1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the parsing of machine instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MIParser.h" 15 #include "MILexer.h" 16 #include "llvm/ADT/StringMap.h" 17 #include "llvm/AsmParser/Parser.h" 18 #include "llvm/AsmParser/SlotMapping.h" 19 #include "llvm/CodeGen/MachineBasicBlock.h" 20 #include "llvm/CodeGen/MachineFrameInfo.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineMemOperand.h" 25 #include "llvm/CodeGen/MachineModuleInfo.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/ModuleSlotTracker.h" 31 #include "llvm/IR/ValueSymbolTable.h" 32 #include "llvm/Support/SourceMgr.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetSubtargetInfo.h" 36 37 using namespace llvm; 38 39 namespace { 40 41 /// A wrapper struct around the 'MachineOperand' struct that includes a source 42 /// range and other attributes. 43 struct ParsedMachineOperand { 44 MachineOperand Operand; 45 StringRef::iterator Begin; 46 StringRef::iterator End; 47 Optional<unsigned> TiedDefIdx; 48 49 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 50 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 51 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 52 if (TiedDefIdx) 53 assert(Operand.isReg() && Operand.isUse() && 54 "Only used register operands can be tied"); 55 } 56 }; 57 58 class MIParser { 59 SourceMgr &SM; 60 MachineFunction &MF; 61 SMDiagnostic &Error; 62 StringRef Source, CurrentSource; 63 MIToken Token; 64 const PerFunctionMIParsingState &PFS; 65 /// Maps from indices to unnamed global values and metadata nodes. 66 const SlotMapping &IRSlots; 67 /// Maps from instruction names to op codes. 68 StringMap<unsigned> Names2InstrOpCodes; 69 /// Maps from register names to registers. 70 StringMap<unsigned> Names2Regs; 71 /// Maps from register mask names to register masks. 72 StringMap<const uint32_t *> Names2RegMasks; 73 /// Maps from subregister names to subregister indices. 74 StringMap<unsigned> Names2SubRegIndices; 75 /// Maps from slot numbers to function's unnamed basic blocks. 76 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 77 /// Maps from slot numbers to function's unnamed values. 78 DenseMap<unsigned, const Value *> Slots2Values; 79 /// Maps from target index names to target indices. 80 StringMap<int> Names2TargetIndices; 81 /// Maps from direct target flag names to the direct target flag values. 82 StringMap<unsigned> Names2DirectTargetFlags; 83 /// Maps from direct target flag names to the bitmask target flag values. 84 StringMap<unsigned> Names2BitmaskTargetFlags; 85 86 public: 87 MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error, 88 StringRef Source, const PerFunctionMIParsingState &PFS, 89 const SlotMapping &IRSlots); 90 91 void lex(); 92 93 /// Report an error at the current location with the given message. 94 /// 95 /// This function always return true. 96 bool error(const Twine &Msg); 97 98 /// Report an error at the given location with the given message. 99 /// 100 /// This function always return true. 101 bool error(StringRef::iterator Loc, const Twine &Msg); 102 103 bool 104 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 105 bool parseBasicBlocks(); 106 bool parse(MachineInstr *&MI); 107 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 108 bool parseStandaloneNamedRegister(unsigned &Reg); 109 bool parseStandaloneVirtualRegister(unsigned &Reg); 110 bool parseStandaloneStackObject(int &FI); 111 bool parseStandaloneMDNode(MDNode *&Node); 112 113 bool 114 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 115 bool parseBasicBlock(MachineBasicBlock &MBB); 116 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 117 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 118 119 bool parseRegister(unsigned &Reg); 120 bool parseRegisterFlag(unsigned &Flags); 121 bool parseSubRegisterIndex(unsigned &SubReg); 122 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 123 bool parseSize(unsigned &Size); 124 bool parseRegisterOperand(MachineOperand &Dest, 125 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 126 bool parseImmediateOperand(MachineOperand &Dest); 127 bool parseIRConstant(StringRef::iterator Loc, StringRef Source, 128 const Constant *&C); 129 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 130 bool parseTypedImmediateOperand(MachineOperand &Dest); 131 bool parseFPImmediateOperand(MachineOperand &Dest); 132 bool parseMBBReference(MachineBasicBlock *&MBB); 133 bool parseMBBOperand(MachineOperand &Dest); 134 bool parseStackFrameIndex(int &FI); 135 bool parseStackObjectOperand(MachineOperand &Dest); 136 bool parseFixedStackFrameIndex(int &FI); 137 bool parseFixedStackObjectOperand(MachineOperand &Dest); 138 bool parseGlobalValue(GlobalValue *&GV); 139 bool parseGlobalAddressOperand(MachineOperand &Dest); 140 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 141 bool parseJumpTableIndexOperand(MachineOperand &Dest); 142 bool parseExternalSymbolOperand(MachineOperand &Dest); 143 bool parseMDNode(MDNode *&Node); 144 bool parseMetadataOperand(MachineOperand &Dest); 145 bool parseCFIOffset(int &Offset); 146 bool parseCFIRegister(unsigned &Reg); 147 bool parseCFIOperand(MachineOperand &Dest); 148 bool parseIRBlock(BasicBlock *&BB, const Function &F); 149 bool parseBlockAddressOperand(MachineOperand &Dest); 150 bool parseTargetIndexOperand(MachineOperand &Dest); 151 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 152 bool parseMachineOperand(MachineOperand &Dest, 153 Optional<unsigned> &TiedDefIdx); 154 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest, 155 Optional<unsigned> &TiedDefIdx); 156 bool parseOffset(int64_t &Offset); 157 bool parseAlignment(unsigned &Alignment); 158 bool parseOperandsOffset(MachineOperand &Op); 159 bool parseIRValue(const Value *&V); 160 bool parseMemoryOperandFlag(unsigned &Flags); 161 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 162 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 163 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 164 165 private: 166 /// Convert the integer literal in the current token into an unsigned integer. 167 /// 168 /// Return true if an error occurred. 169 bool getUnsigned(unsigned &Result); 170 171 /// Convert the integer literal in the current token into an uint64. 172 /// 173 /// Return true if an error occurred. 174 bool getUint64(uint64_t &Result); 175 176 /// If the current token is of the given kind, consume it and return false. 177 /// Otherwise report an error and return true. 178 bool expectAndConsume(MIToken::TokenKind TokenKind); 179 180 /// If the current token is of the given kind, consume it and return true. 181 /// Otherwise return false. 182 bool consumeIfPresent(MIToken::TokenKind TokenKind); 183 184 void initNames2InstrOpCodes(); 185 186 /// Try to convert an instruction name to an opcode. Return true if the 187 /// instruction name is invalid. 188 bool parseInstrName(StringRef InstrName, unsigned &OpCode); 189 190 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 191 192 bool assignRegisterTies(MachineInstr &MI, 193 ArrayRef<ParsedMachineOperand> Operands); 194 195 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 196 const MCInstrDesc &MCID); 197 198 void initNames2Regs(); 199 200 /// Try to convert a register name to a register number. Return true if the 201 /// register name is invalid. 202 bool getRegisterByName(StringRef RegName, unsigned &Reg); 203 204 void initNames2RegMasks(); 205 206 /// Check if the given identifier is a name of a register mask. 207 /// 208 /// Return null if the identifier isn't a register mask. 209 const uint32_t *getRegMask(StringRef Identifier); 210 211 void initNames2SubRegIndices(); 212 213 /// Check if the given identifier is a name of a subregister index. 214 /// 215 /// Return 0 if the name isn't a subregister index class. 216 unsigned getSubRegIndex(StringRef Name); 217 218 const BasicBlock *getIRBlock(unsigned Slot); 219 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 220 221 const Value *getIRValue(unsigned Slot); 222 223 void initNames2TargetIndices(); 224 225 /// Try to convert a name of target index to the corresponding target index. 226 /// 227 /// Return true if the name isn't a name of a target index. 