1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MIParser.h"
15 #include "MILexer.h"
16 #include "llvm/ADT/StringMap.h"
17 #include "llvm/AsmParser/Parser.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/ModuleSlotTracker.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/SourceMgr.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 
37 using namespace llvm;
38 
39 namespace {
40 
41 /// A wrapper struct around the 'MachineOperand' struct that includes a source
42 /// range and other attributes.
43 struct ParsedMachineOperand {
44   MachineOperand Operand;
45   StringRef::iterator Begin;
46   StringRef::iterator End;
47   Optional<unsigned> TiedDefIdx;
48 
49   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
50                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
51       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
52     if (TiedDefIdx)
53       assert(Operand.isReg() && Operand.isUse() &&
54              "Only used register operands can be tied");
55   }
56 };
57 
58 class MIParser {
59   SourceMgr &SM;
60   MachineFunction &MF;
61   SMDiagnostic &Error;
62   StringRef Source, CurrentSource;
63   MIToken Token;
64   const PerFunctionMIParsingState &PFS;
65   /// Maps from indices to unnamed global values and metadata nodes.
66   const SlotMapping &IRSlots;
67   /// Maps from instruction names to op codes.
68   StringMap<unsigned> Names2InstrOpCodes;
69   /// Maps from register names to registers.
70   StringMap<unsigned> Names2Regs;
71   /// Maps from register mask names to register masks.
72   StringMap<const uint32_t *> Names2RegMasks;
73   /// Maps from subregister names to subregister indices.
74   StringMap<unsigned> Names2SubRegIndices;
75   /// Maps from slot numbers to function's unnamed basic blocks.
76   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
77   /// Maps from slot numbers to function's unnamed values.
78   DenseMap<unsigned, const Value *> Slots2Values;
79   /// Maps from target index names to target indices.
80   StringMap<int> Names2TargetIndices;
81   /// Maps from direct target flag names to the direct target flag values.
82   StringMap<unsigned> Names2DirectTargetFlags;
83   /// Maps from direct target flag names to the bitmask target flag values.
84   StringMap<unsigned> Names2BitmaskTargetFlags;
85 
86 public:
87   MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
88            StringRef Source, const PerFunctionMIParsingState &PFS,
89            const SlotMapping &IRSlots);
90 
91   void lex();
92 
93   /// Report an error at the current location with the given message.
94   ///
95   /// This function always return true.
96   bool error(const Twine &Msg);
97 
98   /// Report an error at the given location with the given message.
99   ///
100   /// This function always return true.
101   bool error(StringRef::iterator Loc, const Twine &Msg);
102 
103   bool
104   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
105   bool parseBasicBlocks();
106   bool parse(MachineInstr *&MI);
107   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
108   bool parseStandaloneNamedRegister(unsigned &Reg);
109   bool parseStandaloneVirtualRegister(unsigned &Reg);
110   bool parseStandaloneStackObject(int &FI);
111   bool parseStandaloneMDNode(MDNode *&Node);
112 
113   bool
114   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
115   bool parseBasicBlock(MachineBasicBlock &MBB);
116   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
117   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
118 
119   bool parseRegister(unsigned &Reg);
120   bool parseRegisterFlag(unsigned &Flags);
121   bool parseSubRegisterIndex(unsigned &SubReg);
122   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
123   bool parseSize(unsigned &Size);
124   bool parseRegisterOperand(MachineOperand &Dest,
125                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
126   bool parseImmediateOperand(MachineOperand &Dest);
127   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
128                        const Constant *&C);
129   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
130   bool parseTypedImmediateOperand(MachineOperand &Dest);
131   bool parseFPImmediateOperand(MachineOperand &Dest);
132   bool parseMBBReference(MachineBasicBlock *&MBB);
133   bool parseMBBOperand(MachineOperand &Dest);
134   bool parseStackFrameIndex(int &FI);
135   bool parseStackObjectOperand(MachineOperand &Dest);
136   bool parseFixedStackFrameIndex(int &FI);
137   bool parseFixedStackObjectOperand(MachineOperand &Dest);
138   bool parseGlobalValue(GlobalValue *&GV);
139   bool parseGlobalAddressOperand(MachineOperand &Dest);
140   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
141   bool parseJumpTableIndexOperand(MachineOperand &Dest);
142   bool parseExternalSymbolOperand(MachineOperand &Dest);
143   bool parseMDNode(MDNode *&Node);
144   bool parseMetadataOperand(MachineOperand &Dest);
145   bool parseCFIOffset(int &Offset);
146   bool parseCFIRegister(unsigned &Reg);
147   bool parseCFIOperand(MachineOperand &Dest);
148   bool parseIRBlock(BasicBlock *&BB, const Function &F);
149   bool parseBlockAddressOperand(MachineOperand &Dest);
150   bool parseTargetIndexOperand(MachineOperand &Dest);
151   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
152   bool parseMachineOperand(MachineOperand &Dest,
153                            Optional<unsigned> &TiedDefIdx);
154   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
155                                          Optional<unsigned> &TiedDefIdx);
156   bool parseOffset(int64_t &Offset);
157   bool parseAlignment(unsigned &Alignment);
158   bool parseOperandsOffset(MachineOperand &Op);
159   bool parseIRValue(const Value *&V);
160   bool parseMemoryOperandFlag(unsigned &Flags);
161   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
162   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
163   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
164 
165 private:
166   /// Convert the integer literal in the current token into an unsigned integer.
167   ///
168   /// Return true if an error occurred.
169   bool getUnsigned(unsigned &Result);
170 
171   /// Convert the integer literal in the current token into an uint64.
172   ///
173   /// Return true if an error occurred.
174   bool getUint64(uint64_t &Result);
175 
176   /// If the current token is of the given kind, consume it and return false.
177   /// Otherwise report an error and return true.
178   bool expectAndConsume(MIToken::TokenKind TokenKind);
179 
180   /// If the current token is of the given kind, consume it and return true.
181   /// Otherwise return false.
182   bool consumeIfPresent(MIToken::TokenKind TokenKind);
183 
184   void initNames2InstrOpCodes();
185 
186   /// Try to convert an instruction name to an opcode. Return true if the
187   /// instruction name is invalid.
188   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
189 
190   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
191 
192   bool assignRegisterTies(MachineInstr &MI,
193                           ArrayRef<ParsedMachineOperand> Operands);
194 
195   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
196                               const MCInstrDesc &MCID);
197 
198   void initNames2Regs();
199 
200   /// Try to convert a register name to a register number. Return true if the
201   /// register name is invalid.
202   bool getRegisterByName(StringRef RegName, unsigned &Reg);
203 
204   void initNames2RegMasks();
205 
206   /// Check if the given identifier is a name of a register mask.
207   ///
208   /// Return null if the identifier isn't a register mask.
209   const uint32_t *getRegMask(StringRef Identifier);
210 
211   void initNames2SubRegIndices();
212 
213   /// Check if the given identifier is a name of a subregister index.
214   ///
215   /// Return 0 if the name isn't a subregister index class.
216   unsigned getSubRegIndex(StringRef Name);
217 
218   const BasicBlock *getIRBlock(unsigned Slot);
219   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
220 
221   const Value *getIRValue(unsigned Slot);
222 
223   void initNames2TargetIndices();
224 
225   /// Try to convert a name of target index to the corresponding target index.
226   ///
227   /// Return true if the name isn't a name of a target index.
228   bool getTargetIndex(StringRef Name, int &Index);
229 
230   void initNames2DirectTargetFlags();
231 
232   /// Try to convert a name of a direct target flag to the corresponding
233   /// target flag.
234   ///
235   /// Return true if the name isn't a name of a direct flag.
236   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
237 
238   void initNames2BitmaskTargetFlags();
239 
240   /// Try to convert a name of a bitmask target flag to the corresponding
241   /// target flag.
242   ///
243   /// Return true if the name isn't a name of a bitmask target flag.
244   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
245 };
246 
247 } // end anonymous namespace
248 
249 MIParser::MIParser(SourceMgr &SM, MachineFunction &MF, SMDiagnostic &Error,
250                    StringRef Source, const PerFunctionMIParsingState &PFS,
251                    const SlotMapping &IRSlots)
252     : SM(SM), MF(MF), Error(Error), Source(Source), CurrentSource(Source),
253       PFS(PFS), IRSlots(IRSlots) {}
254 
255 void MIParser::lex() {
256   CurrentSource = lexMIToken(
257       CurrentSource, Token,
258       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
259 }
260 
261 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
262 
263 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
264   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
265   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
266   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
267     // Create an ordinary diagnostic when the source manager's buffer is the
268     // source string.
