1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using are sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/ADT/DepthFirstIterator.h" 37 #include "llvm/ADT/SmallPtrSet.h" 38 #include "llvm/ADT/SmallSet.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 char LiveVariables::ID = 0; 44 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", 45 "Live Variable Analysis", false, false) 46 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) 47 INITIALIZE_PASS_END(LiveVariables, "livevars", 48 "Live Variable Analysis", false, false) 49 50 51 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 52 AU.addRequiredID(UnreachableMachineBlockElimID); 53 AU.setPreservesAll(); 54 MachineFunctionPass::getAnalysisUsage(AU); 55 } 56 57 MachineInstr * 58 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { 59 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 60 if (Kills[i]->getParent() == MBB) 61 return Kills[i]; 62 return NULL; 63 } 64 65 void LiveVariables::VarInfo::dump() const { 66 dbgs() << " Alive in blocks: "; 67 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 68 E = AliveBlocks.end(); I != E; ++I) 69 dbgs() << *I << ", "; 70 dbgs() << "\n Killed by:"; 71 if (Kills.empty()) 72 dbgs() << " No instructions.\n"; 73 else { 74 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 75 dbgs() << "\n #" << i << ": " << *Kills[i]; 76 dbgs() << "\n"; 77 } 78 } 79 80 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 81 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 82 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 83 "getVarInfo: not a virtual register!"); 84 VirtRegInfo.grow(RegIdx); 85 return VirtRegInfo[RegIdx]; 86 } 87 88 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 89 MachineBasicBlock *DefBlock, 90 MachineBasicBlock *MBB, 91 std::vector<MachineBasicBlock*> &WorkList) { 92 unsigned BBNum = MBB->getNumber(); 93 94 // Check to see if this basic block is one of the killing blocks. If so, 95 // remove it. 96 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 97 if (VRInfo.Kills[i]->getParent() == MBB) { 98 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 99 break; 100 } 101 102 if (MBB == DefBlock) return; // Terminate recursion 103 104 if (VRInfo.AliveBlocks.test(BBNum)) 105 return; // We already know the block is live 106 107 // Mark the variable known alive in this bb 108 VRInfo.AliveBlocks.set(BBNum); 109 110 for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), 111 E = MBB->pred_rend(); PI != E; ++PI) 112 WorkList.push_back(*PI); 113 } 114 115 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 116 MachineBasicBlock *DefBlock, 117 MachineBasicBlock *MBB) { 118 std::vector<MachineBasicBlock*> WorkList; 119 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 120 121 while (!WorkList.empty()) { 122 MachineBasicBlock *Pred = WorkList.back(); 123 WorkList.pop_back(); 124 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 125 } 126 } 127 128 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 129 MachineInstr *MI) { 130 assert(MRI->getVRegDef(reg) && "Register use before def!"); 131 132 unsigned BBNum = MBB->getNumber(); 133 134 VarInfo& VRInfo = getVarInfo(reg); 135 VRInfo.NumUses++; 136 137 // Check to see if this basic block is already a kill block. 138 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 139 // Yes, this register is killed in this basic block already. Increase the 140 // live range by updating the kill instruction. 141 VRInfo.Kills.back() = MI; 142 return; 143 } 144 145 #ifndef NDEBUG 146 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 147 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 148 #endif 149 150 // This situation can occur: 151 // 152 // ,------. 153 // | | 154 // | v 155 // | t2 = phi ... t1 ... 156 // | | 157 // | v 158 // | t1 = ... 159 // | ... = ... t1 ... 160 // | | 161 // `------' 162 // 163 // where there is a use in a PHI node that's a predecessor to the defining 164 // block. We don't want to mark all predecessors as having the value "alive" 165 // in this case. 166 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 167 168 // Add a new kill entry for this basic block. If this virtual register is 169 // already marked as alive in this basic block, that means it is alive in at 170 // least one of the successor blocks, it's not a kill. 171 if (!VRInfo.AliveBlocks.test(BBNum)) 172 VRInfo.Kills.push_back(MI); 173 174 // Update all dominating blocks to mark them as "known live". 