1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the parsing of machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MILexer.h"
15 #include "MIParser.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/MIRPrinter.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instructions.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/ModuleSlotTracker.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueSymbolTable.h"
54 #include "llvm/MC/LaneBitmask.h"
55 #include "llvm/MC/MCDwarf.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/MC/MCRegisterInfo.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/LowLevelTypeImpl.h"
63 #include "llvm/Support/MemoryBuffer.h"
64 #include "llvm/Support/SMLoc.h"
65 #include "llvm/Support/SourceMgr.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetInstrInfo.h"
68 #include "llvm/Target/TargetIntrinsicInfo.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Target/TargetRegisterInfo.h"
71 #include "llvm/Target/TargetSubtargetInfo.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cctype>
75 #include <cstddef>
76 #include <cstdint>
77 #include <limits>
78 #include <string>
79 #include <utility>
80 
81 using namespace llvm;
82 
83 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
84     SourceMgr &SM, const SlotMapping &IRSlots,
85     const Name2RegClassMap &Names2RegClasses,
86     const Name2RegBankMap &Names2RegBanks)
87   : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
88     Names2RegBanks(Names2RegBanks) {
89 }
90 
91 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
92   auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
93   if (I.second) {
94     MachineRegisterInfo &MRI = MF.getRegInfo();
95     VRegInfo *Info = new (Allocator) VRegInfo;
96     Info->VReg = MRI.createIncompleteVirtualRegister();
97     I.first->second = Info;
98   }
99   return *I.first->second;
100 }
101 
102 namespace {
103 
104 /// A wrapper struct around the 'MachineOperand' struct that includes a source
105 /// range and other attributes.
106 struct ParsedMachineOperand {
107   MachineOperand Operand;
108   StringRef::iterator Begin;
109   StringRef::iterator End;
110   Optional<unsigned> TiedDefIdx;
111 
112   ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
113                        StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
114       : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
115     if (TiedDefIdx)
116       assert(Operand.isReg() && Operand.isUse() &&
117              "Only used register operands can be tied");
118   }
119 };
120 
121 class MIParser {
122   MachineFunction &MF;
123   SMDiagnostic &Error;
124   StringRef Source, CurrentSource;
125   MIToken Token;
126   PerFunctionMIParsingState &PFS;
127   /// Maps from instruction names to op codes.
128   StringMap<unsigned> Names2InstrOpCodes;
129   /// Maps from register names to registers.
130   StringMap<unsigned> Names2Regs;
131   /// Maps from register mask names to register masks.
132   StringMap<const uint32_t *> Names2RegMasks;
133   /// Maps from subregister names to subregister indices.
134   StringMap<unsigned> Names2SubRegIndices;
135   /// Maps from slot numbers to function's unnamed basic blocks.
136   DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
137   /// Maps from slot numbers to function's unnamed values.
138   DenseMap<unsigned, const Value *> Slots2Values;
139   /// Maps from target index names to target indices.
140   StringMap<int> Names2TargetIndices;
141   /// Maps from direct target flag names to the direct target flag values.
142   StringMap<unsigned> Names2DirectTargetFlags;
143   /// Maps from direct target flag names to the bitmask target flag values.
144   StringMap<unsigned> Names2BitmaskTargetFlags;
145   /// Maps from MMO target flag names to MMO target flag values.
146   StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
147 
148 public:
149   MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
150            StringRef Source);
151 
152   /// \p SkipChar gives the number of characters to skip before looking
153   /// for the next token.
154   void lex(unsigned SkipChar = 0);
155 
156   /// Report an error at the current location with the given message.
157   ///
158   /// This function always return true.
159   bool error(const Twine &Msg);
160 
161   /// Report an error at the given location with the given message.
162   ///
163   /// This function always return true.
164   bool error(StringRef::iterator Loc, const Twine &Msg);
165 
166   bool
167   parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
168   bool parseBasicBlocks();
169   bool parse(MachineInstr *&MI);
170   bool parseStandaloneMBB(MachineBasicBlock *&MBB);
171   bool parseStandaloneNamedRegister(unsigned &Reg);
172   bool parseStandaloneVirtualRegister(VRegInfo *&Info);
173   bool parseStandaloneRegister(unsigned &Reg);
174   bool parseStandaloneStackObject(int &FI);
175   bool parseStandaloneMDNode(MDNode *&Node);
176 
177   bool
178   parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
179   bool parseBasicBlock(MachineBasicBlock &MBB,
180                        MachineBasicBlock *&AddFalthroughFrom);
181   bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
182   bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
183 
184   bool parseNamedRegister(unsigned &Reg);
185   bool parseVirtualRegister(VRegInfo *&Info);
186   bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
187   bool parseRegisterFlag(unsigned &Flags);
188   bool parseRegisterClassOrBank(VRegInfo &RegInfo);
189   bool parseSubRegisterIndex(unsigned &SubReg);
190   bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
191   bool parseRegisterOperand(MachineOperand &Dest,
192                             Optional<unsigned> &TiedDefIdx, bool IsDef = false);
193   bool parseImmediateOperand(MachineOperand &Dest);
194   bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
195                        const Constant *&C);
196   bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
197   bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
198   bool parseTypedImmediateOperand(MachineOperand &Dest);
199   bool parseFPImmediateOperand(MachineOperand &Dest);
200   bool parseMBBReference(MachineBasicBlock *&MBB);
201   bool parseMBBOperand(MachineOperand &Dest);
202   bool parseStackFrameIndex(int &FI);
203   bool parseStackObjectOperand(MachineOperand &Dest);
204   bool parseFixedStackFrameIndex(int &FI);
205   bool parseFixedStackObjectOperand(MachineOperand &Dest);
206   bool parseGlobalValue(GlobalValue *&GV);
207   bool parseGlobalAddressOperand(MachineOperand &Dest);
208   bool parseConstantPoolIndexOperand(MachineOperand &Dest);
209   bool parseSubRegisterIndexOperand(MachineOperand &Dest);
210   bool parseJumpTableIndexOperand(MachineOperand &Dest);
211   bool parseExternalSymbolOperand(MachineOperand &Dest);
212   bool parseMDNode(MDNode *&Node);
213   bool parseDIExpression(MDNode *&Node);
214   bool parseMetadataOperand(MachineOperand &Dest);
215   bool parseCFIOffset(int &Offset);
216   bool parseCFIRegister(unsigned &Reg);
217   bool parseCFIOperand(MachineOperand &Dest);
218   bool parseIRBlock(BasicBlock *&BB, const Function &F);
219   bool parseBlockAddressOperand(MachineOperand &Dest);
220   bool parseIntrinsicOperand(MachineOperand &Dest);
221   bool parsePredicateOperand(MachineOperand &Dest);
222   bool parseTargetIndexOperand(MachineOperand &Dest);
223   bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
224   bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
225   bool parseMachineOperand(MachineOperand &Dest,
226                            Optional<unsigned> &TiedDefIdx);
227   bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
228                                          Optional<unsigned> &TiedDefIdx);
229   bool parseOffset(int64_t &Offset);
230   bool parseAlignment(unsigned &Alignment);
231   bool parseOperandsOffset(MachineOperand &Op);
232   bool parseIRValue(const Value *&V);
233   bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
234   bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
235   bool parseMachinePointerInfo(MachinePointerInfo &Dest);
236   bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
237   bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
238   bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
239 
240 private:
241   /// Convert the integer literal in the current token into an unsigned integer.
242   ///
243   /// Return true if an error occurred.
244   bool getUnsigned(unsigned &Result);
245 
246   /// Convert the integer literal in the current token into an uint64.
247   ///
248   /// Return true if an error occurred.
249   bool getUint64(uint64_t &Result);
250 
251   /// Convert the hexadecimal literal in the current token into an unsigned
252   ///  APInt with a minimum bitwidth required to represent the value.
253   ///
254   /// Return true if the literal does not represent an integer value.
255   bool getHexUint(APInt &Result);
256 
257   /// If the current token is of the given kind, consume it and return false.
258   /// Otherwise report an error and return true.
259   bool expectAndConsume(MIToken::TokenKind TokenKind);
260 
261   /// If the current token is of the given kind, consume it and return true.
262   /// Otherwise return false.
263   bool consumeIfPresent(MIToken::TokenKind TokenKind);
264 
265   void initNames2InstrOpCodes();
266 
267   /// Try to convert an instruction name to an opcode. Return true if the
268   /// instruction name is invalid.
269   bool parseInstrName(StringRef InstrName, unsigned &OpCode);
270 
271   bool parseInstruction(unsigned &OpCode, unsigned &Flags);
272 
273   bool assignRegisterTies(MachineInstr &MI,
274                           ArrayRef<ParsedMachineOperand> Operands);
275 
276   bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
277                               const MCInstrDesc &MCID);
278 
279   void initNames2Regs();
280 
281   /// Try to convert a register name to a register number. Return true if the
282   /// register name is invalid.
283   bool getRegisterByName(StringRef RegName, unsigned &Reg);
284 
285   void initNames2RegMasks();
286 
287   /// Check if the given identifier is a name of a register mask.
288   ///
289   /// Return null if the identifier isn't a register mask.
290   const uint32_t *getRegMask(StringRef Identifier);
291 
292   void initNames2SubRegIndices();
293 
294   /// Check if the given identifier is a name of a subregister index.
295   ///
296   /// Return 0 if the name isn't a subregister index class.
297   unsigned getSubRegIndex(StringRef Name);
298 
299   const BasicBlock *getIRBlock(unsigned Slot);
300   const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
301 
302   const Value *getIRValue(unsigned Slot);
303 
304   void initNames2TargetIndices();
305 
306   /// Try to convert a name of target index to the corresponding target index.
307   ///
308   /// Return true if the name isn't a name of a target index.
309   bool getTargetIndex(StringRef Name, int &Index);
310 
311   void initNames2DirectTargetFlags();
312 
313   /// Try to convert a name of a direct target flag to the corresponding
314   /// target flag.
315   ///
316   /// Return true if the name isn't a name of a direct flag.
317   bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
318 
319   void initNames2BitmaskTargetFlags();
320 
321   /// Try to convert a name of a bitmask target flag to the corresponding
322   /// target flag.
323   ///
324   /// Return true if the name isn't a name of a bitmask target flag.
325   bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
326 
327   void initNames2MMOTargetFlags();
328 
329   /// Try to convert a name of a MachineMemOperand target flag to the
330   /// corresponding target flag.
331   ///
332   /// Return true if the name isn't a name of a target MMO flag.
