1 //===- MIParser.cpp - Machine instructions parser implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the parsing of machine instructions. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/MIRParser/MIParser.h" 14 #include "MILexer.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/APSInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringMap.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/StringSwitch.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/AsmParser/Parser.h" 28 #include "llvm/AsmParser/SlotMapping.h" 29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h" 30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" 31 #include "llvm/CodeGen/MIRFormatter.h" 32 #include "llvm/CodeGen/MIRPrinter.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineFrameInfo.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineInstrBuilder.h" 38 #include "llvm/CodeGen/MachineMemOperand.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/TargetInstrInfo.h" 42 #include "llvm/CodeGen/TargetRegisterInfo.h" 43 #include "llvm/CodeGen/TargetSubtargetInfo.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DataLayout.h" 47 #include "llvm/IR/DebugInfoMetadata.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/ModuleSlotTracker.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/MC/LaneBitmask.h" 60 #include "llvm/MC/MCContext.h" 61 #include "llvm/MC/MCDwarf.h" 62 #include "llvm/MC/MCInstrDesc.h" 63 #include "llvm/MC/MCRegisterInfo.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/BranchProbability.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/LowLevelTypeImpl.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/SMLoc.h" 71 #include "llvm/Support/SourceMgr.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include "llvm/Target/TargetIntrinsicInfo.h" 74 #include "llvm/Target/TargetMachine.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cctype> 78 #include <cstddef> 79 #include <cstdint> 80 #include <limits> 81 #include <string> 82 #include <utility> 83 84 using namespace llvm; 85 86 void PerTargetMIParsingState::setTarget( 87 const TargetSubtargetInfo &NewSubtarget) { 88 89 // If the subtarget changed, over conservatively assume everything is invalid. 90 if (&Subtarget == &NewSubtarget) 91 return; 92 93 Names2InstrOpCodes.clear(); 94 Names2Regs.clear(); 95 Names2RegMasks.clear(); 96 Names2SubRegIndices.clear(); 97 Names2TargetIndices.clear(); 98 Names2DirectTargetFlags.clear(); 99 Names2BitmaskTargetFlags.clear(); 100 Names2MMOTargetFlags.clear(); 101 102 initNames2RegClasses(); 103 initNames2RegBanks(); 104 } 105 106 void PerTargetMIParsingState::initNames2Regs() { 107 if (!Names2Regs.empty()) 108 return; 109 110 // The '%noreg' register is the register 0. 111 Names2Regs.insert(std::make_pair("noreg", 0)); 112 const auto *TRI = Subtarget.getRegisterInfo(); 113 assert(TRI && "Expected target register info"); 114 115 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) { 116 bool WasInserted = 117 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I)) 118 .second; 119 (void)WasInserted; 120 assert(WasInserted && "Expected registers to be unique case-insensitively"); 121 } 122 } 123 124 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName, 125 Register &Reg) { 126 initNames2Regs(); 127 auto RegInfo = Names2Regs.find(RegName); 128 if (RegInfo == Names2Regs.end()) 129 return true; 130 Reg = RegInfo->getValue(); 131 return false; 132 } 133 134 void PerTargetMIParsingState::initNames2InstrOpCodes() { 135 if (!Names2InstrOpCodes.empty()) 136 return; 137 const auto *TII = Subtarget.getInstrInfo(); 138 assert(TII && "Expected target instruction info"); 139 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I) 140 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I)); 141 } 142 143 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName, 144 unsigned &OpCode) { 145 initNames2InstrOpCodes(); 146 auto InstrInfo = Names2InstrOpCodes.find(InstrName); 147 if (InstrInfo == Names2InstrOpCodes.end()) 148 return true; 149 OpCode = InstrInfo->getValue(); 150 return false; 151 } 152 153 void PerTargetMIParsingState::initNames2RegMasks() { 154 if (!Names2RegMasks.empty()) 155 return; 156 const auto *TRI = Subtarget.getRegisterInfo(); 157 assert(TRI && "Expected target register info"); 158 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks(); 159 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames(); 160 assert(RegMasks.size() == RegMaskNames.size()); 161 for (size_t I = 0, E = RegMasks.size(); I < E; ++I) 162 Names2RegMasks.insert( 163 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I])); 164 } 165 166 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) { 167 initNames2RegMasks(); 168 auto RegMaskInfo = Names2RegMasks.find(Identifier); 169 if (RegMaskInfo == Names2RegMasks.end()) 170 return nullptr; 171 return RegMaskInfo->getValue(); 172 } 173 174 void PerTargetMIParsingState::initNames2SubRegIndices() { 175 if (!Names2SubRegIndices.empty()) 176 return; 177 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 178 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I) 179 Names2SubRegIndices.insert( 180 std::make_pair(TRI->getSubRegIndexName(I), I)); 181 } 182 183 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) { 184 initNames2SubRegIndices(); 185 auto SubRegInfo = Names2SubRegIndices.find(Name); 186 if (SubRegInfo == Names2SubRegIndices.end()) 187 return 0; 188 return SubRegInfo->getValue(); 189 } 190 191 void PerTargetMIParsingState::initNames2TargetIndices() { 192 if (!Names2TargetIndices.empty()) 193 return; 194 const auto *TII = Subtarget.getInstrInfo(); 195 assert(TII && "Expected target instruction info"); 196 auto Indices = TII->getSerializableTargetIndices(); 197 for (const auto &I : Indices) 198 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first)); 199 } 200 201 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) { 202 initNames2TargetIndices(); 203 auto IndexInfo = Names2TargetIndices.find(Name); 204 if (IndexInfo == Names2TargetIndices.end()) 205 return true; 206 Index = IndexInfo->second; 207 return false; 208 } 209 210 void PerTargetMIParsingState::initNames2DirectTargetFlags() { 211 if (!Names2DirectTargetFlags.empty()) 212 return; 213 214 const auto *TII = Subtarget.getInstrInfo(); 215 assert(TII && "Expected target instruction info"); 216 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags(); 217 for (const auto &I : Flags) 218 Names2DirectTargetFlags.insert( 219 std::make_pair(StringRef(I.second), I.first)); 220 } 221 222 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name, 223 unsigned &Flag) { 224 initNames2DirectTargetFlags(); 225 auto FlagInfo = Names2DirectTargetFlags.find(Name); 226 if (FlagInfo == Names2DirectTargetFlags.end()) 227 return true; 228 Flag = FlagInfo->second; 229 return false; 230 } 231 232 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() { 233 if (!Names2BitmaskTargetFlags.empty()) 234 return; 235 236 const auto *TII = Subtarget.getInstrInfo(); 237 assert(TII && "Expected target instruction info"); 238 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags(); 239 for (const auto &I : Flags) 240 Names2BitmaskTargetFlags.insert( 241 std::make_pair(StringRef(I.second), I.first)); 242 } 243 244 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name, 245 unsigned &Flag) { 246 initNames2BitmaskTargetFlags(); 247 auto FlagInfo = Names2BitmaskTargetFlags.find(Name); 248 if (FlagInfo == Names2BitmaskTargetFlags.end()) 249 return true; 250 Flag = FlagInfo->second; 251 return false; 252 } 253 254 void PerTargetMIParsingState::initNames2MMOTargetFlags() { 255 if (!Names2MMOTargetFlags.empty()) 256 return; 257 258 const auto *TII = Subtarget.getInstrInfo(); 259 assert(TII && "Expected target instruction info"); 260 auto Flags = TII->getSerializableMachineMemOperandTargetFlags(); 261 for (const auto &I : Flags) 262 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first)); 263 } 264 265 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name, 266 MachineMemOperand::Flags &Flag) { 267 initNames2MMOTargetFlags(); 268 auto FlagInfo = Names2MMOTargetFlags.find(Name); 269 if (FlagInfo == Names2MMOTargetFlags.end()) 270 return true; 271 Flag = FlagInfo->second; 272 return false; 273 } 274 275 void PerTargetMIParsingState::initNames2RegClasses() { 276 if (!Names2RegClasses.empty()) 277 return; 278 279 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 280 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) { 281 const auto *RC = TRI->getRegClass(I); 282 Names2RegClasses.insert( 283 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC)); 284 } 285 } 286 287 void PerTargetMIParsingState::initNames2RegBanks() { 288 if (!Names2RegBanks.empty()) 289 return; 290 291 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo(); 292 // If the target does not support GlobalISel, we may not have a 293 // register bank info. 294 if (!RBI) 295 return; 296 297 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) { 298 const auto &RegBank = RBI->getRegBank(I); 299 Names2RegBanks.insert( 300 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank)); 301 } 302 } 303 304 const TargetRegisterClass * 305 PerTargetMIParsingState::getRegClass(StringRef Name) { 306 auto RegClassInfo = Names2RegClasses.find(Name); 307 if (RegClassInfo == Names2RegClasses.end()) 308 return nullptr; 309 return RegClassInfo->getValue(); 310 } 311 312 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) { 313 auto RegBankInfo = Names2RegBanks.find(Name); 314 if (RegBankInfo == Names2RegBanks.end()) 315 return nullptr; 316 return RegBankInfo->getValue(); 317 } 318 319 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF, 320 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T) 321 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) { 322 } 323 324 VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) { 325 auto I = VRegInfos.insert(std::make_pair(Num, nullptr)); 326 if (I.second) { 327 MachineRegisterInfo &MRI = MF.getRegInfo(); 328 VRegInfo *Info = new (Allocator) VRegInfo; 329 Info->VReg = MRI.createIncompleteVirtualRegister(); 330 I.first->second = Info; 331 } 332 return *I.first->second; 333 } 334 335 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) { 336 assert(RegName != "" && "Expected named reg."); 337 338 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr)); 339 if (I.second) { 340 VRegInfo *Info = new (Allocator) VRegInfo; 341 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName); 342 I.first->second = Info; 343 } 344 return *I.first->second; 345 } 346 347 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST, 348 DenseMap<unsigned, const Value *> &Slots2Values) { 349 int Slot = MST.getLocalSlot(V); 350 if (Slot == -1) 351 return; 352 Slots2Values.insert(std::make_pair(unsigned(Slot), V)); 353 } 354 355 /// Creates the mapping from slot numbers to function's unnamed IR values. 356 static void initSlots2Values(const Function &F, 357 DenseMap<unsigned, const Value *> &Slots2Values) { 358 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 359 MST.incorporateFunction(F); 360 for (const auto &Arg : F.args()) 361 mapValueToSlot(&Arg, MST, Slots2Values); 362 for (const auto &BB : F) { 363 mapValueToSlot(&BB, MST, Slots2Values); 364 for (const auto &I : BB) 365 mapValueToSlot(&I, MST, Slots2Values); 366 } 367 } 368 369 const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) { 370 if (Slots2Values.empty()) 371 initSlots2Values(MF.getFunction(), Slots2Values); 372 return Slots2Values.lookup(Slot); 373 } 374 375 namespace { 376 377 /// A wrapper struct around the 'MachineOperand' struct that includes a source 378 /// range and other attributes. 379 struct ParsedMachineOperand { 380 MachineOperand Operand; 381 StringRef::iterator Begin; 382 StringRef::iterator End; 383 Optional<unsigned> TiedDefIdx; 384 385 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin, 386 StringRef::iterator End, Optional<unsigned> &TiedDefIdx) 387 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) { 388 if (TiedDefIdx) 389 assert(Operand.isReg() && Operand.isUse() && 390 "Only used register operands can be tied"); 391 } 392 }; 393 394 class MIParser { 395 MachineFunction &MF; 396 SMDiagnostic &Error; 397 StringRef Source, CurrentSource; 398 MIToken Token; 399 PerFunctionMIParsingState &PFS; 400 /// Maps from slot numbers to function's unnamed basic blocks. 401 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks; 402 403 public: 404 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 405 StringRef Source); 406 407 /// \p SkipChar gives the number of characters to skip before looking 408 /// for the next token. 409 void lex(unsigned SkipChar = 0); 410 411 /// Report an error at the current location with the given message. 412 /// 413 /// This function always return true. 414 bool error(const Twine &Msg); 415 416 /// Report an error at the given location with the given message. 