175 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 176 E = MBB->pred_end(); PI != E; ++PI) 177 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 178 } 179 180 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 181 VarInfo &VRInfo = getVarInfo(Reg); 182 183 if (VRInfo.AliveBlocks.empty()) 184 // If vr is not alive in any block, then defaults to dead. 185 VRInfo.Kills.push_back(MI); 186 } 187 188 /// FindLastPartialDef - Return the last partial def of the specified register. 189 /// Also returns the sub-registers that're defined by the instruction. 190 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 191 SmallSet<unsigned,4> &PartDefRegs) { 192 unsigned LastDefReg = 0; 193 unsigned LastDefDist = 0; 194 MachineInstr *LastDef = NULL; 195 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 196 unsigned SubReg = *SubRegs; ++SubRegs) { 197 MachineInstr *Def = PhysRegDef[SubReg]; 198 if (!Def) 199 continue; 200 unsigned Dist = DistanceMap[Def]; 201 if (Dist > LastDefDist) { 202 LastDefReg = SubReg; 203 LastDef = Def; 204 LastDefDist = Dist; 205 } 206 } 207 208 if (!LastDef) 209 return 0; 210 211 PartDefRegs.insert(LastDefReg); 212 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 213 MachineOperand &MO = LastDef->getOperand(i); 214 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 215 continue; 216 unsigned DefReg = MO.getReg(); 217 if (TRI->isSubRegister(Reg, DefReg)) { 218 PartDefRegs.insert(DefReg); 219 for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg); 220 unsigned SubReg = *SubRegs; ++SubRegs) 221 PartDefRegs.insert(SubReg); 222 } 223 } 224 return LastDef; 225 } 226 227 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 228 /// implicit defs to a machine instruction if there was an earlier def of its 229 /// super-register. 230 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 231 MachineInstr *LastDef = PhysRegDef[Reg]; 232 // If there was a previous use or a "full" def all is well. 233 if (!LastDef && !PhysRegUse[Reg]) { 234 // Otherwise, the last sub-register def implicitly defines this register. 235 // e.g. 236 // AH = 237 // AL = ... <imp-def EAX>, <imp-kill AH> 238 // = AH 239 // ... 240 // = EAX 241 // All of the sub-registers must have been defined before the use of Reg! 242 SmallSet<unsigned, 4> PartDefRegs; 243 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 244 // If LastPartialDef is NULL, it must be using a livein register. 245 if (LastPartialDef) { 246 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 247 true/*IsImp*/)); 248 PhysRegDef[Reg] = LastPartialDef; 249 SmallSet<unsigned, 8> Processed; 250 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 251 unsigned SubReg = *SubRegs; ++SubRegs) { 252 if (Processed.count(SubReg)) 253 continue; 254 if (PartDefRegs.count(SubReg)) 255 continue; 256 // This part of Reg was defined before the last partial def. It's killed 257 // here. 258 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 259 false/*IsDef*/, 260 true/*IsImp*/)); 261 PhysRegDef[SubReg] = LastPartialDef; 262 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 263 Processed.insert(*SS); 264 } 265 } 266 } 267 else if (LastDef && !PhysRegUse[Reg] && 268 !LastDef->findRegisterDefOperand(Reg)) 269 // Last def defines the super register, add an implicit def of reg. 270 LastDef->addOperand(MachineOperand::CreateReg(Reg, 271 true/*IsDef*/, true/*IsImp*/)); 272 273 // Remember this use. 274 PhysRegUse[Reg] = MI; 275 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 276 unsigned SubReg = *SubRegs; ++SubRegs) 277 PhysRegUse[SubReg] = MI; 278 } 279 280 /// FindLastRefOrPartRef - Return the last reference or partial reference of 281 /// the specified register. 