo::REGBANK:
1334       return error(Loc, "register class specification on generic register");
1335     }
1336     llvm_unreachable("Unexpected register kind");
1337   }
1338 
1339   // Should be a register bank or a generic register.
1340   const RegisterBank *RegBank = nullptr;
1341   if (Name != "_") {
1342     RegBank = PFS.Target.getRegBank(Name);
1343     if (!RegBank)
1344       return error(Loc, "expected '_', register class, or register bank name");
1345   }
1346 
1347   lex();
1348 
1349   switch (RegInfo.Kind) {
1350   case VRegInfo::UNKNOWN:
1351   case VRegInfo::GENERIC:
1352   case VRegInfo::REGBANK:
1353     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1354     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1355       return error(Loc, "conflicting generic register banks");
1356     RegInfo.D.RegBank = RegBank;
1357     RegInfo.Explicit = true;
1358     return false;
1359 
1360   case VRegInfo::NORMAL:
1361     return error(Loc, "register bank specification on normal register");
1362   }
1363   llvm_unreachable("Unexpected register kind");
1364 }
1365 
1366 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1367   const unsigned OldFlags = Flags;
1368   switch (Token.kind()) {
1369   case MIToken::kw_implicit:
1370     Flags |= RegState::Implicit;
1371     break;
1372   case MIToken::kw_implicit_define:
1373     Flags |= RegState::ImplicitDefine;
1374     break;
1375   case MIToken::kw_def:
1376     Flags |= RegState::Define;
1377     break;
1378   case MIToken::kw_dead:
1379     Flags |= RegState::Dead;
1380     break;
1381   case MIToken::kw_killed:
1382     Flags |= RegState::Kill;
1383     break;
1384   case MIToken::kw_undef:
1385     Flags |= RegState::Undef;
1386     break;
1387   case MIToken::kw_internal:
1388     Flags |= RegState::InternalRead;
1389     break;
1390   case MIToken::kw_early_clobber:
1391     Flags |= RegState::EarlyClobber;
1392     break;
1393   case MIToken::kw_debug_use:
1394     Flags |= RegState::Debug;
1395     break;
1396   case MIToken::kw_renamable:
1397     Flags |= RegState::Renamable;
1398     break;
1399   default:
1400     llvm_unreachable("The current token should be a register flag");
1401   }
1402   if (OldFlags == Flags)
1403     // We know that the same flag is specified more than once when the flags
1404     // weren't modified.
1405     return error("duplicate '" + Token.stringValue() + "' register flag");
1406   lex();
1407   return false;
1408 }
1409 
1410 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1411   assert(Token.is(MIToken::dot));
1412   lex();
1413   if (Token.isNot(MIToken::Identifier))
1414     return error("expected a subregister index after '.'");
1415   auto Name = Token.stringValue();
1416   SubReg = PFS.Target.getSubRegIndex(Name);
1417   if (!SubReg)
1418     return error(Twine("use of unknown subregister index '") + Name + "'");
1419   lex();
1420   return false;
1421 }
1422 
1423 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1424   if (!consumeIfPresent(MIToken::kw_tied_def))
1425     return true;
1426   if (Token.isNot(MIToken::IntegerLiteral))
1427     return error("expected an integer literal after 'tied-def'");
1428   if (getUnsigned(TiedDefIdx))
1429     return true;
1430   lex();
1431   if (expectAndConsume(MIToken::rparen))
1432     return true;
1433   return false;
1434 }
1435 
1436 bool MIParser::assignRegisterTies(MachineInstr &MI,
1437                                   ArrayRef<ParsedMachineOperand> Operands) {
1438   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1439   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1440     if (!Operands[I].TiedDefIdx)
1441       continue;
1442     // The parser ensures that this operand is a register use, so we just have
1443     // to check the tied-def operand.
1444     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1445     if (DefIdx >= E)
1446       return error(Operands[I].Begin,
1447                    Twine("use of invalid tied-def operand index '" +
1448                          Twine(DefIdx) + "'; instruction has only ") +
1449                        Twine(E) + " operands");
1450     const auto &DefOperand = Operands[DefIdx].Operand;
1451     if (!DefOperand.isReg() || !DefOperand.isDef())
1452       // FIXME: add note with the def operand.
1453       return error(Operands[I].Begin,
1454                    Twine("use of invalid tied-def operand index '") +
1455                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1456                        " isn't a defined register");
1457     // Check that the tied-def operand wasn't tied elsewhere.
1458     for (const auto &TiedPair : TiedRegisterPairs) {
1459       if (TiedPair.first == DefIdx)
1460         return error(Operands[I].Begin,
1461                      Twine("the tied-def operand #") + Twine(DefIdx) +
1462                          " is already tied with another register operand");
1463     }
1464     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1465   }
1466   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1467   // indices must be less than tied max.
1468   for (const auto &TiedPair : TiedRegisterPairs)
1469     MI.tieOperands(TiedPair.first, TiedPair.second);
1470   return false;
1471 }
1472 
1473 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1474                                     Optional<unsigned> &TiedDefIdx,
1475                                     bool IsDef) {
1476   unsigned Flags = IsDef ? RegState::Define : 0;
1477   while (Token.isRegisterFlag()) {
1478     if (parseRegisterFlag(Flags))
1479       return true;
1480   }
1481   if (!Token.isRegister())
1482     return error("expected a register after register flags");
1483   unsigned Reg;
1484   VRegInfo *RegInfo;
1485   if (parseRegister(Reg, RegInfo))
1486     return true;
1487   lex();
1488   unsigned SubReg = 0;
1489   if (Token.is(MIToken::dot)) {
1490     if (parseSubRegisterIndex(SubReg))
1491       return true;
1492     if (!Register::isVirtualRegister(Reg))
1493       return error("subregister index expects a virtual register");
1494   }
1495   if (Token.is(MIToken::colon)) {
1496     if (!Register::isVirtualRegister(Reg))
1497       return error("register class specification expects a virtual register");
1498     lex();
1499     if (parseRegisterClassOrBank(*RegInfo))
1500         return true;
1501   }
1502   MachineRegisterInfo &MRI = MF.getRegInfo();
1503   if ((Flags & RegState::Define) == 0) {
1504     if (consumeIfPresent(MIToken::lparen)) {
1505       unsigned Idx;
1506       if (!parseRegisterTiedDefIndex(Idx))
1507         TiedDefIdx = Idx;
1508       else {
1509         // Try a redundant low-level type.
1510         LLT Ty;
1511         if (parseLowLevelType(Token.location(), Ty))
1512           return error("expected tied-def or low-level type after '('");
1513 
1514         if (expectAndConsume(MIToken::rparen))
1515           return true;
1516 
1517         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1518           return error("inconsistent type for generic virtual register");
1519 
1520         MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1521         MRI.setType(Reg, Ty);
1522       }
1523     }
1524   } else if (consumeIfPresent(MIToken::lparen)) {
1525     // Virtual registers may have a tpe with GlobalISel.
1526     if (!Register::isVirtualRegister(Reg))
1527       return error("unexpected type on physical register");
1528 
1529     LLT Ty;
1530     if (parseLowLevelType(Token.location(), Ty))
1531       return true;
1532 
1533     if (expectAndConsume(MIToken::rparen))
1534       return true;
1535 
1536     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1537       return error("inconsistent type for generic virtual register");
1538 
1539     MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr));
1540     MRI.setType(Reg, Ty);
1541   } else if (Register::isVirtualRegister(Reg)) {
1542     // Generic virtual registers must have a type.
1543     // If we end up here this means the type hasn't been specified and
1544     // this is bad!