417 /// 418 /// This function always return true. 419 bool error(StringRef::iterator Loc, const Twine &Msg); 420 421 bool 422 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 423 bool parseBasicBlocks(); 424 bool parse(MachineInstr *&MI); 425 bool parseStandaloneMBB(MachineBasicBlock *&MBB); 426 bool parseStandaloneNamedRegister(Register &Reg); 427 bool parseStandaloneVirtualRegister(VRegInfo *&Info); 428 bool parseStandaloneRegister(Register &Reg); 429 bool parseStandaloneStackObject(int &FI); 430 bool parseStandaloneMDNode(MDNode *&Node); 431 432 bool 433 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots); 434 bool parseBasicBlock(MachineBasicBlock &MBB, 435 MachineBasicBlock *&AddFalthroughFrom); 436 bool parseBasicBlockLiveins(MachineBasicBlock &MBB); 437 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB); 438 439 bool parseNamedRegister(Register &Reg); 440 bool parseVirtualRegister(VRegInfo *&Info); 441 bool parseNamedVirtualRegister(VRegInfo *&Info); 442 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo); 443 bool parseRegisterFlag(unsigned &Flags); 444 bool parseRegisterClassOrBank(VRegInfo &RegInfo); 445 bool parseSubRegisterIndex(unsigned &SubReg); 446 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx); 447 bool parseRegisterOperand(MachineOperand &Dest, 448 Optional<unsigned> &TiedDefIdx, bool IsDef = false); 449 bool parseImmediateOperand(MachineOperand &Dest); 450 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 451 const Constant *&C); 452 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C); 453 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty); 454 bool parseTypedImmediateOperand(MachineOperand &Dest); 455 bool parseFPImmediateOperand(MachineOperand &Dest); 456 bool parseMBBReference(MachineBasicBlock *&MBB); 457 bool parseMBBOperand(MachineOperand &Dest); 458 bool parseStackFrameIndex(int &FI); 459 bool parseStackObjectOperand(MachineOperand &Dest); 460 bool parseFixedStackFrameIndex(int &FI); 461 bool parseFixedStackObjectOperand(MachineOperand &Dest); 462 bool parseGlobalValue(GlobalValue *&GV); 463 bool parseGlobalAddressOperand(MachineOperand &Dest); 464 bool parseConstantPoolIndexOperand(MachineOperand &Dest); 465 bool parseSubRegisterIndexOperand(MachineOperand &Dest); 466 bool parseJumpTableIndexOperand(MachineOperand &Dest); 467 bool parseExternalSymbolOperand(MachineOperand &Dest); 468 bool parseMCSymbolOperand(MachineOperand &Dest); 469 bool parseMDNode(MDNode *&Node); 470 bool parseDIExpression(MDNode *&Expr); 471 bool parseDILocation(MDNode *&Expr); 472 bool parseMetadataOperand(MachineOperand &Dest); 473 bool parseCFIOffset(int &Offset); 474 bool parseCFIRegister(Register &Reg); 475 bool parseCFIAddressSpace(unsigned &AddressSpace); 476 bool parseCFIEscapeValues(std::string& Values); 477 bool parseCFIOperand(MachineOperand &Dest); 478 bool parseIRBlock(BasicBlock *&BB, const Function &F); 479 bool parseBlockAddressOperand(MachineOperand &Dest); 480 bool parseIntrinsicOperand(MachineOperand &Dest); 481 bool parsePredicateOperand(MachineOperand &Dest); 482 bool parseShuffleMaskOperand(MachineOperand &Dest); 483 bool parseTargetIndexOperand(MachineOperand &Dest); 484 bool parseCustomRegisterMaskOperand(MachineOperand &Dest); 485 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest); 486 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 487 MachineOperand &Dest, 488 Optional<unsigned> &TiedDefIdx); 489 bool parseMachineOperandAndTargetFlags(const unsigned OpCode, 490 const unsigned OpIdx, 491 MachineOperand &Dest, 492 Optional<unsigned> &TiedDefIdx); 493 bool parseOffset(int64_t &Offset); 494 bool parseAlignment(unsigned &Alignment); 495 bool parseAddrspace(unsigned &Addrspace); 496 bool parseSectionID(Optional<MBBSectionID> &SID); 497 bool parseOperandsOffset(MachineOperand &Op); 498 bool parseIRValue(const Value *&V); 499 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags); 500 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV); 501 bool parseMachinePointerInfo(MachinePointerInfo &Dest); 502 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID); 503 bool parseOptionalAtomicOrdering(AtomicOrdering &Order); 504 bool parseMachineMemoryOperand(MachineMemOperand *&Dest); 505 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol); 506 bool parseHeapAllocMarker(MDNode *&Node); 507 508 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx, 509 MachineOperand &Dest, const MIRFormatter &MF); 510 511 private: 512 /// Convert the integer literal in the current token into an unsigned integer. 513 /// 514 /// Return true if an error occurred. 515 bool getUnsigned(unsigned &Result); 516 517 /// Convert the integer literal in the current token into an uint64. 518 /// 519 /// Return true if an error occurred. 520 bool getUint64(uint64_t &Result); 521 522 /// Convert the hexadecimal literal in the current token into an unsigned 523 /// APInt with a minimum bitwidth required to represent the value. 524 /// 525 /// Return true if the literal does not represent an integer value. 526 bool getHexUint(APInt &Result); 527 528 /// If the current token is of the given kind, consume it and return false. 529 /// Otherwise report an error and return true. 530 bool expectAndConsume(MIToken::TokenKind TokenKind); 531 532 /// If the current token is of the given kind, consume it and return true. 533 /// Otherwise return false. 534 bool consumeIfPresent(MIToken::TokenKind TokenKind); 535 536 bool parseInstruction(unsigned &OpCode, unsigned &Flags); 537 538 bool assignRegisterTies(MachineInstr &MI, 539 ArrayRef<ParsedMachineOperand> Operands); 540 541 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 542 const MCInstrDesc &MCID); 543 544 const BasicBlock *getIRBlock(unsigned Slot); 545 const BasicBlock *getIRBlock(unsigned Slot, const Function &F); 546 547 /// Get or create an MCSymbol for a given name. 548 MCSymbol *getOrCreateMCSymbol(StringRef Name); 549 550 /// parseStringConstant 551 /// ::= StringConstant 552 bool parseStringConstant(std::string &Result); 553 }; 554 555 } // end anonymous namespace 556 557 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error, 558 StringRef Source) 559 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS) 560 {} 561 562 void MIParser::lex(unsigned SkipChar) { 563 CurrentSource = lexMIToken( 564 CurrentSource.slice(SkipChar, StringRef::npos), Token, 565 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); }); 566 } 567 568 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); } 569 570 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) { 571 const SourceMgr &SM = *PFS.SM; 572 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size())); 573 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID()); 574 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) { 575 // Create an ordinary diagnostic when the source manager's buffer is the 576 // source string. 577 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg); 578 return true; 579 } 580 // Create a diagnostic for a YAML string literal. 581 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 582 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(), 583 Source, None, None); 584 return true; 585 } 586 587 typedef function_ref<bool(StringRef::iterator Loc, const Twine &)> 588 ErrorCallbackType; 589 590 static const char *toString(MIToken::TokenKind TokenKind) { 591 switch (TokenKind) { 592 case MIToken::comma: 593 return "','"; 594 case MIToken::equal: 595 return "'='"; 596 case MIToken::colon: 597 return "':'"; 598 case MIToken::lparen: 599 return "'('"; 600 case MIToken::rparen: 601 return "')'"; 602 default: 603 return "<unknown token>"; 604 } 605 } 606 607 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) { 608 if (Token.isNot(TokenKind)) 609 return error(Twine("expected ") + toString(TokenKind)); 610 lex(); 611 return false; 612 } 613 614 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) { 615 if (Token.isNot(TokenKind)) 616 return false; 617 lex(); 618 return true; 619 } 620 621 // Parse Machine Basic Block Section ID. 622 bool MIParser::parseSectionID(Optional<MBBSectionID> &SID) { 623 assert(Token.is(MIToken::kw_bbsections)); 624 lex(); 625 if (Token.is(MIToken::IntegerLiteral)) { 626 unsigned Value = 0; 627 if (getUnsigned(Value)) 628 return error("Unknown Section ID"); 629 SID = MBBSectionID{Value}; 630 } else { 631 const StringRef &S = Token.stringValue(); 632 if (S == "Exception") 633 SID = MBBSectionID::ExceptionSectionID; 634 else if (S == "Cold") 635 SID = MBBSectionID::ColdSectionID; 636 else 637 return error("Unknown Section ID"); 638 } 639 lex(); 640 return false; 641 } 642 643 bool MIParser::parseBasicBlockDefinition( 644 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 645 assert(Token.is(MIToken::MachineBasicBlockLabel)); 646 unsigned ID = 0; 647 if (getUnsigned(ID)) 648 return true; 649 auto Loc = Token.location(); 650 auto Name = Token.stringValue(); 651 lex(); 652 bool HasAddressTaken = false; 653 bool IsLandingPad = false; 654 bool IsEHFuncletEntry = false; 655 Optional<MBBSectionID> SectionID; 656 unsigned Alignment = 0; 657 BasicBlock *BB = nullptr; 658 if (consumeIfPresent(MIToken::lparen)) { 659 do { 660 // TODO: Report an error when multiple same attributes are specified. 661 switch (Token.kind()) { 662 case MIToken::kw_address_taken: 663 HasAddressTaken = true; 664 lex(); 665 break; 666 case MIToken::kw_landing_pad: 667 IsLandingPad = true; 668 lex(); 669 break; 670 case MIToken::kw_ehfunclet_entry: 671 IsEHFuncletEntry = true; 672 lex(); 673 break; 674 case MIToken::kw_align: 675 if (parseAlignment(Alignment)) 676 return true; 677 break; 678 case MIToken::IRBlock: 679 // TODO: Report an error when both name and ir block are specified. 680 if (parseIRBlock(BB, MF.getFunction())) 681 return true; 682 lex(); 683 break; 684 case MIToken::kw_bbsections: 685 if (parseSectionID(SectionID)) 686 return true; 687 break; 688 default: 689 break; 690 } 691 } while (consumeIfPresent(MIToken::comma)); 692 if (expectAndConsume(MIToken::rparen)) 693 return true; 694 } 695 if (expectAndConsume(MIToken::colon)) 696 return true; 697 698 if (!Name.empty()) { 699 BB = dyn_cast_or_null<BasicBlock>( 700 MF.getFunction().getValueSymbolTable()->lookup(Name)); 701 if (!BB) 702 return error(Loc, Twine("basic block '") + Name + 703 "' is not defined in the function '" + 704 MF.getName() + "'"); 705 } 706 auto *MBB = MF.CreateMachineBasicBlock(BB); 707 MF.insert(MF.end(), MBB); 708 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second; 709 if (!WasInserted) 710 return error(Loc, Twine("redefinition of machine basic block with id #") + 711 Twine(ID)); 712 if (Alignment) 713 MBB->setAlignment(Align(Alignment)); 714 if (HasAddressTaken) 715 MBB->setHasAddressTaken(); 716 MBB->setIsEHPad(IsLandingPad); 717 MBB->setIsEHFuncletEntry(IsEHFuncletEntry); 718 if (SectionID.hasValue()) { 719 MBB->setSectionID(SectionID.getValue()); 720 MF.setBBSectionsType(BasicBlockSection::List); 721 } 722 return false; 723 } 724 725 bool MIParser::parseBasicBlockDefinitions( 726 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) { 727 lex(); 728 // Skip until the first machine basic block. 729 while (Token.is(MIToken::Newline)) 730 lex(); 731 if (Token.isErrorOrEOF()) 732 return Token.isError(); 733 if (Token.isNot(MIToken::MachineBasicBlockLabel)) 734 return error("expected a basic block definition before instructions"); 735 unsigned BraceDepth = 0; 736 do { 737 if (parseBasicBlockDefinition(MBBSlots)) 738 return true; 739 bool IsAfterNewline = false; 740 // Skip until the next machine basic block. 741 while (true) { 742 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) || 743 Token.isErrorOrEOF()) 744 break; 745 else if (Token.is(MIToken::MachineBasicBlockLabel)) 746 return error("basic block definition should be located at the start of " 747 "the line"); 748 else if (consumeIfPresent(MIToken::Newline)) { 749 IsAfterNewline = true; 750 continue; 751 } 752 IsAfterNewline = false; 753 if (Token.is(MIToken::lbrace)) 754 ++BraceDepth; 755 if (Token.is(MIToken::rbrace)) { 756 if (!BraceDepth) 757 return error("extraneous closing brace ('}')"); 758 --BraceDepth; 759 } 760 lex(); 761 } 762 // Verify that we closed all of the '{' at the end of a file or a block. 763 if (!Token.isError() && BraceDepth) 764 return error("expected '}'"); // FIXME: Report a note that shows '{'. 765 } while (!Token.isErrorOrEOF()); 766 return Token.isError(); 767 } 768 769 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) { 770 assert(Token.is(MIToken::kw_liveins)); 771 lex(); 772 if (expectAndConsume(MIToken::colon)) 773 return true; 774 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins. 775 return false; 776 do { 777 if (Token.isNot(MIToken::NamedRegister)) 778 return error("expected a named register"); 779 Register Reg; 780 if (parseNamedRegister(Reg)) 781 return true; 782 lex(); 783 LaneBitmask Mask = LaneBitmask::getAll(); 784 if (consumeIfPresent(MIToken::colon)) { 785 // Parse lane mask. 786 if (Token.isNot(MIToken::IntegerLiteral) && 787 Token.isNot(MIToken::HexLiteral)) 788 return error("expected a lane mask"); 789 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t), 790 "Use correct get-function for lane mask"); 791 LaneBitmask::Type V; 792 if (getUint64(V)) 793 return error("invalid lane mask value"); 794 Mask = LaneBitmask(V); 795 lex(); 796 } 797 MBB.addLiveIn(Reg, Mask); 798 } while (consumeIfPresent(MIToken::comma)); 799 return false; 800 } 801 802 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) { 803 assert(Token.is(MIToken::kw_successors)); 804 lex(); 805 if (expectAndConsume(MIToken::colon)) 806 return true; 807 if (Token.isNewlineOrEOF()) // Allow an empty list of successors. 808 return false; 809 do { 810 if (Token.isNot(MIToken::MachineBasicBlock)) 811 return error("expected a machine basic block reference"); 812 MachineBasicBlock *SuccMBB = nullptr; 813 if (parseMBBReference(SuccMBB)) 814 return true; 815 lex(); 816 unsigned Weight = 0; 817 if (consumeIfPresent(MIToken::lparen)) { 818 if (Token.isNot(MIToken::IntegerLiteral) && 819 Token.isNot(MIToken::HexLiteral)) 820 return error("expected an integer literal after '('"); 821 if (getUnsigned(Weight)) 822 return true; 823 lex(); 824 if (expectAndConsume(MIToken::rparen)) 825 return true; 826 } 827 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight)); 828 } while (consumeIfPresent(MIToken::comma)); 829 MBB.normalizeSuccProbs(); 830 return false; 831 } 832 833 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB, 834 MachineBasicBlock *&AddFalthroughFrom) { 835 // Skip the definition. 