282 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { 283 MachineInstr *LastDef = PhysRegDef[Reg]; 284 MachineInstr *LastUse = PhysRegUse[Reg]; 285 if (!LastDef && !LastUse) 286 return 0; 287 288 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 289 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 290 unsigned LastPartDefDist = 0; 291 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 292 unsigned SubReg = *SubRegs; ++SubRegs) { 293 MachineInstr *Def = PhysRegDef[SubReg]; 294 if (Def && Def != LastDef) { 295 // There was a def of this sub-register in between. This is a partial 296 // def, keep track of the last one. 297 unsigned Dist = DistanceMap[Def]; 298 if (Dist > LastPartDefDist) 299 LastPartDefDist = Dist; 300 } else if (MachineInstr *Use = PhysRegUse[SubReg]) { 301 unsigned Dist = DistanceMap[Use]; 302 if (Dist > LastRefOrPartRefDist) { 303 LastRefOrPartRefDist = Dist; 304 LastRefOrPartRef = Use; 305 } 306 } 307 } 308 309 return LastRefOrPartRef; 310 } 311 312 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 313 MachineInstr *LastDef = PhysRegDef[Reg]; 314 MachineInstr *LastUse = PhysRegUse[Reg]; 315 if (!LastDef && !LastUse) 316 return false; 317 318 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 319 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 320 // The whole register is used. 321 // AL = 322 // AH = 323 // 324 // = AX 325 // = AL, AX<imp-use, kill> 326 // AX = 327 // 328 // Or whole register is defined, but not used at all. 329 // AX<dead> = 330 // ... 331 // AX = 332 // 333 // Or whole register is defined, but only partly used. 334 // AX<dead> = AL<imp-def> 335 // = AL<kill> 336 // AX = 337 MachineInstr *LastPartDef = 0; 338 unsigned LastPartDefDist = 0; 339 SmallSet<unsigned, 8> PartUses; 340 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 341 unsigned SubReg = *SubRegs; ++SubRegs) { 342 MachineInstr *Def = PhysRegDef[SubReg]; 343 if (Def && Def != LastDef) { 344 // There was a def of this sub-register in between. This is a partial 345 // def, keep track of the last one. 346 unsigned Dist = DistanceMap[Def]; 347 if (Dist > LastPartDefDist) { 348 LastPartDefDist = Dist; 349 LastPartDef = Def; 350 } 351 continue; 352 } 353 if (MachineInstr *Use = PhysRegUse[SubReg]) { 354 PartUses.insert(SubReg); 355 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 356 PartUses.insert(*SS); 357 unsigned Dist = DistanceMap[Use]; 358 if (Dist > LastRefOrPartRefDist) { 359 LastRefOrPartRefDist = Dist; 360 LastRefOrPartRef = Use; 361 } 362 } 363 } 364 365 if (!PhysRegUse[Reg]) { 366 // Partial uses. Mark register def dead and add implicit def of 367 // sub-registers which are used. 368 // EAX<dead> = op AL<imp-def> 369 // That is, EAX def is dead but AL def extends pass it. 370 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 371 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 372 unsigned SubReg = *SubRegs; ++SubRegs) { 373 if (!PartUses.count(SubReg)) 374 continue; 375 bool NeedDef = true; 376 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 377 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 378 if (MO) { 379 NeedDef = false; 380 assert(!MO->isDead()); 381 } 382 } 383 if (NeedDef) 384 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 385 true/*IsDef*/, true/*IsImp*/)); 386 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); 387 if (LastSubRef) 388 LastSubRef->addRegisterKilled(SubReg, TRI, true); 389 else { 390 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 391 PhysRegUse[SubReg] = LastRefOrPartRef; 392 for (const unsigned *SSRegs = TRI->getSubRegisters(SubReg); 393 unsigned SSReg = *SSRegs; ++SSRegs) 394 PhysRegUse[SSReg] = LastRefOrPartRef; 395 } 396 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 397 PartUses.erase(*SS); 398 } 399 } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 400 if (LastPartDef) 401 // The last partial def kills the register. 402 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 403 true/*IsImp*/, true/*IsKill*/)); 404 else { 405 MachineOperand *MO = 406 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 407 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 408 // If the last reference is the last def, then it's not used at all. 409 // That is, unless we are currently processing the last reference itself. 