333   bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
334 
335   /// parseStringConstant
336   ///   ::= StringConstant
337   bool parseStringConstant(std::string &Result);
338 };
339 
340 } // end anonymous namespace
341 
342 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
343                    StringRef Source)
344     : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
345 {}
346 
347 void MIParser::lex(unsigned SkipChar) {
348   CurrentSource = lexMIToken(
349       CurrentSource.data() + SkipChar, Token,
350       [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
351 }
352 
353 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
354 
355 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
356   const SourceMgr &SM = *PFS.SM;
357   assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
358   const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
359   if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
360     // Create an ordinary diagnostic when the source manager's buffer is the
361     // source string.
362     Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
363     return true;
364   }
365   // Create a diagnostic for a YAML string literal.
366   Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
367                        Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
368                        Source, None, None);
369   return true;
370 }
371 
372 static const char *toString(MIToken::TokenKind TokenKind) {
373   switch (TokenKind) {
374   case MIToken::comma:
375     return "','";
376   case MIToken::equal:
377     return "'='";
378   case MIToken::colon:
379     return "':'";
380   case MIToken::lparen:
381     return "'('";
382   case MIToken::rparen:
383     return "')'";
384   default:
385     return "<unknown token>";
386   }
387 }
388 
389 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
390   if (Token.isNot(TokenKind))
391     return error(Twine("expected ") + toString(TokenKind));
392   lex();
393   return false;
394 }
395 
396 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
397   if (Token.isNot(TokenKind))
398     return false;
399   lex();
400   return true;
401 }
402 
403 bool MIParser::parseBasicBlockDefinition(
404     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
405   assert(Token.is(MIToken::MachineBasicBlockLabel));
406   unsigned ID = 0;
407   if (getUnsigned(ID))
408     return true;
409   auto Loc = Token.location();
410   auto Name = Token.stringValue();
411   lex();
412   bool HasAddressTaken = false;
413   bool IsLandingPad = false;
414   unsigned Alignment = 0;
415   BasicBlock *BB = nullptr;
416   if (consumeIfPresent(MIToken::lparen)) {
417     do {
418       // TODO: Report an error when multiple same attributes are specified.
419       switch (Token.kind()) {
420       case MIToken::kw_address_taken:
421         HasAddressTaken = true;
422         lex();
423         break;
424       case MIToken::kw_landing_pad:
425         IsLandingPad = true;
426         lex();
427         break;
428       case MIToken::kw_align:
429         if (parseAlignment(Alignment))
430           return true;
431         break;
432       case MIToken::IRBlock:
433         // TODO: Report an error when both name and ir block are specified.
434         if (parseIRBlock(BB, *MF.getFunction()))
435           return true;
436         lex();
437         break;
438       default:
439         break;
440       }
441     } while (consumeIfPresent(MIToken::comma));
442     if (expectAndConsume(MIToken::rparen))
443       return true;
444   }
445   if (expectAndConsume(MIToken::colon))
446     return true;
447 
448   if (!Name.empty()) {
449     BB = dyn_cast_or_null<BasicBlock>(
450         MF.getFunction()->getValueSymbolTable()->lookup(Name));
451     if (!BB)
452       return error(Loc, Twine("basic block '") + Name +
453                             "' is not defined in the function '" +
454                             MF.getName() + "'");
455   }
456   auto *MBB = MF.CreateMachineBasicBlock(BB);
457   MF.insert(MF.end(), MBB);
458   bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
459   if (!WasInserted)
460     return error(Loc, Twine("redefinition of machine basic block with id #") +
461                           Twine(ID));
462   if (Alignment)
463     MBB->setAlignment(Alignment);
464   if (HasAddressTaken)
465     MBB->setHasAddressTaken();
466   MBB->setIsEHPad(IsLandingPad);
467   return false;
468 }
469 
470 bool MIParser::parseBasicBlockDefinitions(
471     DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
472   lex();
473   // Skip until the first machine basic block.
474   while (Token.is(MIToken::Newline))
475     lex();
476   if (Token.isErrorOrEOF())
477     return Token.isError();
478   if (Token.isNot(MIToken::MachineBasicBlockLabel))
479     return error("expected a basic block definition before instructions");
480   unsigned BraceDepth = 0;
481   do {
482     if (parseBasicBlockDefinition(MBBSlots))
483       return true;
484     bool IsAfterNewline = false;
485     // Skip until the next machine basic block.
486     while (true) {
487       if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
488           Token.isErrorOrEOF())
489         break;
490       else if (Token.is(MIToken::MachineBasicBlockLabel))
491         return error("basic block definition should be located at the start of "
492                      "the line");
493       else if (consumeIfPresent(MIToken::Newline)) {
494         IsAfterNewline = true;
495         continue;
496       }
497       IsAfterNewline = false;
498       if (Token.is(MIToken::lbrace))
499         ++BraceDepth;
500       if (Token.is(MIToken::rbrace)) {
501         if (!BraceDepth)
502           return error("extraneous closing brace ('}')");
503         --BraceDepth;
504       }
505       lex();
506     }
507     // Verify that we closed all of the '{' at the end of a file or a block.
508     if (!Token.isError() && BraceDepth)
509       return error("expected '}'"); // FIXME: Report a note that shows '{'.
510   } while (!Token.isErrorOrEOF());
511   return Token.isError();
512 }
513 
514 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
515   assert(Token.is(MIToken::kw_liveins));
516   lex();
517   if (expectAndConsume(MIToken::colon))
518     return true;
519   if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
520     return false;
521   do {
522     if (Token.isNot(MIToken::NamedRegister))
523       return error("expected a named register");
524     unsigned Reg = 0;
525     if (parseNamedRegister(Reg))
526       return true;
527     lex();
528     LaneBitmask Mask = LaneBitmask::getAll();
529     if (consumeIfPresent(MIToken::colon)) {
530       // Parse lane mask.
531       if (Token.isNot(MIToken::IntegerLiteral) &&
532           Token.isNot(MIToken::HexLiteral))
533         return error("expected a lane mask");
534       static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
535                     "Use correct get-function for lane mask");
536       LaneBitmask::Type V;
537       if (getUnsigned(V))
538         return error("invalid lane mask value");
539       Mask = LaneBitmask(V);
540       lex();
541     }
542     MBB.addLiveIn(Reg, Mask);
543   } while (consumeIfPresent(MIToken::comma));
544   return false;
545 }
546 
547 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
548   assert(Token.is(MIToken::kw_successors));
549   lex();
550   if (expectAndConsume(MIToken::colon))
551     return true;
552   if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
553     return false;
554   do {
555     if (Token.isNot(MIToken::MachineBasicBlock))
556       return error("expected a machine basic block reference");
557     MachineBasicBlock *SuccMBB = nullptr;
558     if (parseMBBReference(SuccMBB))
559       return true;
560     lex();
561     unsigned Weight = 0;
562     if (consumeIfPresent(MIToken::lparen)) {
563       if (Token.isNot(MIToken::IntegerLiteral) &&
564           Token.isNot(MIToken::HexLiteral))
565         return error("expected an integer literal after '('");
566       if (getUnsigned(Weight))
567         return true;
568       lex();
569       if (expectAndConsume(MIToken::rparen))
570         return true;
571     }
572     MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
573   } while (consumeIfPresent(MIToken::comma));
574   MBB.normalizeSuccProbs();
575   return false;
576 }
577 
578 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
579                                MachineBasicBlock *&AddFalthroughFrom) {
580   // Skip the definition.
581   assert(Token.is(MIToken::MachineBasicBlockLabel));
582   lex();
583   if (consumeIfPresent(MIToken::lparen)) {
584     while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
585       lex();
586     consumeIfPresent(MIToken::rparen);
587   }
588   consumeIfPresent(MIToken::colon);
589 
590   // Parse the liveins and successors.
591   // N.B: Multiple lists of successors and liveins are allowed and they're
592   // merged into one.
593   // Example:
594   //   liveins: %edi
595   //   liveins: %esi
596   //
597   // is equivalent to
598   //   liveins: %edi, %esi
599   bool ExplicitSuccessors = false;
600   while (true) {
601     if (Token.is(MIToken::kw_successors)) {
602       if (parseBasicBlockSuccessors(MBB))
603         return true;
604       ExplicitSuccessors = true;
605     } else if (Token.is(MIToken::kw_liveins)) {
606       if (parseBasicBlockLiveins(MBB))
607         return true;
608     } else if (consumeIfPresent(MIToken::Newline)) {
609       continue;
610     } else
611       break;
612     if (!Token.isNewlineOrEOF())
613       return error("expected line break at the end of a list");
614     lex();
615   }
616 
617   // Parse the instructions.
618   bool IsInBundle = false;
619   MachineInstr *PrevMI = nullptr;
620   while (!Token.is(MIToken::MachineBasicBlockLabel) &&
621          !Token.is(MIToken::Eof)) {
622     if (consumeIfPresent(MIToken::Newline))
623       continue;
624     if (consumeIfPresent(MIToken::rbrace)) {
625       // The first parsing pass should verify that all closing '}' have an
626       // opening '{'.
627       assert(IsInBundle);
628       IsInBundle = false;
629       continue;
630     }
631     MachineInstr *MI = nullptr;
632     if (parse(MI))
633       return true;
634     MBB.insert(MBB.end(), MI);
635     if (IsInBundle) {
636       PrevMI->setFlag(MachineInstr::BundledSucc);
637       MI->setFlag(MachineInstr::BundledPred);
638     }
639     PrevMI = MI;
640     if (Token.is(MIToken::lbrace)) {
641       if (IsInBundle)
642         return error("nested instruction bundles are not allowed");
643       lex();
644       // This instruction is the start of the bundle.
645       MI->setFlag(MachineInstr::BundledSucc);
646       IsInBundle = true;
647       if (!Token.is(MIToken::Newline))
648         // The next instruction can be on the same line.
649         continue;
650     }
651     assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
652     lex();
653   }
654 
655   // Construct successor list by searching for basic block machine operands.
656   if (!ExplicitSuccessors) {
657     SmallVector<MachineBasicBlock*,4> Successors;
658     bool IsFallthrough;
659     guessSuccessors(MBB, Successors, IsFallthrough);
660     for (MachineBasicBlock *Succ : Successors)
661       MBB.addSuccessor(Succ);
662 
663     if (IsFallthrough) {
664       AddFalthroughFrom = &MBB;
665     } else {
666       MBB.normalizeSuccProbs();
667     }
668   }
669 
670   return false;
671 }
672 
673 bool MIParser::parseBasicBlocks() {
674   lex();
675   // Skip until the first machine basic block.
676   while (Token.is(MIToken::Newline))
677     lex();
678   if (Token.isErrorOrEOF())
679     return Token.isError();
680   // The first parsing pass should have verified that this token is a MBB label
681   // in the 'parseBasicBlockDefinitions' method.