836 assert(Token.is(MIToken::MachineBasicBlockLabel)); 837 lex(); 838 if (consumeIfPresent(MIToken::lparen)) { 839 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF()) 840 lex(); 841 consumeIfPresent(MIToken::rparen); 842 } 843 consumeIfPresent(MIToken::colon); 844 845 // Parse the liveins and successors. 846 // N.B: Multiple lists of successors and liveins are allowed and they're 847 // merged into one. 848 // Example: 849 // liveins: %edi 850 // liveins: %esi 851 // 852 // is equivalent to 853 // liveins: %edi, %esi 854 bool ExplicitSuccessors = false; 855 while (true) { 856 if (Token.is(MIToken::kw_successors)) { 857 if (parseBasicBlockSuccessors(MBB)) 858 return true; 859 ExplicitSuccessors = true; 860 } else if (Token.is(MIToken::kw_liveins)) { 861 if (parseBasicBlockLiveins(MBB)) 862 return true; 863 } else if (consumeIfPresent(MIToken::Newline)) { 864 continue; 865 } else 866 break; 867 if (!Token.isNewlineOrEOF()) 868 return error("expected line break at the end of a list"); 869 lex(); 870 } 871 872 // Parse the instructions. 873 bool IsInBundle = false; 874 MachineInstr *PrevMI = nullptr; 875 while (!Token.is(MIToken::MachineBasicBlockLabel) && 876 !Token.is(MIToken::Eof)) { 877 if (consumeIfPresent(MIToken::Newline)) 878 continue; 879 if (consumeIfPresent(MIToken::rbrace)) { 880 // The first parsing pass should verify that all closing '}' have an 881 // opening '{'. 882 assert(IsInBundle); 883 IsInBundle = false; 884 continue; 885 } 886 MachineInstr *MI = nullptr; 887 if (parse(MI)) 888 return true; 889 MBB.insert(MBB.end(), MI); 890 if (IsInBundle) { 891 PrevMI->setFlag(MachineInstr::BundledSucc); 892 MI->setFlag(MachineInstr::BundledPred); 893 } 894 PrevMI = MI; 895 if (Token.is(MIToken::lbrace)) { 896 if (IsInBundle) 897 return error("nested instruction bundles are not allowed"); 898 lex(); 899 // This instruction is the start of the bundle. 900 MI->setFlag(MachineInstr::BundledSucc); 901 IsInBundle = true; 902 if (!Token.is(MIToken::Newline)) 903 // The next instruction can be on the same line. 904 continue; 905 } 906 assert(Token.isNewlineOrEOF() && "MI is not fully parsed"); 907 lex(); 908 } 909 910 // Construct successor list by searching for basic block machine operands. 911 if (!ExplicitSuccessors) { 912 SmallVector<MachineBasicBlock*,4> Successors; 913 bool IsFallthrough; 914 guessSuccessors(MBB, Successors, IsFallthrough); 915 for (MachineBasicBlock *Succ : Successors) 916 MBB.addSuccessor(Succ); 917 918 if (IsFallthrough) { 919 AddFalthroughFrom = &MBB; 920 } else { 921 MBB.normalizeSuccProbs(); 922 } 923 } 924 925 return false; 926 } 927 928 bool MIParser::parseBasicBlocks() { 929 lex(); 930 // Skip until the first machine basic block. 931 while (Token.is(MIToken::Newline)) 932 lex(); 933 if (Token.isErrorOrEOF()) 934 return Token.isError(); 935 // The first parsing pass should have verified that this token is a MBB label 936 // in the 'parseBasicBlockDefinitions' method. 937 assert(Token.is(MIToken::MachineBasicBlockLabel)); 938 MachineBasicBlock *AddFalthroughFrom = nullptr; 939 do { 940 MachineBasicBlock *MBB = nullptr; 941 if (parseMBBReference(MBB)) 942 return true; 943 if (AddFalthroughFrom) { 944 if (!AddFalthroughFrom->isSuccessor(MBB)) 945 AddFalthroughFrom->addSuccessor(MBB); 946 AddFalthroughFrom->normalizeSuccProbs(); 947 AddFalthroughFrom = nullptr; 948 } 949 if (parseBasicBlock(*MBB, AddFalthroughFrom)) 950 return true; 951 // The method 'parseBasicBlock' should parse the whole block until the next 952 // block or the end of file. 953 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)); 954 } while (Token.isNot(MIToken::Eof)); 955 return false; 956 } 957 958 bool MIParser::parse(MachineInstr *&MI) { 959 // Parse any register operands before '=' 960 MachineOperand MO = MachineOperand::CreateImm(0); 961 SmallVector<ParsedMachineOperand, 8> Operands; 962 while (Token.isRegister() || Token.isRegisterFlag()) { 963 auto Loc = Token.location(); 964 Optional<unsigned> TiedDefIdx; 965 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true)) 966 return true; 967 Operands.push_back( 968 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 969 if (Token.isNot(MIToken::comma)) 970 break; 971 lex(); 972 } 973 if (!Operands.empty() && expectAndConsume(MIToken::equal)) 974 return true; 975 976 unsigned OpCode, Flags = 0; 977 if (Token.isError() || parseInstruction(OpCode, Flags)) 978 return true; 979 980 // Parse the remaining machine operands. 981 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) && 982 Token.isNot(MIToken::kw_post_instr_symbol) && 983 Token.isNot(MIToken::kw_heap_alloc_marker) && 984 Token.isNot(MIToken::kw_debug_location) && 985 Token.isNot(MIToken::kw_debug_instr_number) && 986 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) { 987 auto Loc = Token.location(); 988 Optional<unsigned> TiedDefIdx; 989 if (parseMachineOperandAndTargetFlags(OpCode, Operands.size(), MO, TiedDefIdx)) 990 return true; 991 if ((OpCode == TargetOpcode::DBG_VALUE || 992 OpCode == TargetOpcode::DBG_VALUE_LIST) && 993 MO.isReg()) 994 MO.setIsDebug(); 995 Operands.push_back( 996 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx)); 997 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 998 Token.is(MIToken::lbrace)) 999 break; 1000 if (Token.isNot(MIToken::comma)) 1001 return error("expected ',' before the next machine operand"); 1002 lex(); 1003 } 1004 1005 MCSymbol *PreInstrSymbol = nullptr; 1006 if (Token.is(MIToken::kw_pre_instr_symbol)) 1007 if (parsePreOrPostInstrSymbol(PreInstrSymbol)) 1008 return true; 1009 MCSymbol *PostInstrSymbol = nullptr; 1010 if (Token.is(MIToken::kw_post_instr_symbol)) 1011 if (parsePreOrPostInstrSymbol(PostInstrSymbol)) 1012 return true; 1013 MDNode *HeapAllocMarker = nullptr; 1014 if (Token.is(MIToken::kw_heap_alloc_marker)) 1015 if (parseHeapAllocMarker(HeapAllocMarker)) 1016 return true; 1017 1018 unsigned InstrNum = 0; 1019 if (Token.is(MIToken::kw_debug_instr_number)) { 1020 lex(); 1021 if (Token.isNot(MIToken::IntegerLiteral)) 1022 return error("expected an integer literal after 'debug-instr-number'"); 1023 if (getUnsigned(InstrNum)) 1024 return true; 1025 lex(); 1026 // Lex past trailing comma if present. 1027 if (Token.is(MIToken::comma)) 1028 lex(); 1029 } 1030 1031 DebugLoc DebugLocation; 1032 if (Token.is(MIToken::kw_debug_location)) { 1033 lex(); 1034 MDNode *Node = nullptr; 1035 if (Token.is(MIToken::exclaim)) { 1036 if (parseMDNode(Node)) 1037 return true; 1038 } else if (Token.is(MIToken::md_dilocation)) { 1039 if (parseDILocation(Node)) 1040 return true; 1041 } else 1042 return error("expected a metadata node after 'debug-location'"); 1043 if (!isa<DILocation>(Node)) 1044 return error("referenced metadata is not a DILocation"); 1045 DebugLocation = DebugLoc(Node); 1046 } 1047 1048 // Parse the machine memory operands. 1049 SmallVector<MachineMemOperand *, 2> MemOperands; 1050 if (Token.is(MIToken::coloncolon)) { 1051 lex(); 1052 while (!Token.isNewlineOrEOF()) { 1053 MachineMemOperand *MemOp = nullptr; 1054 if (parseMachineMemoryOperand(MemOp)) 1055 return true; 1056 MemOperands.push_back(MemOp); 1057 if (Token.isNewlineOrEOF()) 1058 break; 1059 if (Token.isNot(MIToken::comma)) 1060 return error("expected ',' before the next machine memory operand"); 1061 lex(); 1062 } 1063 } 1064 1065 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode); 1066 if (!MCID.isVariadic()) { 1067 // FIXME: Move the implicit operand verification to the machine verifier. 1068 if (verifyImplicitOperands(Operands, MCID)) 1069 return true; 1070 } 1071 1072 // TODO: Check for extraneous machine operands. 1073 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true); 1074 MI->setFlags(Flags); 1075 for (const auto &Operand : Operands) 1076 MI->addOperand(MF, Operand.Operand); 1077 if (assignRegisterTies(*MI, Operands)) 1078 return true; 1079 if (PreInstrSymbol) 1080 MI->setPreInstrSymbol(MF, PreInstrSymbol); 1081 if (PostInstrSymbol) 1082 MI->setPostInstrSymbol(MF, PostInstrSymbol); 1083 if (HeapAllocMarker) 1084 MI->setHeapAllocMarker(MF, HeapAllocMarker); 1085 if (!MemOperands.empty()) 1086 MI->setMemRefs(MF, MemOperands); 1087 if (InstrNum) 1088 MI->setDebugInstrNum(InstrNum); 1089 return false; 1090 } 1091 1092 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) { 1093 lex(); 1094 if (Token.isNot(MIToken::MachineBasicBlock)) 1095 return error("expected a machine basic block reference"); 1096 if (parseMBBReference(MBB)) 1097 return true; 1098 lex(); 1099 if (Token.isNot(MIToken::Eof)) 1100 return error( 1101 "expected end of string after the machine basic block reference"); 1102 return false; 1103 } 1104 1105 bool MIParser::parseStandaloneNamedRegister(Register &Reg) { 1106 lex(); 1107 if (Token.isNot(MIToken::NamedRegister)) 1108 return error("expected a named register"); 1109 if (parseNamedRegister(Reg)) 1110 return true; 1111 lex(); 1112 if (Token.isNot(MIToken::Eof)) 1113 return error("expected end of string after the register reference"); 1114 return false; 1115 } 1116 1117 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) { 1118 lex(); 1119 if (Token.isNot(MIToken::VirtualRegister)) 1120 return error("expected a virtual register"); 1121 if (parseVirtualRegister(Info)) 1122 return true; 1123 lex(); 1124 if (Token.isNot(MIToken::Eof)) 1125 return error("expected end of string after the register reference"); 1126 return false; 1127 } 1128 1129 bool MIParser::parseStandaloneRegister(Register &Reg) { 1130 lex(); 1131 if (Token.isNot(MIToken::NamedRegister) && 1132 Token.isNot(MIToken::VirtualRegister)) 1133 return error("expected either a named or virtual register"); 1134 1135 VRegInfo *Info; 1136 if (parseRegister(Reg, Info)) 1137 return true; 1138 1139 lex(); 1140 if (Token.isNot(MIToken::Eof)) 1141 return error("expected end of string after the register reference"); 1142 return false; 1143 } 1144 1145 bool MIParser::parseStandaloneStackObject(int &FI) { 1146 lex(); 1147 if (Token.isNot(MIToken::StackObject)) 1148 return error("expected a stack object"); 1149 if (parseStackFrameIndex(FI)) 1150 return true; 1151 if (Token.isNot(MIToken::Eof)) 1152 return error("expected end of string after the stack object reference"); 1153 return false; 1154 } 1155 1156 bool MIParser::parseStandaloneMDNode(MDNode *&Node) { 1157 lex(); 1158 if (Token.is(MIToken::exclaim)) { 1159 if (parseMDNode(Node)) 1160 return true; 1161 } else if (Token.is(MIToken::md_diexpr)) { 1162 if (parseDIExpression(Node)) 1163 return true; 1164 } else if (Token.is(MIToken::md_dilocation)) { 1165 if (parseDILocation(Node)) 1166 return true; 1167 } else 1168 return error("expected a metadata node"); 1169 if (Token.isNot(MIToken::Eof)) 1170 return error("expected end of string after the metadata node"); 1171 return false; 1172 } 1173 1174 static const char *printImplicitRegisterFlag(const MachineOperand &MO) { 1175 assert(MO.isImplicit()); 1176 return MO.isDef() ? "implicit-def" : "implicit"; 1177 } 1178 1179 static std::string getRegisterName(const TargetRegisterInfo *TRI, 1180 Register Reg) { 1181 assert(Register::isPhysicalRegister(Reg) && "expected phys reg"); 1182 return StringRef(TRI->getName(Reg)).lower(); 1183 } 1184 1185 /// Return true if the parsed machine operands contain a given machine operand. 1186 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand, 1187 ArrayRef<ParsedMachineOperand> Operands) { 1188 for (const auto &I : Operands) { 1189 if (ImplicitOperand.isIdenticalTo(I.Operand)) 1190 return true; 1191 } 1192 return false; 1193 } 1194 1195 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands, 1196 const MCInstrDesc &MCID) { 1197 if (MCID.isCall()) 1198 // We can't verify call instructions as they can contain arbitrary implicit 1199 // register and register mask operands. 1200 return false; 1201 1202 // Gather all the expected implicit operands. 