269     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
270     return true;
271   }
272   // Create a diagnostic for a YAML string literal.
273   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
274                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
275                        Source, None, None);
276   return true;
277 }
278 
279 static const char *toString(MIToken::TokenKind TokenKind) {
280   switch (TokenKind) {
281   case MIToken::comma:
282     return "','";
283   case MIToken::equal:
284     return "'='";
285   case MIToken::colon:
286     return "':'";
287   case MIToken::lparen:
288     return "'('";
289   case MIToken::rparen:
290     return "')'";
291   default:
292     return "<unknown token>";
293   }
294 }
295 
296 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
297   if (Token.isNot(TokenKind))
298     return error(Twine("expected ") + toString(TokenKind));
299   lex();
300   return false;
301 }
302 
303 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
304   if (Token.isNot(TokenKind))
305     return false;
306   lex();
307   return true;
308 }
309 
310 bool MIParser::parseBasicBlockDefinition(
311     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
312   assert(Token.is(MIToken::MachineBasicBlockLabel));
313   unsigned ID = 0;
314   if (getUnsigned(ID))
315     return true;
316   auto Loc = Token.location();
317   auto Name = Token.stringValue();
318   lex();
319   bool HasAddressTaken = false;
320   bool IsLandingPad = false;
321   unsigned Alignment = 0;
322   BasicBlock *BB = nullptr;
323   if (consumeIfPresent(MIToken::lparen)) {
324     do {
325       // TODO: Report an error when multiple same attributes are specified.
326       switch (Token.kind()) {
327       case MIToken::kw_address_taken:
328         HasAddressTaken = true;
329         lex();
330         break;
331       case MIToken::kw_landing_pad:
332         IsLandingPad = true;
333         lex();
334         break;
335       case MIToken::kw_align:
336         if (parseAlignment(Alignment))
337           return true;
338         break;
339       case MIToken::IRBlock:
340         // TODO: Report an error when both name and ir block are specified.
341         if (parseIRBlock(BB, *MF.getFunction()))
342           return true;
343         lex();
344         break;
345       default:
346         break;
347       }
348     } while (consumeIfPresent(MIToken::comma));
349     if (expectAndConsume(MIToken::rparen))
350       return true;
351   }
352   if (expectAndConsume(MIToken::colon))
353     return true;
354 
355   if (!Name.empty()) {
356     BB = dyn_cast_or_null<BasicBlock>(
357         MF.getFunction()->getValueSymbolTable().lookup(Name));
358     if (!BB)
359       return error(Loc, Twine("basic block '") + Name +
360                             "' is not defined in the function '" +
361                             MF.getName() + "'");
362   }
363   auto *MBB = MF.CreateMachineBasicBlock(BB);
364   MF.insert(MF.end(), MBB);
365   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
366   if (!WasInserted)
367     return error(Loc, Twine("redefinition of machine basic block with id #") +
368                           Twine(ID));
369   if (Alignment)
370     MBB->setAlignment(Alignment);
371   if (HasAddressTaken)
372     MBB->setHasAddressTaken();
373   MBB->setIsEHPad(IsLandingPad);
374   return false;
375 }
376 
377 bool MIParser::parseBasicBlockDefinitions(
378     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
379   lex();
380   // Skip until the first machine basic block.
381   while (Token.is(MIToken::Newline))
382     lex();
383   if (Token.isErrorOrEOF())
384     return Token.isError();
385   if (Token.isNot(MIToken::MachineBasicBlockLabel))
386     return error("expected a basic block definition before instructions");
387   unsigned BraceDepth = 0;
388   do {
389     if (parseBasicBlockDefinition(MBBSlots))
390       return true;
391     bool IsAfterNewline = false;
392     // Skip until the next machine basic block.
393     while (true) {
394       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
395           Token.isErrorOrEOF())
396         break;
397       else if (Token.is(MIToken::MachineBasicBlockLabel))
398         return error("basic block definition should be located at the start of "
399                      "the line");
400       else if (consumeIfPresent(MIToken::Newline)) {
401         IsAfterNewline = true;
402         continue;
403       }
404       IsAfterNewline = false;
405       if (Token.is(MIToken::lbrace))
406         ++BraceDepth;
407       if (Token.is(MIToken::rbrace)) {
408         if (!BraceDepth)
409           return error("extraneous closing brace ('}')");
410         --BraceDepth;
411       }
412       lex();
413     }
414     // Verify that we closed all of the '{' at the end of a file or a block.
415     if (!Token.isError() && BraceDepth)
416       return error("expected '}'"); // FIXME: Report a note that shows '{'.
417   } while (!Token.isErrorOrEOF());
418   return Token.isError();
419 }
420 
421 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
422   assert(Token.is(MIToken::kw_liveins));
423   lex();
424   if (expectAndConsume(MIToken::colon))
425     return true;
426   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
427     return false;
428   do {
429     if (Token.isNot(MIToken::NamedRegister))
430       return error("expected a named register");
431     unsigned Reg = 0;
432     if (parseRegister(Reg))
433       return true;
434     MBB.addLiveIn(Reg);
435     lex();
436   } while (consumeIfPresent(MIToken::comma));
437   return false;
438 }
439 
440 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
441   assert(Token.is(MIToken::kw_successors));
442   lex();
443   if (expectAndConsume(MIToken::colon))
444     return true;
445   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
446     return false;
447   do {
448     if (Token.isNot(MIToken::MachineBasicBlock))
449       return error("expected a machine basic block reference");
450     MachineBasicBlock *SuccMBB = nullptr;
451     if (parseMBBReference(SuccMBB))
452       return true;
453     lex();
454     unsigned Weight = 0;
455     if (consumeIfPresent(MIToken::lparen)) {
456       if (Token.isNot(MIToken::IntegerLiteral))
457         return error("expected an integer literal after '('");
458       if (getUnsigned(Weight))
459         return true;
460       lex();
461       if (expectAndConsume(MIToken::rparen))
462         return true;
463     }
464     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
465   } while (consumeIfPresent(MIToken::comma));
466   MBB.normalizeSuccProbs();
467   return false;
468 }
469 
470 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB) {
471   // Skip the definition.
472   assert(Token.is(MIToken::MachineBasicBlockLabel));
473   lex();
474   if (consumeIfPresent(MIToken::lparen)) {
475     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
476       lex();
477     consumeIfPresent(MIToken::rparen);
478   }
479   consumeIfPresent(MIToken::colon);
480 
481   // Parse the liveins and successors.
482   // N.B: Multiple lists of successors and liveins are allowed and they're
483   // merged into one.
484   // Example:
485   //   liveins: %edi
486   //   liveins: %esi
487   //
488   // is equivalent to
489   //   liveins: %edi, %esi
490   while (true) {
491     if (Token.is(MIToken::kw_successors)) {
492       if (parseBasicBlockSuccessors(MBB))
493         return true;
494     } else if (Token.is(MIToken::kw_liveins)) {
495       if (parseBasicBlockLiveins(MBB))
496         return true;
497     } else if (consumeIfPresent(MIToken::Newline)) {
498       continue;
499     } else
500       break;
501     if (!Token.isNewlineOrEOF())
502       return error("expected line break at the end of a list");
503     lex();
504   }
505 
506   // Parse the instructions.
507   bool IsInBundle = false;
508   MachineInstr *PrevMI = nullptr;
509   while (true) {
510     if (Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))
511       return false;
512     else if (consumeIfPresent(MIToken::Newline))
513       continue;
514     if (consumeIfPresent(MIToken::rbrace)) {
515       // The first parsing pass should verify that all closing '}' have an
516       // opening '{'.
517       assert(IsInBundle);
518       IsInBundle = false;
519       continue;
520     }
521     MachineInstr *MI = nullptr;
522     if (parse(MI))
523       return true;
524     MBB.insert(MBB.end(), MI);
525     if (IsInBundle) {
526       PrevMI->setFlag(MachineInstr::BundledSucc);
527       MI->setFlag(MachineInstr::BundledPred);
528     }
529     PrevMI = MI;
530     if (Token.is(MIToken::lbrace)) {
531       if (IsInBundle)
532         return error("nested instruction bundles are not allowed");
533       lex();
534       // This instruction is the start of the bundle.