682   assert(Token.is(MIToken::MachineBasicBlockLabel));
683   MachineBasicBlock *AddFalthroughFrom = nullptr;
684   do {
685     MachineBasicBlock *MBB = nullptr;
686     if (parseMBBReference(MBB))
687       return true;
688     if (AddFalthroughFrom) {
689       if (!AddFalthroughFrom->isSuccessor(MBB))
690         AddFalthroughFrom->addSuccessor(MBB);
691       AddFalthroughFrom->normalizeSuccProbs();
692       AddFalthroughFrom = nullptr;
693     }
694     if (parseBasicBlock(*MBB, AddFalthroughFrom))
695       return true;
696     // The method 'parseBasicBlock' should parse the whole block until the next
697     // block or the end of file.
698     assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
699   } while (Token.isNot(MIToken::Eof));
700   return false;
701 }
702 
703 bool MIParser::parse(MachineInstr *&MI) {
704   // Parse any register operands before '='
705   MachineOperand MO = MachineOperand::CreateImm(0);
706   SmallVector<ParsedMachineOperand, 8> Operands;
707   while (Token.isRegister() || Token.isRegisterFlag()) {
708     auto Loc = Token.location();
709     Optional<unsigned> TiedDefIdx;
710     if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
711       return true;
712     Operands.push_back(
713         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
714     if (Token.isNot(MIToken::comma))
715       break;
716     lex();
717   }
718   if (!Operands.empty() && expectAndConsume(MIToken::equal))
719     return true;
720 
721   unsigned OpCode, Flags = 0;
722   if (Token.isError() || parseInstruction(OpCode, Flags))
723     return true;
724 
725   // Parse the remaining machine operands.
726   while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
727          Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
728     auto Loc = Token.location();
729     Optional<unsigned> TiedDefIdx;
730     if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
731       return true;
732     Operands.push_back(
733         ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
734     if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
735         Token.is(MIToken::lbrace))
736       break;
737     if (Token.isNot(MIToken::comma))
738       return error("expected ',' before the next machine operand");
739     lex();
740   }
741 
742   DebugLoc DebugLocation;
743   if (Token.is(MIToken::kw_debug_location)) {
744     lex();
745     if (Token.isNot(MIToken::exclaim))
746       return error("expected a metadata node after 'debug-location'");
747     MDNode *Node = nullptr;
748     if (parseMDNode(Node))
749       return true;
750     DebugLocation = DebugLoc(Node);
751   }
752 
753   // Parse the machine memory operands.
754   SmallVector<MachineMemOperand *, 2> MemOperands;
755   if (Token.is(MIToken::coloncolon)) {
756     lex();
757     while (!Token.isNewlineOrEOF()) {
758       MachineMemOperand *MemOp = nullptr;
759       if (parseMachineMemoryOperand(MemOp))
760         return true;
761       MemOperands.push_back(MemOp);
762       if (Token.isNewlineOrEOF())
763         break;
764       if (Token.isNot(MIToken::comma))
765         return error("expected ',' before the next machine memory operand");
766       lex();
767     }
768   }
769 
770   const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
771   if (!MCID.isVariadic()) {
772     // FIXME: Move the implicit operand verification to the machine verifier.
773     if (verifyImplicitOperands(Operands, MCID))
774       return true;
775   }
776 
777   // TODO: Check for extraneous machine operands.
778   MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
779   MI->setFlags(Flags);
780   for (const auto &Operand : Operands)
781     MI->addOperand(MF, Operand.Operand);
782   if (assignRegisterTies(*MI, Operands))
783     return true;
784   if (MemOperands.empty())
785     return false;
786   MachineInstr::mmo_iterator MemRefs =
787       MF.allocateMemRefsArray(MemOperands.size());
788   std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
789   MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
790   return false;
791 }
792 
793 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
794   lex();
795   if (Token.isNot(MIToken::MachineBasicBlock))
796     return error("expected a machine basic block reference");
797   if (parseMBBReference(MBB))
798     return true;
799   lex();
800   if (Token.isNot(MIToken::Eof))
801     return error(
802         "expected end of string after the machine basic block reference");
803   return false;
804 }
805 
806 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
807   lex();
808   if (Token.isNot(MIToken::NamedRegister))
809     return error("expected a named register");
810   if (parseNamedRegister(Reg))
811     return true;
812   lex();
813   if (Token.isNot(MIToken::Eof))
814     return error("expected end of string after the register reference");
815   return false;
816 }
817 
818 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
819   lex();
820   if (Token.isNot(MIToken::VirtualRegister))
821     return error("expected a virtual register");
822   if (parseVirtualRegister(Info))
823     return true;
824   lex();
825   if (Token.isNot(MIToken::Eof))
826     return error("expected end of string after the register reference");
827   return false;
828 }
829 
830 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
831   lex();
832   if (Token.isNot(MIToken::NamedRegister) &&
833       Token.isNot(MIToken::VirtualRegister))
834     return error("expected either a named or virtual register");
835 
836   VRegInfo *Info;
837   if (parseRegister(Reg, Info))
838     return true;
839 
840   lex();
841   if (Token.isNot(MIToken::Eof))
842     return error("expected end of string after the register reference");
843   return false;
844 }
845 
846 bool MIParser::parseStandaloneStackObject(int &FI) {
847   lex();
848   if (Token.isNot(MIToken::StackObject))
849     return error("expected a stack object");
850   if (parseStackFrameIndex(FI))
851     return true;
852   if (Token.isNot(MIToken::Eof))
853     return error("expected end of string after the stack object reference");
854   return false;
855 }
856 
857 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
858   lex();
859   if (Token.is(MIToken::exclaim)) {
860     if (parseMDNode(Node))
861       return true;
862   } else if (Token.is(MIToken::md_diexpr)) {
863     if (parseDIExpression(Node))
864       return true;
865   } else
866     return error("expected a metadata node");
867   if (Token.isNot(MIToken::Eof))
868     return error("expected end of string after the metadata node");
869   return false;
870 }
871 
872 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
873   assert(MO.isImplicit());
874   return MO.isDef() ? "implicit-def" : "implicit";
875 }
876 
877 static std::string getRegisterName(const TargetRegisterInfo *TRI,
878                                    unsigned Reg) {
879   assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
880   return StringRef(TRI->getName(Reg)).lower();
881 }
882 
883 /// Return true if the parsed machine operands contain a given machine operand.
884 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
885                                 ArrayRef<ParsedMachineOperand> Operands) {
886   for (const auto &I : Operands) {
887     if (ImplicitOperand.isIdenticalTo(I.Operand))
888       return true;
889   }
890   return false;
891 }
892 
893 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
894                                       const MCInstrDesc &MCID) {
895   if (MCID.isCall())
896     // We can't verify call instructions as they can contain arbitrary implicit
897     // register and register mask operands.
898     return false;
899 
900   // Gather all the expected implicit operands.
901   SmallVector<MachineOperand, 4> ImplicitOperands;
902   if (MCID.ImplicitDefs)
903     for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
904       ImplicitOperands.push_back(
905           MachineOperand::CreateReg(*ImpDefs, true, true));
906   if (MCID.ImplicitUses)
907     for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
908       ImplicitOperands.push_back(
909           MachineOperand::CreateReg(*ImpUses, false, true));
910 
911   const auto *TRI = MF.getSubtarget().getRegisterInfo();
912   assert(TRI && "Expected target register info");
913   for (const auto &I : ImplicitOperands) {
914     if (isImplicitOperandIn(I, Operands))
915       continue;
916     return error(Operands.empty() ? Token.location() : Operands.back().End,
917                  Twine("missing implicit register operand '") +
918                      printImplicitRegisterFlag(I) + " %" +
919                      getRegisterName(TRI, I.getReg()) + "'");
920   }
921   return false;
922 }
923 
924 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
925   if (Token.is(MIToken::kw_frame_setup)) {
926     Flags |= MachineInstr::FrameSetup;
927     lex();
928   }
929   if (Token.isNot(MIToken::Identifier))
930     return error("expected a machine instruction");
931   StringRef InstrName = Token.stringValue();
932   if (parseInstrName(InstrName, OpCode))
933     return error(Twine("unknown machine instruction name '") + InstrName + "'");
934   lex();
935   return false;
936 }
937 
938 bool MIParser::parseNamedRegister(unsigned &Reg) {
939   assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
940   StringRef Name = Token.stringValue();
941   if (getRegisterByName(Name, Reg))
942     return error(Twine("unknown register name '") + Name + "'");
943   return false;
944 }
945 
946 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
947   assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
948   unsigned ID;
949   if (getUnsigned(ID))
950     return true;
951   Info = &PFS.getVRegInfo(ID);
952   return false;
953 }
954 
955 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
956   switch (Token.kind()) {
957   case MIToken::underscore:
958     Reg = 0;
959     return false;
960   case MIToken::NamedRegister:
961     return parseNamedRegister(Reg);
962   case MIToken::VirtualRegister:
963     if (parseVirtualRegister(Info))
964       return true;
965     Reg = Info->VReg;
966     return false;
967   // TODO: Parse other register kinds.
968   default:
969     llvm_unreachable("The current token should be a register");
970   }
971 }
972 
973 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
974   if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
975     return error("expected '_', register class, or register bank name");
976   StringRef::iterator Loc = Token.location();
977   StringRef Name = Token.stringValue();
978 
979   // Was it a register class?
980   auto RCNameI = PFS.Names2RegClasses.find(Name);
981   if (RCNameI != PFS.Names2RegClasses.end()) {
982     lex();
983     const TargetRegisterClass &RC = *RCNameI->getValue();
984 
985     switch (RegInfo.Kind) {
986     case VRegInfo::UNKNOWN:
987     case VRegInfo::NORMAL:
988       RegInfo.Kind = VRegInfo::NORMAL;
989       if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
990         const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
991         return error(Loc, Twine("conflicting register classes, previously: ") +
992                      Twine(TRI.getRegClassName(RegInfo.D.RC)));
993       }
994       RegInfo.D.RC = &RC;
995       RegInfo.Explicit = true;
996       return false;
997 
998     case VRegInfo::GENERIC:
999     case VRegInfo::REGBANK:
1000       return error(Loc, "register class specification on generic register");
1001     }
1002     llvm_unreachable("Unexpected register kind");
1003   }
1004 
1005   // Should be a register bank or a generic register.