1203 SmallVector<MachineOperand, 4> ImplicitOperands; 1204 if (MCID.ImplicitDefs) 1205 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs) 1206 ImplicitOperands.push_back( 1207 MachineOperand::CreateReg(*ImpDefs, true, true)); 1208 if (MCID.ImplicitUses) 1209 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses) 1210 ImplicitOperands.push_back( 1211 MachineOperand::CreateReg(*ImpUses, false, true)); 1212 1213 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 1214 assert(TRI && "Expected target register info"); 1215 for (const auto &I : ImplicitOperands) { 1216 if (isImplicitOperandIn(I, Operands)) 1217 continue; 1218 return error(Operands.empty() ? Token.location() : Operands.back().End, 1219 Twine("missing implicit register operand '") + 1220 printImplicitRegisterFlag(I) + " $" + 1221 getRegisterName(TRI, I.getReg()) + "'"); 1222 } 1223 return false; 1224 } 1225 1226 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) { 1227 // Allow frame and fast math flags for OPCODE 1228 while (Token.is(MIToken::kw_frame_setup) || 1229 Token.is(MIToken::kw_frame_destroy) || 1230 Token.is(MIToken::kw_nnan) || 1231 Token.is(MIToken::kw_ninf) || 1232 Token.is(MIToken::kw_nsz) || 1233 Token.is(MIToken::kw_arcp) || 1234 Token.is(MIToken::kw_contract) || 1235 Token.is(MIToken::kw_afn) || 1236 Token.is(MIToken::kw_reassoc) || 1237 Token.is(MIToken::kw_nuw) || 1238 Token.is(MIToken::kw_nsw) || 1239 Token.is(MIToken::kw_exact) || 1240 Token.is(MIToken::kw_nofpexcept)) { 1241 // Mine frame and fast math flags 1242 if (Token.is(MIToken::kw_frame_setup)) 1243 Flags |= MachineInstr::FrameSetup; 1244 if (Token.is(MIToken::kw_frame_destroy)) 1245 Flags |= MachineInstr::FrameDestroy; 1246 if (Token.is(MIToken::kw_nnan)) 1247 Flags |= MachineInstr::FmNoNans; 1248 if (Token.is(MIToken::kw_ninf)) 1249 Flags |= MachineInstr::FmNoInfs; 1250 if (Token.is(MIToken::kw_nsz)) 1251 Flags |= MachineInstr::FmNsz; 1252 if (Token.is(MIToken::kw_arcp)) 1253 Flags |= MachineInstr::FmArcp; 1254 if (Token.is(MIToken::kw_contract)) 1255 Flags |= MachineInstr::FmContract; 1256 if (Token.is(MIToken::kw_afn)) 1257 Flags |= MachineInstr::FmAfn; 1258 if (Token.is(MIToken::kw_reassoc)) 1259 Flags |= MachineInstr::FmReassoc; 1260 if (Token.is(MIToken::kw_nuw)) 1261 Flags |= MachineInstr::NoUWrap; 1262 if (Token.is(MIToken::kw_nsw)) 1263 Flags |= MachineInstr::NoSWrap; 1264 if (Token.is(MIToken::kw_exact)) 1265 Flags |= MachineInstr::IsExact; 1266 if (Token.is(MIToken::kw_nofpexcept)) 1267 Flags |= MachineInstr::NoFPExcept; 1268 1269 lex(); 1270 } 1271 if (Token.isNot(MIToken::Identifier)) 1272 return error("expected a machine instruction"); 1273 StringRef InstrName = Token.stringValue(); 1274 if (PFS.Target.parseInstrName(InstrName, OpCode)) 1275 return error(Twine("unknown machine instruction name '") + InstrName + "'"); 1276 lex(); 1277 return false; 1278 } 1279 1280 bool MIParser::parseNamedRegister(Register &Reg) { 1281 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token"); 1282 StringRef Name = Token.stringValue(); 1283 if (PFS.Target.getRegisterByName(Name, Reg)) 1284 return error(Twine("unknown register name '") + Name + "'"); 1285 return false; 1286 } 1287 1288 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) { 1289 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token"); 1290 StringRef Name = Token.stringValue(); 1291 // TODO: Check that the VReg name is not the same as a physical register name. 1292 // If it is, then print a warning (when warnings are implemented). 1293 Info = &PFS.getVRegInfoNamed(Name); 1294 return false; 1295 } 1296 1297 bool MIParser::parseVirtualRegister(VRegInfo *&Info) { 1298 if (Token.is(MIToken::NamedVirtualRegister)) 1299 return parseNamedVirtualRegister(Info); 1300 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token"); 1301 unsigned ID; 1302 if (getUnsigned(ID)) 1303 return true; 1304 Info = &PFS.getVRegInfo(ID); 1305 return false; 1306 } 1307 1308 bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) { 1309 switch (Token.kind()) { 1310 case MIToken::underscore: 1311 Reg = 0; 1312 return false; 1313 case MIToken::NamedRegister: 1314 return parseNamedRegister(Reg); 1315 case MIToken::NamedVirtualRegister: 1316 case MIToken::VirtualRegister: 1317 if (parseVirtualRegister(Info)) 1318 return true; 1319 Reg = Info->VReg; 1320 return false; 1321 // TODO: Parse other register kinds. 1322 default: 1323 llvm_unreachable("The current token should be a register"); 1324 } 1325 } 1326 1327 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) { 1328 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore)) 1329 return error("expected '_', register class, or register bank name"); 1330 StringRef::iterator Loc = Token.location(); 1331 StringRef Name = Token.stringValue(); 1332 1333 // Was it a register class? 1334 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name); 1335 if (RC) { 1336 lex(); 1337 1338 switch (RegInfo.Kind) { 1339 case VRegInfo::UNKNOWN: 1340 case VRegInfo::NORMAL: 1341 RegInfo.Kind = VRegInfo::NORMAL; 1342 if (RegInfo.Explicit && RegInfo.D.RC != RC) { 1343 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 1344 return error(Loc, Twine("conflicting register classes, previously: ") + 1345 Twine(TRI.getRegClassName(RegInfo.D.RC))); 1346 } 1347 RegInfo.D.RC = RC; 1348 RegInfo.Explicit = true; 1349 return false; 1350 1351 case VRegInfo::GENERIC: 1352 case VRegInfo::REGBANK: 1353 return error(Loc, "register class specification on generic register"); 1354 } 1355 llvm_unreachable("Unexpected register kind"); 1356 } 1357 1358 // Should be a register bank or a generic register. 1359 const RegisterBank *RegBank = nullptr; 1360 if (Name != "_") { 1361 RegBank = PFS.Target.getRegBank(Name); 1362 if (!RegBank) 1363 return error(Loc, "expected '_', register class, or register bank name"); 1364 } 1365 1366 lex(); 1367 1368 switch (RegInfo.Kind) { 1369 case VRegInfo::UNKNOWN: 1370 case VRegInfo::GENERIC: 1371 case VRegInfo::REGBANK: 1372 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC; 1373 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank) 1374 return error(Loc, "conflicting generic register banks"); 1375 RegInfo.D.RegBank = RegBank; 1376 RegInfo.Explicit = true; 1377 return false; 1378 1379 case VRegInfo::NORMAL: 1380 return error(Loc, "register bank specification on normal register"); 1381 } 1382 llvm_unreachable("Unexpected register kind"); 1383 } 1384 1385 bool MIParser::parseRegisterFlag(unsigned &Flags) { 1386 const unsigned OldFlags = Flags; 1387 switch (Token.kind()) { 1388 case MIToken::kw_implicit: 1389 Flags |= RegState::Implicit; 1390 break; 1391 case MIToken::kw_implicit_define: 1392 Flags |= RegState::ImplicitDefine; 1393 break; 1394 case MIToken::kw_def: 1395 Flags |= RegState::Define; 1396 break; 1397 case MIToken::kw_dead: 1398 Flags |= RegState::Dead; 1399 break; 1400 case MIToken::kw_killed: 1401 Flags |= RegState::Kill; 1402 break; 1403 case MIToken::kw_undef: 1404 Flags |= RegState::Undef; 1405 break; 1406 case MIToken::kw_internal: 1407 Flags |= RegState::InternalRead; 1408 break; 1409 case MIToken::kw_early_clobber: 1410 Flags |= RegState::EarlyClobber; 1411 break; 1412 case MIToken::kw_debug_use: 1413 Flags |= RegState::Debug; 1414 break; 1415 case MIToken::kw_renamable: 1416 Flags |= RegState::Renamable; 1417 break; 1418 default: 1419 llvm_unreachable("The current token should be a register flag"); 1420 } 1421 if (OldFlags == Flags) 1422 // We know that the same flag is specified more than once when the flags 1423 // weren't modified. 1424 return error("duplicate '" + Token.stringValue() + "' register flag"); 1425 lex(); 1426 return false; 1427 } 1428 1429 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) { 1430 assert(Token.is(MIToken::dot)); 1431 lex(); 1432 if (Token.isNot(MIToken::Identifier)) 1433 return error("expected a subregister index after '.'"); 1434 auto Name = Token.stringValue(); 1435 SubReg = PFS.Target.getSubRegIndex(Name); 1436 if (!SubReg) 1437 return error(Twine("use of unknown subregister index '") + Name + "'"); 1438 lex(); 1439 return false; 1440 } 1441 1442 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) { 1443 if (!consumeIfPresent(MIToken::kw_tied_def)) 1444 return true; 1445 if (Token.isNot(MIToken::IntegerLiteral)) 1446 return error("expected an integer literal after 'tied-def'"); 1447 if (getUnsigned(TiedDefIdx)) 1448 return true; 1449 lex(); 1450 if (expectAndConsume(MIToken::rparen)) 1451 return true; 1452 return false; 1453 } 1454 1455 bool MIParser::assignRegisterTies(MachineInstr &MI, 1456 ArrayRef<ParsedMachineOperand> Operands) { 1457 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs; 1458 for (unsigned I = 0, E = Operands.size(); I != E; ++I) { 1459 if (!Operands[I].TiedDefIdx) 1460 continue; 1461 // The parser ensures that this operand is a register use, so we just have 1462 // to check the tied-def operand. 1463 unsigned DefIdx = Operands[I].TiedDefIdx.getValue(); 1464 if (DefIdx >= E) 1465 return error(Operands[I].Begin, 1466 Twine("use of invalid tied-def operand index '" + 1467 Twine(DefIdx) + "'; instruction has only ") + 1468 Twine(E) + " operands"); 1469 const auto &DefOperand = Operands[DefIdx].Operand; 1470 if (!DefOperand.isReg() || !DefOperand.isDef()) 1471 // FIXME: add note with the def operand. 1472 return error(Operands[I].Begin, 1473 Twine("use of invalid tied-def operand index '") + 1474 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) + 1475 " isn't a defined register"); 1476 // Check that the tied-def operand wasn't tied elsewhere. 1477 for (const auto &TiedPair : TiedRegisterPairs) { 1478 if (TiedPair.first == DefIdx) 1479 return error(Operands[I].Begin, 1480 Twine("the tied-def operand #") + Twine(DefIdx) + 1481 " is already tied with another register operand"); 1482 } 1483 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I)); 1484 } 1485 // FIXME: Verify that for non INLINEASM instructions, the def and use tied 1486 // indices must be less than tied max. 1487 for (const auto &TiedPair : TiedRegisterPairs) 1488 MI.tieOperands(TiedPair.first, TiedPair.second); 1489 return false; 1490 } 1491 1492 bool MIParser::parseRegisterOperand(MachineOperand &Dest, 1493 Optional<unsigned> &TiedDefIdx, 1494 bool IsDef) { 1495 unsigned Flags = IsDef ? RegState::Define : 0; 1496 while (Token.isRegisterFlag()) { 1497 if (parseRegisterFlag(Flags)) 1498 return true; 1499 } 1500 if (!Token.isRegister()) 1501 return error("expected a register after register flags"); 1502 Register Reg; 1503 VRegInfo *RegInfo; 1504 if (parseRegister(Reg, RegInfo)) 1505 return true; 1506 lex(); 1507 unsigned SubReg = 0; 1508 if (Token.is(MIToken::dot)) { 1509 if (parseSubRegisterIndex(SubReg)) 1510 return true; 1511 if (!Register::isVirtualRegister(Reg)) 1512 return error("subregister index expects a virtual register"); 1513 } 1514 if (Token.is(MIToken::colon)) { 1515 if (!Register::isVirtualRegister(Reg)) 1516 return error("register class specification expects a virtual register"); 1517 lex(); 1518 if (parseRegisterClassOrBank(*RegInfo)) 1519 return true; 1520 } 1521 MachineRegisterInfo &MRI = MF.getRegInfo(); 1522 if ((Flags & RegState::Define) == 0) { 1523 if (consumeIfPresent(MIToken::lparen)) { 1524 unsigned Idx; 1525 if (!parseRegisterTiedDefIndex(Idx)) 1526 TiedDefIdx = Idx; 1527 else { 1528 // Try a redundant low-level type. 1529 LLT Ty; 1530 if (parseLowLevelType(Token.location(), Ty)) 1531 return error("expected tied-def or low-level type after '('"); 1532 1533 if (expectAndConsume(MIToken::rparen)) 1534 return true; 1535 1536 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1537 return error("inconsistent type for generic virtual register"); 1538 1539 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1540 MRI.setType(Reg, Ty); 1541 } 1542 } 1543 } else if (consumeIfPresent(MIToken::lparen)) { 1544 // Virtual registers may have a tpe with GlobalISel. 1545 if (!Register::isVirtualRegister(Reg)) 1546 return error("unexpected type on physical register"); 1547 1548 LLT Ty; 1549 if (parseLowLevelType(Token.location(), Ty)) 1550 return true; 1551 1552 if (expectAndConsume(MIToken::rparen)) 1553 return true; 1554 1555 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty) 1556 return error("inconsistent type for generic virtual register"); 1557 1558 MRI.setRegClassOrRegBank(Reg, static_cast<RegisterBank *>(nullptr)); 1559 MRI.setType(Reg, Ty); 1560 } else if (Register::isVirtualRegister(Reg)) { 1561 // Generic virtual registers must have a type. 1562 // If we end up here this means the type hasn't been specified and 1563 // this is bad! 1564 if (RegInfo->Kind == VRegInfo::GENERIC || 1565 RegInfo->Kind == VRegInfo::REGBANK) 1566 return error("generic virtual registers must have a type"); 1567 } 1568 Dest = MachineOperand::CreateReg( 1569 Reg, Flags & RegState::Define, Flags & RegState::Implicit, 1570 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef, 1571 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug, 1572 Flags & RegState::InternalRead, Flags & RegState::Renamable); 1573 1574 return false; 1575 } 1576 1577 bool MIParser::parseImmediateOperand(MachineOperand &Dest) { 1578 assert(Token.is(MIToken::IntegerLiteral)); 1579 const APSInt &Int = Token.integerValue(); 1580 if (Int.getMinSignedBits() > 64) 1581 return error("integer literal is too large to be an immediate operand"); 1582 Dest = MachineOperand::CreateImm(Int.getExtValue()); 1583 lex(); 1584 return false; 1585 } 1586 1587 bool MIParser::parseTargetImmMnemonic(const unsigned OpCode, 1588 const unsigned OpIdx, 1589 MachineOperand &Dest, 1590 const MIRFormatter &MF) { 1591 assert(Token.is(MIToken::dot)); 1592 auto Loc = Token.location(); // record start position 1593 size_t Len = 1; // for "." 1594 lex(); 1595 1596 // Handle the case that mnemonic starts with number. 1597 if (Token.is(MIToken::IntegerLiteral)) { 1598 Len += Token.range().size(); 1599 lex(); 1600 } 1601 1602 StringRef Src; 1603 if (Token.is(MIToken::comma)) 1604 Src = StringRef(Loc, Len); 1605 else { 1606 assert(Token.is(MIToken::Identifier)); 1607 Src = StringRef(Loc, Len + Token.stringValue().size()); 1608 } 1609 int64_t Val; 1610 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Val, 1611 [this](StringRef::iterator Loc, const Twine &Msg) 1612 -> bool { return error(Loc, Msg); })) 1613 return true; 1614 1615 Dest = MachineOperand::CreateImm(Val); 1616 if (!Token.is(MIToken::comma)) 1617 lex(); 1618 return false; 1619 } 1620 1621 static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1622 PerFunctionMIParsingState &PFS, const Constant *&C, 1623 ErrorCallbackType ErrCB) { 1624 auto Source = StringValue.str(); // The source has to be null terminated. 