228 bool getTargetIndex(StringRef Name, int &Index); 229 230 void initNames2DirectTargetFlags(); 231 232 /// Try to convert a name of a direct target flag to the corresponding 233 /// target flag. 234 /// 235 /// Return true if the name isn't a name of a direct flag. 236 bool getDirectTargetFlag(StringRef Name, unsigned &Flag); 237 238 void initNames2BitmaskTargetFlags(); 239 240 /// Try to convert a name of a bitmask target flag to the corresponding 241 /// target flag. 242 /// 243 /// Return true if the name isn't a name of a bitmask target flag. 244 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag); 245 }; 246 247 } // end anonymous namespace 248 249 MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error, 250 StringRef Source, const PerFunctionMIParsingState &PFS, 251 const SlotMapping &IRSlots) 252 : SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source), 253 PFS(PFS), IRSlots(IRSlots) {} 254 255 void MIParser::lex() { 256 CurrentSource = lexMIToken( 257 CurrentSource, Token, 258 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 259 } 260 261 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 262 263 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 264 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 265 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 266 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 267 // Create an ordinary diagnostic when the source manager's buffer is the 268 // source string. 269 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 270 return true; 271 } 272 // Create a diagnostic for a YAML string literal. 273 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 274 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 275 Source, None, None); 276 return true; 277 } 278 279 static const char *toString(MIToken::TokenKind TokenKind) { 280 switch (TokenKind) { 281 case MIToken::comma: 282 return "','"; 283 case MIToken::equal: 284 return "'='"; 285 case MIToken::colon: 286 return "':'"; 287 case MIToken::lparen: 288 return "'('"; 289 case MIToken::rparen: 290 return "')'"; 291 default: 292 return "<unknown token>"; 293 } 294 } 295 296 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 297 if (Token.isNot(TokenKind)) 298 return error(Twine("expected ") + toString(TokenKind)); 299 lex(); 300 return false; 301 } 302 303 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 304 if (Token.isNot(TokenKind)) 305 return false; 306 lex(); 307 return true; 308 } 309 310 bool MIParser::parseBasicBlockDefinition( 311 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 312 assert(Token.is(MIToken::MachineBasicBlockLabel)); 313 unsigned ID = 0; 314 if (getUnsigned(ID)) 315 return true; 316 auto Loc = Token.location(); 317 auto Name = Token.stringValue(); 318 lex(); 319 bool HasAddressTaken = false; 320 bool IsLandingPad = false; 321 unsigned Alignment = 0; 322 BasicBlock *BB = nullptr; 323 if (consumeIfPresent(MIToken::lparen)) { 324 do { 325 // TODO: Report an error when multiple same attributes are specified. 326 switch (Token.kind()) { 327 case MIToken::kw_address_taken: 328 HasAddressTaken = true; 329 lex(); 330 break; 331 case MIToken::kw_landing_pad: 332 IsLandingPad = true; 333 lex(); 334 break; 335 case MIToken::kw_align: 336 if (parseAlignment(Alignment)) 337 return true; 338 break; 339 case MIToken::IRBlock: 340 // TODO: Report an error when both name and ir block are specified. 341 if (parseIRBlock(BB, *MF.getFunction())) 342 return true; 343 lex(); 344 break; 345 default: 346 break; 347 } 348 } while (consumeIfPresent(MIToken::comma)); 349 if (expectAndConsume(MIToken::rparen)) 350 return true; 351 } 352 if (expectAndConsume(MIToken::colon)) 353 return true; 354 355 if (!Name.empty()) { 356 BB = dyn_cast_or_null<BasicBlock>( 357 MF.getFunction()->getValueSymbolTable().lookup(Name)); 358 if (!BB) 359 return error(Loc, Twine("basic block '") + Name + 360 "' is not defined in the function '" + 361 MF.getName() + "'"); 362 } 363 auto *MBB = MF.CreateMachineBasicBlock(BB); 364 MF.insert(MF.end(), MBB); 365 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 366 if (!WasInserted) 367 return error(Loc, Twine("redefinition of machine basic block with id #") + 368 Twine(ID)); 369 if (Alignment) 370 MBB->setAlignment(Alignment); 371 if (HasAddressTaken) 372 MBB->setHasAddressTaken(); 373 MBB->setIsEHPad(IsLandingPad); 374 return false; 375 } 376 377 bool MIParser::parseBasicBlockDefinitions( 378 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 379 lex(); 380 // Skip until the first machine basic block. 381 while (Token.is(MIToken::Newline)) 382 lex(); 383 if (Token.isErrorOrEOF()) 384 return Token.isError(); 385 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 386 return error("expected a basic block definition before instructions"); 387 unsigned BraceDepth = 0; 388 do { 389 if (parseBasicBlockDefinition(MBBSlots)) 390 return true; 391 bool IsAfterNewline = false; 392 // Skip until the next machine basic block. 393 while (true) { 394 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 395 Token.isErrorOrEOF()) 396 break; 397 else if (Token.is(MIToken::MachineBasicBlockLabel)) 398 return error("basic block definition should be located at the start of " 399 "the line"); 400 else if (consumeIfPresent(MIToken::Newline)) { 401 IsAfterNewline = true; 402 continue; 403 } 404 IsAfterNewline = false; 405 if (Token.is(MIToken::lbrace)) 406 ++BraceDepth; 407 if (Token.is(MIToken::rbrace)) { 408 if (!BraceDepth) 409 return error("extraneous closing brace ('}')"); 410 --BraceDepth; 411 } 412 lex(); 413 } 414 // Verify that we closed all of the '{' at the end of a file or a block. 415 if (!Token.isError() && BraceDepth) 416 return error("expected '}'"); // FIXME: Report a note that shows '{'. 417 } while (!Token.isErrorOrEOF()); 418 return Token.isError(); 419 } 420 421 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 422 assert(Token.is(MIToken::kw_liveins)); 423 lex(); 424 if (expectAndConsume(MIToken::colon)) 425 return true; 426 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 427 return false; 428 do { 429 if (Token.isNot(MIToken::NamedRegister)) 430 return error("expected a named register"); 431 unsigned Reg = 0; 432 if (parseRegister(Reg)) 433 return true; 434 MBB.addLiveIn(Reg); 435 lex(); 436 } while (consumeIfPresent(MIToken::comma)); 437 return false; 438 } 439 440 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 441 assert(Token.is(MIToken::kw_successors)); 442 lex(); 443 if (expectAndConsume(MIToken::colon)) 444 return true; 445 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 446 return false; 447 do { 448 if (Token.isNot(MIToken::MachineBasicBlock)) 449 return error("expected a machine basic block reference"); 450 MachineBasicBlock *SuccMBB = nullptr; 451 if (parseMBBReference(SuccMBB)) 452 return true; 453 lex(); 454 unsigned Weight = 0; 455 if (consumeIfPresent(MIToken::lparen)) { 456 if (Token.isNot(MIToken::IntegerLiteral)) 457 return error("expected an integer literal after '('"); 458 if (getUnsigned(Weight)) 459 return true; 460 lex(); 461 if (expectAndConsume(MIToken::rparen)) 462 return true; 463 } 464 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 465 } while (consumeIfPresent(MIToken::comma)); 466 MBB.normalizeSuccProbs(); 467 return false; 468 } 469 470 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) { 471 // Skip the definition. 472 assert(Token.is(MIToken::MachineBasicBlockLabel)); 473 lex(); 474 if (consumeIfPresent(MIToken::lparen)) { 475 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 476 lex(); 477 consumeIfPresent(MIToken::rparen); 478 } 479 consumeIfPresent(MIToken::colon); 480 481 // Parse the liveins and successors. 482 // N.B: Multiple lists of successors and liveins are allowed and they're 483 // merged into one. 484 // Example: 485 // liveins: %edi 486 // liveins: %esi 487 // 488 // is equivalent to 489 // liveins: %edi, %esi 490 while (true) { 491 if (Token.is(MIToken::kw_successors)) { 492 if (parseBasicBlockSuccessors(MBB)) 493 return true; 494 } else if (Token.is(MIToken::kw_liveins)) { 495 if (parseBasicBlockLiveins(MBB)) 496 return true; 497 } else if (consumeIfPresent(MIToken::Newline)) { 498 continue; 499 } else 500 break; 501 if (!Token.isNewlineOrEOF()) 502 return error("expected line break at the end of a list"); 503 lex(); 504 } 505 506 // Parse the instructions. 