410 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 411 if (NeedEC) { 412 // If we are adding a subreg def and the superreg def is marked early 413 // clobber, add an early clobber marker to the subreg def. 414 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 415 if (MO) 416 MO->setIsEarlyClobber(); 417 } 418 } 419 } else 420 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 421 return true; 422 } 423 424 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 425 SmallVector<unsigned, 4> &Defs) { 426 // What parts of the register are previously defined? 427 SmallSet<unsigned, 32> Live; 428 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 429 Live.insert(Reg); 430 for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS) 431 Live.insert(*SS); 432 } else { 433 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 434 unsigned SubReg = *SubRegs; ++SubRegs) { 435 // If a register isn't itself defined, but all parts that make up of it 436 // are defined, then consider it also defined. 437 // e.g. 438 // AL = 439 // AH = 440 // = AX 441 if (Live.count(SubReg)) 442 continue; 443 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 444 Live.insert(SubReg); 445 for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS) 446 Live.insert(*SS); 447 } 448 } 449 } 450 451 // Start from the largest piece, find the last time any part of the register 452 // is referenced. 453 HandlePhysRegKill(Reg, MI); 454 // Only some of the sub-registers are used. 455 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 456 unsigned SubReg = *SubRegs; ++SubRegs) { 457 if (!Live.count(SubReg)) 458 // Skip if this sub-register isn't defined. 459 continue; 460 HandlePhysRegKill(SubReg, MI); 461 } 462 463 if (MI) 464 Defs.push_back(Reg); // Remember this def. 465 } 466 467 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 468 SmallVector<unsigned, 4> &Defs) { 469 while (!Defs.empty()) { 470 unsigned Reg = Defs.back(); 471 Defs.pop_back(); 472 PhysRegDef[Reg] = MI; 473 PhysRegUse[Reg] = NULL; 474 for (const unsigned *SubRegs = TRI->getSubRegisters(Reg); 475 unsigned SubReg = *SubRegs; ++SubRegs) { 476 PhysRegDef[SubReg] = MI; 477 PhysRegUse[SubReg] = NULL; 478 } 479 } 480 } 481 482 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 483 MF = &mf; 484 MRI = &mf.getRegInfo(); 485 TRI = MF->getTarget().getRegisterInfo(); 486 487 ReservedRegisters = TRI->getReservedRegs(mf); 488 489 unsigned NumRegs = TRI->getNumRegs(); 490 PhysRegDef = new MachineInstr*[NumRegs]; 491 PhysRegUse = new MachineInstr*[NumRegs]; 492 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 493 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 494 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 495 PHIJoins.clear(); 496 497 analyzePHINodes(mf); 498 499 // Calculate live variable information in depth first order on the CFG of the 500 // function. This guarantees that we will see the definition of a virtual 501 // register before its uses due to dominance properties of SSA (except for PHI 502 // nodes, which are treated as a special case). 503 MachineBasicBlock *Entry = MF->begin(); 504 SmallPtrSet<MachineBasicBlock*,16> Visited; 505 506 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 507 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 508 DFI != E; ++DFI) { 509 MachineBasicBlock *MBB = *DFI; 510 511 // Mark live-in registers as live-in. 512 SmallVector<unsigned, 4> Defs; 513 for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(), 514 EE = MBB->livein_end(); II != EE; ++II) { 515 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 516 "Cannot have a live-in virtual register!"); 517 HandlePhysRegDef(*II, 0, Defs); 518 } 519 520 // Loop over all of the instructions, processing them. 521 DistanceMap.clear(); 522 unsigned Dist = 0; 523 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 524 I != E; ++I) { 525 MachineInstr *MI = I; 526 if (MI->isDebugValue()) 527 continue; 528 DistanceMap.insert(std::make_pair(MI, Dist++)); 529 530 // Process all of the operands of the instruction... 531 unsigned NumOperandsToProcess = MI->getNumOperands(); 532 533 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 534 // of the uses. They will be handled in other basic blocks. 