1625 SMDiagnostic Err; 1626 C = parseConstantValue(Source, Err, *PFS.MF.getFunction().getParent(), 1627 &PFS.IRSlots); 1628 if (!C) 1629 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage()); 1630 return false; 1631 } 1632 1633 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue, 1634 const Constant *&C) { 1635 return ::parseIRConstant( 1636 Loc, StringValue, PFS, C, 1637 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1638 return error(Loc, Msg); 1639 }); 1640 } 1641 1642 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) { 1643 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C)) 1644 return true; 1645 lex(); 1646 return false; 1647 } 1648 1649 // See LLT implemntation for bit size limits. 1650 static bool verifyScalarSize(uint64_t Size) { 1651 return Size != 0 && isUInt<16>(Size); 1652 } 1653 1654 static bool verifyVectorElementCount(uint64_t NumElts) { 1655 return NumElts != 0 && isUInt<16>(NumElts); 1656 } 1657 1658 static bool verifyAddrSpace(uint64_t AddrSpace) { 1659 return isUInt<24>(AddrSpace); 1660 } 1661 1662 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) { 1663 if (Token.range().front() == 's' || Token.range().front() == 'p') { 1664 StringRef SizeStr = Token.range().drop_front(); 1665 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1666 return error("expected integers after 's'/'p' type character"); 1667 } 1668 1669 if (Token.range().front() == 's') { 1670 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1671 if (!verifyScalarSize(ScalarSize)) 1672 return error("invalid size for scalar type"); 1673 1674 Ty = LLT::scalar(ScalarSize); 1675 lex(); 1676 return false; 1677 } else if (Token.range().front() == 'p') { 1678 const DataLayout &DL = MF.getDataLayout(); 1679 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1680 if (!verifyAddrSpace(AS)) 1681 return error("invalid address space number"); 1682 1683 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1684 lex(); 1685 return false; 1686 } 1687 1688 // Now we're looking for a vector. 1689 if (Token.isNot(MIToken::less)) 1690 return error(Loc, 1691 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type"); 1692 lex(); 1693 1694 if (Token.isNot(MIToken::IntegerLiteral)) 1695 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1696 uint64_t NumElements = Token.integerValue().getZExtValue(); 1697 if (!verifyVectorElementCount(NumElements)) 1698 return error("invalid number of vector elements"); 1699 1700 lex(); 1701 1702 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x") 1703 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1704 lex(); 1705 1706 if (Token.range().front() != 's' && Token.range().front() != 'p') 1707 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1708 StringRef SizeStr = Token.range().drop_front(); 1709 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1710 return error("expected integers after 's'/'p' type character"); 1711 1712 if (Token.range().front() == 's') { 1713 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue(); 1714 if (!verifyScalarSize(ScalarSize)) 1715 return error("invalid size for scalar type"); 1716 Ty = LLT::scalar(ScalarSize); 1717 } else if (Token.range().front() == 'p') { 1718 const DataLayout &DL = MF.getDataLayout(); 1719 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue(); 1720 if (!verifyAddrSpace(AS)) 1721 return error("invalid address space number"); 1722 1723 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS)); 1724 } else 1725 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1726 lex(); 1727 1728 if (Token.isNot(MIToken::greater)) 1729 return error(Loc, "expected <M x sN> or <M x pA> for vector type"); 1730 lex(); 1731 1732 Ty = LLT::fixed_vector(NumElements, Ty); 1733 return false; 1734 } 1735 1736 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) { 1737 assert(Token.is(MIToken::Identifier)); 1738 StringRef TypeStr = Token.range(); 1739 if (TypeStr.front() != 'i' && TypeStr.front() != 's' && 1740 TypeStr.front() != 'p') 1741 return error( 1742 "a typed immediate operand should start with one of 'i', 's', or 'p'"); 1743 StringRef SizeStr = Token.range().drop_front(); 1744 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit)) 1745 return error("expected integers after 'i'/'s'/'p' type character"); 1746 1747 auto Loc = Token.location(); 1748 lex(); 1749 if (Token.isNot(MIToken::IntegerLiteral)) { 1750 if (Token.isNot(MIToken::Identifier) || 1751 !(Token.range() == "true" || Token.range() == "false")) 1752 return error("expected an integer literal"); 1753 } 1754 const Constant *C = nullptr; 1755 if (parseIRConstant(Loc, C)) 1756 return true; 1757 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C)); 1758 return false; 1759 } 1760 1761 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) { 1762 auto Loc = Token.location(); 1763 lex(); 1764 if (Token.isNot(MIToken::FloatingPointLiteral) && 1765 Token.isNot(MIToken::HexLiteral)) 1766 return error("expected a floating point literal"); 1767 const Constant *C = nullptr; 1768 if (parseIRConstant(Loc, C)) 1769 return true; 1770 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C)); 1771 return false; 1772 } 1773 1774 static bool getHexUint(const MIToken &Token, APInt &Result) { 1775 assert(Token.is(MIToken::HexLiteral)); 1776 StringRef S = Token.range(); 1777 assert(S[0] == '0' && tolower(S[1]) == 'x'); 1778 // This could be a floating point literal with a special prefix. 1779 if (!isxdigit(S[2])) 1780 return true; 1781 StringRef V = S.substr(2); 1782 APInt A(V.size()*4, V, 16); 1783 1784 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make 1785 // sure it isn't the case before constructing result. 1786 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits(); 1787 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords())); 1788 return false; 1789 } 1790 1791 static bool getUnsigned(const MIToken &Token, unsigned &Result, 1792 ErrorCallbackType ErrCB) { 1793 if (Token.hasIntegerValue()) { 1794 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1; 1795 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit); 1796 if (Val64 == Limit) 1797 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1798 Result = Val64; 1799 return false; 1800 } 1801 if (Token.is(MIToken::HexLiteral)) { 1802 APInt A; 1803 if (getHexUint(Token, A)) 1804 return true; 1805 if (A.getBitWidth() > 32) 1806 return ErrCB(Token.location(), "expected 32-bit integer (too large)"); 1807 Result = A.getZExtValue(); 1808 return false; 1809 } 1810 return true; 1811 } 1812 1813 bool MIParser::getUnsigned(unsigned &Result) { 1814 return ::getUnsigned( 1815 Token, Result, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1816 return error(Loc, Msg); 1817 }); 1818 } 1819 1820 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) { 1821 assert(Token.is(MIToken::MachineBasicBlock) || 1822 Token.is(MIToken::MachineBasicBlockLabel)); 1823 unsigned Number; 1824 if (getUnsigned(Number)) 1825 return true; 1826 auto MBBInfo = PFS.MBBSlots.find(Number); 1827 if (MBBInfo == PFS.MBBSlots.end()) 1828 return error(Twine("use of undefined machine basic block #") + 1829 Twine(Number)); 1830 MBB = MBBInfo->second; 1831 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once 1832 // we drop the <irname> from the bb.<id>.<irname> format. 1833 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName()) 1834 return error(Twine("the name of machine basic block #") + Twine(Number) + 1835 " isn't '" + Token.stringValue() + "'"); 1836 return false; 1837 } 1838 1839 bool MIParser::parseMBBOperand(MachineOperand &Dest) { 1840 MachineBasicBlock *MBB; 1841 if (parseMBBReference(MBB)) 1842 return true; 1843 Dest = MachineOperand::CreateMBB(MBB); 1844 lex(); 1845 return false; 1846 } 1847 1848 bool MIParser::parseStackFrameIndex(int &FI) { 1849 assert(Token.is(MIToken::StackObject)); 1850 unsigned ID; 1851 if (getUnsigned(ID)) 1852 return true; 1853 auto ObjectInfo = PFS.StackObjectSlots.find(ID); 1854 if (ObjectInfo == PFS.StackObjectSlots.end()) 1855 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) + 1856 "'"); 1857 StringRef Name; 1858 if (const auto *Alloca = 1859 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second)) 1860 Name = Alloca->getName(); 1861 if (!Token.stringValue().empty() && Token.stringValue() != Name) 1862 return error(Twine("the name of the stack object '%stack.") + Twine(ID) + 1863 "' isn't '" + Token.stringValue() + "'"); 1864 lex(); 1865 FI = ObjectInfo->second; 1866 return false; 1867 } 1868 1869 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) { 1870 int FI; 1871 if (parseStackFrameIndex(FI)) 1872 return true; 1873 Dest = MachineOperand::CreateFI(FI); 1874 return false; 1875 } 1876 1877 bool MIParser::parseFixedStackFrameIndex(int &FI) { 1878 assert(Token.is(MIToken::FixedStackObject)); 1879 unsigned ID; 1880 if (getUnsigned(ID)) 1881 return true; 1882 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID); 1883 if (ObjectInfo == PFS.FixedStackObjectSlots.end()) 1884 return error(Twine("use of undefined fixed stack object '%fixed-stack.") + 1885 Twine(ID) + "'"); 1886 lex(); 1887 FI = ObjectInfo->second; 1888 return false; 1889 } 1890 1891 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) { 1892 int FI; 1893 if (parseFixedStackFrameIndex(FI)) 1894 return true; 1895 Dest = MachineOperand::CreateFI(FI); 1896 return false; 1897 } 1898 1899 static bool parseGlobalValue(const MIToken &Token, 1900 PerFunctionMIParsingState &PFS, GlobalValue *&GV, 1901 ErrorCallbackType ErrCB) { 1902 switch (Token.kind()) { 1903 case MIToken::NamedGlobalValue: { 1904 const Module *M = PFS.MF.getFunction().getParent(); 1905 GV = M->getNamedValue(Token.stringValue()); 1906 if (!GV) 1907 return ErrCB(Token.location(), Twine("use of undefined global value '") + 1908 Token.range() + "'"); 1909 break; 1910 } 1911 case MIToken::GlobalValue: { 1912 unsigned GVIdx; 1913 if (getUnsigned(Token, GVIdx, ErrCB)) 1914 return true; 1915 if (GVIdx >= PFS.IRSlots.GlobalValues.size()) 1916 return ErrCB(Token.location(), Twine("use of undefined global value '@") + 1917 Twine(GVIdx) + "'"); 1918 GV = PFS.IRSlots.GlobalValues[GVIdx]; 1919 break; 1920 } 1921 default: 1922 llvm_unreachable("The current token should be a global value"); 1923 } 1924 return false; 1925 } 1926 1927 bool MIParser::parseGlobalValue(GlobalValue *&GV) { 1928 return ::parseGlobalValue( 1929 Token, PFS, GV, 1930 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 1931 return error(Loc, Msg); 1932 }); 1933 } 1934 1935 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) { 1936 GlobalValue *GV = nullptr; 1937 if (parseGlobalValue(GV)) 1938 return true; 1939 lex(); 1940 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0); 1941 if (parseOperandsOffset(Dest)) 1942 return true; 1943 return false; 1944 } 1945 1946 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) { 1947 assert(Token.is(MIToken::ConstantPoolItem)); 1948 unsigned ID; 1949 if (getUnsigned(ID)) 1950 return true; 1951 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID); 1952 if (ConstantInfo == PFS.ConstantPoolSlots.end()) 1953 return error("use of undefined constant '%const." + Twine(ID) + "'"); 1954 lex(); 1955 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0); 1956 if (parseOperandsOffset(Dest)) 1957 return true; 1958 return false; 1959 } 1960 1961 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) { 1962 assert(Token.is(MIToken::JumpTableIndex)); 1963 unsigned ID; 1964 if (getUnsigned(ID)) 1965 return true; 1966 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID); 1967 if (JumpTableEntryInfo == PFS.JumpTableSlots.end()) 1968 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'"); 1969 lex(); 1970 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second); 1971 return false; 1972 } 1973 1974 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) { 1975 assert(Token.is(MIToken::ExternalSymbol)); 1976 const char *Symbol = MF.createExternalSymbolName(Token.stringValue()); 1977 lex(); 1978 Dest = MachineOperand::CreateES(Symbol); 1979 if (parseOperandsOffset(Dest)) 1980 return true; 1981 return false; 1982 } 1983 1984 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) { 1985 assert(Token.is(MIToken::MCSymbol)); 1986 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue()); 1987 lex(); 1988 Dest = MachineOperand::CreateMCSymbol(Symbol); 1989 if (parseOperandsOffset(Dest)) 1990 return true; 1991 return false; 1992 } 1993 1994 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) { 1995 assert(Token.is(MIToken::SubRegisterIndex)); 1996 StringRef Name = Token.stringValue(); 1997 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue()); 1998 if (SubRegIndex == 0) 1999 return error(Twine("unknown subregister index '") + Name + "'"); 2000 lex(); 2001 Dest = MachineOperand::CreateImm(SubRegIndex); 2002 return false; 2003 } 2004 2005 bool MIParser::parseMDNode(MDNode *&Node) { 2006 assert(Token.is(MIToken::exclaim)); 2007 2008 auto Loc = Token.location(); 2009 lex(); 2010 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2011 return error("expected metadata id after '!'"); 2012 unsigned ID; 2013 if (getUnsigned(ID)) 2014 return true; 2015 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID); 2016 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) 2017 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'"); 2018 lex(); 2019 Node = NodeInfo->second.get(); 2020 return false; 2021 } 2022 2023 bool MIParser::parseDIExpression(MDNode *&Expr) { 2024 assert(Token.is(MIToken::md_diexpr)); 2025 lex(); 2026 2027 // FIXME: Share this parsing with the IL parser. 