535       MI->setFlag(MachineInstr::BundledSucc);
536       IsInBundle = true;
537       if (!Token.is(MIToken::Newline))
538         // The next instruction can be on the same line.
539         continue;
540     }
541     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
542     lex();
543   }
544   return false;
545 }
546 
547 bool MIParser::parseBasicBlocks() {
548   lex();
549   // Skip until the first machine basic block.
550   while (Token.is(MIToken::Newline))
551     lex();
552   if (Token.isErrorOrEOF())
553     return Token.isError();
554   // The first parsing pass should have verified that this token is a MBB label
555   // in the 'parseBasicBlockDefinitions' method.
556   assert(Token.is(MIToken::MachineBasicBlockLabel));
557   do {
558     MachineBasicBlock *MBB = nullptr;
559     if (parseMBBReference(MBB))
560       return true;
561     if (parseBasicBlock(*MBB))
562       return true;
563     // The method 'parseBasicBlock' should parse the whole block until the next
564     // block or the end of file.
565     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
566   } while (Token.isNot(MIToken::Eof));
567   return false;
568 }
569 
570 bool MIParser::parse(MachineInstr *&MI) {
571   // Parse any register operands before '='
572   MachineOperand MO = MachineOperand::CreateImm(0);
573   SmallVector<ParsedMachineOperand, 8> Operands;
574   while (Token.isRegister() || Token.isRegisterFlag()) {
575     auto Loc = Token.location();
576     Optional<unsigned> TiedDefIdx;
577     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
578       return true;
579     Operands.push_back(
580         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
581     if (Token.isNot(MIToken::comma))
582       break;
583     lex();
584   }
585   if (!Operands.empty() && expectAndConsume(MIToken::equal))
586     return true;
587 
588   unsigned OpCode, Flags = 0;
589   if (Token.isError() || parseInstruction(OpCode, Flags))
590     return true;
591 
592   // Parse the remaining machine operands.
593   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
594          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
595     auto Loc = Token.location();
596     Optional<unsigned> TiedDefIdx;
597     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
598       return true;
599     Operands.push_back(
600         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
601     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
602         Token.is(MIToken::lbrace))
603       break;
604     if (Token.isNot(MIToken::comma))
605       return error("expected ',' before the next machine operand");
606     lex();
607   }
608 
609   DebugLoc DebugLocation;
610   if (Token.is(MIToken::kw_debug_location)) {
611     lex();
612     if (Token.isNot(MIToken::exclaim))
613       return error("expected a metadata node after 'debug-location'");
614     MDNode *Node = nullptr;
615     if (parseMDNode(Node))
616       return true;
617     DebugLocation = DebugLoc(Node);
618   }
619 
620   // Parse the machine memory operands.
621   SmallVector<MachineMemOperand *, 2> MemOperands;
622   if (Token.is(MIToken::coloncolon)) {
623     lex();
624     while (!Token.isNewlineOrEOF()) {
625       MachineMemOperand *MemOp = nullptr;
626       if (parseMachineMemoryOperand(MemOp))
627         return true;
628       MemOperands.push_back(MemOp);
629       if (Token.isNewlineOrEOF())
630         break;
631       if (Token.isNot(MIToken::comma))
632         return error("expected ',' before the next machine memory operand");
633       lex();
634     }
635   }
636 
637   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
638   if (!MCID.isVariadic()) {
639     // FIXME: Move the implicit operand verification to the machine verifier.
640     if (verifyImplicitOperands(Operands, MCID))
641       return true;
642   }
643 
644   // TODO: Check for extraneous machine operands.
645   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
646   MI->setFlags(Flags);
647   for (const auto &Operand : Operands)
648     MI->addOperand(MF, Operand.Operand);
649   if (assignRegisterTies(*MI, Operands))
650     return true;
651   if (MemOperands.empty())
652     return false;
653   MachineInstr::mmo_iterator MemRefs =
654       MF.allocateMemRefsArray(MemOperands.size());
655   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
656   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
657   return false;
658 }
659 
660 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
661   lex();
662   if (Token.isNot(MIToken::MachineBasicBlock))
663     return error("expected a machine basic block reference");
664   if (parseMBBReference(MBB))
665     return true;
666   lex();
667   if (Token.isNot(MIToken::Eof))
668     return error(
669         "expected end of string after the machine basic block reference");
670   return false;
671 }
672 
673 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
674   lex();
675   if (Token.isNot(MIToken::NamedRegister))
676     return error("expected a named register");
677   if (parseRegister(Reg))
678     return true;
679   lex();
680   if (Token.isNot(MIToken::Eof))
681     return error("expected end of string after the register reference");
682   return false;
683 }
684 
685 bool MIParser::parseStandaloneVirtualRegister(unsigned &Reg) {
686   lex();
687   if (Token.isNot(MIToken::VirtualRegister))
688     return error("expected a virtual register");
689   if (parseRegister(Reg))
690     return true;
691   lex();
692   if (Token.isNot(MIToken::Eof))
693     return error("expected end of string after the register reference");
694   return false;
695 }
696 
697 bool MIParser::parseStandaloneStackObject(int &FI) {
698   lex();
699   if (Token.isNot(MIToken::StackObject))
700     return error("expected a stack object");
701   if (parseStackFrameIndex(FI))
702     return true;
703   if (Token.isNot(MIToken::Eof))
704     return error("expected end of string after the stack object reference");
705   return false;
706 }
707 
708 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
709   lex();
710   if (Token.isNot(MIToken::exclaim))
711     return error("expected a metadata node");
712   if (parseMDNode(Node))
713     return true;
714   if (Token.isNot(MIToken::Eof))
715     return error("expected end of string after the metadata node");
716   return false;
717 }
718 
719 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
720   assert(MO.isImplicit());
721   return MO.isDef() ? "implicit-def" : "implicit";
722 }
723 
724 static std::string getRegisterName(const TargetRegisterInfo *TRI,
725                                    unsigned Reg) {
726   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
727   return StringRef(TRI->getName(Reg)).lower();
728 }
729 
730 /// Return true if the parsed machine operands contain a given machine operand.
731 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
732                                 ArrayRef<ParsedMachineOperand> Operands) {
733   for (const auto &I : Operands) {
734     if (ImplicitOperand.isIdenticalTo(I.Operand))
735       return true;
736   }
737   return false;
738 }
739 
740 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
741                                       const MCInstrDesc &MCID) {
742   if (MCID.isCall())
743     // We can't verify call instructions as they can contain arbitrary implicit
744     // register and register mask operands.
745     return false;
746 
747   // Gather all the expected implicit operands.
748   SmallVector<MachineOperand, 4> ImplicitOperands;
749   if (MCID.ImplicitDefs)
750     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
751       ImplicitOperands.push_back(
752           MachineOperand::CreateReg(*ImpDefs, true, true));
753   if (MCID.ImplicitUses)
754     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
755       ImplicitOperands.push_back(
756           MachineOperand::CreateReg(*ImpUses, false, true));
757 
758   const auto *TRI = MF.getSubtarget().getRegisterInfo();
759   assert(TRI && "Expected target register info");
760   for (const auto &I : ImplicitOperands) {
761     if (isImplicitOperandIn(I, Operands))
762       continue;
763     return error(Operands.empty() ? Token.location() : Operands.back().End,
764                  Twine("missing implicit register operand '") +
765                      printImplicitRegisterFlag(I) + " %" +
766                      getRegisterName(TRI, I.getReg()) + "'");
767   }
768   return false;
769 }
770 
771 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
772   if (Token.is(MIToken::kw_frame_setup)) {
773     Flags |= MachineInstr::FrameSetup;
774     lex();
775   }
776   if (Token.isNot(MIToken::Identifier))
777     return error("expected a machine instruction");
778   StringRef InstrName = Token.stringValue();
779   if (parseInstrName(InstrName, OpCode))
780     return error(Twine("unknown machine instruction name '") + InstrName + "'");
781   lex();
782   return false;
783 }
784 
785 bool MIParser::parseRegister(unsigned &Reg) {
786   switch (Token.kind()) {
787   case MIToken::underscore:
788     Reg = 0;
789     break;
790   case MIToken::NamedRegister: {
791     StringRef Name = Token.stringValue();
792     if (getRegisterByName(Name, Reg))
793       return error(Twine("unknown register name '") + Name + "'");
794     break;
795   }
796   case MIToken::VirtualRegister: {
797     unsigned ID;
798     if (getUnsigned(ID))
799       return true;
800     const auto RegInfo = PFS.VirtualRegisterSlots.find(ID);
801     if (RegInfo == PFS.VirtualRegisterSlots.end())
802       return error(Twine("use of undefined virtual register '%") + Twine(ID) +
803                    "'");
804     Reg = RegInfo->second;
805     break;
806   }
807   // TODO: Parse other register kinds.