1545     if (RegInfo->Kind == VRegInfo::GENERIC ||
1546         RegInfo->Kind == VRegInfo::REGBANK)
1547       return error("generic virtual registers must have a type");
1548   }
1549   Dest = MachineOperand::CreateReg(
1550       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1551       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1552       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1553       Flags & RegState::InternalRead, Flags & RegState::Renamable);
1554 
1555   return false;
1556 }
1557 
1558 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1559   assert(Token.is(MIToken::IntegerLiteral));
1560   const APSInt &Int = Token.integerValue();
1561   if (Int.getMinSignedBits() > 64)
1562     return error("integer literal is too large to be an immediate operand");
1563   Dest = MachineOperand::CreateImm(Int.getExtValue());
1564   lex();
1565   return false;
1566 }
1567 
1568 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1569                                       const unsigned OpIdx,
1570                                       MachineOperand &Dest,
1571                                       const MIRFormatter &MF) {
1572   assert(Token.is(MIToken::dot));
1573   auto Loc = Token.location(); // record start position
1574   size_t Len = 1;              // for "."
1575   lex();
1576 
1577   // Handle the case that mnemonic starts with number.
1578   if (Token.is(MIToken::IntegerLiteral)) {
1579     Len += Token.range().size();
1580     lex();
1581   }
1582 
1583   StringRef Src;
1584   if (Token.is(MIToken::comma))
1585     Src = StringRef(Loc, Len);
1586   else {
1587     assert(Token.is(MIToken::Identifier));
1588     Src = StringRef(Loc, Len + Token.stringValue().size());
1589   }
1590   int64_t Val;
1591   if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val,
1592                           [this](StringRef::iterator Loc, const Twine &Msg)
1593                               -> bool { return error(Loc, Msg); }))
1594     return true;
1595 
1596   Dest = MachineOperand::CreateImm(Val);
1597   if (!Token.is(MIToken::comma))
1598     lex();
1599   return false;
1600 }
1601 
1602 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1603                             PerFunctionMIParsingState &PFS, const Constant *&C,
1604                             ErrorCallbackType ErrCB) {
1605   auto Source = StringValue.str(); // The source has to be null terminated.
1606   SMDiagnostic Err;
1607   C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(),
1608                          &PFS.IRSlots);
1609   if (!C)
1610     return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1611   return false;
1612 }
1613 
1614 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1615                                const Constant *&C) {
1616   return ::parseIRConstant(
1617       Loc, StringValue, PFS, C,
1618       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1619         return error(Loc, Msg);
1620       });
1621 }
1622 
1623 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1624   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1625     return true;
1626   lex();
1627   return false;
1628 }
1629 
1630 // See LLT implemntation for bit size limits.
1631 static bool verifyScalarSize(uint64_t Size) {
1632   return Size != 0 && isUInt<16>(Size);
1633 }
1634 
1635 static bool verifyVectorElementCount(uint64_t NumElts) {
1636   return NumElts != 0 && isUInt<16>(NumElts);
1637 }
1638 
1639 static bool verifyAddrSpace(uint64_t AddrSpace) {
1640   return isUInt<24>(AddrSpace);
1641 }
1642 
1643 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1644   if (Token.range().front() == 's' || Token.range().front() == 'p') {
1645     StringRef SizeStr = Token.range().drop_front();
1646     if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1647       return error("expected integers after 's'/'p' type character");
1648   }
1649 
1650   if (Token.range().front() == 's') {
1651     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1652     if (!verifyScalarSize(ScalarSize))
1653       return error("invalid size for scalar type");
1654 
1655     Ty = LLT::scalar(ScalarSize);
1656     lex();
1657     return false;
1658   } else if (Token.range().front() == 'p') {
1659     const DataLayout &DL = MF.getDataLayout();
1660     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1661     if (!verifyAddrSpace(AS))
1662       return error("invalid address space number");
1663 
1664     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1665     lex();
1666     return false;
1667   }
1668 
1669   // Now we're looking for a vector.
1670   if (Token.isNot(MIToken::less))
1671     return error(Loc,
1672                  "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1673   lex();
1674 
1675   if (Token.isNot(MIToken::IntegerLiteral))
1676     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1677   uint64_t NumElements = Token.integerValue().getZExtValue();
1678   if (!verifyVectorElementCount(NumElements))
1679     return error("invalid number of vector elements");
1680 
1681   lex();
1682 
1683   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1684     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1685   lex();
1686 
1687   if (Token.range().front() != 's' && Token.range().front() != 'p')
1688     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1689   StringRef SizeStr = Token.range().drop_front();
1690   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1691     return error("expected integers after 's'/'p' type character");
1692 
1693   if (Token.range().front() == 's') {
1694     auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1695     if (!verifyScalarSize(ScalarSize))
1696       return error("invalid size for scalar type");
1697     Ty = LLT::scalar(ScalarSize);
1698   } else if (Token.range().front() == 'p') {
1699     const DataLayout &DL = MF.getDataLayout();
1700     uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1701     if (!verifyAddrSpace(AS))
1702       return error("invalid address space number");
1703 
1704     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1705   } else
1706     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1707   lex();
1708 
1709   if (Token.isNot(MIToken::greater))
1710     return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1711   lex();
1712 
1713   Ty = LLT::vector(NumElements, Ty);
1714   return false;
1715 }
1716 
1717 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1718   assert(Token.is(MIToken::Identifier));
1719   StringRef TypeStr = Token.range();
1720   if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1721       TypeStr.front() != 'p')
1722     return error(
1723         "a typed immediate operand should start with one of 'i', 's', or 'p'");
1724   StringRef SizeStr = Token.range().drop_front();
1725   if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1726     return error("expected integers after 'i'/'s'/'p' type character");
1727 
1728   auto Loc = Token.location();
1729   lex();
1730   if (Token.isNot(MIToken::IntegerLiteral)) {
1731     if (Token.isNot(MIToken::Identifier) ||
1732         !(Token.range() == "true" || Token.range() == "false"))
1733       return error("expected an integer literal");
1734   }
1735   const Constant *C = nullptr;
1736   if (parseIRConstant(Loc, C))
1737     return true;
1738   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1739   return false;
1740 }
1741 
1742 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1743   auto Loc = Token.location();
1744   lex();
1745   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1746       Token.isNot(MIToken::HexLiteral))
1747     return error("expected a floating point literal");
1748   const Constant *C = nullptr;
1749   if (parseIRConstant(Loc, C))
1750     return true;
1751   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1752   return false;
1753 }
1754 
1755 static bool getHexUint(const MIToken &Token, APInt &Result) {
1756   assert(Token.is(MIToken::HexLiteral));
1757   StringRef S = Token.range();
1758   assert(S[0] == '0' && tolower(S[1]) == 'x');
1759   // This could be a floating point literal with a special prefix.
1760   if (!isxdigit(S[2]))
1761     return true;
1762   StringRef V = S.substr(2);
1763   APInt A(V.size()*4, V, 16);
1764 
1765   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
1766   // sure it isn't the case before constructing result.
1767   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
1768   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
1769   return false;
1770 }
1771 
1772 static bool getUnsigned(const MIToken &Token, unsigned &Result,
1773                         ErrorCallbackType ErrCB) {
1774   if (Token.hasIntegerValue()) {
1775     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1776     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1777     if (Val64 == Limit)
1778       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1779     Result = Val64;
1780     return false;
1781   }
1782   if (Token.is(MIToken::HexLiteral)) {
1783     APInt A;
1784     if (getHexUint(Token, A))
1785       return true;
1786     if (A.getBitWidth() > 32)
1787       return ErrCB(Token.location(), "expected 32-bit integer (too large)");
1788     Result = A.getZExtValue();
1789     return false;
1790   }
1791   return true;
1792 }
1793 
1794 bool MIParser::getUnsigned(unsigned &Result) {
1795   return ::getUnsigned(
1796       Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1797         return error(Loc, Msg);
1798       });
1799 }
1800 
1801 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1802   assert(Token.is(MIToken::MachineBasicBlock) ||
1803          Token.is(MIToken::MachineBasicBlockLabel));
1804   unsigned Number;
1805   if (getUnsigned(Number))
1806     return true;
1807   auto MBBInfo = PFS.MBBSlots.find(Number);
1808   if (MBBInfo == PFS.MBBSlots.end())
1809     return error(Twine("use of undefined machine basic block #") +
1810                  Twine(Number));
1811   MBB = MBBInfo->second;
1812   // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1813   // we drop the <irname> from the bb.<id>.<irname> format.