2028 SmallVector<uint64_t, 8> Elements; 2029 2030 if (expectAndConsume(MIToken::lparen)) 2031 return true; 2032 2033 if (Token.isNot(MIToken::rparen)) { 2034 do { 2035 if (Token.is(MIToken::Identifier)) { 2036 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) { 2037 lex(); 2038 Elements.push_back(Op); 2039 continue; 2040 } 2041 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) { 2042 lex(); 2043 Elements.push_back(Enc); 2044 continue; 2045 } 2046 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'"); 2047 } 2048 2049 if (Token.isNot(MIToken::IntegerLiteral) || 2050 Token.integerValue().isSigned()) 2051 return error("expected unsigned integer"); 2052 2053 auto &U = Token.integerValue(); 2054 if (U.ugt(UINT64_MAX)) 2055 return error("element too large, limit is " + Twine(UINT64_MAX)); 2056 Elements.push_back(U.getZExtValue()); 2057 lex(); 2058 2059 } while (consumeIfPresent(MIToken::comma)); 2060 } 2061 2062 if (expectAndConsume(MIToken::rparen)) 2063 return true; 2064 2065 Expr = DIExpression::get(MF.getFunction().getContext(), Elements); 2066 return false; 2067 } 2068 2069 bool MIParser::parseDILocation(MDNode *&Loc) { 2070 assert(Token.is(MIToken::md_dilocation)); 2071 lex(); 2072 2073 bool HaveLine = false; 2074 unsigned Line = 0; 2075 unsigned Column = 0; 2076 MDNode *Scope = nullptr; 2077 MDNode *InlinedAt = nullptr; 2078 bool ImplicitCode = false; 2079 2080 if (expectAndConsume(MIToken::lparen)) 2081 return true; 2082 2083 if (Token.isNot(MIToken::rparen)) { 2084 do { 2085 if (Token.is(MIToken::Identifier)) { 2086 if (Token.stringValue() == "line") { 2087 lex(); 2088 if (expectAndConsume(MIToken::colon)) 2089 return true; 2090 if (Token.isNot(MIToken::IntegerLiteral) || 2091 Token.integerValue().isSigned()) 2092 return error("expected unsigned integer"); 2093 Line = Token.integerValue().getZExtValue(); 2094 HaveLine = true; 2095 lex(); 2096 continue; 2097 } 2098 if (Token.stringValue() == "column") { 2099 lex(); 2100 if (expectAndConsume(MIToken::colon)) 2101 return true; 2102 if (Token.isNot(MIToken::IntegerLiteral) || 2103 Token.integerValue().isSigned()) 2104 return error("expected unsigned integer"); 2105 Column = Token.integerValue().getZExtValue(); 2106 lex(); 2107 continue; 2108 } 2109 if (Token.stringValue() == "scope") { 2110 lex(); 2111 if (expectAndConsume(MIToken::colon)) 2112 return true; 2113 if (parseMDNode(Scope)) 2114 return error("expected metadata node"); 2115 if (!isa<DIScope>(Scope)) 2116 return error("expected DIScope node"); 2117 continue; 2118 } 2119 if (Token.stringValue() == "inlinedAt") { 2120 lex(); 2121 if (expectAndConsume(MIToken::colon)) 2122 return true; 2123 if (Token.is(MIToken::exclaim)) { 2124 if (parseMDNode(InlinedAt)) 2125 return true; 2126 } else if (Token.is(MIToken::md_dilocation)) { 2127 if (parseDILocation(InlinedAt)) 2128 return true; 2129 } else 2130 return error("expected metadata node"); 2131 if (!isa<DILocation>(InlinedAt)) 2132 return error("expected DILocation node"); 2133 continue; 2134 } 2135 if (Token.stringValue() == "isImplicitCode") { 2136 lex(); 2137 if (expectAndConsume(MIToken::colon)) 2138 return true; 2139 if (!Token.is(MIToken::Identifier)) 2140 return error("expected true/false"); 2141 // As far as I can see, we don't have any existing need for parsing 2142 // true/false in MIR yet. Do it ad-hoc until there's something else 2143 // that needs it. 2144 if (Token.stringValue() == "true") 2145 ImplicitCode = true; 2146 else if (Token.stringValue() == "false") 2147 ImplicitCode = false; 2148 else 2149 return error("expected true/false"); 2150 lex(); 2151 continue; 2152 } 2153 } 2154 return error(Twine("invalid DILocation argument '") + 2155 Token.stringValue() + "'"); 2156 } while (consumeIfPresent(MIToken::comma)); 2157 } 2158 2159 if (expectAndConsume(MIToken::rparen)) 2160 return true; 2161 2162 if (!HaveLine) 2163 return error("DILocation requires line number"); 2164 if (!Scope) 2165 return error("DILocation requires a scope"); 2166 2167 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope, 2168 InlinedAt, ImplicitCode); 2169 return false; 2170 } 2171 2172 bool MIParser::parseMetadataOperand(MachineOperand &Dest) { 2173 MDNode *Node = nullptr; 2174 if (Token.is(MIToken::exclaim)) { 2175 if (parseMDNode(Node)) 2176 return true; 2177 } else if (Token.is(MIToken::md_diexpr)) { 2178 if (parseDIExpression(Node)) 2179 return true; 2180 } 2181 Dest = MachineOperand::CreateMetadata(Node); 2182 return false; 2183 } 2184 2185 bool MIParser::parseCFIOffset(int &Offset) { 2186 if (Token.isNot(MIToken::IntegerLiteral)) 2187 return error("expected a cfi offset"); 2188 if (Token.integerValue().getMinSignedBits() > 32) 2189 return error("expected a 32 bit integer (the cfi offset is too large)"); 2190 Offset = (int)Token.integerValue().getExtValue(); 2191 lex(); 2192 return false; 2193 } 2194 2195 bool MIParser::parseCFIRegister(Register &Reg) { 2196 if (Token.isNot(MIToken::NamedRegister)) 2197 return error("expected a cfi register"); 2198 Register LLVMReg; 2199 if (parseNamedRegister(LLVMReg)) 2200 return true; 2201 const auto *TRI = MF.getSubtarget().getRegisterInfo(); 2202 assert(TRI && "Expected target register info"); 2203 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true); 2204 if (DwarfReg < 0) 2205 return error("invalid DWARF register"); 2206 Reg = (unsigned)DwarfReg; 2207 lex(); 2208 return false; 2209 } 2210 2211 bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) { 2212 if (Token.isNot(MIToken::IntegerLiteral)) 2213 return error("expected a cfi address space literal"); 2214 if (Token.integerValue().isSigned()) 2215 return error("expected an unsigned integer (cfi address space)"); 2216 AddressSpace = Token.integerValue().getZExtValue(); 2217 lex(); 2218 return false; 2219 } 2220 2221 bool MIParser::parseCFIEscapeValues(std::string &Values) { 2222 do { 2223 if (Token.isNot(MIToken::HexLiteral)) 2224 return error("expected a hexadecimal literal"); 2225 unsigned Value; 2226 if (getUnsigned(Value)) 2227 return true; 2228 if (Value > UINT8_MAX) 2229 return error("expected a 8-bit integer (too large)"); 2230 Values.push_back(static_cast<uint8_t>(Value)); 2231 lex(); 2232 } while (consumeIfPresent(MIToken::comma)); 2233 return false; 2234 } 2235 2236 bool MIParser::parseCFIOperand(MachineOperand &Dest) { 2237 auto Kind = Token.kind(); 2238 lex(); 2239 int Offset; 2240 Register Reg; 2241 unsigned AddressSpace; 2242 unsigned CFIIndex; 2243 switch (Kind) { 2244 case MIToken::kw_cfi_same_value: 2245 if (parseCFIRegister(Reg)) 2246 return true; 2247 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg)); 2248 break; 2249 case MIToken::kw_cfi_offset: 2250 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2251 parseCFIOffset(Offset)) 2252 return true; 2253 CFIIndex = 2254 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset)); 2255 break; 2256 case MIToken::kw_cfi_rel_offset: 2257 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2258 parseCFIOffset(Offset)) 2259 return true; 2260 CFIIndex = MF.addFrameInst( 2261 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset)); 2262 break; 2263 case MIToken::kw_cfi_def_cfa_register: 2264 if (parseCFIRegister(Reg)) 2265 return true; 2266 CFIIndex = 2267 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); 2268 break; 2269 case MIToken::kw_cfi_def_cfa_offset: 2270 if (parseCFIOffset(Offset)) 2271 return true; 2272 CFIIndex = 2273 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Offset)); 2274 break; 2275 case MIToken::kw_cfi_adjust_cfa_offset: 2276 if (parseCFIOffset(Offset)) 2277 return true; 2278 CFIIndex = MF.addFrameInst( 2279 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset)); 2280 break; 2281 case MIToken::kw_cfi_def_cfa: 2282 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2283 parseCFIOffset(Offset)) 2284 return true; 2285 CFIIndex = 2286 MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, Offset)); 2287 break; 2288 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2289 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2290 parseCFIOffset(Offset) || expectAndConsume(MIToken::comma) || 2291 parseCFIAddressSpace(AddressSpace)) 2292 return true; 2293 CFIIndex = MF.addFrameInst(MCCFIInstruction::createLLVMDefAspaceCfa( 2294 nullptr, Reg, Offset, AddressSpace)); 2295 break; 2296 case MIToken::kw_cfi_remember_state: 2297 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr)); 2298 break; 2299 case MIToken::kw_cfi_restore: 2300 if (parseCFIRegister(Reg)) 2301 return true; 2302 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg)); 2303 break; 2304 case MIToken::kw_cfi_restore_state: 2305 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr)); 2306 break; 2307 case MIToken::kw_cfi_undefined: 2308 if (parseCFIRegister(Reg)) 2309 return true; 2310 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg)); 2311 break; 2312 case MIToken::kw_cfi_register: { 2313 Register Reg2; 2314 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) || 2315 parseCFIRegister(Reg2)) 2316 return true; 2317 2318 CFIIndex = 2319 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2)); 2320 break; 2321 } 2322 case MIToken::kw_cfi_window_save: 2323 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr)); 2324 break; 2325 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2326 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); 2327 break; 2328 case MIToken::kw_cfi_escape: { 2329 std::string Values; 2330 if (parseCFIEscapeValues(Values)) 2331 return true; 2332 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values)); 2333 break; 2334 } 2335 default: 2336 // TODO: Parse the other CFI operands. 2337 llvm_unreachable("The current token should be a cfi operand"); 2338 } 2339 Dest = MachineOperand::CreateCFIIndex(CFIIndex); 2340 return false; 2341 } 2342 2343 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) { 2344 switch (Token.kind()) { 2345 case MIToken::NamedIRBlock: { 2346 BB = dyn_cast_or_null<BasicBlock>( 2347 F.getValueSymbolTable()->lookup(Token.stringValue())); 2348 if (!BB) 2349 return error(Twine("use of undefined IR block '") + Token.range() + "'"); 2350 break; 2351 } 2352 case MIToken::IRBlock: { 2353 unsigned SlotNumber = 0; 2354 if (getUnsigned(SlotNumber)) 2355 return true; 2356 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F)); 2357 if (!BB) 2358 return error(Twine("use of undefined IR block '%ir-block.") + 2359 Twine(SlotNumber) + "'"); 2360 break; 2361 } 2362 default: 2363 llvm_unreachable("The current token should be an IR block reference"); 2364 } 2365 return false; 2366 } 2367 2368 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) { 2369 assert(Token.is(MIToken::kw_blockaddress)); 2370 lex(); 2371 if (expectAndConsume(MIToken::lparen)) 2372 return true; 2373 if (Token.isNot(MIToken::GlobalValue) && 2374 Token.isNot(MIToken::NamedGlobalValue)) 2375 return error("expected a global value"); 2376 GlobalValue *GV = nullptr; 2377 if (parseGlobalValue(GV)) 2378 return true; 2379 auto *F = dyn_cast<Function>(GV); 2380 if (!F) 2381 return error("expected an IR function reference"); 2382 lex(); 2383 if (expectAndConsume(MIToken::comma)) 2384 return true; 2385 BasicBlock *BB = nullptr; 2386 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock)) 2387 return error("expected an IR block reference"); 2388 if (parseIRBlock(BB, *F)) 2389 return true; 2390 lex(); 2391 if (expectAndConsume(MIToken::rparen)) 2392 return true; 2393 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0); 2394 if (parseOperandsOffset(Dest)) 2395 return true; 2396 return false; 2397 } 2398 2399 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) { 2400 assert(Token.is(MIToken::kw_intrinsic)); 2401 lex(); 2402 if (expectAndConsume(MIToken::lparen)) 2403 return error("expected syntax intrinsic(@llvm.whatever)"); 2404 2405 if (Token.isNot(MIToken::NamedGlobalValue)) 2406 return error("expected syntax intrinsic(@llvm.whatever)"); 2407 2408 std::string Name = std::string(Token.stringValue()); 2409 lex(); 2410 2411 if (expectAndConsume(MIToken::rparen)) 2412 return error("expected ')' to terminate intrinsic name"); 2413 2414 // Find out what intrinsic we're dealing with, first try the global namespace 2415 // and then the target's private intrinsics if that fails. 