808   default:
809     llvm_unreachable("The current token should be a register");
810   }
811   return false;
812 }
813 
814 bool MIParser::parseRegisterFlag(unsigned &Flags) {
815   const unsigned OldFlags = Flags;
816   switch (Token.kind()) {
817   case MIToken::kw_implicit:
818     Flags |= RegState::Implicit;
819     break;
820   case MIToken::kw_implicit_define:
821     Flags |= RegState::ImplicitDefine;
822     break;
823   case MIToken::kw_def:
824     Flags |= RegState::Define;
825     break;
826   case MIToken::kw_dead:
827     Flags |= RegState::Dead;
828     break;
829   case MIToken::kw_killed:
830     Flags |= RegState::Kill;
831     break;
832   case MIToken::kw_undef:
833     Flags |= RegState::Undef;
834     break;
835   case MIToken::kw_internal:
836     Flags |= RegState::InternalRead;
837     break;
838   case MIToken::kw_early_clobber:
839     Flags |= RegState::EarlyClobber;
840     break;
841   case MIToken::kw_debug_use:
842     Flags |= RegState::Debug;
843     break;
844   default:
845     llvm_unreachable("The current token should be a register flag");
846   }
847   if (OldFlags == Flags)
848     // We know that the same flag is specified more than once when the flags
849     // weren't modified.
850     return error("duplicate '" + Token.stringValue() + "' register flag");
851   lex();
852   return false;
853 }
854 
855 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
856   assert(Token.is(MIToken::colon));
857   lex();
858   if (Token.isNot(MIToken::Identifier))
859     return error("expected a subregister index after ':'");
860   auto Name = Token.stringValue();
861   SubReg = getSubRegIndex(Name);
862   if (!SubReg)
863     return error(Twine("use of unknown subregister index '") + Name + "'");
864   lex();
865   return false;
866 }
867 
868 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
869   if (!consumeIfPresent(MIToken::kw_tied_def))
870     return error("expected 'tied-def' after '('");
871   if (Token.isNot(MIToken::IntegerLiteral))
872     return error("expected an integer literal after 'tied-def'");
873   if (getUnsigned(TiedDefIdx))
874     return true;
875   lex();
876   if (expectAndConsume(MIToken::rparen))
877     return true;
878   return false;
879 }
880 
881 bool MIParser::parseSize(unsigned &Size) {
882   if (Token.isNot(MIToken::IntegerLiteral))
883     return error("expected an integer literal for the size");
884   if (getUnsigned(Size))
885     return true;
886   lex();
887   if (expectAndConsume(MIToken::rparen))
888     return true;
889   return false;
890 }
891 
892 bool MIParser::assignRegisterTies(MachineInstr &MI,
893                                   ArrayRef<ParsedMachineOperand> Operands) {
894   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
895   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
896     if (!Operands[I].TiedDefIdx)
897       continue;
898     // The parser ensures that this operand is a register use, so we just have
899     // to check the tied-def operand.
900     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
901     if (DefIdx >= E)
902       return error(Operands[I].Begin,
903                    Twine("use of invalid tied-def operand index '" +
904                          Twine(DefIdx) + "'; instruction has only ") +
905                        Twine(E) + " operands");
906     const auto &DefOperand = Operands[DefIdx].Operand;
907     if (!DefOperand.isReg() || !DefOperand.isDef())
908       // FIXME: add note with the def operand.
909       return error(Operands[I].Begin,
910                    Twine("use of invalid tied-def operand index '") +
911                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
912                        " isn't a defined register");
913     // Check that the tied-def operand wasn't tied elsewhere.
914     for (const auto &TiedPair : TiedRegisterPairs) {
915       if (TiedPair.first == DefIdx)
916         return error(Operands[I].Begin,
917                      Twine("the tied-def operand #") + Twine(DefIdx) +
918                          " is already tied with another register operand");
919     }
920     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
921   }
922   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
923   // indices must be less than tied max.
924   for (const auto &TiedPair : TiedRegisterPairs)
925     MI.tieOperands(TiedPair.first, TiedPair.second);
926   return false;
927 }
928 
929 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
930                                     Optional<unsigned> &TiedDefIdx,
931                                     bool IsDef) {
932   unsigned Reg;
933   unsigned Flags = IsDef ? RegState::Define : 0;
934   while (Token.isRegisterFlag()) {
935     if (parseRegisterFlag(Flags))
936       return true;
937   }
938   if (!Token.isRegister())
939     return error("expected a register after register flags");
940   if (parseRegister(Reg))
941     return true;
942   lex();
943   unsigned SubReg = 0;
944   if (Token.is(MIToken::colon)) {
945     if (parseSubRegisterIndex(SubReg))
946       return true;
947   }
948   if ((Flags & RegState::Define) == 0) {
949     if (consumeIfPresent(MIToken::lparen)) {
950       unsigned Idx;
951       if (parseRegisterTiedDefIndex(Idx))
952         return true;
953       TiedDefIdx = Idx;
954     }
955   } else if (consumeIfPresent(MIToken::lparen)) {
956     // Generic virtual registers must have a size.
957     // The "must" part will be verify by the machine verifier,
958     // because at this point we actually do not know if Reg is
959     // a generic virtual register.
960     if (!TargetRegisterInfo::isVirtualRegister(Reg))
961       return error("unexpected size on physical register");
962     unsigned Size;
963     if (parseSize(Size))
964       return true;
965 
966     MachineRegisterInfo &MRI = MF.getRegInfo();
967     MRI.setSize(Reg, Size);
968   }
969   Dest = MachineOperand::CreateReg(
970       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
971       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
972       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
973       Flags & RegState::InternalRead);
974   return false;
975 }
976 
977 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
978   assert(Token.is(MIToken::IntegerLiteral));
979   const APSInt &Int = Token.integerValue();
980   if (Int.getMinSignedBits() > 64)
981     return error("integer literal is too large to be an immediate operand");
982   Dest = MachineOperand::CreateImm(Int.getExtValue());
983   lex();
984   return false;
985 }
986 
987 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
988                                const Constant *&C) {
989   auto Source = StringValue.str(); // The source has to be null terminated.