507 bool IsInBundle = false; 508 MachineInstr *PrevMI = nullptr; 509 while (true) { 510 if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)) 511 return false; 512 else if (consumeIfPresent(MIToken::Newline)) 513 continue; 514 if (consumeIfPresent(MIToken::rbrace)) { 515 // The first parsing pass should verify that all closing '}' have an 516 // opening '{'. 517 assert(IsInBundle); 518 IsInBundle = false; 519 continue; 520 } 521 MachineInstr *MI = nullptr; 522 if (parse(MI)) 523 return true; 524 MBB.insert(MBB.end(), MI); 525 if (IsInBundle) { 526 PrevMI->setFlag(MachineInstr::BundledSucc); 527 MI->setFlag(MachineInstr::BundledPred); 528 } 529 PrevMI = MI; 530 if (Token.is(MIToken::lbrace)) { 531 if (IsInBundle) 532 return error("nested instruction bundles are not allowed"); 533 lex(); 534 // This instruction is the start of the bundle. 535 MI->setFlag(MachineInstr::BundledSucc); 536 IsInBundle = true; 537 if (!Token.is(MIToken::Newline)) 538 // The next instruction can be on the same line. 539 continue; 540 } 541 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 542 lex(); 543 } 544 return false; 545 } 546 547 bool MIParser::parseBasicBlocks() { 548 lex(); 549 // Skip until the first machine basic block. 550 while (Token.is(MIToken::Newline)) 551 lex(); 552 if (Token.isErrorOrEOF()) 553 return Token.isError(); 554 // The first parsing pass should have verified that this token is a MBB label 555 // in the 'parseBasicBlockDefinitions' method. 556 assert(Token.is(MIToken::MachineBasicBlockLabel)); 557 do { 558 MachineBasicBlock *MBB = nullptr; 559 if (parseMBBReference(MBB)) 560 return true; 561 if (parseBasicBlock(*MBB)) 562 return true; 563 // The method 'parseBasicBlock' should parse the whole block until the next 564 // block or the end of file. 565 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 566 } while (Token.isNot(MIToken::Eof)); 567 return false; 568 } 569 570 bool MIParser::parse(MachineInstr *&MI) { 571 // Parse any register operands before '=' 572 MachineOperand MO = MachineOperand::CreateImm(0); 573 SmallVector<ParsedMachineOperand, 8> Operands; 574 while (Token.isRegister() || Token.isRegisterFlag()) { 575 auto Loc = Token.location(); 576 Optional<unsigned> TiedDefIdx; 577 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 578 return true; 579 Operands.push_back( 580 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 581 if (Token.isNot(MIToken::comma)) 582 break; 583 lex(); 584 } 585 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 586 return true; 587 588 unsigned OpCode, Flags = 0; 589 if (Token.isError() || parseInstruction(OpCode, Flags)) 590 return true; 591 592 // Parse the remaining machine operands. 593 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) && 594 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 595 auto Loc = Token.location(); 596 Optional<unsigned> TiedDefIdx; 597 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx)) 598 return true; 599 Operands.push_back( 600 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 601 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 602 Token.is(MIToken::lbrace)) 603 break; 604 if (Token.isNot(MIToken::comma)) 605 return error("expected ',' before the next machine operand"); 606 lex(); 607 } 608 609 DebugLoc DebugLocation; 610 if (Token.is(MIToken::kw_debug_location)) { 611 lex(); 612 if (Token.isNot(MIToken::exclaim)) 613 return error("expected a metadata node after 'debug-location'"); 614 MDNode *Node = nullptr; 615 if (parseMDNode(Node)) 616 return true; 617 DebugLocation = DebugLoc(Node); 618 } 619 620 // Parse the machine memory operands. 621 SmallVector<MachineMemOperand *, 2> MemOperands; 622 if (Token.is(MIToken::coloncolon)) { 623 lex(); 624 while (!Token.isNewlineOrEOF()) { 625 MachineMemOperand *MemOp = nullptr; 626 if (parseMachineMemoryOperand(MemOp)) 627 return true; 628 MemOperands.push_back(MemOp); 629 if (Token.isNewlineOrEOF()) 630 break; 631 if (Token.isNot(MIToken::comma)) 632 return error("expected ',' before the next machine memory operand"); 633 lex(); 634 } 635 } 636 637 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 638 if (!MCID.isVariadic()) { 639 // FIXME: Move the implicit operand verification to the machine verifier. 640 if (verifyImplicitOperands(Operands, MCID)) 641 return true; 642 } 643 644 // TODO: Check for extraneous machine operands. 645 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 646 MI->setFlags(Flags); 647 for (const auto &Operand : Operands) 648 MI->addOperand(MF, Operand.Operand); 649 if (assignRegisterTies(*MI, Operands)) 650 return true; 651 if (MemOperands.empty()) 652 return false; 653 MachineInstr::mmo_iterator MemRefs = 654 MF.allocateMemRefsArray(MemOperands.size()); 655 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs); 656 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size()); 657 return false; 658 } 659 660 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 661 lex(); 662 if (Token.isNot(MIToken::MachineBasicBlock)) 663 return error("expected a machine basic block reference"); 664 if (parseMBBReference(MBB)) 665 return true; 666 lex(); 667 if (Token.isNot(MIToken::Eof)) 668 return error( 669 "expected end of string after the machine basic block reference"); 670 return false; 671 } 672 673 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) { 674 lex(); 675 if (Token.isNot(MIToken::NamedRegister)) 676 return error("expected a named register"); 677 if (parseRegister(Reg)) 678 return true; 679 lex(); 680 if (Token.isNot(MIToken::Eof)) 681 return error("expected end of string after the register reference"); 682 return false; 683 } 684 685 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) { 686 lex(); 687 if (Token.isNot(MIToken::VirtualRegister)) 688 return error("expected a virtual register"); 689 if (parseRegister(Reg)) 690 return true; 691 lex(); 692 if (Token.isNot(MIToken::Eof)) 693 return error("expected end of string after the register reference"); 694 return false; 695 } 696 697 bool MIParser::parseStandaloneStackObject(int &FI) { 698 lex(); 699 if (Token.isNot(MIToken::StackObject)) 700 return error("expected a stack object"); 701 if (parseStackFrameIndex(FI)) 702 return true; 703 if (Token.isNot(MIToken::Eof)) 704 return error("expected end of string after the stack object reference"); 705 return false; 706 } 707 708 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 709 lex(); 710 if (Token.isNot(MIToken::exclaim)) 711 return error("expected a metadata node"); 712 if (parseMDNode(Node)) 713 return true; 714 if (Token.isNot(MIToken::Eof)) 715 return error("expected end of string after the metadata node"); 716 return false; 717 } 718 719 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 720 assert(MO.isImplicit()); 721 return MO.isDef() ? "implicit-def" : "implicit"; 722 } 723 724 static std::string getRegisterName(const TargetRegisterInfo *TRI, 725 unsigned Reg) { 726 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg"); 727 return StringRef(TRI->getName(Reg)).lower(); 728 } 729 730 /// Return true if the parsed machine operands contain a given machine operand. 731 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 732 ArrayRef<ParsedMachineOperand> Operands) { 733 for (const auto &I : Operands) { 734 if (ImplicitOperand.isIdenticalTo(I.Operand)) 735 return true; 736 } 737 return false; 738 } 739 740 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 741 const MCInstrDesc &MCID) { 742 if (MCID.isCall()) 743 // We can't verify call instructions as they can contain arbitrary implicit 744 // register and register mask operands. 745 return false; 746 747 // Gather all the expected implicit operands. 