2416 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo(); 2417 Intrinsic::ID ID = Function::lookupIntrinsicID(Name); 2418 if (ID == Intrinsic::not_intrinsic && TII) 2419 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name)); 2420 2421 if (ID == Intrinsic::not_intrinsic) 2422 return error("unknown intrinsic name"); 2423 Dest = MachineOperand::CreateIntrinsicID(ID); 2424 2425 return false; 2426 } 2427 2428 bool MIParser::parsePredicateOperand(MachineOperand &Dest) { 2429 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)); 2430 bool IsFloat = Token.is(MIToken::kw_floatpred); 2431 lex(); 2432 2433 if (expectAndConsume(MIToken::lparen)) 2434 return error("expected syntax intpred(whatever) or floatpred(whatever"); 2435 2436 if (Token.isNot(MIToken::Identifier)) 2437 return error("whatever"); 2438 2439 CmpInst::Predicate Pred; 2440 if (IsFloat) { 2441 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2442 .Case("false", CmpInst::FCMP_FALSE) 2443 .Case("oeq", CmpInst::FCMP_OEQ) 2444 .Case("ogt", CmpInst::FCMP_OGT) 2445 .Case("oge", CmpInst::FCMP_OGE) 2446 .Case("olt", CmpInst::FCMP_OLT) 2447 .Case("ole", CmpInst::FCMP_OLE) 2448 .Case("one", CmpInst::FCMP_ONE) 2449 .Case("ord", CmpInst::FCMP_ORD) 2450 .Case("uno", CmpInst::FCMP_UNO) 2451 .Case("ueq", CmpInst::FCMP_UEQ) 2452 .Case("ugt", CmpInst::FCMP_UGT) 2453 .Case("uge", CmpInst::FCMP_UGE) 2454 .Case("ult", CmpInst::FCMP_ULT) 2455 .Case("ule", CmpInst::FCMP_ULE) 2456 .Case("une", CmpInst::FCMP_UNE) 2457 .Case("true", CmpInst::FCMP_TRUE) 2458 .Default(CmpInst::BAD_FCMP_PREDICATE); 2459 if (!CmpInst::isFPPredicate(Pred)) 2460 return error("invalid floating-point predicate"); 2461 } else { 2462 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue()) 2463 .Case("eq", CmpInst::ICMP_EQ) 2464 .Case("ne", CmpInst::ICMP_NE) 2465 .Case("sgt", CmpInst::ICMP_SGT) 2466 .Case("sge", CmpInst::ICMP_SGE) 2467 .Case("slt", CmpInst::ICMP_SLT) 2468 .Case("sle", CmpInst::ICMP_SLE) 2469 .Case("ugt", CmpInst::ICMP_UGT) 2470 .Case("uge", CmpInst::ICMP_UGE) 2471 .Case("ult", CmpInst::ICMP_ULT) 2472 .Case("ule", CmpInst::ICMP_ULE) 2473 .Default(CmpInst::BAD_ICMP_PREDICATE); 2474 if (!CmpInst::isIntPredicate(Pred)) 2475 return error("invalid integer predicate"); 2476 } 2477 2478 lex(); 2479 Dest = MachineOperand::CreatePredicate(Pred); 2480 if (expectAndConsume(MIToken::rparen)) 2481 return error("predicate should be terminated by ')'."); 2482 2483 return false; 2484 } 2485 2486 bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) { 2487 assert(Token.is(MIToken::kw_shufflemask)); 2488 2489 lex(); 2490 if (expectAndConsume(MIToken::lparen)) 2491 return error("expected syntax shufflemask(<integer or undef>, ...)"); 2492 2493 SmallVector<int, 32> ShufMask; 2494 do { 2495 if (Token.is(MIToken::kw_undef)) { 2496 ShufMask.push_back(-1); 2497 } else if (Token.is(MIToken::IntegerLiteral)) { 2498 const APSInt &Int = Token.integerValue(); 2499 ShufMask.push_back(Int.getExtValue()); 2500 } else 2501 return error("expected integer constant"); 2502 2503 lex(); 2504 } while (consumeIfPresent(MIToken::comma)); 2505 2506 if (expectAndConsume(MIToken::rparen)) 2507 return error("shufflemask should be terminated by ')'."); 2508 2509 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(ShufMask); 2510 Dest = MachineOperand::CreateShuffleMask(MaskAlloc); 2511 return false; 2512 } 2513 2514 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) { 2515 assert(Token.is(MIToken::kw_target_index)); 2516 lex(); 2517 if (expectAndConsume(MIToken::lparen)) 2518 return true; 2519 if (Token.isNot(MIToken::Identifier)) 2520 return error("expected the name of the target index"); 2521 int Index = 0; 2522 if (PFS.Target.getTargetIndex(Token.stringValue(), Index)) 2523 return error("use of undefined target index '" + Token.stringValue() + "'"); 2524 lex(); 2525 if (expectAndConsume(MIToken::rparen)) 2526 return true; 2527 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0); 2528 if (parseOperandsOffset(Dest)) 2529 return true; 2530 return false; 2531 } 2532 2533 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) { 2534 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask"); 2535 lex(); 2536 if (expectAndConsume(MIToken::lparen)) 2537 return true; 2538 2539 uint32_t *Mask = MF.allocateRegMask(); 2540 while (true) { 2541 if (Token.isNot(MIToken::NamedRegister)) 2542 return error("expected a named register"); 2543 Register Reg; 2544 if (parseNamedRegister(Reg)) 2545 return true; 2546 lex(); 2547 Mask[Reg / 32] |= 1U << (Reg % 32); 2548 // TODO: Report an error if the same register is used more than once. 2549 if (Token.isNot(MIToken::comma)) 2550 break; 2551 lex(); 2552 } 2553 2554 if (expectAndConsume(MIToken::rparen)) 2555 return true; 2556 Dest = MachineOperand::CreateRegMask(Mask); 2557 return false; 2558 } 2559 2560 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) { 2561 assert(Token.is(MIToken::kw_liveout)); 2562 uint32_t *Mask = MF.allocateRegMask(); 2563 lex(); 2564 if (expectAndConsume(MIToken::lparen)) 2565 return true; 2566 while (true) { 2567 if (Token.isNot(MIToken::NamedRegister)) 2568 return error("expected a named register"); 2569 Register Reg; 2570 if (parseNamedRegister(Reg)) 2571 return true; 2572 lex(); 2573 Mask[Reg / 32] |= 1U << (Reg % 32); 2574 // TODO: Report an error if the same register is used more than once. 2575 if (Token.isNot(MIToken::comma)) 2576 break; 2577 lex(); 2578 } 2579 if (expectAndConsume(MIToken::rparen)) 2580 return true; 2581 Dest = MachineOperand::CreateRegLiveOut(Mask); 2582 return false; 2583 } 2584 2585 bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx, 2586 MachineOperand &Dest, 2587 Optional<unsigned> &TiedDefIdx) { 2588 switch (Token.kind()) { 2589 case MIToken::kw_implicit: 2590 case MIToken::kw_implicit_define: 2591 case MIToken::kw_def: 2592 case MIToken::kw_dead: 2593 case MIToken::kw_killed: 2594 case MIToken::kw_undef: 2595 case MIToken::kw_internal: 2596 case MIToken::kw_early_clobber: 2597 case MIToken::kw_debug_use: 2598 case MIToken::kw_renamable: 2599 case MIToken::underscore: 2600 case MIToken::NamedRegister: 2601 case MIToken::VirtualRegister: 2602 case MIToken::NamedVirtualRegister: 2603 return parseRegisterOperand(Dest, TiedDefIdx); 2604 case MIToken::IntegerLiteral: 2605 return parseImmediateOperand(Dest); 2606 case MIToken::kw_half: 2607 case MIToken::kw_float: 2608 case MIToken::kw_double: 2609 case MIToken::kw_x86_fp80: 2610 case MIToken::kw_fp128: 2611 case MIToken::kw_ppc_fp128: 2612 return parseFPImmediateOperand(Dest); 2613 case MIToken::MachineBasicBlock: 2614 return parseMBBOperand(Dest); 2615 case MIToken::StackObject: 2616 return parseStackObjectOperand(Dest); 2617 case MIToken::FixedStackObject: 2618 return parseFixedStackObjectOperand(Dest); 2619 case MIToken::GlobalValue: 2620 case MIToken::NamedGlobalValue: 2621 return parseGlobalAddressOperand(Dest); 2622 case MIToken::ConstantPoolItem: 2623 return parseConstantPoolIndexOperand(Dest); 2624 case MIToken::JumpTableIndex: 2625 return parseJumpTableIndexOperand(Dest); 2626 case MIToken::ExternalSymbol: 2627 return parseExternalSymbolOperand(Dest); 2628 case MIToken::MCSymbol: 2629 return parseMCSymbolOperand(Dest); 2630 case MIToken::SubRegisterIndex: 2631 return parseSubRegisterIndexOperand(Dest); 2632 case MIToken::md_diexpr: 2633 case MIToken::exclaim: 2634 return parseMetadataOperand(Dest); 2635 case MIToken::kw_cfi_same_value: 2636 case MIToken::kw_cfi_offset: 2637 case MIToken::kw_cfi_rel_offset: 2638 case MIToken::kw_cfi_def_cfa_register: 2639 case MIToken::kw_cfi_def_cfa_offset: 2640 case MIToken::kw_cfi_adjust_cfa_offset: 2641 case MIToken::kw_cfi_escape: 2642 case MIToken::kw_cfi_def_cfa: 2643 case MIToken::kw_cfi_llvm_def_aspace_cfa: 2644 case MIToken::kw_cfi_register: 2645 case MIToken::kw_cfi_remember_state: 2646 case MIToken::kw_cfi_restore: 2647 case MIToken::kw_cfi_restore_state: 2648 case MIToken::kw_cfi_undefined: 2649 case MIToken::kw_cfi_window_save: 2650 case MIToken::kw_cfi_aarch64_negate_ra_sign_state: 2651 return parseCFIOperand(Dest); 2652 case MIToken::kw_blockaddress: 2653 return parseBlockAddressOperand(Dest); 2654 case MIToken::kw_intrinsic: 2655 return parseIntrinsicOperand(Dest); 2656 case MIToken::kw_target_index: 2657 return parseTargetIndexOperand(Dest); 2658 case MIToken::kw_liveout: 2659 return parseLiveoutRegisterMaskOperand(Dest); 2660 case MIToken::kw_floatpred: 2661 case MIToken::kw_intpred: 2662 return parsePredicateOperand(Dest); 2663 case MIToken::kw_shufflemask: 2664 return parseShuffleMaskOperand(Dest); 2665 case MIToken::Error: 2666 return true; 2667 case MIToken::Identifier: 2668 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) { 2669 Dest = MachineOperand::CreateRegMask(RegMask); 2670 lex(); 2671 break; 2672 } else if (Token.stringValue() == "CustomRegMask") { 2673 return parseCustomRegisterMaskOperand(Dest); 2674 } else 2675 return parseTypedImmediateOperand(Dest); 2676 case MIToken::dot: { 2677 const auto *TII = MF.getSubtarget().getInstrInfo(); 2678 if (const auto *Formatter = TII->getMIRFormatter()) { 2679 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, *Formatter); 2680 } 2681 LLVM_FALLTHROUGH; 2682 } 2683 default: 2684 // FIXME: Parse the MCSymbol machine operand. 2685 return error("expected a machine operand"); 2686 } 2687 return false; 2688 } 2689 2690 bool MIParser::parseMachineOperandAndTargetFlags( 2691 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest, 2692 Optional<unsigned> &TiedDefIdx) { 2693 unsigned TF = 0; 2694 bool HasTargetFlags = false; 2695 if (Token.is(MIToken::kw_target_flags)) { 2696 HasTargetFlags = true; 2697 lex(); 2698 if (expectAndConsume(MIToken::lparen)) 2699 return true; 2700 if (Token.isNot(MIToken::Identifier)) 2701 return error("expected the name of the target flag"); 2702 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) { 2703 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF)) 2704 return error("use of undefined target flag '" + Token.stringValue() + 2705 "'"); 2706 } 2707 lex(); 2708 while (Token.is(MIToken::comma)) { 2709 lex(); 2710 if (Token.isNot(MIToken::Identifier)) 2711 return error("expected the name of the target flag"); 2712 unsigned BitFlag = 0; 2713 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag)) 2714 return error("use of undefined target flag '" + Token.stringValue() + 2715 "'"); 2716 // TODO: Report an error when using a duplicate bit target flag. 2717 TF |= BitFlag; 2718 lex(); 2719 } 2720 if (expectAndConsume(MIToken::rparen)) 2721 return true; 2722 } 2723 auto Loc = Token.location(); 2724 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx)) 2725 return true; 2726 if (!HasTargetFlags) 2727 return false; 2728 if (Dest.isReg()) 2729 return error(Loc, "register operands can't have target flags"); 2730 Dest.setTargetFlags(TF); 2731 return false; 2732 } 2733 2734 bool MIParser::parseOffset(int64_t &Offset) { 2735 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus)) 2736 return false; 2737 StringRef Sign = Token.range(); 2738 bool IsNegative = Token.is(MIToken::minus); 2739 lex(); 2740 if (Token.isNot(MIToken::IntegerLiteral)) 2741 return error("expected an integer literal after '" + Sign + "'"); 2742 if (Token.integerValue().getMinSignedBits() > 64) 2743 return error("expected 64-bit integer (too large)"); 2744 Offset = Token.integerValue().getExtValue(); 2745 if (IsNegative) 2746 Offset = -Offset; 2747 lex(); 2748 return false; 2749 } 2750 2751 bool MIParser::parseAlignment(unsigned &Alignment) { 2752 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign)); 2753 lex(); 2754 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2755 return error("expected an integer literal after 'align'"); 2756 if (getUnsigned(Alignment)) 2757 return true; 2758 lex(); 2759 2760 if (!isPowerOf2_32(Alignment)) 2761 return error("expected a power-of-2 literal after 'align'"); 2762 2763 return false; 2764 } 2765 2766 bool MIParser::parseAddrspace(unsigned &Addrspace) { 2767 assert(Token.is(MIToken::kw_addrspace)); 2768 lex(); 2769 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned()) 2770 return error("expected an integer literal after 'addrspace'"); 2771 if (getUnsigned(Addrspace)) 2772 return true; 2773 lex(); 2774 return false; 2775 } 2776 2777 bool MIParser::parseOperandsOffset(MachineOperand &Op) { 2778 int64_t Offset = 0; 2779 if (parseOffset(Offset)) 2780 return true; 2781 Op.setOffset(Offset); 2782 return false; 2783 } 2784 2785 static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS, 2786 const Value *&V, ErrorCallbackType ErrCB) { 2787 switch (Token.kind()) { 2788 case MIToken::NamedIRValue: { 2789 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue()); 2790 break; 2791 } 2792 case MIToken::IRValue: { 2793 unsigned SlotNumber = 0; 2794 if (getUnsigned(Token, SlotNumber, ErrCB)) 2795 return true; 2796 V = PFS.getIRValue(SlotNumber); 2797 break; 2798 } 2799 case MIToken::NamedGlobalValue: 2800 case MIToken::GlobalValue: { 2801 GlobalValue *GV = nullptr; 2802 if (parseGlobalValue(Token, PFS, GV, ErrCB)) 2803 return true; 2804 V = GV; 2805 break; 2806 } 2807 case MIToken::QuotedIRValue: { 2808 const Constant *C = nullptr; 2809 if (parseIRConstant(Token.location(), Token.stringValue(), PFS, C, ErrCB)) 2810 return true; 2811 V = C; 2812 break; 2813 } 2814 case MIToken::kw_unknown_address: 2815 V = nullptr; 2816 return false; 2817 default: 2818 llvm_unreachable("The current token should be an IR block reference"); 2819 } 2820 if (!V) 2821 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'"); 2822 return false; 2823 } 2824 2825 bool MIParser::parseIRValue(const Value *&V) { 2826 return ::parseIRValue( 2827 Token, PFS, V, [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2828 return error(Loc, Msg); 2829 }); 2830 } 2831 2832 bool MIParser::getUint64(uint64_t &Result) { 2833 if (Token.hasIntegerValue()) { 2834 if (Token.integerValue().getActiveBits() > 64) 2835 return error("expected 64-bit integer (too large)"); 2836 Result = Token.integerValue().getZExtValue(); 2837 return false; 2838 } 2839 if (Token.is(MIToken::HexLiteral)) { 2840 APInt A; 2841 if (getHexUint(A)) 2842 return true; 2843 if (A.getBitWidth() > 64) 2844 return error("expected 64-bit integer (too large)"); 2845 Result = A.getZExtValue(); 2846 return false; 2847 } 2848 return true; 2849 } 2850 2851 bool MIParser::getHexUint(APInt &Result) { 2852 return ::getHexUint(Token, Result); 2853 } 2854 2855 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) { 2856 const auto OldFlags = Flags; 2857 switch (Token.kind()) { 2858 case MIToken::kw_volatile: 2859 Flags |= MachineMemOperand::MOVolatile; 2860 break; 2861 case MIToken::kw_non_temporal: 2862 Flags |= MachineMemOperand::MONonTemporal; 2863 break; 2864 case MIToken::kw_dereferenceable: 2865 Flags |= MachineMemOperand::MODereferenceable; 2866 break; 2867 case MIToken::kw_invariant: 2868 Flags |= MachineMemOperand::MOInvariant; 2869 break; 2870 case MIToken::StringConstant: { 2871 MachineMemOperand::Flags TF; 2872 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF)) 2873 return error("use of undefined target MMO flag '" + Token.stringValue() + 2874 "'"); 2875 Flags |= TF; 2876 break; 2877 } 2878 default: 2879 llvm_unreachable("The current token should be a memory operand flag"); 2880 } 2881 if (OldFlags == Flags) 2882 // We know that the same flag is specified more than once when the flags 2883 // weren't modified. 