1814   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1815     return error(Twine("the name of machine basic block #") + Twine(Number) +
1816                  " isn't '" + Token.stringValue() + "'");
1817   return false;
1818 }
1819 
1820 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1821   MachineBasicBlock *MBB;
1822   if (parseMBBReference(MBB))
1823     return true;
1824   Dest = MachineOperand::CreateMBB(MBB);
1825   lex();
1826   return false;
1827 }
1828 
1829 bool MIParser::parseStackFrameIndex(int &FI) {
1830   assert(Token.is(MIToken::StackObject));
1831   unsigned ID;
1832   if (getUnsigned(ID))
1833     return true;
1834   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1835   if (ObjectInfo == PFS.StackObjectSlots.end())
1836     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1837                  "'");
1838   StringRef Name;
1839   if (const auto *Alloca =
1840           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1841     Name = Alloca->getName();
1842   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1843     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1844                  "' isn't '" + Token.stringValue() + "'");
1845   lex();
1846   FI = ObjectInfo->second;
1847   return false;
1848 }
1849 
1850 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1851   int FI;
1852   if (parseStackFrameIndex(FI))
1853     return true;
1854   Dest = MachineOperand::CreateFI(FI);
1855   return false;
1856 }
1857 
1858 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1859   assert(Token.is(MIToken::FixedStackObject));
1860   unsigned ID;
1861   if (getUnsigned(ID))
1862     return true;
1863   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1864   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1865     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1866                  Twine(ID) + "'");
1867   lex();
1868   FI = ObjectInfo->second;
1869   return false;
1870 }
1871 
1872 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1873   int FI;
1874   if (parseFixedStackFrameIndex(FI))
1875     return true;
1876   Dest = MachineOperand::CreateFI(FI);
1877   return false;
1878 }
1879 
1880 static bool parseGlobalValue(const MIToken &Token,
1881                              PerFunctionMIParsingState &PFS, GlobalValue *&GV,
1882                              ErrorCallbackType ErrCB) {
1883   switch (Token.kind()) {
1884   case MIToken::NamedGlobalValue: {
1885     const Module *M = PFS.MF.getFunction().getParent();
1886     GV = M->getNamedValue(Token.stringValue());
1887     if (!GV)
1888       return ErrCB(Token.location(), Twine("use of undefined global value '") +
1889                                          Token.range() + "'");
1890     break;
1891   }
1892   case MIToken::GlobalValue: {
1893     unsigned GVIdx;
1894     if (getUnsigned(Token, GVIdx, ErrCB))
1895       return true;
1896     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1897       return ErrCB(Token.location(), Twine("use of undefined global value '@") +
1898                                          Twine(GVIdx) + "'");
1899     GV = PFS.IRSlots.GlobalValues[GVIdx];
1900     break;
1901   }
1902   default:
1903     llvm_unreachable("The current token should be a global value");
1904   }
1905   return false;
1906 }
1907 
1908 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1909   return ::parseGlobalValue(
1910       Token, PFS, GV,
1911       [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1912         return error(Loc, Msg);
1913       });
1914 }
1915 
1916 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1917   GlobalValue *GV = nullptr;
1918   if (parseGlobalValue(GV))
1919     return true;
1920   lex();
1921   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1922   if (parseOperandsOffset(Dest))
1923     return true;
1924   return false;
1925 }
1926 
1927 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1928   assert(Token.is(MIToken::ConstantPoolItem));
1929   unsigned ID;
1930   if (getUnsigned(ID))
1931     return true;
1932   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1933   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1934     return error("use of undefined constant '%const." + Twine(ID) + "'");
1935   lex();
1936   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1937   if (parseOperandsOffset(Dest))
1938     return true;
1939   return false;
1940 }
1941 
1942 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1943   assert(Token.is(MIToken::JumpTableIndex));
1944   unsigned ID;
1945   if (getUnsigned(ID))
1946     return true;
1947   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1948   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1949     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1950   lex();
1951   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1952   return false;
1953 }
1954 
1955 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1956   assert(Token.is(MIToken::ExternalSymbol));
1957   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1958   lex();
1959   Dest = MachineOperand::CreateES(Symbol);
1960   if (parseOperandsOffset(Dest))
1961     return true;
1962   return false;
1963 }
1964 
1965 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1966   assert(Token.is(MIToken::MCSymbol));
1967   MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1968   lex();
1969   Dest = MachineOperand::CreateMCSymbol(Symbol);
1970   if (parseOperandsOffset(Dest))
1971     return true;
1972   return false;
1973 }
1974 
1975 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1976   assert(Token.is(MIToken::SubRegisterIndex));
1977   StringRef Name = Token.stringValue();
1978   unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1979   if (SubRegIndex == 0)
1980     return error(Twine("unknown subregister index '") + Name + "'");
1981   lex();
1982   Dest = MachineOperand::CreateImm(SubRegIndex);
1983   return false;
1984 }
1985 
1986 bool MIParser::parseMDNode(MDNode *&Node) {
1987   assert(Token.is(MIToken::exclaim));
1988 
1989   auto Loc = Token.location();
1990   lex();
1991   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1992     return error("expected metadata id after '!'");
1993   unsigned ID;
1994   if (getUnsigned(ID))
1995     return true;
1996   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1997   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1998     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1999   lex();
2000   Node = NodeInfo->second.get();
2001   return false;
2002 }
2003 
2004 bool MIParser::parseDIExpression(MDNode *&Expr) {
2005   assert(Token.is(MIToken::md_diexpr));
2006   lex();
2007 
2008   // FIXME: Share this parsing with the IL parser.
2009   SmallVector<uint64_t, 8> Elements;
2010 
2011   if (expectAndConsume(MIToken::lparen))
2012     return true;
2013 
2014   if (Token.isNot(MIToken::rparen)) {
2015     do {
2016       if (Token.is(MIToken::Identifier)) {
2017         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
2018           lex();
2019           Elements.push_back(Op);
2020           continue;
2021         }
2022         if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
2023           lex();
2024           Elements.push_back(Enc);
2025           continue;
2026         }
2027         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
2028       }
2029 
2030       if (Token.isNot(MIToken::IntegerLiteral) ||
2031           Token.integerValue().isSigned())
2032         return error("expected unsigned integer");
2033 
2034       auto &U = Token.integerValue();
2035       if (U.ugt(UINT64_MAX))
2036         return error("element too large, limit is " + Twine(UINT64_MAX));
2037       Elements.push_back(U.getZExtValue());
2038       lex();
2039 
2040     } while (consumeIfPresent(MIToken::comma));
2041   }
2042 
2043   if (expectAndConsume(MIToken::rparen))
2044     return true;
2045 
2046   Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
2047   return false;
2048 }
2049 
2050 bool MIParser::parseDILocation(MDNode *&Loc) {
2051   assert(Token.is(MIToken::md_dilocation));
2052   lex();
2053 
2054   bool HaveLine = false;
2055   unsigned Line = 0;
2056   unsigned Column = 0;
2057   MDNode *Scope = nullptr;
2058   MDNode *InlinedAt = nullptr;
2059   bool ImplicitCode = false;
2060 
2061   if (expectAndConsume(MIToken::lparen))
2062     return true;
2063 
2064   if (Token.isNot(MIToken::rparen)) {
2065     do {
2066       if (Token.is(MIToken::Identifier)) {
2067         if (Token.stringValue() == "line") {
2068           lex();
2069           if (expectAndConsume(MIToken::colon))
2070             return true;
2071           if (Token.isNot(MIToken::IntegerLiteral) ||
2072               Token.integerValue().isSigned())
2073             return error("expected unsigned integer");
2074           Line = Token.integerValue().getZExtValue();
2075           HaveLine = true;
2076           lex();
2077           continue;
2078         }
2079         if (Token.stringValue() == "column") {
2080           lex();
2081           if (expectAndConsume(MIToken::colon))
2082             return true;
2083           if (Token.isNot(MIToken::IntegerLiteral) ||
2084               Token.integerValue().isSigned())
2085             return error("expected unsigned integer");
2086           Column = Token.integerValue().getZExtValue();
2087           lex();
2088           continue;
2089         }
2090         if (Token.stringValue() == "scope") {
2091           lex();
2092           if (expectAndConsume(MIToken::colon))
2093             return true;
2094           if (parseMDNode(Scope))
2095             return error("expected metadata node");
2096           if (!isa<DIScope>(Scope))
2097             return error("expected DIScope node");
2098           continue;
2099         }
2100         if (Token.stringValue() == "inlinedAt") {
2101           lex();
2102           if (expectAndConsume(MIToken::colon))
2103             return true;
2104           if (Token.is(MIToken::exclaim)) {
2105             if (parseMDNode(InlinedAt))
2106               return true;
2107           } else if (Token.is(MIToken::md_dilocation)) {
2108             if (parseDILocation(InlinedAt))
2109               return true;
2110           } else
2111             return error("expected metadata node");
2112           if (!isa<DILocation>(InlinedAt))
2113             return error("expected DILocation node");
2114           continue;
2115         }
2116         if (Token.stringValue() == "isImplicitCode") {
2117           lex();
2118           if (expectAndConsume(MIToken::colon))
2119             return true;
2120           if (!Token.is(MIToken::Identifier))
2121             return error("expected true/false");
2122           // As far as I can see, we don't have any existing need for parsing
2123           // true/false in MIR yet. Do it ad-hoc until there's something else
2124           // that needs it.