535 if (MI->isPHI()) 536 NumOperandsToProcess = 1; 537 538 // Clear kill and dead markers. LV will recompute them. 539 SmallVector<unsigned, 4> UseRegs; 540 SmallVector<unsigned, 4> DefRegs; 541 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 542 MachineOperand &MO = MI->getOperand(i); 543 if (!MO.isReg() || MO.getReg() == 0) 544 continue; 545 unsigned MOReg = MO.getReg(); 546 if (MO.isUse()) { 547 MO.setIsKill(false); 548 UseRegs.push_back(MOReg); 549 } else /*MO.isDef()*/ { 550 MO.setIsDead(false); 551 DefRegs.push_back(MOReg); 552 } 553 } 554 555 // Process all uses. 556 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 557 unsigned MOReg = UseRegs[i]; 558 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 559 HandleVirtRegUse(MOReg, MBB, MI); 560 else if (!ReservedRegisters[MOReg]) 561 HandlePhysRegUse(MOReg, MI); 562 } 563 564 // Process all defs. 565 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 566 unsigned MOReg = DefRegs[i]; 567 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 568 HandleVirtRegDef(MOReg, MI); 569 else if (!ReservedRegisters[MOReg]) 570 HandlePhysRegDef(MOReg, MI, Defs); 571 } 572 UpdatePhysRegDefs(MI, Defs); 573 } 574 575 // Handle any virtual assignments from PHI nodes which might be at the 576 // bottom of this basic block. We check all of our successor blocks to see 577 // if they have PHI nodes, and if so, we simulate an assignment at the end 578 // of the current block. 579 if (!PHIVarInfo[MBB->getNumber()].empty()) { 580 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 581 582 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 583 E = VarInfoVec.end(); I != E; ++I) 584 // Mark it alive only in the block we are representing. 585 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 586 MBB); 587 } 588 589 // Finally, if the last instruction in the block is a return, make sure to 590 // mark it as using all of the live-out values in the function. 591 // Things marked both call and return are tail calls; do not do this for 592 // them. The tail callee need not take the same registers as input 593 // that it produces as output, and there are dependencies for its input 594 // registers elsewhere. 595 if (!MBB->empty() && MBB->back().getDesc().isReturn() 596 && !MBB->back().getDesc().isCall()) { 597 MachineInstr *Ret = &MBB->back(); 598 599 for (MachineRegisterInfo::liveout_iterator 600 I = MF->getRegInfo().liveout_begin(), 601 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 602 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 603 "Cannot have a live-out virtual register!"); 604 HandlePhysRegUse(*I, Ret); 605 606 // Add live-out registers as implicit uses. 607 if (!Ret->readsRegister(*I)) 608 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 609 } 610 } 611 612 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 613 // available at the end of the basic block. 614 for (unsigned i = 0; i != NumRegs; ++i) 615 if (PhysRegDef[i] || PhysRegUse[i]) 616 HandlePhysRegDef(i, 0, Defs); 617 618 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 619 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 620 } 621 622 // Convert and transfer the dead / killed information we have gathered into 623 // VirtRegInfo onto MI's. 624 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { 625 const unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 626 for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) 627 if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) 628 VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI); 629 else 630 VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI); 631 } 632 633 // Check to make sure there are no unreachable blocks in the MC CFG for the 634 // function. If so, it is due to a bug in the instruction selector or some 635 // other part of the code generator if this happens. 636 #ifndef NDEBUG 637 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 638 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 639 #endif 640 641 delete[] PhysRegDef; 642 delete[] PhysRegUse; 643 delete[] PHIVarInfo; 644 645 return false; 646 } 647 648 /// replaceKillInstruction - Update register kill info by replacing a kill 649 /// instruction with a new one. 650 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 651 MachineInstr *NewMI) { 652 VarInfo &VI = getVarInfo(Reg); 653 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 654 } 655 656 /// removeVirtualRegistersKilled - Remove all killed info for the specified 657 /// instruction. 