1006   const RegisterBank *RegBank = nullptr;
1007   if (Name != "_") {
1008     auto RBNameI = PFS.Names2RegBanks.find(Name);
1009     if (RBNameI == PFS.Names2RegBanks.end())
1010       return error(Loc, "expected '_', register class, or register bank name");
1011     RegBank = RBNameI->getValue();
1012   }
1013 
1014   lex();
1015 
1016   switch (RegInfo.Kind) {
1017   case VRegInfo::UNKNOWN:
1018   case VRegInfo::GENERIC:
1019   case VRegInfo::REGBANK:
1020     RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1021     if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1022       return error(Loc, "conflicting generic register banks");
1023     RegInfo.D.RegBank = RegBank;
1024     RegInfo.Explicit = true;
1025     return false;
1026 
1027   case VRegInfo::NORMAL:
1028     return error(Loc, "register bank specification on normal register");
1029   }
1030   llvm_unreachable("Unexpected register kind");
1031 }
1032 
1033 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1034   const unsigned OldFlags = Flags;
1035   switch (Token.kind()) {
1036   case MIToken::kw_implicit:
1037     Flags |= RegState::Implicit;
1038     break;
1039   case MIToken::kw_implicit_define:
1040     Flags |= RegState::ImplicitDefine;
1041     break;
1042   case MIToken::kw_def:
1043     Flags |= RegState::Define;
1044     break;
1045   case MIToken::kw_dead:
1046     Flags |= RegState::Dead;
1047     break;
1048   case MIToken::kw_killed:
1049     Flags |= RegState::Kill;
1050     break;
1051   case MIToken::kw_undef:
1052     Flags |= RegState::Undef;
1053     break;
1054   case MIToken::kw_internal:
1055     Flags |= RegState::InternalRead;
1056     break;
1057   case MIToken::kw_early_clobber:
1058     Flags |= RegState::EarlyClobber;
1059     break;
1060   case MIToken::kw_debug_use:
1061     Flags |= RegState::Debug;
1062     break;
1063   default:
1064     llvm_unreachable("The current token should be a register flag");
1065   }
1066   if (OldFlags == Flags)
1067     // We know that the same flag is specified more than once when the flags
1068     // weren't modified.
1069     return error("duplicate '" + Token.stringValue() + "' register flag");
1070   lex();
1071   return false;
1072 }
1073 
1074 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1075   assert(Token.is(MIToken::dot));
1076   lex();
1077   if (Token.isNot(MIToken::Identifier))
1078     return error("expected a subregister index after '.'");
1079   auto Name = Token.stringValue();
1080   SubReg = getSubRegIndex(Name);
1081   if (!SubReg)
1082     return error(Twine("use of unknown subregister index '") + Name + "'");
1083   lex();
1084   return false;
1085 }
1086 
1087 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1088   if (!consumeIfPresent(MIToken::kw_tied_def))
1089     return true;
1090   if (Token.isNot(MIToken::IntegerLiteral))
1091     return error("expected an integer literal after 'tied-def'");
1092   if (getUnsigned(TiedDefIdx))
1093     return true;
1094   lex();
1095   if (expectAndConsume(MIToken::rparen))
1096     return true;
1097   return false;
1098 }
1099 
1100 bool MIParser::assignRegisterTies(MachineInstr &MI,
1101                                   ArrayRef<ParsedMachineOperand> Operands) {
1102   SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1103   for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1104     if (!Operands[I].TiedDefIdx)
1105       continue;
1106     // The parser ensures that this operand is a register use, so we just have
1107     // to check the tied-def operand.
1108     unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1109     if (DefIdx >= E)
1110       return error(Operands[I].Begin,
1111                    Twine("use of invalid tied-def operand index '" +
1112                          Twine(DefIdx) + "'; instruction has only ") +
1113                        Twine(E) + " operands");
1114     const auto &DefOperand = Operands[DefIdx].Operand;
1115     if (!DefOperand.isReg() || !DefOperand.isDef())
1116       // FIXME: add note with the def operand.
1117       return error(Operands[I].Begin,
1118                    Twine("use of invalid tied-def operand index '") +
1119                        Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1120                        " isn't a defined register");
1121     // Check that the tied-def operand wasn't tied elsewhere.
1122     for (const auto &TiedPair : TiedRegisterPairs) {
1123       if (TiedPair.first == DefIdx)
1124         return error(Operands[I].Begin,
1125                      Twine("the tied-def operand #") + Twine(DefIdx) +
1126                          " is already tied with another register operand");
1127     }
1128     TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1129   }
1130   // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1131   // indices must be less than tied max.
1132   for (const auto &TiedPair : TiedRegisterPairs)
1133     MI.tieOperands(TiedPair.first, TiedPair.second);
1134   return false;
1135 }
1136 
1137 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1138                                     Optional<unsigned> &TiedDefIdx,
1139                                     bool IsDef) {
1140   unsigned Flags = IsDef ? RegState::Define : 0;
1141   while (Token.isRegisterFlag()) {
1142     if (parseRegisterFlag(Flags))
1143       return true;
1144   }
1145   if (!Token.isRegister())
1146     return error("expected a register after register flags");
1147   unsigned Reg;
1148   VRegInfo *RegInfo;
1149   if (parseRegister(Reg, RegInfo))
1150     return true;
1151   lex();
1152   unsigned SubReg = 0;
1153   if (Token.is(MIToken::dot)) {
1154     if (parseSubRegisterIndex(SubReg))
1155       return true;
1156     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1157       return error("subregister index expects a virtual register");
1158   }
1159   if (Token.is(MIToken::colon)) {
1160     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1161       return error("register class specification expects a virtual register");
1162     lex();
1163     if (parseRegisterClassOrBank(*RegInfo))
1164         return true;
1165   }
1166   MachineRegisterInfo &MRI = MF.getRegInfo();
1167   if ((Flags & RegState::Define) == 0) {
1168     if (consumeIfPresent(MIToken::lparen)) {
1169       unsigned Idx;
1170       if (!parseRegisterTiedDefIndex(Idx))
1171         TiedDefIdx = Idx;
1172       else {
1173         // Try a redundant low-level type.
1174         LLT Ty;
1175         if (parseLowLevelType(Token.location(), Ty))
1176           return error("expected tied-def or low-level type after '('");
1177 
1178         if (expectAndConsume(MIToken::rparen))
1179           return true;
1180 
1181         if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1182           return error("inconsistent type for generic virtual register");
1183 
1184         MRI.setType(Reg, Ty);
1185       }
1186     }
1187   } else if (consumeIfPresent(MIToken::lparen)) {
1188     // Virtual registers may have a tpe with GlobalISel.
1189     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1190       return error("unexpected type on physical register");
1191 
1192     LLT Ty;
1193     if (parseLowLevelType(Token.location(), Ty))
1194       return true;
1195 
1196     if (expectAndConsume(MIToken::rparen))
1197       return true;
1198 
1199     if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1200       return error("inconsistent type for generic virtual register");
1201 
1202     MRI.setType(Reg, Ty);
1203   } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1204     // Generic virtual registers must have a type.
1205     // If we end up here this means the type hasn't been specified and
1206     // this is bad!
1207     if (RegInfo->Kind == VRegInfo::GENERIC ||
1208         RegInfo->Kind == VRegInfo::REGBANK)
1209       return error("generic virtual registers must have a type");
1210   }
1211   Dest = MachineOperand::CreateReg(
1212       Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1213       Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1214       Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1215       Flags & RegState::InternalRead);
1216   return false;
1217 }
1218 
1219 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1220   assert(Token.is(MIToken::IntegerLiteral));
1221   const APSInt &Int = Token.integerValue();
1222   if (Int.getMinSignedBits() > 64)
1223     return error("integer literal is too large to be an immediate operand");
1224   Dest = MachineOperand::CreateImm(Int.getExtValue());
1225   lex();
1226   return false;
1227 }
1228 
1229 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1230                                const Constant *&C) {
1231   auto Source = StringValue.str(); // The source has to be null terminated.
1232   SMDiagnostic Err;
1233   C = parseConstantValue(Source, Err, *MF.getFunction()->getParent(),
1234                          &PFS.IRSlots);
1235   if (!C)
1236     return error(Loc + Err.getColumnNo(), Err.getMessage());
1237   return false;
1238 }
1239 
1240 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1241   if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1242     return true;
1243   lex();
1244   return false;
1245 }
1246 
1247 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1248   if (Token.is(MIToken::ScalarType)) {
1249     Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1250     lex();
1251     return false;
1252   } else if (Token.is(MIToken::PointerType)) {
1253     const DataLayout &DL = MF.getFunction()->getParent()->getDataLayout();
1254     unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1255     Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1256     lex();
1257     return false;
1258   }
1259 
1260   // Now we're looking for a vector.