748 SmallVector<MachineOperand, 4> ImplicitOperands; 749 if (MCID.ImplicitDefs) 750 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 751 ImplicitOperands.push_back( 752 MachineOperand::CreateReg(*ImpDefs, true, true)); 753 if (MCID.ImplicitUses) 754 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 755 ImplicitOperands.push_back( 756 MachineOperand::CreateReg(*ImpUses, false, true)); 757 758 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 759 assert(TRI && "Expected target register info"); 760 for (const auto &I : ImplicitOperands) { 761 if (isImplicitOperandIn(I, Operands)) 762 continue; 763 return error(Operands.empty() ? Token.location() : Operands.back().End, 764 Twine("missing implicit register operand '") + 765 printImplicitRegisterFlag(I) + " %" + 766 getRegisterName(TRI, I.getReg()) + "'"); 767 } 768 return false; 769 } 770 771 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 772 if (Token.is(MIToken::kw_frame_setup)) { 773 Flags |= MachineInstr::FrameSetup; 774 lex(); 775 } 776 if (Token.isNot(MIToken::Identifier)) 777 return error("expected a machine instruction"); 778 StringRef InstrName = Token.stringValue(); 779 if (parseInstrName(InstrName, OpCode)) 780 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 781 lex(); 782 return false; 783 } 784 785 bool MIParser::parseRegister(unsigned &Reg) { 786 switch (Token.kind()) { 787 case MIToken::underscore: 788 Reg = 0; 789 break; 790 case MIToken::NamedRegister: { 791 StringRef Name = Token.stringValue(); 792 if (getRegisterByName(Name, Reg)) 793 return error(Twine("unknown register name '") + Name + "'"); 794 break; 795 } 796 case MIToken::VirtualRegister: { 797 unsigned ID; 798 if (getUnsigned(ID)) 799 return true; 800 const auto RegInfo = PFS.VirtualRegisterSlots.find(ID); 801 if (RegInfo == PFS.VirtualRegisterSlots.end()) 802 return error(Twine("use of undefined virtual register '%") + Twine(ID) + 803 "'"); 804 Reg = RegInfo->second; 805 break; 806 } 807 // TODO: Parse other register kinds. 808 default: 809 llvm_unreachable("The current token should be a register"); 810 } 811 return false; 812 } 813 814 bool MIParser::parseRegisterFlag(unsigned &Flags) { 815 const unsigned OldFlags = Flags; 816 switch (Token.kind()) { 817 case MIToken::kw_implicit: 818 Flags |= RegState::Implicit; 819 break; 820 case MIToken::kw_implicit_define: 821 Flags |= RegState::ImplicitDefine; 822 break; 823 case MIToken::kw_def: 824 Flags |= RegState::Define; 825 break; 826 case MIToken::kw_dead: 827 Flags |= RegState::Dead; 828 break; 829 case MIToken::kw_killed: 830 Flags |= RegState::Kill; 831 break; 832 case MIToken::kw_undef: 833 Flags |= RegState::Undef; 834 break; 835 case MIToken::kw_internal: 836 Flags |= RegState::InternalRead; 837 break; 838 case MIToken::kw_early_clobber: 839 Flags |= RegState::EarlyClobber; 840 break; 841 case MIToken::kw_debug_use: 842 Flags |= RegState::Debug; 843 break; 844 default: 845 llvm_unreachable("The current token should be a register flag"); 846 } 847 if (OldFlags == Flags) 848 // We know that the same flag is specified more than once when the flags 849 // weren't modified. 850 return error("duplicate '" + Token.stringValue() + "' register flag"); 851 lex(); 852 return false; 853 } 854 855 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 856 assert(Token.is(MIToken::colon)); 857 lex(); 858 if (Token.isNot(MIToken::Identifier)) 859 return error("expected a subregister index after ':'"); 860 auto Name = Token.stringValue(); 861 SubReg = getSubRegIndex(Name); 862 if (!SubReg) 863 return error(Twine("use of unknown subregister index '") + Name + "'"); 864 lex(); 865 return false; 866 } 867 868 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 869 if (!consumeIfPresent(MIToken::kw_tied_def)) 870 return error("expected 'tied-def' after '('"); 871 if (Token.isNot(MIToken::IntegerLiteral)) 872 return error("expected an integer literal after 'tied-def'"); 873 if (getUnsigned(TiedDefIdx)) 874 return true; 875 lex(); 876 if (expectAndConsume(MIToken::rparen)) 877 return true; 878 return false; 879 } 880 881 bool MIParser::parseSize(unsigned &Size) { 882 if (Token.isNot(MIToken::IntegerLiteral)) 883 return error("expected an integer literal for the size"); 884 if (getUnsigned(Size)) 885 return true; 886 lex(); 887 if (expectAndConsume(MIToken::rparen)) 888 return true; 889 return false; 890 } 891 892 bool MIParser::assignRegisterTies(MachineInstr &MI, 893 ArrayRef<ParsedMachineOperand> Operands) { 894 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 895 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 896 if (!Operands[I].TiedDefIdx) 897 continue; 898 // The parser ensures that this operand is a register use, so we just have 899 // to check the tied-def operand. 900 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 901 if (DefIdx >= E) 902 return error(Operands[I].Begin, 903 Twine("use of invalid tied-def operand index '" + 904 Twine(DefIdx) + "'; instruction has only ") + 905 Twine(E) + " operands"); 906 const auto &DefOperand = Operands[DefIdx].Operand; 907 if (!DefOperand.isReg() || !DefOperand.isDef()) 908 // FIXME: add note with the def operand. 909 return error(Operands[I].Begin, 910 Twine("use of invalid tied-def operand index '") + 911 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 912 " isn't a defined register"); 913 // Check that the tied-def operand wasn't tied elsewhere. 914 for (const auto &TiedPair : TiedRegisterPairs) { 915 if (TiedPair.first == DefIdx) 916 return error(Operands[I].Begin, 917 Twine("the tied-def operand #") + Twine(DefIdx) + 918 " is already tied with another register operand"); 919 } 920 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 921 } 922 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 923 // indices must be less than tied max. 924 for (const auto &TiedPair : TiedRegisterPairs) 925 MI.tieOperands(TiedPair.first, TiedPair.second); 926 return false; 927 } 928 929 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 930 Optional<unsigned> &TiedDefIdx, 931 bool IsDef) { 932 unsigned Reg; 933 unsigned Flags = IsDef ? RegState::Define : 0; 934 while (Token.isRegisterFlag()) { 935 if (parseRegisterFlag(Flags)) 936 return true; 937 } 938 if (!Token.isRegister()) 939 return error("expected a register after register flags"); 940 if (parseRegister(Reg)) 941 return true; 942 lex(); 943 unsigned SubReg = 0; 944 if (Token.is(MIToken::colon)) { 945 if (parseSubRegisterIndex(SubReg)) 946 return true; 947 } 948 if ((Flags & RegState::Define) == 0) { 949 if (consumeIfPresent(MIToken::lparen)) { 950 unsigned Idx; 951 if (parseRegisterTiedDefIndex(Idx)) 952 return true; 953 TiedDefIdx = Idx; 954 } 955 } else if (consumeIfPresent(MIToken::lparen)) { 956 // Generic virtual registers must have a size. 957 // The "must" part will be verify by the machine verifier, 958 // because at this point we actually do not know if Reg is 959 // a generic virtual register. 960 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 961 return error("unexpected size on physical register"); 962 unsigned Size; 963 if (parseSize(Size)) 964 return true; 965 966 MachineRegisterInfo &MRI = MF.getRegInfo(); 967 MRI.setSize(Reg, Size); 968 } 969 Dest = MachineOperand::CreateReg( 970 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 971 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 972 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 973 Flags & RegState::InternalRead); 974 return false; 975 } 976 977 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 978 assert(Token.is(MIToken::IntegerLiteral)); 979 const APSInt &Int = Token.integerValue(); 980 if (Int.getMinSignedBits() > 64) 981 return error("integer literal is too large to be an immediate operand"); 982 Dest = MachineOperand::CreateImm(Int.getExtValue()); 983 lex(); 984 return false; 985 } 986 987 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 988 const Constant *&C) { 989 auto Source = StringValue.str(); // The source has to be null terminated. 