990   SMDiagnostic Err;
991   C = parseConstantValue(Source.c_str(), Err, *MF.getFunction()->getParent(),
992                          &IRSlots);
993   if (!C)
994     return error(Loc + Err.getColumnNo(), Err.getMessage());
995   return false;
996 }
997 
998 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
999   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1000     return true;
1001   lex();
1002   return false;
1003 }
1004 
1005 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1006   assert(Token.is(MIToken::IntegerType));
1007   auto Loc = Token.location();
1008   lex();
1009   if (Token.isNot(MIToken::IntegerLiteral))
1010     return error("expected an integer literal");
1011   const Constant *C = nullptr;
1012   if (parseIRConstant(Loc, C))
1013     return true;
1014   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1015   return false;
1016 }
1017 
1018 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1019   auto Loc = Token.location();
1020   lex();
1021   if (Token.isNot(MIToken::FloatingPointLiteral))
1022     return error("expected a floating point literal");
1023   const Constant *C = nullptr;
1024   if (parseIRConstant(Loc, C))
1025     return true;
1026   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1027   return false;
1028 }
1029 
1030 bool MIParser::getUnsigned(unsigned &Result) {
1031   assert(Token.hasIntegerValue() && "Expected a token with an integer value");
1032   const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1033   uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1034   if (Val64 == Limit)
1035     return error("expected 32-bit integer (too large)");
1036   Result = Val64;
1037   return false;
1038 }
1039 
1040 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1041   assert(Token.is(MIToken::MachineBasicBlock) ||
1042          Token.is(MIToken::MachineBasicBlockLabel));
1043   unsigned Number;
1044   if (getUnsigned(Number))
1045     return true;
1046   auto MBBInfo = PFS.MBBSlots.find(Number);
1047   if (MBBInfo == PFS.MBBSlots.end())
1048     return error(Twine("use of undefined machine basic block #") +
1049                  Twine(Number));
1050   MBB = MBBInfo->second;
1051   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1052     return error(Twine("the name of machine basic block #") + Twine(Number) +
1053                  " isn't '" + Token.stringValue() + "'");
1054   return false;
1055 }
1056 
1057 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1058   MachineBasicBlock *MBB;
1059   if (parseMBBReference(MBB))
1060     return true;
1061   Dest = MachineOperand::CreateMBB(MBB);
1062   lex();
1063   return false;
1064 }
1065 
1066 bool MIParser::parseStackFrameIndex(int &FI) {
1067   assert(Token.is(MIToken::StackObject));
1068   unsigned ID;
1069   if (getUnsigned(ID))
1070     return true;
1071   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1072   if (ObjectInfo == PFS.StackObjectSlots.end())
1073     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1074                  "'");
1075   StringRef Name;
1076   if (const auto *Alloca =
1077           MF.getFrameInfo()->getObjectAllocation(ObjectInfo->second))
1078     Name = Alloca->getName();
1079   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1080     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1081                  "' isn't '" + Token.stringValue() + "'");
1082   lex();
1083   FI = ObjectInfo->second;
1084   return false;
1085 }
1086 
1087 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1088   int FI;
1089   if (parseStackFrameIndex(FI))
1090     return true;
1091   Dest = MachineOperand::CreateFI(FI);
1092   return false;
1093 }
1094 
1095 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1096   assert(Token.is(MIToken::FixedStackObject));
1097   unsigned ID;
1098   if (getUnsigned(ID))
1099     return true;
1100   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1101   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1102     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1103                  Twine(ID) + "'");
1104   lex();
1105   FI = ObjectInfo->second;
1106   return false;
1107 }
1108 
1109 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1110   int FI;
1111   if (parseFixedStackFrameIndex(FI))
1112     return true;
1113   Dest = MachineOperand::CreateFI(FI);
1114   return false;
1115 }
1116 
1117 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1118   switch (Token.kind()) {
1119   case MIToken::NamedGlobalValue: {
1120     const Module *M = MF.getFunction()->getParent();
1121     GV = M->getNamedValue(Token.stringValue());
1122     if (!GV)
1123       return error(Twine("use of undefined global value '") + Token.range() +
1124                    "'");
1125     break;
1126   }
1127   case MIToken::GlobalValue: {
1128     unsigned GVIdx;
1129     if (getUnsigned(GVIdx))
1130       return true;
1131     if (GVIdx >= IRSlots.GlobalValues.size())
1132       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1133                    "'");
1134     GV = IRSlots.GlobalValues[GVIdx];
1135     break;
1136   }
1137   default:
1138     llvm_unreachable("The current token should be a global value");
1139   }
1140   return false;
1141 }
1142 
1143 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1144   GlobalValue *GV = nullptr;
1145   if (parseGlobalValue(GV))
1146     return true;
1147   lex();
1148   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1149   if (parseOperandsOffset(Dest))
1150     return true;
1151   return false;
1152 }
1153 
1154 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1155   assert(Token.is(MIToken::ConstantPoolItem));
1156   unsigned ID;
1157   if (getUnsigned(ID))
1158     return true;
1159   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1160   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1161     return error("use of undefined constant '%const." + Twine(ID) + "'");
1162   lex();
1163   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1164   if (parseOperandsOffset(Dest))
1165     return true;
1166   return false;
1167 }
1168 
1169 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1170   assert(Token.is(MIToken::JumpTableIndex));
1171   unsigned ID;
1172   if (getUnsigned(ID))
1173     return true;
1174   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1175   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1176     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1177   lex();
1178   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1179   return false;
1180 }
1181 
1182 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1183   assert(Token.is(MIToken::ExternalSymbol));
1184   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1185   lex();
1186   Dest = MachineOperand::CreateES(Symbol);
1187   if (parseOperandsOffset(Dest))
1188     return true;
1189   return false;
1190 }
1191 
1192 bool MIParser::parseMDNode(MDNode *&Node) {
1193   assert(Token.is(MIToken::exclaim));
1194   auto Loc = Token.location();
1195   lex();
1196   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1197     return error("expected metadata id after '!'");
1198   unsigned ID;
1199   if (getUnsigned(ID))
1200     return true;
1201   auto NodeInfo = IRSlots.MetadataNodes.find(ID);
1202   if (NodeInfo == IRSlots.MetadataNodes.end())
1203     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1204   lex();
1205   Node = NodeInfo->second.get();
1206   return false;
1207 }
1208 
1209 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1210   MDNode *Node = nullptr;
1211   if (parseMDNode(Node))
1212     return true;
1213   Dest = MachineOperand::CreateMetadata(Node);
1214   return false;
1215 }
1216 
1217 bool MIParser::parseCFIOffset(int &Offset) {
1218   if (Token.isNot(MIToken::IntegerLiteral))
1219     return error("expected a cfi offset");
1220   if (Token.integerValue().getMinSignedBits() > 32)
1221     return error("expected a 32 bit integer (the cfi offset is too large)");
1222   Offset = (int)Token.integerValue().getExtValue();
1223   lex();
1224   return false;
1225 }
1226 
1227 bool MIParser::parseCFIRegister(unsigned &Reg) {
1228   if (Token.isNot(MIToken::NamedRegister))
1229     return error("expected a cfi register");
1230   unsigned LLVMReg;
1231   if (parseRegister(LLVMReg))
1232     return true;
1233   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1234   assert(TRI && "Expected target register info");
1235   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1236   if (DwarfReg < 0)
1237     return error("invalid DWARF register");
1238   Reg = (unsigned)DwarfReg;
1239   lex();
1240   return false;
1241 }
1242 
1243 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1244   auto Kind = Token.kind();
1245   lex();
1246   auto &MMI = MF.getMMI();
1247   int Offset;
1248   unsigned Reg;
1249   unsigned CFIIndex;
1250   switch (Kind) {
1251   case MIToken::kw_cfi_same_value:
1252     if (parseCFIRegister(Reg))
1253       return true;
1254     CFIIndex =
1255         MMI.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1256     break;
1257   case MIToken::kw_cfi_offset:
1258     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1259         parseCFIOffset(Offset))
1260       return true;
1261     CFIIndex =
1262         MMI.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1263     break;
1264   case MIToken::kw_cfi_def_cfa_register:
1265     if (parseCFIRegister(Reg))
1266       return true;
1267     CFIIndex =
1268         MMI.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1269     break;
1270   case MIToken::kw_cfi_def_cfa_offset:
1271     if (parseCFIOffset(Offset))
1272       return true;
1273     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1274     CFIIndex = MMI.addFrameInst(
1275         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1276     break;
1277   case MIToken::kw_cfi_def_cfa:
1278     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1279         parseCFIOffset(Offset))
1280       return true;
1281     // NB: MCCFIInstruction::createDefCfa negates the offset.
1282     CFIIndex =
1283         MMI.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1284     break;
1285   default:
1286     // TODO: Parse the other CFI operands.