2884 return error("duplicate '" + Token.stringValue() + "' memory operand flag"); 2885 lex(); 2886 return false; 2887 } 2888 2889 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) { 2890 switch (Token.kind()) { 2891 case MIToken::kw_stack: 2892 PSV = MF.getPSVManager().getStack(); 2893 break; 2894 case MIToken::kw_got: 2895 PSV = MF.getPSVManager().getGOT(); 2896 break; 2897 case MIToken::kw_jump_table: 2898 PSV = MF.getPSVManager().getJumpTable(); 2899 break; 2900 case MIToken::kw_constant_pool: 2901 PSV = MF.getPSVManager().getConstantPool(); 2902 break; 2903 case MIToken::FixedStackObject: { 2904 int FI; 2905 if (parseFixedStackFrameIndex(FI)) 2906 return true; 2907 PSV = MF.getPSVManager().getFixedStack(FI); 2908 // The token was already consumed, so use return here instead of break. 2909 return false; 2910 } 2911 case MIToken::StackObject: { 2912 int FI; 2913 if (parseStackFrameIndex(FI)) 2914 return true; 2915 PSV = MF.getPSVManager().getFixedStack(FI); 2916 // The token was already consumed, so use return here instead of break. 2917 return false; 2918 } 2919 case MIToken::kw_call_entry: 2920 lex(); 2921 switch (Token.kind()) { 2922 case MIToken::GlobalValue: 2923 case MIToken::NamedGlobalValue: { 2924 GlobalValue *GV = nullptr; 2925 if (parseGlobalValue(GV)) 2926 return true; 2927 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV); 2928 break; 2929 } 2930 case MIToken::ExternalSymbol: 2931 PSV = MF.getPSVManager().getExternalSymbolCallEntry( 2932 MF.createExternalSymbolName(Token.stringValue())); 2933 break; 2934 default: 2935 return error( 2936 "expected a global value or an external symbol after 'call-entry'"); 2937 } 2938 break; 2939 case MIToken::kw_custom: { 2940 lex(); 2941 const auto *TII = MF.getSubtarget().getInstrInfo(); 2942 if (const auto *Formatter = TII->getMIRFormatter()) { 2943 if (Formatter->parseCustomPseudoSourceValue( 2944 Token.stringValue(), MF, PFS, PSV, 2945 [this](StringRef::iterator Loc, const Twine &Msg) -> bool { 2946 return error(Loc, Msg); 2947 })) 2948 return true; 2949 } else 2950 return error("unable to parse target custom pseudo source value"); 2951 break; 2952 } 2953 default: 2954 llvm_unreachable("The current token should be pseudo source value"); 2955 } 2956 lex(); 2957 return false; 2958 } 2959 2960 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) { 2961 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) || 2962 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) || 2963 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) || 2964 Token.is(MIToken::kw_call_entry) || Token.is(MIToken::kw_custom)) { 2965 const PseudoSourceValue *PSV = nullptr; 2966 if (parseMemoryPseudoSourceValue(PSV)) 2967 return true; 2968 int64_t Offset = 0; 2969 if (parseOffset(Offset)) 2970 return true; 2971 Dest = MachinePointerInfo(PSV, Offset); 2972 return false; 2973 } 2974 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) && 2975 Token.isNot(MIToken::GlobalValue) && 2976 Token.isNot(MIToken::NamedGlobalValue) && 2977 Token.isNot(MIToken::QuotedIRValue) && 2978 Token.isNot(MIToken::kw_unknown_address)) 2979 return error("expected an IR value reference"); 2980 const Value *V = nullptr; 2981 if (parseIRValue(V)) 2982 return true; 2983 if (V && !V->getType()->isPointerTy()) 2984 return error("expected a pointer IR value"); 2985 lex(); 2986 int64_t Offset = 0; 2987 if (parseOffset(Offset)) 2988 return true; 2989 Dest = MachinePointerInfo(V, Offset); 2990 return false; 2991 } 2992 2993 bool MIParser::parseOptionalScope(LLVMContext &Context, 2994 SyncScope::ID &SSID) { 2995 SSID = SyncScope::System; 2996 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") { 2997 lex(); 2998 if (expectAndConsume(MIToken::lparen)) 2999 return error("expected '(' in syncscope"); 3000 3001 std::string SSN; 3002 if (parseStringConstant(SSN)) 3003 return true; 3004 3005 SSID = Context.getOrInsertSyncScopeID(SSN); 3006 if (expectAndConsume(MIToken::rparen)) 3007 return error("expected ')' in syncscope"); 3008 } 3009 3010 return false; 3011 } 3012 3013 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) { 3014 Order = AtomicOrdering::NotAtomic; 3015 if (Token.isNot(MIToken::Identifier)) 3016 return false; 3017 3018 Order = StringSwitch<AtomicOrdering>(Token.stringValue()) 3019 .Case("unordered", AtomicOrdering::Unordered) 3020 .Case("monotonic", AtomicOrdering::Monotonic) 3021 .Case("acquire", AtomicOrdering::Acquire) 3022 .Case("release", AtomicOrdering::Release) 3023 .Case("acq_rel", AtomicOrdering::AcquireRelease) 3024 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent) 3025 .Default(AtomicOrdering::NotAtomic); 3026 3027 if (Order != AtomicOrdering::NotAtomic) { 3028 lex(); 3029 return false; 3030 } 3031 3032 return error("expected an atomic scope, ordering or a size specification"); 3033 } 3034 3035 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) { 3036 if (expectAndConsume(MIToken::lparen)) 3037 return true; 3038 MachineMemOperand::Flags Flags = MachineMemOperand::MONone; 3039 while (Token.isMemoryOperandFlag()) { 3040 if (parseMemoryOperandFlag(Flags)) 3041 return true; 3042 } 3043 if (Token.isNot(MIToken::Identifier) || 3044 (Token.stringValue() != "load" && Token.stringValue() != "store")) 3045 return error("expected 'load' or 'store' memory operation"); 3046 if (Token.stringValue() == "load") 3047 Flags |= MachineMemOperand::MOLoad; 3048 else 3049 Flags |= MachineMemOperand::MOStore; 3050 lex(); 3051 3052 // Optional 'store' for operands that both load and store. 3053 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") { 3054 Flags |= MachineMemOperand::MOStore; 3055 lex(); 3056 } 3057 3058 // Optional synchronization scope. 3059 SyncScope::ID SSID; 3060 if (parseOptionalScope(MF.getFunction().getContext(), SSID)) 3061 return true; 3062 3063 // Up to two atomic orderings (cmpxchg provides guarantees on failure). 3064 AtomicOrdering Order, FailureOrder; 3065 if (parseOptionalAtomicOrdering(Order)) 3066 return true; 3067 3068 if (parseOptionalAtomicOrdering(FailureOrder)) 3069 return true; 3070 3071 if (Token.isNot(MIToken::IntegerLiteral) && 3072 Token.isNot(MIToken::kw_unknown_size)) 3073 return error("expected the size integer literal or 'unknown-size' after " 3074 "memory operation"); 3075 uint64_t Size; 3076 if (Token.is(MIToken::IntegerLiteral)) { 3077 if (getUint64(Size)) 3078 return true; 3079 } else if (Token.is(MIToken::kw_unknown_size)) { 3080 Size = MemoryLocation::UnknownSize; 3081 } 3082 lex(); 3083 3084 MachinePointerInfo Ptr = MachinePointerInfo(); 3085 if (Token.is(MIToken::Identifier)) { 3086 const char *Word = 3087 ((Flags & MachineMemOperand::MOLoad) && 3088 (Flags & MachineMemOperand::MOStore)) 3089 ? "on" 3090 : Flags & MachineMemOperand::MOLoad ? "from" : "into"; 3091 if (Token.stringValue() != Word) 3092 return error(Twine("expected '") + Word + "'"); 3093 lex(); 3094 3095 if (parseMachinePointerInfo(Ptr)) 3096 return true; 3097 } 3098 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1); 3099 AAMDNodes AAInfo; 3100 MDNode *Range = nullptr; 3101 while (consumeIfPresent(MIToken::comma)) { 3102 switch (Token.kind()) { 3103 case MIToken::kw_align: 3104 // align is printed if it is different than size. 3105 if (parseAlignment(BaseAlignment)) 3106 return true; 3107 break; 3108 case MIToken::kw_basealign: 3109 // basealign is printed if it is different than align. 3110 if (parseAlignment(BaseAlignment)) 3111 return true; 3112 break; 3113 case MIToken::kw_addrspace: 3114 if (parseAddrspace(Ptr.AddrSpace)) 3115 return true; 3116 break; 3117 case MIToken::md_tbaa: 3118 lex(); 3119 if (parseMDNode(AAInfo.TBAA)) 3120 return true; 3121 break; 3122 case MIToken::md_alias_scope: 3123 lex(); 3124 if (parseMDNode(AAInfo.Scope)) 3125 return true; 3126 break; 3127 case MIToken::md_noalias: 3128 lex(); 3129 if (parseMDNode(AAInfo.NoAlias)) 3130 return true; 3131 break; 3132 case MIToken::md_range: 3133 lex(); 3134 if (parseMDNode(Range)) 3135 return true; 3136 break; 3137 // TODO: Report an error on duplicate metadata nodes. 3138 default: 3139 return error("expected 'align' or '!tbaa' or '!alias.scope' or " 3140 "'!noalias' or '!range'"); 3141 } 3142 } 3143 if (expectAndConsume(MIToken::rparen)) 3144 return true; 3145 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, Align(BaseAlignment), AAInfo, 3146 Range, SSID, Order, FailureOrder); 3147 return false; 3148 } 3149 3150 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) { 3151 assert((Token.is(MIToken::kw_pre_instr_symbol) || 3152 Token.is(MIToken::kw_post_instr_symbol)) && 3153 "Invalid token for a pre- post-instruction symbol!"); 3154 lex(); 3155 if (Token.isNot(MIToken::MCSymbol)) 3156 return error("expected a symbol after 'pre-instr-symbol'"); 3157 Symbol = getOrCreateMCSymbol(Token.stringValue()); 3158 lex(); 3159 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3160 Token.is(MIToken::lbrace)) 3161 return false; 3162 if (Token.isNot(MIToken::comma)) 3163 return error("expected ',' before the next machine operand"); 3164 lex(); 3165 return false; 3166 } 3167 3168 bool MIParser::parseHeapAllocMarker(MDNode *&Node) { 3169 assert(Token.is(MIToken::kw_heap_alloc_marker) && 3170 "Invalid token for a heap alloc marker!"); 3171 lex(); 3172 parseMDNode(Node); 3173 if (!Node) 3174 return error("expected a MDNode after 'heap-alloc-marker'"); 3175 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) || 3176 Token.is(MIToken::lbrace)) 3177 return false; 3178 if (Token.isNot(MIToken::comma)) 3179 return error("expected ',' before the next machine operand"); 3180 lex(); 3181 return false; 3182 } 3183 3184 static void initSlots2BasicBlocks( 3185 const Function &F, 3186 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3187 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false); 3188 MST.incorporateFunction(F); 3189 for (auto &BB : F) { 3190 if (BB.hasName()) 3191 continue; 3192 int Slot = MST.getLocalSlot(&BB); 3193 if (Slot == -1) 3194 continue; 3195 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB)); 3196 } 3197 } 3198 3199 static const BasicBlock *getIRBlockFromSlot( 3200 unsigned Slot, 3201 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) { 3202 return Slots2BasicBlocks.lookup(Slot); 3203 } 3204 3205 const BasicBlock *MIParser::getIRBlock(unsigned Slot) { 3206 if (Slots2BasicBlocks.empty()) 3207 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks); 3208 return getIRBlockFromSlot(Slot, Slots2BasicBlocks); 3209 } 3210 3211 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) { 3212 if (&F == &MF.getFunction()) 3213 return getIRBlock(Slot); 3214 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks; 3215 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks); 3216 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks); 3217 } 3218 3219 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) { 3220 // FIXME: Currently we can't recognize temporary or local symbols and call all 3221 // of the appropriate forms to create them. However, this handles basic cases 3222 // well as most of the special aspects are recognized by a prefix on their 3223 // name, and the input names should already be unique. For test cases, keeping 3224 // the symbol name out of the symbol table isn't terribly important. 3225 return MF.getContext().getOrCreateSymbol(Name); 3226 } 3227 3228 bool MIParser::parseStringConstant(std::string &Result) { 3229 if (Token.isNot(MIToken::StringConstant)) 3230 return error("expected string constant"); 3231 Result = std::string(Token.stringValue()); 3232 lex(); 3233 return false; 3234 } 3235 3236 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS, 3237 StringRef Src, 3238 SMDiagnostic &Error) { 3239 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots); 3240 } 3241 3242 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS, 3243 StringRef Src, SMDiagnostic &Error) { 3244 return MIParser(PFS, Error, Src).parseBasicBlocks(); 3245 } 3246 3247 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS, 3248 MachineBasicBlock *&MBB, StringRef Src, 3249 SMDiagnostic &Error) { 3250 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB); 3251 } 3252 3253 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS, 3254 Register &Reg, StringRef Src, 3255 SMDiagnostic &Error) { 3256 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg); 3257 } 3258 3259 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS, 3260 Register &Reg, StringRef Src, 3261 SMDiagnostic &Error) { 3262 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg); 3263 } 3264 3265 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS, 3266 VRegInfo *&Info, StringRef Src, 3267 SMDiagnostic &Error) { 3268 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info); 3269 } 3270 3271 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS, 3272 int &FI, StringRef Src, 3273 SMDiagnostic &Error) { 3274 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI); 3275 } 3276 3277 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS, 3278 MDNode *&Node, StringRef Src, SMDiagnostic &Error) { 3279 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node); 3280 } 3281 3282 bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF, 3283 PerFunctionMIParsingState &PFS, const Value *&V, 3284 ErrorCallbackType ErrorCallback) { 3285 MIToken Token; 3286 Src = lexMIToken(Src, Token, [&](StringRef::iterator Loc, const Twine &Msg) { 3287 ErrorCallback(Loc, Msg); 3288 }); 3289 V = nullptr; 3290 3291 return ::parseIRValue(Token, PFS, V, ErrorCallback); 3292 } 3293