990 SMDiagnostic Err; 991 C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(), 992 &IRSlots); 993 if (!C) 994 return error(Loc + Err.getColumnNo(), Err.getMessage()); 995 return false; 996 } 997 998 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 999 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1000 return true; 1001 lex(); 1002 return false; 1003 } 1004 1005 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1006 assert(Token.is(MIToken::IntegerType)); 1007 auto Loc = Token.location(); 1008 lex(); 1009 if (Token.isNot(MIToken::IntegerLiteral)) 1010 return error("expected an integer literal"); 1011 const Constant *C = nullptr; 1012 if (parseIRConstant(Loc, C)) 1013 return true; 1014 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1015 return false; 1016 } 1017 1018 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1019 auto Loc = Token.location(); 1020 lex(); 1021 if (Token.isNot(MIToken::FloatingPointLiteral)) 1022 return error("expected a floating point literal"); 1023 const Constant *C = nullptr; 1024 if (parseIRConstant(Loc, C)) 1025 return true; 1026 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1027 return false; 1028 } 1029 1030 bool MIParser::getUnsigned(unsigned &Result) { 1031 assert(Token.hasIntegerValue() && "Expected a token with an integer value"); 1032 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1033 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1034 if (Val64 == Limit) 1035 return error("expected 32-bit integer (too large)"); 1036 Result = Val64; 1037 return false; 1038 } 1039 1040 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1041 assert(Token.is(MIToken::MachineBasicBlock) || 1042 Token.is(MIToken::MachineBasicBlockLabel)); 1043 unsigned Number; 1044 if (getUnsigned(Number)) 1045 return true; 1046 auto MBBInfo = PFS.MBBSlots.find(Number); 1047 if (MBBInfo == PFS.MBBSlots.end()) 1048 return error(Twine("use of undefined machine basic block #") + 1049 Twine(Number)); 1050 MBB = MBBInfo->second; 1051 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1052 return error(Twine("the name of machine basic block #") + Twine(Number) + 1053 " isn't '" + Token.stringValue() + "'"); 1054 return false; 1055 } 1056 1057 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1058 MachineBasicBlock *MBB; 1059 if (parseMBBReference(MBB)) 1060 return true; 1061 Dest = MachineOperand::CreateMBB(MBB); 1062 lex(); 1063 return false; 1064 } 1065 1066 bool MIParser::parseStackFrameIndex(int &FI) { 1067 assert(Token.is(MIToken::StackObject)); 1068 unsigned ID; 1069 if (getUnsigned(ID)) 1070 return true; 1071 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1072 if (ObjectInfo == PFS.StackObjectSlots.end()) 1073 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1074 "'"); 1075 StringRef Name; 1076 if (const auto *Alloca = 1077 MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second)) 1078 Name = Alloca->getName(); 1079 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1080 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1081 "' isn't '" + Token.stringValue() + "'"); 1082 lex(); 1083 FI = ObjectInfo->second; 1084 return false; 1085 } 1086 1087 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1088 int FI; 1089 if (parseStackFrameIndex(FI)) 1090 return true; 1091 Dest = MachineOperand::CreateFI(FI); 1092 return false; 1093 } 1094 1095 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1096 assert(Token.is(MIToken::FixedStackObject)); 1097 unsigned ID; 1098 if (getUnsigned(ID)) 1099 return true; 1100 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1101 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1102 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1103 Twine(ID) + "'"); 1104 lex(); 1105 FI = ObjectInfo->second; 1106 return false; 1107 } 1108 1109 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1110 int FI; 1111 if (parseFixedStackFrameIndex(FI)) 1112 return true; 1113 Dest = MachineOperand::CreateFI(FI); 1114 return false; 1115 } 1116 1117 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1118 switch (Token.kind()) { 1119 case MIToken::NamedGlobalValue: { 1120 const Module *M = MF.getFunction()->getParent(); 1121 GV = M->getNamedValue(Token.stringValue()); 1122 if (!GV) 1123 return error(Twine("use of undefined global value '") + Token.range() + 1124 "'"); 1125 break; 1126 } 1127 case MIToken::GlobalValue: { 1128 unsigned GVIdx; 1129 if (getUnsigned(GVIdx)) 1130 return true; 1131 if (GVIdx >= IRSlots.GlobalValues.size()) 1132 return error(Twine("use of undefined global value '@") + Twine(GVIdx) + 1133 "'"); 1134 GV = IRSlots.GlobalValues[GVIdx]; 1135 break; 1136 } 1137 default: 1138 llvm_unreachable("The current token should be a global value"); 1139 } 1140 return false; 1141 } 1142 1143 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1144 GlobalValue *GV = nullptr; 1145 if (parseGlobalValue(GV)) 1146 return true; 1147 lex(); 1148 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1149 if (parseOperandsOffset(Dest)) 1150 return true; 1151 return false; 1152 } 1153 1154 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1155 assert(Token.is(MIToken::ConstantPoolItem)); 1156 unsigned ID; 1157 if (getUnsigned(ID)) 1158 return true; 1159 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1160 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1161 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1162 lex(); 1163 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1164 if (parseOperandsOffset(Dest)) 1165 return true; 1166 return false; 1167 } 1168 1169 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1170 assert(Token.is(MIToken::JumpTableIndex)); 1171 unsigned ID; 1172 if (getUnsigned(ID)) 1173 return true; 1174 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1175 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1176 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1177 lex(); 1178 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1179 return false; 1180 } 1181 1182 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1183 assert(Token.is(MIToken::ExternalSymbol)); 1184 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1185 lex(); 1186 Dest = MachineOperand::CreateES(Symbol); 1187 if (parseOperandsOffset(Dest)) 1188 return true; 1189 return false; 1190 } 1191 1192 bool MIParser::parseMDNode(MDNode *&Node) { 1193 assert(Token.is(MIToken::exclaim)); 1194 auto Loc = Token.location(); 1195 lex(); 1196 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1197 return error("expected metadata id after '!'"); 1198 unsigned ID; 1199 if (getUnsigned(ID)) 1200 return true; 1201 auto NodeInfo = IRSlots.MetadataNodes.find(ID); 1202 if (NodeInfo == IRSlots.MetadataNodes.end()) 1203 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 1204 lex(); 1205 Node = NodeInfo->second.get(); 1206 return false; 1207 } 1208 1209 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 1210 MDNode *Node = nullptr; 1211 if (parseMDNode(Node)) 1212 return true; 1213 Dest = MachineOperand::CreateMetadata(Node); 1214 return false; 1215 } 1216 1217 bool MIParser::parseCFIOffset(int &Offset) { 1218 if (Token.isNot(MIToken::IntegerLiteral)) 1219 return error("expected a cfi offset"); 1220 if (Token.integerValue().getMinSignedBits() > 32) 1221 return error("expected a 32 bit integer (the cfi offset is too large)"); 1222 Offset = (int)Token.integerValue().getExtValue(); 1223 lex(); 1224 return false; 1225 } 1226 1227 bool MIParser::parseCFIRegister(unsigned &Reg) { 1228 if (Token.isNot(MIToken::NamedRegister)) 1229 return error("expected a cfi register"); 1230 unsigned LLVMReg; 1231 if (parseRegister(LLVMReg)) 1232 return true; 1233 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1234 assert(TRI && "Expected target register info"); 1235 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 1236 if (DwarfReg < 0) 1237 return error("invalid DWARF register"); 1238 Reg = (unsigned)DwarfReg; 1239 lex(); 1240 return false; 1241 } 1242 1243 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 1244 auto Kind = Token.kind(); 1245 lex(); 1246 auto &MMI = MF.getMMI(); 1247 int Offset; 1248 unsigned Reg; 1249 unsigned CFIIndex; 1250 switch (Kind) { 1251 case MIToken::kw_cfi_same_value: 1252 if (parseCFIRegister(Reg)) 1253 return true; 1254 CFIIndex = 1255 MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 1256 break; 1257 case MIToken::kw_cfi_offset: 1258 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1259 parseCFIOffset(Offset)) 1260 return true; 1261 CFIIndex = 1262 MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 1263 break; 1264 case MIToken::kw_cfi_def_cfa_register: 1265 if (parseCFIRegister(Reg)) 1266 return true; 1267 CFIIndex = 1268 MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 1269 break; 1270 case MIToken::kw_cfi_def_cfa_offset: 1271 if (parseCFIOffset(Offset)) 1272 return true; 1273 // NB: MCCFIInstruction::createDefCfaOffset negates the offset. 1274 CFIIndex = MMI.addFrameInst( 1275 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset)); 1276 break; 1277 case MIToken::kw_cfi_def_cfa: 1278 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 1279 parseCFIOffset(Offset)) 1280 return true; 1281 // NB: MCCFIInstruction::createDefCfa negates the offset. 