1261   if (Token.isNot(MIToken::less))
1262     return error(Loc,
1263                  "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1264 
1265   lex();
1266 
1267   if (Token.isNot(MIToken::IntegerLiteral))
1268     return error(Loc, "expected <N x sM> for vctor type");
1269   uint64_t NumElements = Token.integerValue().getZExtValue();
1270   lex();
1271 
1272   if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1273     return error(Loc, "expected '<N x sM>' for vector type");
1274   lex();
1275 
1276   if (Token.isNot(MIToken::ScalarType))
1277     return error(Loc, "expected '<N x sM>' for vector type");
1278   uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1279   lex();
1280 
1281   if (Token.isNot(MIToken::greater))
1282     return error(Loc, "expected '<N x sM>' for vector type");
1283   lex();
1284 
1285   Ty = LLT::vector(NumElements, ScalarSize);
1286   return false;
1287 }
1288 
1289 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1290   assert(Token.is(MIToken::IntegerType));
1291   auto Loc = Token.location();
1292   lex();
1293   if (Token.isNot(MIToken::IntegerLiteral))
1294     return error("expected an integer literal");
1295   const Constant *C = nullptr;
1296   if (parseIRConstant(Loc, C))
1297     return true;
1298   Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1299   return false;
1300 }
1301 
1302 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1303   auto Loc = Token.location();
1304   lex();
1305   if (Token.isNot(MIToken::FloatingPointLiteral) &&
1306       Token.isNot(MIToken::HexLiteral))
1307     return error("expected a floating point literal");
1308   const Constant *C = nullptr;
1309   if (parseIRConstant(Loc, C))
1310     return true;
1311   Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1312   return false;
1313 }
1314 
1315 bool MIParser::getUnsigned(unsigned &Result) {
1316   if (Token.hasIntegerValue()) {
1317     const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1318     uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1319     if (Val64 == Limit)
1320       return error("expected 32-bit integer (too large)");
1321     Result = Val64;
1322     return false;
1323   }
1324   if (Token.is(MIToken::HexLiteral)) {
1325     APInt A;
1326     if (getHexUint(A))
1327       return true;
1328     if (A.getBitWidth() > 32)
1329       return error("expected 32-bit integer (too large)");
1330     Result = A.getZExtValue();
1331     return false;
1332   }
1333   return true;
1334 }
1335 
1336 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1337   assert(Token.is(MIToken::MachineBasicBlock) ||
1338          Token.is(MIToken::MachineBasicBlockLabel));
1339   unsigned Number;
1340   if (getUnsigned(Number))
1341     return true;
1342   auto MBBInfo = PFS.MBBSlots.find(Number);
1343   if (MBBInfo == PFS.MBBSlots.end())
1344     return error(Twine("use of undefined machine basic block #") +
1345                  Twine(Number));
1346   MBB = MBBInfo->second;
1347   if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1348     return error(Twine("the name of machine basic block #") + Twine(Number) +
1349                  " isn't '" + Token.stringValue() + "'");
1350   return false;
1351 }
1352 
1353 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1354   MachineBasicBlock *MBB;
1355   if (parseMBBReference(MBB))
1356     return true;
1357   Dest = MachineOperand::CreateMBB(MBB);
1358   lex();
1359   return false;
1360 }
1361 
1362 bool MIParser::parseStackFrameIndex(int &FI) {
1363   assert(Token.is(MIToken::StackObject));
1364   unsigned ID;
1365   if (getUnsigned(ID))
1366     return true;
1367   auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1368   if (ObjectInfo == PFS.StackObjectSlots.end())
1369     return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1370                  "'");
1371   StringRef Name;
1372   if (const auto *Alloca =
1373           MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1374     Name = Alloca->getName();
1375   if (!Token.stringValue().empty() && Token.stringValue() != Name)
1376     return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1377                  "' isn't '" + Token.stringValue() + "'");
1378   lex();
1379   FI = ObjectInfo->second;
1380   return false;
1381 }
1382 
1383 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1384   int FI;
1385   if (parseStackFrameIndex(FI))
1386     return true;
1387   Dest = MachineOperand::CreateFI(FI);
1388   return false;
1389 }
1390 
1391 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1392   assert(Token.is(MIToken::FixedStackObject));
1393   unsigned ID;
1394   if (getUnsigned(ID))
1395     return true;
1396   auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1397   if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1398     return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1399                  Twine(ID) + "'");
1400   lex();
1401   FI = ObjectInfo->second;
1402   return false;
1403 }
1404 
1405 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1406   int FI;
1407   if (parseFixedStackFrameIndex(FI))
1408     return true;
1409   Dest = MachineOperand::CreateFI(FI);
1410   return false;
1411 }
1412 
1413 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1414   switch (Token.kind()) {
1415   case MIToken::NamedGlobalValue: {
1416     const Module *M = MF.getFunction()->getParent();
1417     GV = M->getNamedValue(Token.stringValue());
1418     if (!GV)
1419       return error(Twine("use of undefined global value '") + Token.range() +
1420                    "'");
1421     break;
1422   }
1423   case MIToken::GlobalValue: {
1424     unsigned GVIdx;
1425     if (getUnsigned(GVIdx))
1426       return true;
1427     if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1428       return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1429                    "'");
1430     GV = PFS.IRSlots.GlobalValues[GVIdx];
1431     break;
1432   }
1433   default:
1434     llvm_unreachable("The current token should be a global value");
1435   }
1436   return false;
1437 }
1438 
1439 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1440   GlobalValue *GV = nullptr;
1441   if (parseGlobalValue(GV))
1442     return true;
1443   lex();
1444   Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1445   if (parseOperandsOffset(Dest))
1446     return true;
1447   return false;
1448 }
1449 
1450 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1451   assert(Token.is(MIToken::ConstantPoolItem));
1452   unsigned ID;
1453   if (getUnsigned(ID))
1454     return true;
1455   auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1456   if (ConstantInfo == PFS.ConstantPoolSlots.end())
1457     return error("use of undefined constant '%const." + Twine(ID) + "'");
1458   lex();
1459   Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1460   if (parseOperandsOffset(Dest))
1461     return true;
1462   return false;
1463 }
1464 
1465 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1466   assert(Token.is(MIToken::JumpTableIndex));
1467   unsigned ID;
1468   if (getUnsigned(ID))
1469     return true;
1470   auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1471   if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1472     return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1473   lex();
1474   Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1475   return false;
1476 }
1477 
1478 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1479   assert(Token.is(MIToken::ExternalSymbol));
1480   const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1481   lex();
1482   Dest = MachineOperand::CreateES(Symbol);
1483   if (parseOperandsOffset(Dest))
1484     return true;
1485   return false;
1486 }
1487 
1488 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1489   assert(Token.is(MIToken::SubRegisterIndex));
1490   StringRef Name = Token.stringValue();
1491   unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1492   if (SubRegIndex == 0)
1493     return error(Twine("unknown subregister index '") + Name + "'");
1494   lex();
1495   Dest = MachineOperand::CreateImm(SubRegIndex);
1496   return false;
1497 }
1498 
1499 bool MIParser::parseMDNode(MDNode *&Node) {
1500   assert(Token.is(MIToken::exclaim));
1501 
1502   auto Loc = Token.location();
1503   lex();
1504   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1505     return error("expected metadata id after '!'");
1506   unsigned ID;
1507   if (getUnsigned(ID))
1508     return true;
1509   auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1510   if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1511     return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1512   lex();
1513   Node = NodeInfo->second.get();
1514   return false;
1515 }
1516 
1517 bool MIParser::parseDIExpression(MDNode *&Expr) {
1518   assert(Token.is(MIToken::md_diexpr));
1519   lex();
1520 
1521   // FIXME: Share this parsing with the IL parser.
1522   SmallVector<uint64_t, 8> Elements;
1523 
1524   if (expectAndConsume(MIToken::lparen))
1525     return true;
1526 
1527   if (Token.isNot(MIToken::rparen)) {
1528     do {
1529       if (Token.is(MIToken::Identifier)) {
1530         if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1531           lex();
1532           Elements.push_back(Op);
1533           continue;
1534         }
1535         return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1536       }
1537 
1538       if (Token.isNot(MIToken::IntegerLiteral) ||
1539           Token.integerValue().isSigned())
1540         return error("expected unsigned integer");
1541 
1542       auto &U = Token.integerValue();
1543       if (U.ugt(UINT64_MAX))
1544         return error("element too large, limit is " + Twine(UINT64_MAX));
1545       Elements.push_back(U.getZExtValue());
1546       lex();
1547 
1548     } while (consumeIfPresent(MIToken::comma));
1549   }
1550 
1551   if (expectAndConsume(MIToken::rparen))
1552     return true;
1553 
1554   Expr = DIExpression::get(MF.getFunction()->getContext(), Elements);
1555   return false;
1556 }
1557 
1558 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1559   MDNode *Node = nullptr;
1560   if (Token.is(MIToken::exclaim)) {
1561     if (parseMDNode(Node))
1562       return true;
1563   } else if (Token.is(MIToken::md_diexpr)) {
1564     if (parseDIExpression(Node))
1565       return true;
1566   }
1567   Dest = MachineOperand::CreateMetadata(Node);
1568   return false;
1569 }
1570 
1571 bool MIParser::parseCFIOffset(int &Offset) {
1572   if (Token.isNot(MIToken::IntegerLiteral))
1573     return error("expected a cfi offset");
1574   if (Token.integerValue().getMinSignedBits() > 32)
1575     return error("expected a 32 bit integer (the cfi offset is too large)");
1576   Offset = (int)Token.integerValue().getExtValue();
1577   lex();
1578   return false;
1579 }
1580 
1581 bool MIParser::parseCFIRegister(unsigned &Reg) {
1582   if (Token.isNot(MIToken::NamedRegister))
1583     return error("expected a cfi register");
1584   unsigned LLVMReg;
1585   if (parseNamedRegister(LLVMReg))
1586     return true;
1587   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1588   assert(TRI && "Expected target register info");
1589   int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1590   if (DwarfReg < 0)
1591     return error("invalid DWARF register");
1592   Reg = (unsigned)DwarfReg;
1593   lex();
1594   return false;
1595 }
1596 
1597 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1598   auto Kind = Token.kind();
1599   lex();
1600   int Offset;
1601   unsigned Reg;
1602   unsigned CFIIndex;
1603   switch (Kind) {
1604   case MIToken::kw_cfi_same_value:
1605     if (parseCFIRegister(Reg))
1606       return true;
1607     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1608     break;
1609   case MIToken::kw_cfi_offset:
1610     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1611         parseCFIOffset(Offset))
1612       return true;
1613     CFIIndex =
1614         MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1615     break;
1616   case MIToken::kw_cfi_def_cfa_register:
1617     if (parseCFIRegister(Reg))
1618       return true;
1619     CFIIndex =
1620         MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1621     break;
1622   case MIToken::kw_cfi_def_cfa_offset:
1623     if (parseCFIOffset(Offset))
1624       return true;
1625     // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1626     CFIIndex = MF.addFrameInst(
1627         MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1628     break;
1629   case MIToken::kw_cfi_def_cfa:
1630     if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1631         parseCFIOffset(Offset))
1632       return true;
1633     // NB: MCCFIInstruction::createDefCfa negates the offset.
1634     CFIIndex =
1635         MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1636     break;
1637   default:
1638     // TODO: Parse the other CFI operands.
1639     llvm_unreachable("The current token should be a cfi operand");
1640   }
1641   Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1642   return false;
1643 }
1644 
1645 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1646   switch (Token.kind()) {
1647   case MIToken::NamedIRBlock: {
1648     BB = dyn_cast_or_null<BasicBlock>(
1649         F.getValueSymbolTable()->lookup(Token.stringValue()));
1650     if (!BB)
1651       return error(Twine("use of undefined IR block '") + Token.range() + "'");
1652     break;
1653   }
1654   case MIToken::IRBlock: {
1655     unsigned SlotNumber = 0;
1656     if (getUnsigned(SlotNumber))
1657       return true;
1658     BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1659     if (!BB)
1660       return error(Twine("use of undefined IR block '%ir-block.") +
1661                    Twine(SlotNumber) + "'");
1662     break;
1663   }
1664   default:
1665     llvm_unreachable("The current token should be an IR block reference");
1666   }
1667   return false;
1668 }
1669 
1670 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1671   assert(Token.is(MIToken::kw_blockaddress));
1672   lex();
1673   if (expectAndConsume(MIToken::lparen))
1674     return true;
1675   if (Token.isNot(MIToken::GlobalValue) &&
1676       Token.isNot(MIToken::NamedGlobalValue))
1677     return error("expected a global value");
1678   GlobalValue *GV = nullptr;
1679   if (parseGlobalValue(GV))
1680     return true;
1681   auto *F = dyn_cast<Function>(GV);
1682   if (!F)
1683     return error("expected an IR function reference");
1684   lex();
1685   if (expectAndConsume(MIToken::comma))
1686     return true;
1687   BasicBlock *BB = nullptr;
1688   if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1689     return error("expected an IR block reference");
1690   if (parseIRBlock(BB, *F))
1691     return true;
1692   lex();
1693   if (expectAndConsume(MIToken::rparen))
1694     return true;
1695   Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1696   if (parseOperandsOffset(Dest))
1697     return true;
1698   return false;
1699 }
1700 
1701 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1702   assert(Token.is(MIToken::kw_intrinsic));
1703   lex();
1704   if (expectAndConsume(MIToken::lparen))
1705     return error("expected syntax intrinsic(@llvm.whatever)");
1706 
1707   if (Token.isNot(MIToken::NamedGlobalValue))
1708     return error("expected syntax intrinsic(@llvm.whatever)");
1709 
1710   std::string Name = Token.stringValue();
1711   lex();
1712 
1713   if (expectAndConsume(MIToken::rparen))
1714     return error("expected ')' to terminate intrinsic name");
1715 
1716   // Find out what intrinsic we're dealing with, first try the global namespace
1717   // and then the target's private intrinsics if that fails.