2125           if (Token.stringValue() == "true")
2126             ImplicitCode = true;
2127           else if (Token.stringValue() == "false")
2128             ImplicitCode = false;
2129           else
2130             return error("expected true/false");
2131           lex();
2132           continue;
2133         }
2134       }
2135       return error(Twine("invalid DILocation argument '") +
2136                    Token.stringValue() + "'");
2137     } while (consumeIfPresent(MIToken::comma));
2138   }
2139 
2140   if (expectAndConsume(MIToken::rparen))
2141     return true;
2142 
2143   if (!HaveLine)
2144     return error("DILocation requires line number");
2145   if (!Scope)
2146     return error("DILocation requires a scope");
2147 
2148   Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
2149                         InlinedAt, ImplicitCode);
2150   return false;
2151 }
2152 
2153 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2154   MDNode *Node = nullptr;
2155   if (Token.is(MIToken::exclaim)) {
2156     if (parseMDNode(Node))
2157       return true;
2158   } else if (Token.is(MIToken::md_diexpr)) {
2159     if (parseDIExpression(Node))
2160       return true;
2161   }
2162   Dest = MachineOperand::CreateMetadata(Node);
2163   return false;
2164 }
2165 
2166 bool MIParser::parseCFIOffset(int &Offset) {
2167   if (Token.isNot(MIToken::IntegerLiteral))
2168     return error("expected a cfi offset");
2169   if (Token.integerValue().getMinSignedBits() > 32)
2170     return error("expected a 32 bit integer (the cfi offset is too large)");
2171   Offset = (int)Token.integerValue().getExtValue();
2172   lex();
2173   return false;
2174 }
2175 
2176 bool MIParser::parseCFIRegister(unsigned &Reg) {
2177   if (Token.isNot(MIToken::NamedRegister))
2178     return error("expected a cfi register");
2179   unsigned LLVMReg;
2180   if (parseNamedRegister(LLVMReg))
2181     return true;
2182   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2183   assert(TRI && "Expected target register info");
2184   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2185   if (DwarfReg < 0)
2186     return error("invalid DWARF register");
2187   Reg = (unsigned)DwarfReg;
2188   lex();
2189   return false;
2190 }
2191 
2192 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2193   do {
2194     if (Token.isNot(MIToken::HexLiteral))
2195       return error("expected a hexadecimal literal");
2196     unsigned Value;
2197     if (getUnsigned(Value))
2198       return true;
2199     if (Value > UINT8_MAX)
2200       return error("expected a 8-bit integer (too large)");
2201     Values.push_back(static_cast<uint8_t>(Value));
2202     lex();
2203   } while (consumeIfPresent(MIToken::comma));
2204   return false;
2205 }
2206 
2207 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2208   auto Kind = Token.kind();
2209   lex();
2210   int Offset;
2211   unsigned Reg;
2212   unsigned CFIIndex;
2213   switch (Kind) {
2214   case MIToken::kw_cfi_same_value:
2215     if (parseCFIRegister(Reg))
2216       return true;
2217     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2218     break;
2219   case MIToken::kw_cfi_offset:
2220     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2221         parseCFIOffset(Offset))
2222       return true;
2223     CFIIndex =
2224         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2225     break;
2226   case MIToken::kw_cfi_rel_offset:
2227     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2228         parseCFIOffset(Offset))
2229       return true;
2230     CFIIndex = MF.addFrameInst(
2231         MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2232     break;
2233   case MIToken::kw_cfi_def_cfa_register:
2234     if (parseCFIRegister(Reg))
2235       return true;
2236     CFIIndex =
2237         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2238     break;
2239   case MIToken::kw_cfi_def_cfa_offset:
2240     if (parseCFIOffset(Offset))
2241       return true;
2242     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
2243     CFIIndex = MF.addFrameInst(
2244         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
2245     break;
2246   case MIToken::kw_cfi_adjust_cfa_offset:
2247     if (parseCFIOffset(Offset))
2248       return true;
2249     CFIIndex = MF.addFrameInst(
2250         MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2251     break;
2252   case MIToken::kw_cfi_def_cfa:
2253     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2254         parseCFIOffset(Offset))
2255       return true;
2256     // NB: MCCFIInstruction::createDefCfa negates the offset.
2257     CFIIndex =
2258         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
2259     break;
2260   case MIToken::kw_cfi_remember_state:
2261     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2262     break;
2263   case MIToken::kw_cfi_restore:
2264     if (parseCFIRegister(Reg))
2265       return true;
2266     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2267     break;
2268   case MIToken::kw_cfi_restore_state:
2269     CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2270     break;
2271   case MIToken::kw_cfi_undefined:
2272     if (parseCFIRegister(Reg))
2273       return true;
2274     CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2275     break;
2276   case MIToken::kw_cfi_register: {
2277     unsigned Reg2;
2278     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2279         parseCFIRegister(Reg2))
2280       return true;
2281 
2282     CFIIndex =
2283         MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2284     break;
2285   }
2286   case MIToken::kw_cfi_window_save:
2287     CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2288     break;
2289   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2290     CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2291     break;
2292   case MIToken::kw_cfi_escape: {
2293     std::string Values;
2294     if (parseCFIEscapeValues(Values))
2295       return true;
2296     CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2297     break;
2298   }
2299   default:
2300     // TODO: Parse the other CFI operands.