1282 CFIIndex = 1283 MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset)); 1284 break; 1285 default: 1286 // TODO: Parse the other CFI operands. 1287 llvm_unreachable("The current token should be a cfi operand"); 1288 } 1289 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 1290 return false; 1291 } 1292 1293 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 1294 switch (Token.kind()) { 1295 case MIToken::NamedIRBlock: { 1296 BB = dyn_cast_or_null<BasicBlock>( 1297 F.getValueSymbolTable().lookup(Token.stringValue())); 1298 if (!BB) 1299 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 1300 break; 1301 } 1302 case MIToken::IRBlock: { 1303 unsigned SlotNumber = 0; 1304 if (getUnsigned(SlotNumber)) 1305 return true; 1306 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 1307 if (!BB) 1308 return error(Twine("use of undefined IR block '%ir-block.") + 1309 Twine(SlotNumber) + "'"); 1310 break; 1311 } 1312 default: 1313 llvm_unreachable("The current token should be an IR block reference"); 1314 } 1315 return false; 1316 } 1317 1318 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 1319 assert(Token.is(MIToken::kw_blockaddress)); 1320 lex(); 1321 if (expectAndConsume(MIToken::lparen)) 1322 return true; 1323 if (Token.isNot(MIToken::GlobalValue) && 1324 Token.isNot(MIToken::NamedGlobalValue)) 1325 return error("expected a global value"); 1326 GlobalValue *GV = nullptr; 1327 if (parseGlobalValue(GV)) 1328 return true; 1329 auto *F = dyn_cast<Function>(GV); 1330 if (!F) 1331 return error("expected an IR function reference"); 1332 lex(); 1333 if (expectAndConsume(MIToken::comma)) 1334 return true; 1335 BasicBlock *BB = nullptr; 1336 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 1337 return error("expected an IR block reference"); 1338 if (parseIRBlock(BB, *F)) 1339 return true; 1340 lex(); 1341 if (expectAndConsume(MIToken::rparen)) 1342 return true; 1343 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 1344 if (parseOperandsOffset(Dest)) 1345 return true; 1346 return false; 1347 } 1348 1349 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 1350 assert(Token.is(MIToken::kw_target_index)); 1351 lex(); 1352 if (expectAndConsume(MIToken::lparen)) 1353 return true; 1354 if (Token.isNot(MIToken::Identifier)) 1355 return error("expected the name of the target index"); 1356 int Index = 0; 1357 if (getTargetIndex(Token.stringValue(), Index)) 1358 return error("use of undefined target index '" + Token.stringValue() + "'"); 1359 lex(); 1360 if (expectAndConsume(MIToken::rparen)) 1361 return true; 1362 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 1363 if (parseOperandsOffset(Dest)) 1364 return true; 1365 return false; 1366 } 1367 1368 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 1369 assert(Token.is(MIToken::kw_liveout)); 1370 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1371 assert(TRI && "Expected target register info"); 1372 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs()); 1373 lex(); 1374 if (expectAndConsume(MIToken::lparen)) 1375 return true; 1376 while (true) { 1377 if (Token.isNot(MIToken::NamedRegister)) 1378 return error("expected a named register"); 1379 unsigned Reg = 0; 1380 if (parseRegister(Reg)) 1381 return true; 1382 lex(); 1383 Mask[Reg / 32] |= 1U << (Reg % 32); 1384 // TODO: Report an error if the same register is used more than once. 1385 if (Token.isNot(MIToken::comma)) 1386 break; 1387 lex(); 1388 } 1389 if (expectAndConsume(MIToken::rparen)) 1390 return true; 1391 Dest = MachineOperand::CreateRegLiveOut(Mask); 1392 return false; 1393 } 1394 1395 bool MIParser::parseMachineOperand(MachineOperand &Dest, 1396 Optional<unsigned> &TiedDefIdx) { 1397 switch (Token.kind()) { 1398 case MIToken::kw_implicit: 1399 case MIToken::kw_implicit_define: 1400 case MIToken::kw_def: 1401 case MIToken::kw_dead: 1402 case MIToken::kw_killed: 1403 case MIToken::kw_undef: 1404 case MIToken::kw_internal: 1405 case MIToken::kw_early_clobber: 1406 case MIToken::kw_debug_use: 1407 case MIToken::underscore: 1408 case MIToken::NamedRegister: 1409 case MIToken::VirtualRegister: 1410 return parseRegisterOperand(Dest, TiedDefIdx); 1411 case MIToken::IntegerLiteral: 1412 return parseImmediateOperand(Dest); 1413 case MIToken::IntegerType: 1414 return parseTypedImmediateOperand(Dest); 1415 case MIToken::kw_half: 1416 case MIToken::kw_float: 1417 case MIToken::kw_double: 1418 case MIToken::kw_x86_fp80: 1419 case MIToken::kw_fp128: 1420 case MIToken::kw_ppc_fp128: 1421 return parseFPImmediateOperand(Dest); 1422 case MIToken::MachineBasicBlock: 1423 return parseMBBOperand(Dest); 1424 case MIToken::StackObject: 1425 return parseStackObjectOperand(Dest); 1426 case MIToken::FixedStackObject: 1427 return parseFixedStackObjectOperand(Dest); 1428 case MIToken::GlobalValue: 1429 case MIToken::NamedGlobalValue: 1430 return parseGlobalAddressOperand(Dest); 1431 case MIToken::ConstantPoolItem: 1432 return parseConstantPoolIndexOperand(Dest); 1433 case MIToken::JumpTableIndex: 1434 return parseJumpTableIndexOperand(Dest); 1435 case MIToken::ExternalSymbol: 1436 return parseExternalSymbolOperand(Dest); 1437 case MIToken::exclaim: 1438 return parseMetadataOperand(Dest); 1439 case MIToken::kw_cfi_same_value: 1440 case MIToken::kw_cfi_offset: 1441 case MIToken::kw_cfi_def_cfa_register: 1442 case MIToken::kw_cfi_def_cfa_offset: 1443 case MIToken::kw_cfi_def_cfa: 1444 return parseCFIOperand(Dest); 1445 case MIToken::kw_blockaddress: 1446 return parseBlockAddressOperand(Dest); 1447 case MIToken::kw_target_index: 1448 return parseTargetIndexOperand(Dest); 1449 case MIToken::kw_liveout: 1450 return parseLiveoutRegisterMaskOperand(Dest); 1451 case MIToken::Error: 1452 return true; 1453 case MIToken::Identifier: 1454 if (const auto *RegMask = getRegMask(Token.stringValue())) { 1455 Dest = MachineOperand::CreateRegMask(RegMask); 1456 lex(); 1457 break; 1458 } 1459 // fallthrough 1460 default: 1461 // FIXME: Parse the MCSymbol machine operand. 1462 return error("expected a machine operand"); 1463 } 1464 return false; 1465 } 1466 1467 bool MIParser::parseMachineOperandAndTargetFlags( 1468 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) { 1469 unsigned TF = 0; 1470 bool HasTargetFlags = false; 1471 if (Token.is(MIToken::kw_target_flags)) { 1472 HasTargetFlags = true; 1473 lex(); 1474 if (expectAndConsume(MIToken::lparen)) 1475 return true; 1476 if (Token.isNot(MIToken::Identifier)) 1477 return error("expected the name of the target flag"); 1478 if (getDirectTargetFlag(Token.stringValue(), TF)) { 1479 if (getBitmaskTargetFlag(Token.stringValue(), TF)) 1480 return error("use of undefined target flag '" + Token.stringValue() + 1481 "'"); 1482 } 1483 lex(); 1484 while (Token.is(MIToken::comma)) { 1485 lex(); 1486 if (Token.isNot(MIToken::Identifier)) 1487 return error("expected the name of the target flag"); 1488 unsigned BitFlag = 0; 1489 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 1490 return error("use of undefined target flag '" + Token.stringValue() + 1491 "'"); 1492 // TODO: Report an error when using a duplicate bit target flag. 1493 TF |= BitFlag; 1494 lex(); 1495 } 1496 if (expectAndConsume(MIToken::rparen)) 1497 return true; 1498 } 1499 auto Loc = Token.location(); 1500 if (parseMachineOperand(Dest, TiedDefIdx)) 1501 return true; 1502 if (!HasTargetFlags) 1503 return false; 1504 if (Dest.isReg()) 1505 return error(Loc, "register operands can't have target flags"); 1506 Dest.setTargetFlags(TF); 1507 return false; 1508 } 1509 1510 bool MIParser::parseOffset(int64_t &Offset) { 1511 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 1512 return false; 1513 StringRef Sign = Token.range(); 1514 bool IsNegative = Token.is(MIToken::minus); 1515 lex(); 1516 if (Token.isNot(MIToken::IntegerLiteral)) 1517 return error("expected an integer literal after '" + Sign + "'"); 1518 if (Token.integerValue().getMinSignedBits() > 64) 1519 return error("expected 64-bit integer (too large)"); 1520 Offset = Token.integerValue().getExtValue(); 1521 if (IsNegative) 1522 Offset = -Offset; 1523 lex(); 1524 return false; 1525 } 1526 1527 bool MIParser::parseAlignment(unsigned &Alignment) { 1528 assert(Token.is(MIToken::kw_align)); 1529 lex(); 1530 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 1531 return error("expected an integer literal after 'align'"); 1532 if (getUnsigned(Alignment)) 1533 return true; 1534 lex(); 1535 return false; 1536 } 1537 1538 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 1539 int64_t Offset = 0; 1540 if (parseOffset(Offset)) 1541 return true; 1542 Op.setOffset(Offset); 1543 return false; 1544 } 1545 1546 bool MIParser::parseIRValue(const Value *&V) { 1547 switch (Token.kind()) { 1548 case MIToken::NamedIRValue: { 1549 V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue()); 1550 break; 1551 } 1552 case MIToken::IRValue: { 1553 unsigned SlotNumber = 0; 1554 if (getUnsigned(SlotNumber)) 1555 return true; 1556 V = getIRValue(SlotNumber); 1557 break; 1558 } 1559 case MIToken::NamedGlobalValue: 1560 case MIToken::GlobalValue: { 1561 GlobalValue *GV = nullptr; 1562 if (parseGlobalValue(GV)) 1563 return true; 1564 V = GV; 1565 break; 1566 } 1567 case MIToken::QuotedIRValue: { 1568 const Constant *C = nullptr; 1569 if (parseIRConstant(Token.location(), Token.stringValue(), C)) 1570 return true; 1571 V = C; 1572 break; 1573 } 1574 default: 1575 llvm_unreachable("The current token should be an IR block reference"); 1576 } 1577 if (!V) 1578 return error(Twine("use of undefined IR value '") + Token.range() + "'"); 1579 return false; 1580 } 1581 1582 bool MIParser::getUint64(uint64_t &Result) { 1583 assert(Token.hasIntegerValue()); 1584 if (Token.integerValue().getActiveBits() > 64) 1585 return error("expected 64-bit integer (too large)"); 1586 Result = Token.integerValue().getZExtValue(); 1587 return false; 1588 } 1589 1590 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) { 1591 const unsigned OldFlags = Flags; 1592 switch (Token.kind()) { 1593 case MIToken::kw_volatile: 1594 Flags |= MachineMemOperand::MOVolatile; 1595 break; 1596 case MIToken::kw_non_temporal: 1597 Flags |= MachineMemOperand::MONonTemporal; 1598 break; 1599 case MIToken::kw_invariant: 1600 Flags |= MachineMemOperand::MOInvariant; 1601 break; 1602 // TODO: parse the target specific memory operand flags. 1603 default: 1604 llvm_unreachable("The current token should be a memory operand flag"); 1605 } 1606 if (OldFlags == Flags) 1607 // We know that the same flag is specified more than once when the flags 1608 // weren't modified. 1609 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 1610 lex(); 1611 return false; 1612 } 1613 1614 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 1615 switch (Token.kind()) { 1616 case MIToken::kw_stack: 1617 PSV = MF.getPSVManager().getStack(); 1618 break; 1619 case MIToken::kw_got: 1620 PSV = MF.getPSVManager().getGOT(); 1621 break; 1622 case MIToken::kw_jump_table: 1623 PSV = MF.getPSVManager().getJumpTable(); 1624 break; 1625 case MIToken::kw_constant_pool: 1626 PSV = MF.getPSVManager().getConstantPool(); 1627 break; 1628 case MIToken::FixedStackObject: { 1629 int FI; 1630 if (parseFixedStackFrameIndex(FI)) 1631 return true; 1632 PSV = MF.getPSVManager().getFixedStack(FI); 1633 // The token was already consumed, so use return here instead of break. 1634 return false; 1635 } 1636 case MIToken::kw_call_entry: { 1637 lex(); 1638 switch (Token.kind()) { 1639 case MIToken::GlobalValue: 1640 case MIToken::NamedGlobalValue: { 1641 GlobalValue *GV = nullptr; 1642 if (parseGlobalValue(GV)) 1643 return true; 1644 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 1645 break; 1646 } 1647 case MIToken::ExternalSymbol: 1648 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 1649 MF.createExternalSymbolName(Token.stringValue())); 1650 break; 1651 default: 1652 return error( 1653 "expected a global value or an external symbol after 'call-entry'"); 1654 } 1655 break; 1656 } 1657 default: 1658 llvm_unreachable("The current token should be pseudo source value"); 1659 } 1660 lex(); 1661 return false; 1662 } 1663 1664 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 1665 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 1666 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 1667 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::kw_call_entry)) { 1668 const PseudoSourceValue *PSV = nullptr; 1669 if (parseMemoryPseudoSourceValue(PSV)) 1670 return true; 1671 int64_t Offset = 0; 1672 if (parseOffset(Offset)) 1673 return true; 1674 Dest = MachinePointerInfo(PSV, Offset); 1675 return false; 1676 } 1677 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 1678 Token.isNot(MIToken::GlobalValue) && 1679 Token.isNot(MIToken::NamedGlobalValue) && 1680 Token.isNot(MIToken::QuotedIRValue)) 1681 return error("expected an IR value reference"); 1682 const Value *V = nullptr; 1683 if (parseIRValue(V)) 1684 return true; 1685 if (!V->getType()->isPointerTy()) 1686 return error("expected a pointer IR value"); 1687 lex(); 1688 int64_t Offset = 0; 1689 if (parseOffset(Offset)) 1690 return true; 1691 Dest = MachinePointerInfo(V, Offset); 1692 return false; 1693 } 1694 1695 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 1696 if (expectAndConsume(MIToken::lparen)) 1697 return true; 1698 unsigned Flags = 0; 1699 while (Token.isMemoryOperandFlag()) { 1700 if (parseMemoryOperandFlag(Flags)) 1701 return true; 1702 } 1703 if (Token.isNot(MIToken::Identifier) || 1704 (Token.stringValue() != "load" && Token.stringValue() != "store")) 1705 return error("expected 'load' or 'store' memory operation"); 1706 if (Token.stringValue() == "load") 1707 Flags |= MachineMemOperand::MOLoad; 1708 else 1709 Flags |= MachineMemOperand::MOStore; 1710 lex(); 1711 1712 if (Token.isNot(MIToken::IntegerLiteral)) 1713 return error("expected the size integer literal after memory operation"); 1714 uint64_t Size; 1715 if (getUint64(Size)) 1716 return true; 1717 lex(); 1718 1719 const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into"; 1720 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != Word) 1721 return error(Twine("expected '") + Word + "'"); 1722 lex(); 1723 1724 MachinePointerInfo Ptr = MachinePointerInfo(); 1725 if (parseMachinePointerInfo(Ptr)) 1726 return true; 1727 unsigned BaseAlignment = Size; 1728 AAMDNodes AAInfo; 1729 MDNode *Range = nullptr; 1730 while (consumeIfPresent(MIToken::comma)) { 1731 switch (Token.kind()) { 1732 case MIToken::kw_align: 1733 if (parseAlignment(BaseAlignment)) 1734 return true; 1735 break; 1736 case MIToken::md_tbaa: 1737 lex(); 1738 if (parseMDNode(AAInfo.TBAA)) 1739 return true; 1740 break; 1741 case MIToken::md_alias_scope: 1742 lex(); 1743 if (parseMDNode(AAInfo.Scope)) 1744 return true; 1745 break; 1746 case MIToken::md_noalias: 1747 lex(); 1748 if (parseMDNode(AAInfo.NoAlias)) 1749 return true; 1750 break; 1751 case MIToken::md_range: 1752 lex(); 1753 if (parseMDNode(Range)) 1754 return true; 1755 break; 1756 // TODO: Report an error on duplicate metadata nodes. 1757 default: 1758 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 1759 "'!noalias' or '!range'"); 1760 } 1761 } 1762 if (expectAndConsume(MIToken::rparen)) 1763 return true; 1764 Dest = 1765 MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range); 1766 return false; 1767 } 1768 1769 void MIParser::initNames2InstrOpCodes() { 1770 if (!Names2InstrOpCodes.empty()) 1771 return; 1772 const auto *TII = MF.getSubtarget().getInstrInfo(); 1773 assert(TII && "Expected target instruction info"); 1774 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 1775 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 1776 } 1777 1778 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) { 1779 initNames2InstrOpCodes(); 1780 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 1781 if (InstrInfo == Names2InstrOpCodes.end()) 1782 return true; 1783 OpCode = InstrInfo->getValue(); 1784 return false; 1785 } 1786 1787 void MIParser::initNames2Regs() { 1788 if (!Names2Regs.empty()) 1789 return; 1790 // The '%noreg' register is the register 0. 