1287     llvm_unreachable("The current token should be a cfi operand");
1288   }
1289   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1290   return false;
1291 }
1292 
1293 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1294   switch (Token.kind()) {
1295   case MIToken::NamedIRBlock: {
1296     BB = dyn_cast_or_null<BasicBlock>(
1297         F.getValueSymbolTable().lookup(Token.stringValue()));
1298     if (!BB)
1299       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1300     break;
1301   }
1302   case MIToken::IRBlock: {
1303     unsigned SlotNumber = 0;
1304     if (getUnsigned(SlotNumber))
1305       return true;
1306     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1307     if (!BB)
1308       return error(Twine("use of undefined IR block '%ir-block.") +
1309                    Twine(SlotNumber) + "'");
1310     break;
1311   }
1312   default:
1313     llvm_unreachable("The current token should be an IR block reference");
1314   }
1315   return false;
1316 }
1317 
1318 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1319   assert(Token.is(MIToken::kw_blockaddress));
1320   lex();
1321   if (expectAndConsume(MIToken::lparen))
1322     return true;
1323   if (Token.isNot(MIToken::GlobalValue) &&
1324       Token.isNot(MIToken::NamedGlobalValue))
1325     return error("expected a global value");
1326   GlobalValue *GV = nullptr;
1327   if (parseGlobalValue(GV))
1328     return true;
1329   auto *F = dyn_cast<Function>(GV);
1330   if (!F)
1331     return error("expected an IR function reference");
1332   lex();
1333   if (expectAndConsume(MIToken::comma))
1334     return true;
1335   BasicBlock *BB = nullptr;
1336   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1337     return error("expected an IR block reference");
1338   if (parseIRBlock(BB, *F))
1339     return true;
1340   lex();
1341   if (expectAndConsume(MIToken::rparen))
1342     return true;
1343   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1344   if (parseOperandsOffset(Dest))
1345     return true;
1346   return false;
1347 }
1348 
1349 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1350   assert(Token.is(MIToken::kw_target_index));
1351   lex();
1352   if (expectAndConsume(MIToken::lparen))
1353     return true;
1354   if (Token.isNot(MIToken::Identifier))
1355     return error("expected the name of the target index");
1356   int Index = 0;
1357   if (getTargetIndex(Token.stringValue(), Index))
1358     return error("use of undefined target index '" + Token.stringValue() + "'");
1359   lex();
1360   if (expectAndConsume(MIToken::rparen))
1361     return true;
1362   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1363   if (parseOperandsOffset(Dest))
1364     return true;
1365   return false;
1366 }
1367 
1368 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1369   assert(Token.is(MIToken::kw_liveout));
1370   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1371   assert(TRI && "Expected target register info");
1372   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1373   lex();
1374   if (expectAndConsume(MIToken::lparen))
1375     return true;
1376   while (true) {
1377     if (Token.isNot(MIToken::NamedRegister))
1378       return error("expected a named register");
1379     unsigned Reg = 0;
1380     if (parseRegister(Reg))
1381       return true;
1382     lex();
1383     Mask[Reg / 32] |= 1U << (Reg % 32);
1384     // TODO: Report an error if the same register is used more than once.
1385     if (Token.isNot(MIToken::comma))
1386       break;
1387     lex();
1388   }
1389   if (expectAndConsume(MIToken::rparen))
1390     return true;
1391   Dest = MachineOperand::CreateRegLiveOut(Mask);
1392   return false;
1393 }
1394 
1395 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1396                                    Optional<unsigned> &TiedDefIdx) {
1397   switch (Token.kind()) {
1398   case MIToken::kw_implicit:
1399   case MIToken::kw_implicit_define:
1400   case MIToken::kw_def:
1401   case MIToken::kw_dead:
1402   case MIToken::kw_killed:
1403   case MIToken::kw_undef:
1404   case MIToken::kw_internal:
1405   case MIToken::kw_early_clobber:
1406   case MIToken::kw_debug_use:
1407   case MIToken::underscore:
1408   case MIToken::NamedRegister:
1409   case MIToken::VirtualRegister:
1410     return parseRegisterOperand(Dest, TiedDefIdx);
1411   case MIToken::IntegerLiteral:
1412     return parseImmediateOperand(Dest);
1413   case MIToken::IntegerType:
1414     return parseTypedImmediateOperand(Dest);
1415   case MIToken::kw_half:
1416   case MIToken::kw_float:
1417   case MIToken::kw_double:
1418   case MIToken::kw_x86_fp80:
1419   case MIToken::kw_fp128:
1420   case MIToken::kw_ppc_fp128:
1421     return parseFPImmediateOperand(Dest);
1422   case MIToken::MachineBasicBlock:
1423     return parseMBBOperand(Dest);
1424   case MIToken::StackObject:
1425     return parseStackObjectOperand(Dest);
1426   case MIToken::FixedStackObject:
1427     return parseFixedStackObjectOperand(Dest);
1428   case MIToken::GlobalValue:
1429   case MIToken::NamedGlobalValue:
1430     return parseGlobalAddressOperand(Dest);
1431   case MIToken::ConstantPoolItem:
1432     return parseConstantPoolIndexOperand(Dest);
1433   case MIToken::JumpTableIndex:
1434     return parseJumpTableIndexOperand(Dest);
1435   case MIToken::ExternalSymbol:
1436     return parseExternalSymbolOperand(Dest);
1437   case MIToken::exclaim:
1438     return parseMetadataOperand(Dest);
1439   case MIToken::kw_cfi_same_value:
1440   case MIToken::kw_cfi_offset:
1441   case MIToken::kw_cfi_def_cfa_register:
1442   case MIToken::kw_cfi_def_cfa_offset:
1443   case MIToken::kw_cfi_def_cfa:
1444     return parseCFIOperand(Dest);
1445   case MIToken::kw_blockaddress:
1446     return parseBlockAddressOperand(Dest);
1447   case MIToken::kw_target_index:
1448     return parseTargetIndexOperand(Dest);
1449   case MIToken::kw_liveout:
1450     return parseLiveoutRegisterMaskOperand(Dest);
1451   case MIToken::Error:
1452     return true;
1453   case MIToken::Identifier:
1454     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1455       Dest = MachineOperand::CreateRegMask(RegMask);
1456       lex();
1457       break;
1458     }
1459   // fallthrough
1460   default:
1461     // FIXME: Parse the MCSymbol machine operand.
1462     return error("expected a machine operand");
1463   }
1464   return false;
1465 }
1466 
1467 bool MIParser::parseMachineOperandAndTargetFlags(
1468     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1469   unsigned TF = 0;
1470   bool HasTargetFlags = false;
1471   if (Token.is(MIToken::kw_target_flags)) {
1472     HasTargetFlags = true;
1473     lex();
1474     if (expectAndConsume(MIToken::lparen))
1475       return true;
1476     if (Token.isNot(MIToken::Identifier))
1477       return error("expected the name of the target flag");
1478     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1479       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1480         return error("use of undefined target flag '" + Token.stringValue() +
1481                      "'");
1482     }
1483     lex();
1484     while (Token.is(MIToken::comma)) {
1485       lex();
1486       if (Token.isNot(MIToken::Identifier))
1487         return error("expected the name of the target flag");
1488       unsigned BitFlag = 0;
1489       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1490         return error("use of undefined target flag '" + Token.stringValue() +
1491                      "'");
1492       // TODO: Report an error when using a duplicate bit target flag.
1493       TF |= BitFlag;
1494       lex();
1495     }
1496     if (expectAndConsume(MIToken::rparen))
1497       return true;
1498   }
1499   auto Loc = Token.location();
1500   if (parseMachineOperand(Dest, TiedDefIdx))
1501     return true;
1502   if (!HasTargetFlags)
1503     return false;
1504   if (Dest.isReg())
1505     return error(Loc, "register operands can't have target flags");
1506   Dest.setTargetFlags(TF);
1507   return false;
1508 }
1509 
1510 bool MIParser::parseOffset(int64_t &Offset) {
1511   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1512     return false;
1513   StringRef Sign = Token.range();
1514   bool IsNegative = Token.is(MIToken::minus);
1515   lex();
1516   if (Token.isNot(MIToken::IntegerLiteral))
1517     return error("expected an integer literal after '" + Sign + "'");
1518   if (Token.integerValue().getMinSignedBits() > 64)
1519     return error("expected 64-bit integer (too large)");
1520   Offset = Token.integerValue().getExtValue();
1521   if (IsNegative)
1522     Offset = -Offset;
1523   lex();
1524   return false;
1525 }
1526 
1527 bool MIParser::parseAlignment(unsigned &Alignment) {
1528   assert(Token.is(MIToken::kw_align));
1529   lex();
1530   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1531     return error("expected an integer literal after 'align'");
1532   if (getUnsigned(Alignment))
1533     return true;
1534   lex();
1535   return false;
1536 }
1537 
1538 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
1539   int64_t Offset = 0;
1540   if (parseOffset(Offset))
1541     return true;
1542   Op.setOffset(Offset);
1543   return false;
1544 }
1545 
1546 bool MIParser::parseIRValue(const Value *&V) {
1547   switch (Token.kind()) {
1548   case MIToken::NamedIRValue: {
1549     V = MF.getFunction()->getValueSymbolTable().lookup(Token.stringValue());
1550     break;
1551   }
1552   case MIToken::IRValue: {
1553     unsigned SlotNumber = 0;
1554     if (getUnsigned(SlotNumber))
1555       return true;
1556     V = getIRValue(SlotNumber);
1557     break;
1558   }
1559   case MIToken::NamedGlobalValue:
1560   case MIToken::GlobalValue: {
1561     GlobalValue *GV = nullptr;
1562     if (parseGlobalValue(GV))
1563       return true;
1564     V = GV;
1565     break;
1566   }
1567   case MIToken::QuotedIRValue: {
1568     const Constant *C = nullptr;
1569     if (parseIRConstant(Token.location(), Token.stringValue(), C))
1570       return true;
1571     V = C;
1572     break;
1573   }
1574   default:
1575     llvm_unreachable("The current token should be an IR block reference");
1576   }
1577   if (!V)
1578     return error(Twine("use of undefined IR value '") + Token.range() + "'");
1579   return false;
1580 }
1581 
1582 bool MIParser::getUint64(uint64_t &Result) {
1583   assert(Token.hasIntegerValue());
1584   if (Token.integerValue().getActiveBits() > 64)
1585     return error("expected 64-bit integer (too large)");
1586   Result = Token.integerValue().getZExtValue();
1587   return false;
1588 }
1589 
1590 bool MIParser::parseMemoryOperandFlag(unsigned &Flags) {
1591   const unsigned OldFlags = Flags;
1592   switch (Token.kind()) {
1593   case MIToken::kw_volatile:
1594     Flags |= MachineMemOperand::MOVolatile;
1595     break;
1596   case MIToken::kw_non_temporal:
1597     Flags |= MachineMemOperand::MONonTemporal;
1598     break;
1599   case MIToken::kw_invariant:
1600     Flags |= MachineMemOperand::MOInvariant;
1601     break;
1602   // TODO: parse the target specific memory operand flags.