1718   const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1719   Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1720   if (ID == Intrinsic::not_intrinsic && TII)
1721     ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1722 
1723   if (ID == Intrinsic::not_intrinsic)
1724     return error("unknown intrinsic name");
1725   Dest = MachineOperand::CreateIntrinsicID(ID);
1726 
1727   return false;
1728 }
1729 
1730 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1731   assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
1732   bool IsFloat = Token.is(MIToken::kw_floatpred);
1733   lex();
1734 
1735   if (expectAndConsume(MIToken::lparen))
1736     return error("expected syntax intpred(whatever) or floatpred(whatever");
1737 
1738   if (Token.isNot(MIToken::Identifier))
1739     return error("whatever");
1740 
1741   CmpInst::Predicate Pred;
1742   if (IsFloat) {
1743     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1744                .Case("false", CmpInst::FCMP_FALSE)
1745                .Case("oeq", CmpInst::FCMP_OEQ)
1746                .Case("ogt", CmpInst::FCMP_OGT)
1747                .Case("oge", CmpInst::FCMP_OGE)
1748                .Case("olt", CmpInst::FCMP_OLT)
1749                .Case("ole", CmpInst::FCMP_OLE)
1750                .Case("one", CmpInst::FCMP_ONE)
1751                .Case("ord", CmpInst::FCMP_ORD)
1752                .Case("uno", CmpInst::FCMP_UNO)
1753                .Case("ueq", CmpInst::FCMP_UEQ)
1754                .Case("ugt", CmpInst::FCMP_UGT)
1755                .Case("uge", CmpInst::FCMP_UGE)
1756                .Case("ult", CmpInst::FCMP_ULT)
1757                .Case("ule", CmpInst::FCMP_ULE)
1758                .Case("une", CmpInst::FCMP_UNE)
1759                .Case("true", CmpInst::FCMP_TRUE)
1760                .Default(CmpInst::BAD_FCMP_PREDICATE);
1761     if (!CmpInst::isFPPredicate(Pred))
1762       return error("invalid floating-point predicate");
1763   } else {
1764     Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1765                .Case("eq", CmpInst::ICMP_EQ)
1766                .Case("ne", CmpInst::ICMP_NE)
1767                .Case("sgt", CmpInst::ICMP_SGT)
1768                .Case("sge", CmpInst::ICMP_SGE)
1769                .Case("slt", CmpInst::ICMP_SLT)
1770                .Case("sle", CmpInst::ICMP_SLE)
1771                .Case("ugt", CmpInst::ICMP_UGT)
1772                .Case("uge", CmpInst::ICMP_UGE)
1773                .Case("ult", CmpInst::ICMP_ULT)
1774                .Case("ule", CmpInst::ICMP_ULE)
1775                .Default(CmpInst::BAD_ICMP_PREDICATE);
1776     if (!CmpInst::isIntPredicate(Pred))
1777       return error("invalid integer predicate");
1778   }
1779 
1780   lex();
1781   Dest = MachineOperand::CreatePredicate(Pred);
1782   if (expectAndConsume(MIToken::rparen))
1783     return error("predicate should be terminated by ')'.");
1784 
1785   return false;
1786 }
1787 
1788 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1789   assert(Token.is(MIToken::kw_target_index));
1790   lex();
1791   if (expectAndConsume(MIToken::lparen))
1792     return true;
1793   if (Token.isNot(MIToken::Identifier))
1794     return error("expected the name of the target index");
1795   int Index = 0;
1796   if (getTargetIndex(Token.stringValue(), Index))
1797     return error("use of undefined target index '" + Token.stringValue() + "'");
1798   lex();
1799   if (expectAndConsume(MIToken::rparen))
1800     return true;
1801   Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1802   if (parseOperandsOffset(Dest))
1803     return true;
1804   return false;
1805 }
1806 
1807 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1808   assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
1809   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1810   assert(TRI && "Expected target register info");
1811   lex();
1812   if (expectAndConsume(MIToken::lparen))
1813     return true;
1814 
1815   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1816   while (true) {
1817     if (Token.isNot(MIToken::NamedRegister))
1818       return error("expected a named register");
1819     unsigned Reg;
1820     if (parseNamedRegister(Reg))
1821       return true;
1822     lex();
1823     Mask[Reg / 32] |= 1U << (Reg % 32);
1824     // TODO: Report an error if the same register is used more than once.
1825     if (Token.isNot(MIToken::comma))
1826       break;
1827     lex();
1828   }
1829 
1830   if (expectAndConsume(MIToken::rparen))
1831     return true;
1832   Dest = MachineOperand::CreateRegMask(Mask);
1833   return false;
1834 }
1835 
1836 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1837   assert(Token.is(MIToken::kw_liveout));
1838   const auto *TRI = MF.getSubtarget().getRegisterInfo();
1839   assert(TRI && "Expected target register info");
1840   uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1841   lex();
1842   if (expectAndConsume(MIToken::lparen))
1843     return true;
1844   while (true) {
1845     if (Token.isNot(MIToken::NamedRegister))
1846       return error("expected a named register");
1847     unsigned Reg;
1848     if (parseNamedRegister(Reg))
1849       return true;
1850     lex();
1851     Mask[Reg / 32] |= 1U << (Reg % 32);
1852     // TODO: Report an error if the same register is used more than once.
1853     if (Token.isNot(MIToken::comma))
1854       break;
1855     lex();
1856   }
1857   if (expectAndConsume(MIToken::rparen))
1858     return true;
1859   Dest = MachineOperand::CreateRegLiveOut(Mask);
1860   return false;
1861 }
1862 
1863 bool MIParser::parseMachineOperand(MachineOperand &Dest,
1864                                    Optional<unsigned> &TiedDefIdx) {
1865   switch (Token.kind()) {
1866   case MIToken::kw_implicit:
1867   case MIToken::kw_implicit_define:
1868   case MIToken::kw_def:
1869   case MIToken::kw_dead:
1870   case MIToken::kw_killed:
1871   case MIToken::kw_undef:
1872   case MIToken::kw_internal:
1873   case MIToken::kw_early_clobber:
1874   case MIToken::kw_debug_use:
1875   case MIToken::underscore:
1876   case MIToken::NamedRegister:
1877   case MIToken::VirtualRegister:
1878     return parseRegisterOperand(Dest, TiedDefIdx);
1879   case MIToken::IntegerLiteral:
1880     return parseImmediateOperand(Dest);
1881   case MIToken::IntegerType:
1882     return parseTypedImmediateOperand(Dest);
1883   case MIToken::kw_half:
1884   case MIToken::kw_float:
1885   case MIToken::kw_double:
1886   case MIToken::kw_x86_fp80:
1887   case MIToken::kw_fp128:
1888   case MIToken::kw_ppc_fp128:
1889     return parseFPImmediateOperand(Dest);
1890   case MIToken::MachineBasicBlock:
1891     return parseMBBOperand(Dest);
1892   case MIToken::StackObject:
1893     return parseStackObjectOperand(Dest);
1894   case MIToken::FixedStackObject:
1895     return parseFixedStackObjectOperand(Dest);
1896   case MIToken::GlobalValue:
1897   case MIToken::NamedGlobalValue:
1898     return parseGlobalAddressOperand(Dest);
1899   case MIToken::ConstantPoolItem:
1900     return parseConstantPoolIndexOperand(Dest);
1901   case MIToken::JumpTableIndex:
1902     return parseJumpTableIndexOperand(Dest);
1903   case MIToken::ExternalSymbol:
1904     return parseExternalSymbolOperand(Dest);
1905   case MIToken::SubRegisterIndex:
1906     return parseSubRegisterIndexOperand(Dest);
1907   case MIToken::md_diexpr:
1908   case MIToken::exclaim:
1909     return parseMetadataOperand(Dest);
1910   case MIToken::kw_cfi_same_value:
1911   case MIToken::kw_cfi_offset:
1912   case MIToken::kw_cfi_def_cfa_register:
1913   case MIToken::kw_cfi_def_cfa_offset:
1914   case MIToken::kw_cfi_def_cfa:
1915     return parseCFIOperand(Dest);
1916   case MIToken::kw_blockaddress:
1917     return parseBlockAddressOperand(Dest);
1918   case MIToken::kw_intrinsic:
1919     return parseIntrinsicOperand(Dest);
1920   case MIToken::kw_target_index:
1921     return parseTargetIndexOperand(Dest);
1922   case MIToken::kw_liveout:
1923     return parseLiveoutRegisterMaskOperand(Dest);
1924   case MIToken::kw_floatpred:
1925   case MIToken::kw_intpred:
1926     return parsePredicateOperand(Dest);
1927   case MIToken::Error:
1928     return true;
1929   case MIToken::Identifier:
1930     if (const auto *RegMask = getRegMask(Token.stringValue())) {
1931       Dest = MachineOperand::CreateRegMask(RegMask);
1932       lex();
1933       break;
1934     } else
1935       return parseCustomRegisterMaskOperand(Dest);
1936   default:
1937     // FIXME: Parse the MCSymbol machine operand.
1938     return error("expected a machine operand");
1939   }
1940   return false;
1941 }
1942 
1943 bool MIParser::parseMachineOperandAndTargetFlags(
1944     MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
1945   unsigned TF = 0;
1946   bool HasTargetFlags = false;
1947   if (Token.is(MIToken::kw_target_flags)) {
1948     HasTargetFlags = true;
1949     lex();
1950     if (expectAndConsume(MIToken::lparen))
1951       return true;
1952     if (Token.isNot(MIToken::Identifier))
1953       return error("expected the name of the target flag");
1954     if (getDirectTargetFlag(Token.stringValue(), TF)) {
1955       if (getBitmaskTargetFlag(Token.stringValue(), TF))
1956         return error("use of undefined target flag '" + Token.stringValue() +
1957                      "'");
1958     }
1959     lex();
1960     while (Token.is(MIToken::comma)) {
1961       lex();
1962       if (Token.isNot(MIToken::Identifier))
1963         return error("expected the name of the target flag");
1964       unsigned BitFlag = 0;
1965       if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
1966         return error("use of undefined target flag '" + Token.stringValue() +
1967                      "'");
1968       // TODO: Report an error when using a duplicate bit target flag.