2301     llvm_unreachable("The current token should be a cfi operand");
2302   }
2303   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2304   return false;
2305 }
2306 
2307 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2308   switch (Token.kind()) {
2309   case MIToken::NamedIRBlock: {
2310     BB = dyn_cast_or_null<BasicBlock>(
2311         F.getValueSymbolTable()->lookup(Token.stringValue()));
2312     if (!BB)
2313       return error(Twine("use of undefined IR block '") + Token.range() + "'");
2314     break;
2315   }
2316   case MIToken::IRBlock: {
2317     unsigned SlotNumber = 0;
2318     if (getUnsigned(SlotNumber))
2319       return true;
2320     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2321     if (!BB)
2322       return error(Twine("use of undefined IR block '%ir-block.") +
2323                    Twine(SlotNumber) + "'");
2324     break;
2325   }
2326   default:
2327     llvm_unreachable("The current token should be an IR block reference");
2328   }
2329   return false;
2330 }
2331 
2332 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2333   assert(Token.is(MIToken::kw_blockaddress));
2334   lex();
2335   if (expectAndConsume(MIToken::lparen))
2336     return true;
2337   if (Token.isNot(MIToken::GlobalValue) &&
2338       Token.isNot(MIToken::NamedGlobalValue))
2339     return error("expected a global value");
2340   GlobalValue *GV = nullptr;
2341   if (parseGlobalValue(GV))
2342     return true;
2343   auto *F = dyn_cast<Function>(GV);
2344   if (!F)
2345     return error("expected an IR function reference");
2346   lex();
2347   if (expectAndConsume(MIToken::comma))
2348     return true;
2349   BasicBlock *BB = nullptr;
2350   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2351     return error("expected an IR block reference");
2352   if (parseIRBlock(BB, *F))
2353     return true;
2354   lex();
2355   if (expectAndConsume(MIToken::rparen))
2356     return true;
2357   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2358   if (parseOperandsOffset(Dest))
2359     return true;
2360   return false;
2361 }
2362 
2363 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2364   assert(Token.is(MIToken::kw_intrinsic));
2365   lex();
2366   if (expectAndConsume(MIToken::lparen))
2367     return error("expected syntax intrinsic(@llvm.whatever)");
2368 
2369   if (Token.isNot(MIToken::NamedGlobalValue))
2370     return error("expected syntax intrinsic(@llvm.whatever)");
2371 
2372   std::string Name = std::string(Token.stringValue());
2373   lex();
2374 
2375   if (expectAndConsume(MIToken::rparen))
2376     return error("expected ')' to terminate intrinsic name");
2377 
2378   // Find out what intrinsic we're dealing with, first try the global namespace
2379   // and then the target's private intrinsics if that fails.
2380   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2381   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2382   if (ID == Intrinsic::not_intrinsic && TII)
2383     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2384 
2385   if (ID == Intrinsic::not_intrinsic)
2386     return error("unknown intrinsic name");
2387   Dest = MachineOperand::CreateIntrinsicID(ID);
2388 
2389   return false;
2390 }
2391 
2392 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2393   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2394   bool IsFloat = Token.is(MIToken::kw_floatpred);
2395   lex();
2396 
2397   if (expectAndConsume(MIToken::lparen))
2398     return error("expected syntax intpred(whatever) or floatpred(whatever");
2399 
2400   if (Token.isNot(MIToken::Identifier))
2401     return error("whatever");
2402 
2403   CmpInst::Predicate Pred;
2404   if (IsFloat) {
2405     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2406                .Case("false", CmpInst::FCMP_FALSE)
2407                .Case("oeq", CmpInst::FCMP_OEQ)
2408                .Case("ogt", CmpInst::FCMP_OGT)
2409                .Case("oge", CmpInst::FCMP_OGE)
2410                .Case("olt", CmpInst::FCMP_OLT)
2411                .Case("ole", CmpInst::FCMP_OLE)
2412                .Case("one", CmpInst::FCMP_ONE)
2413                .Case("ord", CmpInst::FCMP_ORD)
2414                .Case("uno", CmpInst::FCMP_UNO)
2415                .Case("ueq", CmpInst::FCMP_UEQ)
2416                .Case("ugt", CmpInst::FCMP_UGT)
2417                .Case("uge", CmpInst::FCMP_UGE)
2418                .Case("ult", CmpInst::FCMP_ULT)
2419                .Case("ule", CmpInst::FCMP_ULE)
2420                .Case("une", CmpInst::FCMP_UNE)
2421                .Case("true", CmpInst::FCMP_TRUE)
2422                .Default(CmpInst::BAD_FCMP_PREDICATE);
2423     if (!CmpInst::isFPPredicate(Pred))
2424       return error("invalid floating-point predicate");
2425   } else {
2426     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2427                .Case("eq", CmpInst::ICMP_EQ)
2428                .Case("ne", CmpInst::ICMP_NE)
2429                .Case("sgt", CmpInst::ICMP_SGT)
2430                .Case("sge", CmpInst::ICMP_SGE)
2431                .Case("slt", CmpInst::ICMP_SLT)
2432                .Case("sle", CmpInst::ICMP_SLE)
2433                .Case("ugt", CmpInst::ICMP_UGT)
2434                .Case("uge", CmpInst::ICMP_UGE)
2435                .Case("ult", CmpInst::ICMP_ULT)
2436                .Case("ule", CmpInst::ICMP_ULE)
2437                .Default(CmpInst::BAD_ICMP_PREDICATE);
2438     if (!CmpInst::isIntPredicate(Pred))
2439       return error("invalid integer predicate");
2440   }
2441 
2442   lex();
2443   Dest = MachineOperand::CreatePredicate(Pred);
2444   if (expectAndConsume(MIToken::rparen))
2445     return error("predicate should be terminated by ')'.");
2446 
2447   return false;
2448 }
2449 
2450 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2451   assert(Token.is(MIToken::kw_shufflemask));
2452 
2453   lex();
2454   if (expectAndConsume(MIToken::lparen))
2455     return error("expected syntax shufflemask(<integer or undef>, ...)");
2456 
2457   SmallVector<int, 32> ShufMask;
2458   do {
2459     if (Token.is(MIToken::kw_undef)) {
2460       ShufMask.push_back(-1);
2461     } else if (Token.is(MIToken::IntegerLiteral)) {
2462       const APSInt &Int = Token.integerValue();
2463       ShufMask.push_back(Int.getExtValue());
2464     } else
2465       return error("expected integer constant");
2466 
2467     lex();
2468   } while (consumeIfPresent(MIToken::comma));
2469 
2470   if (expectAndConsume(MIToken::rparen))
2471     return error("shufflemask should be terminated by ')'.");
2472 
2473   ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask);
2474   Dest = MachineOperand::CreateShuffleMask(MaskAlloc);
2475   return false;
2476 }
2477 
2478 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2479   assert(Token.is(MIToken::kw_target_index));
2480   lex();
2481   if (expectAndConsume(MIToken::lparen))
2482     return true;
2483   if (Token.isNot(MIToken::Identifier))
2484     return error("expected the name of the target index");
2485   int Index = 0;
2486   if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2487     return error("use of undefined target index '" + Token.stringValue() + "'");
2488   lex();
2489   if (expectAndConsume(MIToken::rparen))
2490     return true;
2491   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2492   if (parseOperandsOffset(Dest))
2493     return true;
2494   return false;
2495 }
2496 
2497 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2498   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2499   lex();
2500   if (expectAndConsume(MIToken::lparen))
2501     return true;
2502 
2503   uint32_t *Mask = MF.allocateRegMask();
2504   while (true) {
2505     if (Token.isNot(MIToken::NamedRegister))
2506       return error("expected a named register");
2507     unsigned Reg;
2508     if (parseNamedRegister(Reg))
2509       return true;
2510     lex();
2511     Mask[Reg / 32] |= 1U << (Reg % 32);
2512     // TODO: Report an error if the same register is used more than once.
2513     if (Token.isNot(MIToken::comma))
2514       break;
2515     lex();
2516   }
2517 
2518   if (expectAndConsume(MIToken::rparen))
2519     return true;
2520   Dest = MachineOperand::CreateRegMask(Mask);
2521   return false;
2522 }
2523 
2524 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2525   assert(Token.is(MIToken::kw_liveout));
2526   uint32_t *Mask = MF.allocateRegMask();
2527   lex();
2528   if (expectAndConsume(MIToken::lparen))
2529     return true;
2530   while (true) {
2531     if (Token.isNot(MIToken::NamedRegister))
2532       return error("expected a named register");
2533     unsigned Reg;
2534     if (parseNamedRegister(Reg))
2535       return true;
2536     lex();
2537     Mask[Reg / 32] |= 1U << (Reg % 32);
2538     // TODO: Report an error if the same register is used more than once.