658 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 659 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 660 MachineOperand &MO = MI->getOperand(i); 661 if (MO.isReg() && MO.isKill()) { 662 MO.setIsKill(false); 663 unsigned Reg = MO.getReg(); 664 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 665 bool removed = getVarInfo(Reg).removeKill(MI); 666 assert(removed && "kill not in register's VarInfo?"); 667 removed = true; 668 } 669 } 670 } 671 } 672 673 /// analyzePHINodes - Gather information about the PHI nodes in here. In 674 /// particular, we want to map the variable information of a virtual register 675 /// which is used in a PHI node. We map that to the BB the vreg is coming from. 676 /// 677 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 678 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 679 I != E; ++I) 680 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 681 BBI != BBE && BBI->isPHI(); ++BBI) 682 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 683 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 684 .push_back(BBI->getOperand(i).getReg()); 685 } 686 687 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, 688 unsigned Reg, 689 MachineRegisterInfo &MRI) { 690 unsigned Num = MBB.getNumber(); 691 692 // Reg is live-through. 693 if (AliveBlocks.test(Num)) 694 return true; 695 696 // Registers defined in MBB cannot be live in. 697 const MachineInstr *Def = MRI.getVRegDef(Reg); 698 if (Def && Def->getParent() == &MBB) 699 return false; 700 701 // Reg was not defined in MBB, was it killed here? 702 return findKill(&MBB); 703 } 704 705 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { 706 LiveVariables::VarInfo &VI = getVarInfo(Reg); 707 708 // Loop over all of the successors of the basic block, checking to see if 709 // the value is either live in the block, or if it is killed in the block. 710 std::vector<MachineBasicBlock*> OpSuccBlocks; 711 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 712 E = MBB.succ_end(); SI != E; ++SI) { 713 MachineBasicBlock *SuccMBB = *SI; 714 715 // Is it alive in this successor? 716 unsigned SuccIdx = SuccMBB->getNumber(); 717 if (VI.AliveBlocks.test(SuccIdx)) 718 return true; 719 OpSuccBlocks.push_back(SuccMBB); 720 } 721 722 // Check to see if this value is live because there is a use in a successor 723 // that kills it. 724 switch (OpSuccBlocks.size()) { 725 case 1: { 726 MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; 727 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 728 if (VI.Kills[i]->getParent() == SuccMBB) 729 return true; 730 break; 731 } 732 case 2: { 733 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; 734 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 735 if (VI.Kills[i]->getParent() == SuccMBB1 || 736 VI.Kills[i]->getParent() == SuccMBB2) 737 return true; 738 break; 739 } 740 default: 741 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); 742 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 743 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), 744 VI.Kills[i]->getParent())) 745 return true; 746 } 747 return false; 748 } 749 750 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All 751 /// variables that are live out of DomBB will be marked as passing live through 752 /// BB. 753 void LiveVariables::addNewBlock(MachineBasicBlock *BB, 754 MachineBasicBlock *DomBB, 755 MachineBasicBlock *SuccBB) { 756 const unsigned NumNew = BB->getNumber(); 757 758 // All registers used by PHI nodes in SuccBB must be live through BB. 759 for (MachineBasicBlock::const_iterator BBI = SuccBB->begin(), 760 BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) 761 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 762 if (BBI->getOperand(i+1).getMBB() == BB) 763 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); 764 765 // Update info for all live variables 766 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 767 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 768 VarInfo &VI = getVarInfo(Reg); 769 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) 770 VI.AliveBlocks.set(NumNew); 771 } 772 } 773