1969       TF |= BitFlag;
1970       lex();
1971     }
1972     if (expectAndConsume(MIToken::rparen))
1973       return true;
1974   }
1975   auto Loc = Token.location();
1976   if (parseMachineOperand(Dest, TiedDefIdx))
1977     return true;
1978   if (!HasTargetFlags)
1979     return false;
1980   if (Dest.isReg())
1981     return error(Loc, "register operands can't have target flags");
1982   Dest.setTargetFlags(TF);
1983   return false;
1984 }
1985 
1986 bool MIParser::parseOffset(int64_t &Offset) {
1987   if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
1988     return false;
1989   StringRef Sign = Token.range();
1990   bool IsNegative = Token.is(MIToken::minus);
1991   lex();
1992   if (Token.isNot(MIToken::IntegerLiteral))
1993     return error("expected an integer literal after '" + Sign + "'");
1994   if (Token.integerValue().getMinSignedBits() > 64)
1995     return error("expected 64-bit integer (too large)");
1996   Offset = Token.integerValue().getExtValue();
1997   if (IsNegative)
1998     Offset = -Offset;
1999   lex();
2000   return false;
2001 }
2002 
2003 bool MIParser::parseAlignment(unsigned &Alignment) {
2004   assert(Token.is(MIToken::kw_align));
2005   lex();
2006   if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2007     return error("expected an integer literal after 'align'");
2008   if (getUnsigned(Alignment))
2009     return true;
2010   lex();
2011   return false;
2012 }
2013 
2014 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2015   int64_t Offset = 0;
2016   if (parseOffset(Offset))
2017     return true;
2018   Op.setOffset(Offset);
2019   return false;
2020 }
2021 
2022 bool MIParser::parseIRValue(const Value *&V) {
2023   switch (Token.kind()) {
2024   case MIToken::NamedIRValue: {
2025     V = MF.getFunction()->getValueSymbolTable()->lookup(Token.stringValue());
2026     break;
2027   }
2028   case MIToken::IRValue: {
2029     unsigned SlotNumber = 0;
2030     if (getUnsigned(SlotNumber))
2031       return true;
2032     V = getIRValue(SlotNumber);
2033     break;
2034   }
2035   case MIToken::NamedGlobalValue:
2036   case MIToken::GlobalValue: {
2037     GlobalValue *GV = nullptr;
2038     if (parseGlobalValue(GV))
2039       return true;
2040     V = GV;
2041     break;
2042   }
2043   case MIToken::QuotedIRValue: {
2044     const Constant *C = nullptr;
2045     if (parseIRConstant(Token.location(), Token.stringValue(), C))
2046       return true;
2047     V = C;
2048     break;
2049   }
2050   default:
2051     llvm_unreachable("The current token should be an IR block reference");
2052   }
2053   if (!V)
2054     return error(Twine("use of undefined IR value '") + Token.range() + "'");
2055   return false;
2056 }
2057 
2058 bool MIParser::getUint64(uint64_t &Result) {
2059   if (Token.hasIntegerValue()) {
2060     if (Token.integerValue().getActiveBits() > 64)
2061       return error("expected 64-bit integer (too large)");
2062     Result = Token.integerValue().getZExtValue();
2063     return false;
2064   }
2065   if (Token.is(MIToken::HexLiteral)) {
2066     APInt A;
2067     if (getHexUint(A))
2068       return true;
2069     if (A.getBitWidth() > 64)
2070       return error("expected 64-bit integer (too large)");
2071     Result = A.getZExtValue();
2072     return false;
2073   }
2074   return true;
2075 }
2076 
2077 bool MIParser::getHexUint(APInt &Result) {
2078   assert(Token.is(MIToken::HexLiteral));
2079   StringRef S = Token.range();
2080   assert(S[0] == '0' && tolower(S[1]) == 'x');
2081   // This could be a floating point literal with a special prefix.
2082   if (!isxdigit(S[2]))
2083     return true;
2084   StringRef V = S.substr(2);
2085   APInt A(V.size()*4, V, 16);
2086 
2087   // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2088   // sure it isn't the case before constructing result.
2089   unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2090   Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2091   return false;
2092 }
2093 
2094 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2095   const auto OldFlags = Flags;
2096   switch (Token.kind()) {
2097   case MIToken::kw_volatile:
2098     Flags |= MachineMemOperand::MOVolatile;
2099     break;
2100   case MIToken::kw_non_temporal:
2101     Flags |= MachineMemOperand::MONonTemporal;
2102     break;
2103   case MIToken::kw_dereferenceable:
2104     Flags |= MachineMemOperand::MODereferenceable;
2105     break;
2106   case MIToken::kw_invariant:
2107     Flags |= MachineMemOperand::MOInvariant;
2108     break;
2109   case MIToken::StringConstant: {
2110     MachineMemOperand::Flags TF;
2111     if (getMMOTargetFlag(Token.stringValue(), TF))
2112       return error("use of undefined target MMO flag '" + Token.stringValue() +
2113                    "'");
2114     Flags |= TF;
2115     break;
2116   }
2117   default:
2118     llvm_unreachable("The current token should be a memory operand flag");
2119   }
2120   if (OldFlags == Flags)
2121     // We know that the same flag is specified more than once when the flags
2122     // weren't modified.
2123     return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2124   lex();
2125   return false;
2126 }
2127 
2128 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2129   switch (Token.kind()) {
2130   case MIToken::kw_stack:
2131     PSV = MF.getPSVManager().getStack();
2132     break;
2133   case MIToken::kw_got:
2134     PSV = MF.getPSVManager().getGOT();
2135     break;
2136   case MIToken::kw_jump_table:
2137     PSV = MF.getPSVManager().getJumpTable();
2138     break;
2139   case MIToken::kw_constant_pool:
2140     PSV = MF.getPSVManager().getConstantPool();
2141     break;
2142   case MIToken::FixedStackObject: {
2143     int FI;
2144     if (parseFixedStackFrameIndex(FI))
2145       return true;
2146     PSV = MF.getPSVManager().getFixedStack(FI);
2147     // The token was already consumed, so use return here instead of break.
2148     return false;
2149   }
2150   case MIToken::StackObject: {
2151     int FI;
2152     if (parseStackFrameIndex(FI))
2153       return true;
2154     PSV = MF.getPSVManager().getFixedStack(FI);
2155     // The token was already consumed, so use return here instead of break.
2156     return false;
2157   }
2158   case MIToken::kw_call_entry:
2159     lex();
2160     switch (Token.kind()) {
2161     case MIToken::GlobalValue:
2162     case MIToken::NamedGlobalValue: {
2163       GlobalValue *GV = nullptr;
2164       if (parseGlobalValue(GV))
2165         return true;
2166       PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2167       break;
2168     }
2169     case MIToken::ExternalSymbol:
2170       PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2171           MF.createExternalSymbolName(Token.stringValue()));
2172       break;
2173     default:
2174       return error(
2175           "expected a global value or an external symbol after 'call-entry'");
2176     }
2177     break;
2178   default:
2179     llvm_unreachable("The current token should be pseudo source value");
2180   }
2181   lex();
2182   return false;
2183 }
2184 
2185 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2186   if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2187       Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2188       Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2189       Token.is(MIToken::kw_call_entry)) {
2190     const PseudoSourceValue *PSV = nullptr;
2191     if (parseMemoryPseudoSourceValue(PSV))
2192       return true;
2193     int64_t Offset = 0;
2194     if (parseOffset(Offset))
2195       return true;
2196     Dest = MachinePointerInfo(PSV, Offset);
2197     return false;
2198   }
2199   if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2200       Token.isNot(MIToken::GlobalValue) &&
2201       Token.isNot(MIToken::NamedGlobalValue) &&
2202       Token.isNot(MIToken::QuotedIRValue))
2203     return error("expected an IR value reference");
2204   const Value *V = nullptr;
2205   if (parseIRValue(V))
2206     return true;
2207   if (!V->getType()->isPointerTy())
2208     return error("expected a pointer IR value");
2209   lex();
2210   int64_t Offset = 0;
2211   if (parseOffset(Offset))
2212     return true;
2213   Dest = MachinePointerInfo(V, Offset);
2214   return false;
2215 }
2216 
2217 bool MIParser::parseOptionalScope(LLVMContext &Context,
2218                                   SyncScope::ID &SSID) {
2219   SSID = SyncScope::System;
2220   if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2221     lex();
2222     if (expectAndConsume(MIToken::lparen))
2223       return error("expected '(' in syncscope");
2224 
2225     std::string SSN;
2226     if (parseStringConstant(SSN))
2227       return true;
2228 
2229     SSID = Context.getOrInsertSyncScopeID(SSN);
2230     if (expectAndConsume(MIToken::rparen))
2231       return error("expected ')' in syncscope");
2232   }
2233 
2234   return false;
2235 }
2236 
2237 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2238   Order = AtomicOrdering::NotAtomic;
2239   if (Token.isNot(MIToken::Identifier))
2240     return false;
2241 
2242   Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2243               .Case("unordered", AtomicOrdering::Unordered)
2244               .Case("monotonic", AtomicOrdering::Monotonic)
2245               .Case("acquire", AtomicOrdering::Acquire)
2246               .Case("release", AtomicOrdering::Release)
2247               .Case("acq_rel", AtomicOrdering::AcquireRelease)
2248               .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2249               .Default(AtomicOrdering::NotAtomic);
2250 
2251   if (Order != AtomicOrdering::NotAtomic) {
2252     lex();
2253     return false;
2254   }
2255 
2256   return error("expected an atomic scope, ordering or a size integer literal");
2257 }
2258 
2259 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2260   if (expectAndConsume(MIToken::lparen))
2261     return true;
2262   MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2263   while (Token.isMemoryOperandFlag()) {
2264     if (parseMemoryOperandFlag(Flags))
2265       return true;
2266   }
2267   if (Token.isNot(MIToken::Identifier) ||
2268       (Token.stringValue() != "load" && Token.stringValue() != "store"))
2269     return error("expected 'load' or 'store' memory operation");
2270   if (Token.stringValue() == "load")
2271     Flags |= MachineMemOperand::MOLoad;
2272   else
2273     Flags |= MachineMemOperand::MOStore;
2274   lex();
2275 
2276   // Optional synchronization scope.