2539     if (Token.isNot(MIToken::comma))
2540       break;
2541     lex();
2542   }
2543   if (expectAndConsume(MIToken::rparen))
2544     return true;
2545   Dest = MachineOperand::CreateRegLiveOut(Mask);
2546   return false;
2547 }
2548 
2549 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2550                                    MachineOperand &Dest,
2551                                    Optional<unsigned> &TiedDefIdx) {
2552   switch (Token.kind()) {
2553   case MIToken::kw_implicit:
2554   case MIToken::kw_implicit_define:
2555   case MIToken::kw_def:
2556   case MIToken::kw_dead:
2557   case MIToken::kw_killed:
2558   case MIToken::kw_undef:
2559   case MIToken::kw_internal:
2560   case MIToken::kw_early_clobber:
2561   case MIToken::kw_debug_use:
2562   case MIToken::kw_renamable:
2563   case MIToken::underscore:
2564   case MIToken::NamedRegister:
2565   case MIToken::VirtualRegister:
2566   case MIToken::NamedVirtualRegister:
2567     return parseRegisterOperand(Dest, TiedDefIdx);
2568   case MIToken::IntegerLiteral:
2569     return parseImmediateOperand(Dest);
2570   case MIToken::kw_half:
2571   case MIToken::kw_float:
2572   case MIToken::kw_double:
2573   case MIToken::kw_x86_fp80:
2574   case MIToken::kw_fp128:
2575   case MIToken::kw_ppc_fp128:
2576     return parseFPImmediateOperand(Dest);
2577   case MIToken::MachineBasicBlock:
2578     return parseMBBOperand(Dest);
2579   case MIToken::StackObject:
2580     return parseStackObjectOperand(Dest);
2581   case MIToken::FixedStackObject:
2582     return parseFixedStackObjectOperand(Dest);
2583   case MIToken::GlobalValue:
2584   case MIToken::NamedGlobalValue:
2585     return parseGlobalAddressOperand(Dest);
2586   case MIToken::ConstantPoolItem:
2587     return parseConstantPoolIndexOperand(Dest);
2588   case MIToken::JumpTableIndex:
2589     return parseJumpTableIndexOperand(Dest);
2590   case MIToken::ExternalSymbol:
2591     return parseExternalSymbolOperand(Dest);
2592   case MIToken::MCSymbol:
2593     return parseMCSymbolOperand(Dest);
2594   case MIToken::SubRegisterIndex:
2595     return parseSubRegisterIndexOperand(Dest);
2596   case MIToken::md_diexpr:
2597   case MIToken::exclaim:
2598     return parseMetadataOperand(Dest);
2599   case MIToken::kw_cfi_same_value:
2600   case MIToken::kw_cfi_offset:
2601   case MIToken::kw_cfi_rel_offset:
2602   case MIToken::kw_cfi_def_cfa_register:
2603   case MIToken::kw_cfi_def_cfa_offset:
2604   case MIToken::kw_cfi_adjust_cfa_offset:
2605   case MIToken::kw_cfi_escape:
2606   case MIToken::kw_cfi_def_cfa:
2607   case MIToken::kw_cfi_register:
2608   case MIToken::kw_cfi_remember_state:
2609   case MIToken::kw_cfi_restore:
2610   case MIToken::kw_cfi_restore_state:
2611   case MIToken::kw_cfi_undefined:
2612   case MIToken::kw_cfi_window_save:
2613   case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2614     return parseCFIOperand(Dest);
2615   case MIToken::kw_blockaddress:
2616     return parseBlockAddressOperand(Dest);
2617   case MIToken::kw_intrinsic:
2618     return parseIntrinsicOperand(Dest);
2619   case MIToken::kw_target_index:
2620     return parseTargetIndexOperand(Dest);
2621   case MIToken::kw_liveout:
2622     return parseLiveoutRegisterMaskOperand(Dest);
2623   case MIToken::kw_floatpred:
2624   case MIToken::kw_intpred:
2625     return parsePredicateOperand(Dest);
2626   case MIToken::kw_shufflemask:
2627     return parseShuffleMaskOperand(Dest);
2628   case MIToken::Error:
2629     return true;
2630   case MIToken::Identifier:
2631     if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2632       Dest = MachineOperand::CreateRegMask(RegMask);
2633       lex();
2634       break;
2635     } else if (Token.stringValue() == "CustomRegMask") {
2636       return parseCustomRegisterMaskOperand(Dest);
2637     } else
2638       return parseTypedImmediateOperand(Dest);
2639   case MIToken::dot: {
2640     const auto *TII = MF.getSubtarget().getInstrInfo();
2641     if (const auto *Formatter = TII->getMIRFormatter()) {
2642       return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter);
2643     }
2644     LLVM_FALLTHROUGH;
2645   }
2646   default:
2647     // FIXME: Parse the MCSymbol machine operand.
2648     return error("expected a machine operand");
2649   }
2650   return false;
2651 }
2652 
2653 bool MIParser::parseMachineOperandAndTargetFlags(
2654     const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2655     Optional<unsigned> &TiedDefIdx) {
2656   unsigned TF = 0;
2657   bool HasTargetFlags = false;
2658   if (Token.is(MIToken::kw_target_flags)) {
2659     HasTargetFlags = true;
2660     lex();
2661     if (expectAndConsume(MIToken::lparen))
2662       return true;
2663     if (Token.isNot(MIToken::Identifier))
2664       return error("expected the name of the target flag");
2665     if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2666       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2667         return error("use of undefined target flag '" + Token.stringValue() +
2668                      "'");
2669     }
2670     lex();
2671     while (Token.is(MIToken::comma)) {
2672       lex();
2673       if (Token.isNot(MIToken::Identifier))
2674         return error("expected the name of the target flag");
2675       unsigned BitFlag = 0;
2676       if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2677         return error("use of undefined target flag '" + Token.stringValue() +
2678                      "'");
2679       // TODO: Report an error when using a duplicate bit target flag.