1791 Names2Regs.insert(std::make_pair("noreg", 0)); 1792 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1793 assert(TRI && "Expected target register info"); 1794 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 1795 bool WasInserted = 1796 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 1797 .second; 1798 (void)WasInserted; 1799 assert(WasInserted && "Expected registers to be unique case-insensitively"); 1800 } 1801 } 1802 1803 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) { 1804 initNames2Regs(); 1805 auto RegInfo = Names2Regs.find(RegName); 1806 if (RegInfo == Names2Regs.end()) 1807 return true; 1808 Reg = RegInfo->getValue(); 1809 return false; 1810 } 1811 1812 void MIParser::initNames2RegMasks() { 1813 if (!Names2RegMasks.empty()) 1814 return; 1815 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1816 assert(TRI && "Expected target register info"); 1817 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 1818 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 1819 assert(RegMasks.size() == RegMaskNames.size()); 1820 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 1821 Names2RegMasks.insert( 1822 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 1823 } 1824 1825 const uint32_t *MIParser::getRegMask(StringRef Identifier) { 1826 initNames2RegMasks(); 1827 auto RegMaskInfo = Names2RegMasks.find(Identifier); 1828 if (RegMaskInfo == Names2RegMasks.end()) 1829 return nullptr; 1830 return RegMaskInfo->getValue(); 1831 } 1832 1833 void MIParser::initNames2SubRegIndices() { 1834 if (!Names2SubRegIndices.empty()) 1835 return; 1836 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1837 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 1838 Names2SubRegIndices.insert( 1839 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I)); 1840 } 1841 1842 unsigned MIParser::getSubRegIndex(StringRef Name) { 1843 initNames2SubRegIndices(); 1844 auto SubRegInfo = Names2SubRegIndices.find(Name); 1845 if (SubRegInfo == Names2SubRegIndices.end()) 1846 return 0; 1847 return SubRegInfo->getValue(); 1848 } 1849 1850 static void initSlots2BasicBlocks( 1851 const Function &F, 1852 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1853 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1854 MST.incorporateFunction(F); 1855 for (auto &BB : F) { 1856 if (BB.hasName()) 1857 continue; 1858 int Slot = MST.getLocalSlot(&BB); 1859 if (Slot == -1) 1860 continue; 1861 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 1862 } 1863 } 1864 1865 static const BasicBlock *getIRBlockFromSlot( 1866 unsigned Slot, 1867 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 1868 auto BlockInfo = Slots2BasicBlocks.find(Slot); 1869 if (BlockInfo == Slots2BasicBlocks.end()) 1870 return nullptr; 1871 return BlockInfo->second; 1872 } 1873 1874 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 1875 if (Slots2BasicBlocks.empty()) 1876 initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks); 1877 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 1878 } 1879 1880 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 1881 if (&F == MF.getFunction()) 1882 return getIRBlock(Slot); 1883 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 1884 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 1885 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 1886 } 1887 1888 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 1889 DenseMap<unsigned, const Value *> &Slots2Values) { 1890 int Slot = MST.getLocalSlot(V); 1891 if (Slot == -1) 1892 return; 1893 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 1894 } 1895 1896 /// Creates the mapping from slot numbers to function's unnamed IR values. 1897 static void initSlots2Values(const Function &F, 1898 DenseMap<unsigned, const Value *> &Slots2Values) { 1899 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 1900 MST.incorporateFunction(F); 1901 for (const auto &Arg : F.args()) 1902 mapValueToSlot(&Arg, MST, Slots2Values); 1903 for (const auto &BB : F) { 1904 mapValueToSlot(&BB, MST, Slots2Values); 1905 for (const auto &I : BB) 1906 mapValueToSlot(&I, MST, Slots2Values); 1907 } 1908 } 1909 1910 const Value *MIParser::getIRValue(unsigned Slot) { 1911 if (Slots2Values.empty()) 1912 initSlots2Values(*MF.getFunction(), Slots2Values); 1913 auto ValueInfo = Slots2Values.find(Slot); 1914 if (ValueInfo == Slots2Values.end()) 1915 return nullptr; 1916 return ValueInfo->second; 1917 } 1918 1919 void MIParser::initNames2TargetIndices() { 1920 if (!Names2TargetIndices.empty()) 1921 return; 1922 const auto *TII = MF.getSubtarget().getInstrInfo(); 1923 assert(TII && "Expected target instruction info"); 1924 auto Indices = TII->getSerializableTargetIndices(); 1925 for (const auto &I : Indices) 1926 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 1927 } 1928 1929 bool MIParser::getTargetIndex(StringRef Name, int &Index) { 1930 initNames2TargetIndices(); 1931 auto IndexInfo = Names2TargetIndices.find(Name); 1932 if (IndexInfo == Names2TargetIndices.end()) 1933 return true; 1934 Index = IndexInfo->second; 1935 return false; 1936 } 1937 1938 void MIParser::initNames2DirectTargetFlags() { 1939 if (!Names2DirectTargetFlags.empty()) 1940 return; 1941 const auto *TII = MF.getSubtarget().getInstrInfo(); 1942 assert(TII && "Expected target instruction info"); 1943 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 1944 for (const auto &I : Flags) 1945 Names2DirectTargetFlags.insert( 1946 std::make_pair(StringRef(I.second), I.first)); 1947 } 1948 1949 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) { 1950 initNames2DirectTargetFlags(); 1951 auto FlagInfo = Names2DirectTargetFlags.find(Name); 1952 if (FlagInfo == Names2DirectTargetFlags.end()) 1953 return true; 1954 Flag = FlagInfo->second; 1955 return false; 1956 } 1957 1958 void MIParser::initNames2BitmaskTargetFlags() { 1959 if (!Names2BitmaskTargetFlags.empty()) 1960 return; 1961 const auto *TII = MF.getSubtarget().getInstrInfo(); 1962 assert(TII && "Expected target instruction info"); 1963 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 1964 for (const auto &I : Flags) 1965 Names2BitmaskTargetFlags.insert( 1966 std::make_pair(StringRef(I.second), I.first)); 1967 } 1968 1969 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) { 1970 initNames2BitmaskTargetFlags(); 1971 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 1972 if (FlagInfo == Names2BitmaskTargetFlags.end()) 1973 return true; 1974 Flag = FlagInfo->second; 1975 return false; 1976 } 1977 1978 bool llvm::parseMachineBasicBlockDefinitions(MachineFunction &MF, StringRef Src, 1979 PerFunctionMIParsingState &PFS, 1980 const SlotMapping &IRSlots, 1981 SMDiagnostic &Error) { 1982 SourceMgr SM; 1983 SM.AddNewSourceBuffer( 1984 MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false), 1985 SMLoc()); 1986 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 1987 .parseBasicBlockDefinitions(PFS.MBBSlots); 1988 } 1989 1990 bool llvm::parseMachineInstructions(MachineFunction &MF, StringRef Src, 1991 const PerFunctionMIParsingState &PFS, 1992 const SlotMapping &IRSlots, 1993 SMDiagnostic &Error) { 1994 SourceMgr SM; 1995 SM.AddNewSourceBuffer( 1996 MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false), 1997 SMLoc()); 1998 return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseBasicBlocks(); 1999 } 2000 2001 bool llvm::parseMBBReference(MachineBasicBlock *&MBB, SourceMgr &SM, 2002 MachineFunction &MF, StringRef Src, 2003 const PerFunctionMIParsingState &PFS, 2004 const SlotMapping &IRSlots, SMDiagnostic &Error) { 2005 return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMBB(MBB); 2006 } 2007 2008 bool llvm::parseNamedRegisterReference(unsigned &Reg, SourceMgr &SM, 2009 MachineFunction &MF, StringRef Src, 2010 const PerFunctionMIParsingState &PFS, 2011 const SlotMapping &IRSlots, 2012 SMDiagnostic &Error) { 2013 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2014 .parseStandaloneNamedRegister(Reg); 2015 } 2016 2017 bool llvm::parseVirtualRegisterReference(unsigned &Reg, SourceMgr &SM, 2018 MachineFunction &MF, StringRef Src, 2019 const PerFunctionMIParsingState &PFS, 2020 const SlotMapping &IRSlots, 2021 SMDiagnostic &Error) { 2022 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2023 .parseStandaloneVirtualRegister(Reg); 2024 } 2025 2026 bool llvm::parseStackObjectReference(int &FI, SourceMgr &SM, 2027 MachineFunction &MF, StringRef Src, 2028 const PerFunctionMIParsingState &PFS, 2029 const SlotMapping &IRSlots, 2030 SMDiagnostic &Error) { 2031 return MIParser(SM, MF, Error, Src, PFS, IRSlots) 2032 .parseStandaloneStackObject(FI); 2033 } 2034 2035 bool llvm::parseMDNode(MDNode *&Node, SourceMgr &SM, MachineFunction &MF, 2036 StringRef Src, const PerFunctionMIParsingState &PFS, 2037 const SlotMapping &IRSlots, SMDiagnostic &Error) { 2038 return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMDNode(Node); 2039 } 2040