2277   SyncScope::ID SSID;
2278   if (parseOptionalScope(MF.getFunction()->getContext(), SSID))
2279     return true;
2280 
2281   // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2282   AtomicOrdering Order, FailureOrder;
2283   if (parseOptionalAtomicOrdering(Order))
2284     return true;
2285 
2286   if (parseOptionalAtomicOrdering(FailureOrder))
2287     return true;
2288 
2289   if (Token.isNot(MIToken::IntegerLiteral))
2290     return error("expected the size integer literal after memory operation");
2291   uint64_t Size;
2292   if (getUint64(Size))
2293     return true;
2294   lex();
2295 
2296   MachinePointerInfo Ptr = MachinePointerInfo();
2297   if (Token.is(MIToken::Identifier)) {
2298     const char *Word = Flags & MachineMemOperand::MOLoad ? "from" : "into";
2299     if (Token.stringValue() != Word)
2300       return error(Twine("expected '") + Word + "'");
2301     lex();
2302 
2303     if (parseMachinePointerInfo(Ptr))
2304       return true;
2305   }
2306   unsigned BaseAlignment = Size;
2307   AAMDNodes AAInfo;
2308   MDNode *Range = nullptr;
2309   while (consumeIfPresent(MIToken::comma)) {
2310     switch (Token.kind()) {
2311     case MIToken::kw_align:
2312       if (parseAlignment(BaseAlignment))
2313         return true;
2314       break;
2315     case MIToken::md_tbaa:
2316       lex();
2317       if (parseMDNode(AAInfo.TBAA))
2318         return true;
2319       break;
2320     case MIToken::md_alias_scope:
2321       lex();
2322       if (parseMDNode(AAInfo.Scope))
2323         return true;
2324       break;
2325     case MIToken::md_noalias:
2326       lex();
2327       if (parseMDNode(AAInfo.NoAlias))
2328         return true;
2329       break;
2330     case MIToken::md_range:
2331       lex();
2332       if (parseMDNode(Range))
2333         return true;
2334       break;
2335     // TODO: Report an error on duplicate metadata nodes.
2336     default:
2337       return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2338                    "'!noalias' or '!range'");
2339     }
2340   }
2341   if (expectAndConsume(MIToken::rparen))
2342     return true;
2343   Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2344                                  SSID, Order, FailureOrder);
2345   return false;
2346 }
2347 
2348 void MIParser::initNames2InstrOpCodes() {
2349   if (!Names2InstrOpCodes.empty())
2350     return;
2351   const auto *TII = MF.getSubtarget().getInstrInfo();
2352   assert(TII && "Expected target instruction info");
2353   for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2354     Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2355 }
2356 
2357 bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2358   initNames2InstrOpCodes();
2359   auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2360   if (InstrInfo == Names2InstrOpCodes.end())
2361     return true;
2362   OpCode = InstrInfo->getValue();
2363   return false;
2364 }
2365 
2366 void MIParser::initNames2Regs() {
2367   if (!Names2Regs.empty())
2368     return;
2369   // The '%noreg' register is the register 0.
2370   Names2Regs.insert(std::make_pair("noreg", 0));
2371   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2372   assert(TRI && "Expected target register info");
2373   for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2374     bool WasInserted =
2375         Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2376             .second;
2377     (void)WasInserted;
2378     assert(WasInserted && "Expected registers to be unique case-insensitively");
2379   }
2380 }
2381 
2382 bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2383   initNames2Regs();
2384   auto RegInfo = Names2Regs.find(RegName);
2385   if (RegInfo == Names2Regs.end())
2386     return true;
2387   Reg = RegInfo->getValue();
2388   return false;
2389 }
2390 
2391 void MIParser::initNames2RegMasks() {
2392   if (!Names2RegMasks.empty())
2393     return;
2394   const auto *TRI = MF.getSubtarget().getRegisterInfo();
2395   assert(TRI && "Expected target register info");
2396   ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2397   ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2398   assert(RegMasks.size() == RegMaskNames.size());
2399   for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2400     Names2RegMasks.insert(
2401         std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2402 }
2403 
2404 const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2405   initNames2RegMasks();
2406   auto RegMaskInfo = Names2RegMasks.find(Identifier);
2407   if (RegMaskInfo == Names2RegMasks.end())
2408     return nullptr;
2409   return RegMaskInfo->getValue();
2410 }
2411 
2412 void MIParser::initNames2SubRegIndices() {
2413   if (!Names2SubRegIndices.empty())
2414     return;
2415   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2416   for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2417     Names2SubRegIndices.insert(
2418         std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2419 }
2420 
2421 unsigned MIParser::getSubRegIndex(StringRef Name) {
2422   initNames2SubRegIndices();
2423   auto SubRegInfo = Names2SubRegIndices.find(Name);
2424   if (SubRegInfo == Names2SubRegIndices.end())
2425     return 0;
2426   return SubRegInfo->getValue();
2427 }
2428 
2429 static void initSlots2BasicBlocks(
2430     const Function &F,
2431     DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2432   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2433   MST.incorporateFunction(F);
2434   for (auto &BB : F) {
2435     if (BB.hasName())
2436       continue;
2437     int Slot = MST.getLocalSlot(&BB);
2438     if (Slot == -1)
2439       continue;
2440     Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2441   }
2442 }
2443 
2444 static const BasicBlock *getIRBlockFromSlot(
2445     unsigned Slot,
2446     const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2447   auto BlockInfo = Slots2BasicBlocks.find(Slot);
2448   if (BlockInfo == Slots2BasicBlocks.end())
2449     return nullptr;
2450   return BlockInfo->second;
2451 }
2452 
2453 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2454   if (Slots2BasicBlocks.empty())
2455     initSlots2BasicBlocks(*MF.getFunction(), Slots2BasicBlocks);
2456   return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2457 }
2458 
2459 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2460   if (&F == MF.getFunction())
2461     return getIRBlock(Slot);
2462   DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2463   initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2464   return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2465 }
2466 
2467 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2468                            DenseMap<unsigned, const Value *> &Slots2Values) {
2469   int Slot = MST.getLocalSlot(V);
2470   if (Slot == -1)
2471     return;
2472   Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2473 }
2474 
2475 /// Creates the mapping from slot numbers to function's unnamed IR values.
2476 static void initSlots2Values(const Function &F,
2477                              DenseMap<unsigned, const Value *> &Slots2Values) {
2478   ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2479   MST.incorporateFunction(F);
2480   for (const auto &Arg : F.args())
2481     mapValueToSlot(&Arg, MST, Slots2Values);
2482   for (const auto &BB : F) {
2483     mapValueToSlot(&BB, MST, Slots2Values);
2484     for (const auto &I : BB)
2485       mapValueToSlot(&I, MST, Slots2Values);
2486   }
2487 }
2488 
2489 const Value *MIParser::getIRValue(unsigned Slot) {
2490   if (Slots2Values.empty())
2491     initSlots2Values(*MF.getFunction(), Slots2Values);
2492   auto ValueInfo = Slots2Values.find(Slot);
2493   if (ValueInfo == Slots2Values.end())
2494     return nullptr;
2495   return ValueInfo->second;
2496 }
2497 
2498 void MIParser::initNames2TargetIndices() {
2499   if (!Names2TargetIndices.empty())
2500     return;
2501   const auto *TII = MF.getSubtarget().getInstrInfo();
2502   assert(TII && "Expected target instruction info");
2503   auto Indices = TII->getSerializableTargetIndices();
2504   for (const auto &I : Indices)
2505     Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2506 }
2507 
2508 bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2509   initNames2TargetIndices();
2510   auto IndexInfo = Names2TargetIndices.find(Name);
2511   if (IndexInfo == Names2TargetIndices.end())
2512     return true;
2513   Index = IndexInfo->second;
2514   return false;
2515 }
2516 
2517 void MIParser::initNames2DirectTargetFlags() {
2518   if (!Names2DirectTargetFlags.empty())
2519     return;
2520   const auto *TII = MF.getSubtarget().getInstrInfo();
2521   assert(TII && "Expected target instruction info");
2522   auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2523   for (const auto &I : Flags)
2524     Names2DirectTargetFlags.insert(
2525         std::make_pair(StringRef(I.second), I.first));
2526 }
2527 
2528 bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2529   initNames2DirectTargetFlags();
2530   auto FlagInfo = Names2DirectTargetFlags.find(Name);
2531   if (FlagInfo == Names2DirectTargetFlags.end())
2532     return true;
2533   Flag = FlagInfo->second;
2534   return false;
2535 }
2536 
2537 void MIParser::initNames2BitmaskTargetFlags() {
2538   if (!Names2BitmaskTargetFlags.empty())
2539     return;
2540   const auto *TII = MF.getSubtarget().getInstrInfo();
2541   assert(TII && "Expected target instruction info");
2542   auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2543   for (const auto &I : Flags)
2544     Names2BitmaskTargetFlags.insert(
2545         std::make_pair(StringRef(I.second), I.first));
2546 }
2547 
2548 bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2549   initNames2BitmaskTargetFlags();
2550   auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2551   if (FlagInfo == Names2BitmaskTargetFlags.end())
2552     return true;
2553   Flag = FlagInfo->second;
2554   return false;
2555 }
2556 
2557 void MIParser::initNames2MMOTargetFlags() {
2558   if (!Names2MMOTargetFlags.empty())
2559     return;
2560   const auto *TII = MF.getSubtarget().getInstrInfo();
2561   assert(TII && "Expected target instruction info");
2562   auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2563   for (const auto &I : Flags)
2564     Names2MMOTargetFlags.insert(
2565         std::make_pair(StringRef(I.second), I.first));
2566 }
2567 
2568 bool MIParser::getMMOTargetFlag(StringRef Name,
2569                                 MachineMemOperand::Flags &Flag) {
2570   initNames2MMOTargetFlags();
2571   auto FlagInfo = Names2MMOTargetFlags.find(Name);
2572   if (FlagInfo == Names2MMOTargetFlags.end())
2573     return true;
2574   Flag = FlagInfo->second;
2575   return false;
2576 }
2577 
2578 bool MIParser::parseStringConstant(std::string &Result) {
2579   if (Token.isNot(MIToken::StringConstant))
2580     return error("expected string constant");
2581   Result = Token.stringValue();
2582   lex();
2583   return false;
2584 }
2585 
2586 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2587                                              StringRef Src,
2588                                              SMDiagnostic &Error) {
2589   return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2590 }
2591 
2592 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2593                                     StringRef Src, SMDiagnostic &Error) {
2594   return MIParser(PFS, Error, Src).parseBasicBlocks();
2595 }
2596 
2597 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2598                              MachineBasicBlock *&MBB, StringRef Src,
2599                              SMDiagnostic &Error) {
2600   return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2601 }
2602 
2603 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2604                                   unsigned &Reg, StringRef Src,
2605                                   SMDiagnostic &Error) {
2606   return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2607 }
2608 
2609 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2610                                        unsigned &Reg, StringRef Src,
2611                                        SMDiagnostic &Error) {
2612   return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2613 }
2614 
2615 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2616                                          VRegInfo *&Info, StringRef Src,
2617                                          SMDiagnostic &Error) {
2618   return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2619 }
2620 
2621 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2622                                      int &FI, StringRef Src,
2623                                      SMDiagnostic &Error) {
2624   return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2625 }
2626 
2627 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2628                        MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2629   return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2630 }
2631