2680       TF |= BitFlag;
2681       lex();
2682     }
2683     if (expectAndConsume(MIToken::rparen))
2684       return true;
2685   }
2686   auto Loc = Token.location();
2687   if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
2688     return true;
2689   if (!HasTargetFlags)
2690     return false;
2691   if (Dest.isReg())
2692     return error(Loc, "register operands can't have target flags");
2693   Dest.setTargetFlags(TF);
2694   return false;
2695 }
2696 
2697 bool MIParser::parseOffset(int64_t &Offset) {
2698   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2699     return false;
2700   StringRef Sign = Token.range();
2701   bool IsNegative = Token.is(MIToken::minus);
2702   lex();
2703   if (Token.isNot(MIToken::IntegerLiteral))
2704     return error("expected an integer literal after '" + Sign + "'");
2705   if (Token.integerValue().getMinSignedBits() > 64)
2706     return error("expected 64-bit integer (too large)");
2707   Offset = Token.integerValue().getExtValue();
2708   if (IsNegative)
2709     Offset = -Offset;
2710   lex();
2711   return false;
2712 }
2713 
2714 bool MIParser::parseAlignment(unsigned &Alignment) {
2715   assert(Token.is(MIToken::kw_align));
2716   lex();
2717   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2718     return error("expected an integer literal after 'align'");
2719   if (getUnsigned(Alignment))
2720     return true;
2721   lex();
2722 
2723   if (!isPowerOf2_32(Alignment))
2724     return error("expected a power-of-2 literal after 'align'");
2725 
2726   return false;
2727 }
2728 
2729 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2730   assert(Token.is(MIToken::kw_addrspace));
2731   lex();
2732   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2733     return error("expected an integer literal after 'addrspace'");
2734   if (getUnsigned(Addrspace))
2735     return true;
2736   lex();
2737   return false;
2738 }
2739 
2740 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2741   int64_t Offset = 0;
2742   if (parseOffset(Offset))
2743     return true;
2744   Op.setOffset(Offset);
2745   return false;
2746 }
2747 
2748 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
2749                          const Value *&V, ErrorCallbackType ErrCB) {
2750   switch (Token.kind()) {
2751   case MIToken::NamedIRValue: {
2752     V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2753     break;
2754   }
2755   case MIToken::IRValue: {
2756     unsigned SlotNumber = 0;
2757     if (getUnsigned(Token, SlotNumber, ErrCB))
2758       return true;
2759     V = PFS.getIRValue(SlotNumber);
2760     break;
2761   }
2762   case MIToken::NamedGlobalValue:
2763   case MIToken::GlobalValue: {
2764     GlobalValue *GV = nullptr;
2765     if (parseGlobalValue(Token, PFS, GV, ErrCB))
2766       return true;
2767     V = GV;
2768     break;
2769   }
2770   case MIToken::QuotedIRValue: {
2771     const Constant *C = nullptr;
2772     if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB))
2773       return true;
2774     V = C;
2775     break;
2776   }
2777   default:
2778     llvm_unreachable("The current token should be an IR block reference");
2779   }
2780   if (!V)
2781     return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
2782   return false;
2783 }
2784 
2785 bool MIParser::parseIRValue(const Value *&V) {
2786   return ::parseIRValue(
2787       Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2788         return error(Loc, Msg);
2789       });
2790 }
2791 
2792 bool MIParser::getUint64(uint64_t &Result) {
2793   if (Token.hasIntegerValue()) {
2794     if (Token.integerValue().getActiveBits() > 64)
2795       return error("expected 64-bit integer (too large)");
2796     Result = Token.integerValue().getZExtValue();
2797     return false;
2798   }
2799   if (Token.is(MIToken::HexLiteral)) {
2800     APInt A;
2801     if (getHexUint(A))
2802       return true;
2803     if (A.getBitWidth() > 64)
2804       return error("expected 64-bit integer (too large)");
2805     Result = A.getZExtValue();
2806     return false;
2807   }
2808   return true;
2809 }
2810 
2811 bool MIParser::getHexUint(APInt &Result) {
2812   return ::getHexUint(Token, Result);
2813 }
2814 
2815 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2816   const auto OldFlags = Flags;
2817   switch (Token.kind()) {
2818   case MIToken::kw_volatile:
2819     Flags |= MachineMemOperand::MOVolatile;
2820     break;
2821   case MIToken::kw_non_temporal:
2822     Flags |= MachineMemOperand::MONonTemporal;
2823     break;
2824   case MIToken::kw_dereferenceable:
2825     Flags |= MachineMemOperand::MODereferenceable;
2826     break;
2827   case MIToken::kw_invariant:
2828     Flags |= MachineMemOperand::MOInvariant;
2829     break;
2830   case MIToken::StringConstant: {
2831     MachineMemOperand::Flags TF;
2832     if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2833       return error("use of undefined target MMO flag '" + Token.stringValue() +
2834                    "'");
2835     Flags |= TF;
2836     break;
2837   }
2838   default:
2839     llvm_unreachable("The current token should be a memory operand flag");
2840   }
2841   if (OldFlags == Flags)
2842     // We know that the same flag is specified more than once when the flags
2843     // weren't modified.
2844     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2845   lex();
2846   return false;
2847 }
2848 
2849 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2850   switch (Token.kind()) {
2851   case MIToken::kw_stack:
2852     PSV = MF.getPSVManager().getStack();
2853     break;
2854   case MIToken::kw_got:
2855     PSV = MF.getPSVManager().getGOT();
2856     break;
2857   case MIToken::kw_jump_table:
2858     PSV = MF.getPSVManager().getJumpTable();
2859     break;
2860   case MIToken::kw_constant_pool:
2861     PSV = MF.getPSVManager().getConstantPool();
2862     break;
2863   case MIToken::FixedStackObject: {
2864     int FI;
2865     if (parseFixedStackFrameIndex(FI))
2866       return true;
2867     PSV = MF.getPSVManager().getFixedStack(FI);
2868     // The token was already consumed, so use return here instead of break.
2869     return false;
2870   }
2871   case MIToken::StackObject: {
2872     int FI;
2873     if (parseStackFrameIndex(FI))
2874       return true;
2875     PSV = MF.getPSVManager().getFixedStack(FI);
2876     // The token was already consumed, so use return here instead of break.
2877     return false;
2878   }
2879   case MIToken::kw_call_entry:
2880     lex();
2881     switch (Token.kind()) {
2882     case MIToken::GlobalValue:
2883     case MIToken::NamedGlobalValue: {
2884       GlobalValue *GV = nullptr;
2885       if (parseGlobalValue(GV))
2886         return true;
2887       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2888       break;
2889     }
2890     case MIToken::ExternalSymbol:
2891       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2892           MF.createExternalSymbolName(Token.stringValue()));
2893       break;
2894     default:
2895       return error(
2896           "expected a global value or an external symbol after 'call-entry'");
2897     }
2898     break;
2899   case MIToken::kw_custom: {
2900     lex();
2901     const auto *TII = MF.getSubtarget().getInstrInfo();
2902     if (const auto *Formatter = TII->getMIRFormatter()) {
2903       if (Formatter->parseCustomPseudoSourceValue(
2904               Token.stringValue(), MF, PFS, PSV,
2905               [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2906                 return error(Loc, Msg);
2907               }))
2908         return true;
2909     } else
2910       return error("unable to parse target custom pseudo source value");
2911     break;
2912   }
2913   default:
2914     llvm_unreachable("The current token should be pseudo source value");
2915   }
2916   lex();
2917   return false;
2918 }
2919 
2920 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2921   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2922       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2923       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2924       Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) {
2925     const PseudoSourceValue *PSV = nullptr;
2926     if (parseMemoryPseudoSourceValue(PSV))
2927       return true;
2928     int64_t Offset = 0;
2929     if (parseOffset(Offset))
2930       return true;
2931     Dest = MachinePointerInfo(PSV, Offset);
2932     return false;
2933   }
2934   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2935       Token.isNot(MIToken::GlobalValue) &&
2936       Token.isNot(MIToken::NamedGlobalValue) &&
2937       Token.isNot(MIToken::QuotedIRValue))
2938     return error("expected an IR value reference");
2939   const Value *V = nullptr;
2940   if (parseIRValue(V))
2941     return true;
2942   if (!V->getType()->isPointerTy())
2943     return error("expected a pointer IR value");
2944   lex();
2945   int64_t Offset = 0;
2946   if (parseOffset(Offset))
2947     return true;
2948   Dest = MachinePointerInfo(V, Offset);
2949   return false;
2950 }
2951 
2952 bool MIParser::parseOptionalScope(LLVMContext &Context,
2953                                   SyncScope::ID &SSID) {
2954   SSID = SyncScope::System;
2955   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2956     lex();
2957     if (expectAndConsume(MIToken::lparen))
2958       return error("expected '(' in syncscope");
2959 
2960     std::string SSN;
2961     if (parseStringConstant(SSN))
2962       return true;
2963 
2964     SSID = Context.getOrInsertSyncScopeID(SSN);
2965     if (expectAndConsume(MIToken::rparen))
2966       return error("expected ')' in syncscope");
2967   }
2968 
2969   return false;
2970 }
2971 
2972 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2973   Order = AtomicOrdering::NotAtomic;
2974   if (Token.isNot(MIToken::Identifier))
2975     return false;
2976 
2977   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2978               .Case("unordered", AtomicOrdering::Unordered)
2979               .Case("monotonic", AtomicOrdering::Monotonic)
2980               .Case("acquire", AtomicOrdering::Acquire)
2981               .Case("release", AtomicOrdering::Release)
2982               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2983               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2984               .Default(AtomicOrdering::NotAtomic);
2985 
2986   if (Order != AtomicOrdering::NotAtomic) {
2987     lex();
2988     return false;
2989   }
2990 
2991   return error("expected an atomic scope, ordering or a size specification");
2992 }
2993 
2994 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2995   if (expectAndConsume(MIToken::lparen))
2996     return true;
2997   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2998   while (Token.isMemoryOperandFlag()) {
2999     if (parseMemoryOperandFlag(Flags))
3000       return true;
3001   }
3002   if (Token.isNot(MIToken::Identifier) ||
3003       (Token.stringValue() != "load" && Token.stringValue() != "store"))
3004     return error("expected 'load' or 'store' memory operation");
3005   if (Token.stringValue() == "load")
3006     Flags |= MachineMemOperand::MOLoad;
3007   else
3008     Flags |= MachineMemOperand::MOStore;
3009   lex();
3010 
3011   // Optional 'store' for operands that both load and store.