1603   default:
1604     llvm_unreachable("The current token should be a memory operand flag");
1605   }
1606   if (OldFlags == Flags)
1607     // We know that the same flag is specified more than once when the flags
1608     // weren't modified.
1609     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
1610   lex();
1611   return false;
1612 }
1613 
1614 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
1615   switch (Token.kind()) {
1616   case MIToken::kw_stack:
1617     PSV = MF.getPSVManager().getStack();
1618     break;
1619   case MIToken::kw_got:
1620     PSV = MF.getPSVManager().getGOT();
1621     break;
1622   case MIToken::kw_jump_table:
1623     PSV = MF.getPSVManager().getJumpTable();
1624     break;
1625   case MIToken::kw_constant_pool:
1626     PSV = MF.getPSVManager().getConstantPool();
1627     break;
1628   case MIToken::FixedStackObject: {
1629     int FI;
1630     if (parseFixedStackFrameIndex(FI))
1631       return true;
1632     PSV = MF.getPSVManager().getFixedStack(FI);
1633     // The token was already consumed, so use return here instead of break.
1634     return false;
1635   }
1636   case MIToken::kw_call_entry: {
1637     lex();
1638     switch (Token.kind()) {
1639     case MIToken::GlobalValue:
1640     case MIToken::NamedGlobalValue: {
1641       GlobalValue *GV = nullptr;
1642       if (parseGlobalValue(GV))
1643         return true;
1644       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
1645       break;
1646     }
1647     case MIToken::ExternalSymbol:
1648       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
1649           MF.createExternalSymbolName(Token.stringValue()));
1650       break;
1651     default:
1652       return error(
1653           "expected a global value or an external symbol after 'call-entry'");
1654     }
1655     break;
1656   }
1657   default:
1658     llvm_unreachable("The current token should be pseudo source value");
1659   }
1660   lex();
1661   return false;
1662 }
1663 
1664 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
1665   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
1666       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
1667       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::kw_call_entry)) {
1668     const PseudoSourceValue *PSV = nullptr;
1669     if (parseMemoryPseudoSourceValue(PSV))
1670       return true;
1671     int64_t Offset = 0;
1672     if (parseOffset(Offset))
1673       return true;
1674     Dest = MachinePointerInfo(PSV, Offset);
1675     return false;
1676   }
1677   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
1678       Token.isNot(MIToken::GlobalValue) &&
1679       Token.isNot(MIToken::NamedGlobalValue) &&
1680       Token.isNot(MIToken::QuotedIRValue))
1681     return error("expected an IR value reference");
1682   const Value *V = nullptr;
1683   if (parseIRValue(V))
1684     return true;
1685   if (!V->getType()->isPointerTy())
1686     return error("expected a pointer IR value");
1687   lex();
1688   int64_t Offset = 0;
1689   if (parseOffset(Offset))
1690     return true;
1691   Dest = MachinePointerInfo(V, Offset);
1692   return false;
1693 }
1694 
1695 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
1696   if (expectAndConsume(MIToken::lparen))
1697     return true;
1698   unsigned Flags = 0;
1699   while (Token.isMemoryOperandFlag()) {
1700     if (parseMemoryOperandFlag(Flags))
1701       return true;
1702   }
1703   if (Token.isNot(MIToken::Identifier) ||
1704       (Token.stringValue() != "load" && Token.stringValue() != "store"))
1705     return error("expected 'load' or 'store' memory operation");
1706   if (Token.stringValue() == "load")
1707     Flags |= MachineMemOperand::MOLoad;
1708   else
1709     Flags |= MachineMemOperand::MOStore;
1710   lex();
1711 
1712   if (Token.isNot(MIToken::IntegerLiteral))
1713     return error("expected the size integer literal after memory operation");
1714   uint64_t Size;
1715   if (getUint64(Size))
1716     return true;
1717   lex();
1718 
1719   const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
1720   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != Word)
1721     return error(Twine("expected '") + Word + "'");
1722   lex();
1723 
1724   MachinePointerInfo Ptr = MachinePointerInfo();
1725   if (parseMachinePointerInfo(Ptr))
1726     return true;
1727   unsigned BaseAlignment = Size;
1728   AAMDNodes AAInfo;
1729   MDNode *Range = nullptr;
1730   while (consumeIfPresent(MIToken::comma)) {
1731     switch (Token.kind()) {
1732     case MIToken::kw_align:
1733       if (parseAlignment(BaseAlignment))
1734         return true;
1735       break;
1736     case MIToken::md_tbaa:
1737       lex();
1738       if (parseMDNode(AAInfo.TBAA))
1739         return true;
1740       break;
1741     case MIToken::md_alias_scope:
1742       lex();
1743       if (parseMDNode(AAInfo.Scope))
1744         return true;
1745       break;
1746     case MIToken::md_noalias:
1747       lex();
1748       if (parseMDNode(AAInfo.NoAlias))
1749         return true;
1750       break;
1751     case MIToken::md_range:
1752       lex();
1753       if (parseMDNode(Range))
1754         return true;
1755       break;
1756     // TODO: Report an error on duplicate metadata nodes.
1757     default:
1758       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
1759                    "'!noalias' or '!range'");
1760     }
1761   }
1762   if (expectAndConsume(MIToken::rparen))
1763     return true;
1764   Dest =
1765       MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range);
1766   return false;
1767 }
1768 
1769 void MIParser::initNames2InstrOpCodes() {
1770   if (!Names2InstrOpCodes.empty())
1771     return;
1772   const auto *TII = MF.getSubtarget().getInstrInfo();
1773   assert(TII && "Expected target instruction info");
1774   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
1775     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
1776 }
1777 
1778 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
1779   initNames2InstrOpCodes();
1780   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
1781   if (InstrInfo == Names2InstrOpCodes.end())
1782     return true;
1783   OpCode = InstrInfo->getValue();
1784   return false;
1785 }
1786 
1787 void MIParser::initNames2Regs() {
1788   if (!Names2Regs.empty())
1789     return;
1790   // The '%noreg' register is the register 0.
1791   Names2Regs.insert(std::make_pair("noreg", 0));
1792   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1793   assert(TRI && "Expected target register info");
1794   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
1795     bool WasInserted =
1796         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
1797             .second;
1798     (void)WasInserted;
1799     assert(WasInserted && "Expected registers to be unique case-insensitively");
1800   }
1801 }
1802 
1803 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
1804   initNames2Regs();
1805   auto RegInfo = Names2Regs.find(RegName);
1806   if (RegInfo == Names2Regs.end())
1807     return true;
1808   Reg = RegInfo->getValue();
1809   return false;
1810 }
1811 
1812 void MIParser::initNames2RegMasks() {
1813   if (!Names2RegMasks.empty())
1814     return;
1815   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1816   assert(TRI && "Expected target register info");
1817   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
1818   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
1819   assert(RegMasks.size() == RegMaskNames.size());
1820   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
1821     Names2RegMasks.insert(
1822         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
1823 }
1824 
1825 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
1826   initNames2RegMasks();
1827   auto RegMaskInfo = Names2RegMasks.find(Identifier);
1828   if (RegMaskInfo == Names2RegMasks.end())
1829     return nullptr;
1830   return RegMaskInfo->getValue();
1831 }
1832 
1833 void MIParser::initNames2SubRegIndices() {
1834   if (!Names2SubRegIndices.empty())
1835     return;
1836   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1837   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
1838     Names2SubRegIndices.insert(
1839         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
1840 }
1841 
1842 unsigned MIParser::getSubRegIndex(StringRef Name) {
1843   initNames2SubRegIndices();
1844   auto SubRegInfo = Names2SubRegIndices.find(Name);
1845   if (SubRegInfo == Names2SubRegIndices.end())
1846     return 0;
1847   return SubRegInfo->getValue();
1848 }
1849 
1850 static void initSlots2BasicBlocks(
1851     const Function &F,
1852     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1853   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1854   MST.incorporateFunction(F);
1855   for (auto &BB : F) {
1856     if (BB.hasName())
1857       continue;
1858     int Slot = MST.getLocalSlot(&BB);
1859     if (Slot == -1)
1860       continue;
1861     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
1862   }
1863 }
1864 
1865 static const BasicBlock *getIRBlockFromSlot(
1866     unsigned Slot,
1867     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
1868   auto BlockInfo = Slots2BasicBlocks.find(Slot);
1869   if (BlockInfo == Slots2BasicBlocks.end())
1870     return nullptr;
1871   return BlockInfo->second;
1872 }
1873 
1874 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
1875   if (Slots2BasicBlocks.empty())
1876     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
1877   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
1878 }
1879 
1880 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
1881   if (&F == MF.getFunction())
1882     return getIRBlock(Slot);
1883   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
1884   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
1885   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
1886 }
1887 
1888 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
1889                            DenseMap<unsigned, const Value *> &Slots2Values) {
1890   int Slot = MST.getLocalSlot(V);
1891   if (Slot == -1)
1892     return;
1893   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
1894 }
1895 
1896 /// Creates the mapping from slot numbers to function's unnamed IR values.
1897 static void initSlots2Values(const Function &F,
1898                              DenseMap<unsigned, const Value *> &Slots2Values) {
1899   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
1900   MST.incorporateFunction(F);
1901   for (const auto &Arg : F.args())
1902     mapValueToSlot(&Arg, MST, Slots2Values);
1903   for (const auto &BB : F) {
1904     mapValueToSlot(&BB, MST, Slots2Values);
1905     for (const auto &I : BB)
1906       mapValueToSlot(&I, MST, Slots2Values);
1907   }
1908 }
1909 
1910 const Value *MIParser::getIRValue(unsigned Slot) {
1911   if (Slots2Values.empty())
1912     initSlots2Values(*MF.getFunction(), Slots2Values);
1913   auto ValueInfo = Slots2Values.find(Slot);
1914   if (ValueInfo == Slots2Values.end())
1915     return nullptr;
1916   return ValueInfo->second;
1917 }
1918 
1919 void MIParser::initNames2TargetIndices() {
1920   if (!Names2TargetIndices.empty())
1921     return;
1922   const auto *TII = MF.getSubtarget().getInstrInfo();
1923   assert(TII && "Expected target instruction info");
1924   auto Indices = TII->getSerializableTargetIndices();
1925   for (const auto &I : Indices)
1926     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
1927 }
1928 
1929 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
1930   initNames2TargetIndices();
1931   auto IndexInfo = Names2TargetIndices.find(Name);
1932   if (IndexInfo == Names2TargetIndices.end())
1933     return true;
1934   Index = IndexInfo->second;
1935   return false;
1936 }
1937 
1938 void MIParser::initNames2DirectTargetFlags() {
1939   if (!Names2DirectTargetFlags.empty())
1940     return;
1941   const auto *TII = MF.getSubtarget().getInstrInfo();
1942   assert(TII && "Expected target instruction info");
1943   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
1944   for (const auto &I : Flags)
1945     Names2DirectTargetFlags.insert(
1946         std::make_pair(StringRef(I.second), I.first));
1947 }
1948 
1949 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
1950   initNames2DirectTargetFlags();
1951   auto FlagInfo = Names2DirectTargetFlags.find(Name);
1952   if (FlagInfo == Names2DirectTargetFlags.end())
1953     return true;
1954   Flag = FlagInfo->second;
1955   return false;
1956 }
1957 
1958 void MIParser::initNames2BitmaskTargetFlags() {
1959   if (!Names2BitmaskTargetFlags.empty())
1960     return;
1961   const auto *TII = MF.getSubtarget().getInstrInfo();
1962   assert(TII && "Expected target instruction info");
1963   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
1964   for (const auto &I : Flags)
1965     Names2BitmaskTargetFlags.insert(
1966         std::make_pair(StringRef(I.second), I.first));
1967 }
1968 
1969 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
1970   initNames2BitmaskTargetFlags();
1971   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
1972   if (FlagInfo == Names2BitmaskTargetFlags.end())
1973     return true;
1974   Flag = FlagInfo->second;
1975   return false;
1976 }
1977 
1978 bool llvm::parseMachineBasicBlockDefinitions(MachineFunction &MF, StringRef Src,
1979                                              PerFunctionMIParsingState &PFS,
1980                                              const SlotMapping &IRSlots,
1981                                              SMDiagnostic &Error) {
1982   SourceMgr SM;
1983   SM.AddNewSourceBuffer(
1984       MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false),
1985       SMLoc());
1986   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
1987       .parseBasicBlockDefinitions(PFS.MBBSlots);
1988 }
1989 
1990 bool llvm::parseMachineInstructions(MachineFunction &MF, StringRef Src,
1991                                     const PerFunctionMIParsingState &PFS,
1992                                     const SlotMapping &IRSlots,
1993                                     SMDiagnostic &Error) {
1994   SourceMgr SM;
1995   SM.AddNewSourceBuffer(
1996       MemoryBuffer::getMemBuffer(Src, "", /*RequiresNullTerminator=*/false),
1997       SMLoc());
1998   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseBasicBlocks();
1999 }
2000 
2001 bool llvm::parseMBBReference(MachineBasicBlock *&MBB, SourceMgr &SM,
2002                              MachineFunction &MF, StringRef Src,
2003                              const PerFunctionMIParsingState &PFS,
2004                              const SlotMapping &IRSlots, SMDiagnostic &Error) {
2005   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMBB(MBB);
2006 }
2007 
2008 bool llvm::parseNamedRegisterReference(unsigned &Reg, SourceMgr &SM,
2009                                        MachineFunction &MF, StringRef Src,
2010                                        const PerFunctionMIParsingState &PFS,
2011                                        const SlotMapping &IRSlots,
2012                                        SMDiagnostic &Error) {
2013   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2014       .parseStandaloneNamedRegister(Reg);
2015 }
2016 
2017 bool llvm::parseVirtualRegisterReference(unsigned &Reg, SourceMgr &SM,
2018                                          MachineFunction &MF, StringRef Src,
2019                                          const PerFunctionMIParsingState &PFS,
2020                                          const SlotMapping &IRSlots,
2021                                          SMDiagnostic &Error) {
2022   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2023       .parseStandaloneVirtualRegister(Reg);
2024 }
2025 
2026 bool llvm::parseStackObjectReference(int &FI, SourceMgr &SM,
2027                                      MachineFunction &MF, StringRef Src,
2028                                      const PerFunctionMIParsingState &PFS,
2029                                      const SlotMapping &IRSlots,
2030                                      SMDiagnostic &Error) {
2031   return MIParser(SM, MF, Error, Src, PFS, IRSlots)
2032       .parseStandaloneStackObject(FI);
2033 }
2034 
2035 bool llvm::parseMDNode(MDNode *&Node, SourceMgr &SM, MachineFunction &MF,
2036                        StringRef Src, const PerFunctionMIParsingState &PFS,
2037                        const SlotMapping &IRSlots, SMDiagnostic &Error) {
2038   return MIParser(SM, MF, Error, Src, PFS, IRSlots).parseStandaloneMDNode(Node);
2039 }
2040