3012   if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
3013     Flags |= MachineMemOperand::MOStore;
3014     lex();
3015   }
3016 
3017   // Optional synchronization scope.
3018   SyncScope::ID SSID;
3019   if (parseOptionalScope(MF.getFunction().getContext(), SSID))
3020     return true;
3021 
3022   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3023   AtomicOrdering Order, FailureOrder;
3024   if (parseOptionalAtomicOrdering(Order))
3025     return true;
3026 
3027   if (parseOptionalAtomicOrdering(FailureOrder))
3028     return true;
3029 
3030   if (Token.isNot(MIToken::IntegerLiteral) &&
3031       Token.isNot(MIToken::kw_unknown_size))
3032     return error("expected the size integer literal or 'unknown-size' after "
3033                  "memory operation");
3034   uint64_t Size;
3035   if (Token.is(MIToken::IntegerLiteral)) {
3036     if (getUint64(Size))
3037       return true;
3038   } else if (Token.is(MIToken::kw_unknown_size)) {
3039     Size = MemoryLocation::UnknownSize;
3040   }
3041   lex();
3042 
3043   MachinePointerInfo Ptr = MachinePointerInfo();
3044   if (Token.is(MIToken::Identifier)) {
3045     const char *Word =
3046         ((Flags & MachineMemOperand::MOLoad) &&
3047          (Flags & MachineMemOperand::MOStore))
3048             ? "on"
3049             : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3050     if (Token.stringValue() != Word)
3051       return error(Twine("expected '") + Word + "'");
3052     lex();
3053 
3054     if (parseMachinePointerInfo(Ptr))
3055       return true;
3056   }
3057   unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
3058   AAMDNodes AAInfo;
3059   MDNode *Range = nullptr;
3060   while (consumeIfPresent(MIToken::comma)) {
3061     switch (Token.kind()) {
3062     case MIToken::kw_align:
3063       if (parseAlignment(BaseAlignment))
3064         return true;
3065       break;
3066     case MIToken::kw_addrspace:
3067       if (parseAddrspace(Ptr.AddrSpace))
3068         return true;
3069       break;
3070     case MIToken::md_tbaa:
3071       lex();
3072       if (parseMDNode(AAInfo.TBAA))
3073         return true;
3074       break;
3075     case MIToken::md_alias_scope:
3076       lex();
3077       if (parseMDNode(AAInfo.Scope))
3078         return true;
3079       break;
3080     case MIToken::md_noalias:
3081       lex();
3082       if (parseMDNode(AAInfo.NoAlias))
3083         return true;
3084       break;
3085     case MIToken::md_range:
3086       lex();
3087       if (parseMDNode(Range))
3088         return true;
3089       break;
3090     // TODO: Report an error on duplicate metadata nodes.
3091     default:
3092       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
3093                    "'!noalias' or '!range'");
3094     }
3095   }
3096   if (expectAndConsume(MIToken::rparen))
3097     return true;
3098   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo,
3099                                  Range, SSID, Order, FailureOrder);
3100   return false;
3101 }
3102 
3103 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3104   assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3105           Token.is(MIToken::kw_post_instr_symbol)) &&
3106          "Invalid token for a pre- post-instruction symbol!");
3107   lex();
3108   if (Token.isNot(MIToken::MCSymbol))
3109     return error("expected a symbol after 'pre-instr-symbol'");
3110   Symbol = getOrCreateMCSymbol(Token.stringValue());
3111   lex();
3112   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3113       Token.is(MIToken::lbrace))
3114     return false;
3115   if (Token.isNot(MIToken::comma))
3116     return error("expected ',' before the next machine operand");
3117   lex();
3118   return false;
3119 }
3120 
3121 bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3122   assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3123          "Invalid token for a heap alloc marker!");
3124   lex();
3125   parseMDNode(Node);
3126   if (!Node)
3127     return error("expected a MDNode after 'heap-alloc-marker'");
3128   if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
3129       Token.is(MIToken::lbrace))
3130     return false;
3131   if (Token.isNot(MIToken::comma))
3132     return error("expected ',' before the next machine operand");
3133   lex();
3134   return false;
3135 }
3136 
3137 static void initSlots2BasicBlocks(
3138     const Function &F,
3139     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3140   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3141   MST.incorporateFunction(F);
3142   for (auto &BB : F) {
3143     if (BB.hasName())
3144       continue;
3145     int Slot = MST.getLocalSlot(&BB);
3146     if (Slot == -1)
3147       continue;
3148     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
3149   }
3150 }
3151 
3152 static const BasicBlock *getIRBlockFromSlot(
3153     unsigned Slot,
3154     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3155   auto BlockInfo = Slots2BasicBlocks.find(Slot);
3156   if (BlockInfo == Slots2BasicBlocks.end())
3157     return nullptr;
3158   return BlockInfo->second;
3159 }
3160 
3161 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3162   if (Slots2BasicBlocks.empty())
3163     initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
3164   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3165 }
3166 
3167 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3168   if (&F == &MF.getFunction())
3169     return getIRBlock(Slot);
3170   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3171   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
3172   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
3173 }
3174 
3175 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3176   // FIXME: Currently we can't recognize temporary or local symbols and call all
3177   // of the appropriate forms to create them. However, this handles basic cases
3178   // well as most of the special aspects are recognized by a prefix on their
3179   // name, and the input names should already be unique. For test cases, keeping
3180   // the symbol name out of the symbol table isn't terribly important.
3181   return MF.getContext().getOrCreateSymbol(Name);
3182 }
3183 
3184 bool MIParser::parseStringConstant(std::string &Result) {
3185   if (Token.isNot(MIToken::StringConstant))
3186     return error("expected string constant");
3187   Result = std::string(Token.stringValue());
3188   lex();
3189   return false;
3190 }
3191 
3192 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3193                                              StringRef Src,
3194                                              SMDiagnostic &Error) {
3195   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3196 }
3197 
3198 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3199                                     StringRef Src, SMDiagnostic &Error) {
3200   return MIParser(PFS, Error, Src).parseBasicBlocks();
3201 }
3202 
3203 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3204                              MachineBasicBlock *&MBB, StringRef Src,
3205                              SMDiagnostic &Error) {
3206   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3207 }
3208 
3209 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3210                                   unsigned &Reg, StringRef Src,
3211                                   SMDiagnostic &Error) {
3212   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3213 }
3214 
3215 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3216                                        unsigned &Reg, StringRef Src,
3217                                        SMDiagnostic &Error) {
3218   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3219 }
3220 
3221 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3222                                          VRegInfo *&Info, StringRef Src,
3223                                          SMDiagnostic &Error) {
3224   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3225 }
3226 
3227 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3228                                      int &FI, StringRef Src,
3229                                      SMDiagnostic &Error) {
3230   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3231 }
3232 
3233 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3234                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3235   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3236 }
3237 
3238 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3239                                 PerFunctionMIParsingState &PFS, const Value *&V,
3240                                 ErrorCallbackType ErrorCallback) {
3241   MIToken Token;
3242   Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) {
3243     ErrorCallback(Loc, Msg);
3244   });
3245   V = nullptr;
3246 
3247   return ::parseIRValue(Token, PFS, V, ErrorCallback);
3248 }
3249