1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveVariable analysis pass. For each machine 11 // instruction in the function, this pass calculates the set of registers that 12 // are immediately dead after the instruction (i.e., the instruction calculates 13 // the value, but it is never used) and the set of registers that are used by 14 // the instruction, but are never used after the instruction (i.e., they are 15 // killed). 16 // 17 // This class computes live variables using a sparse implementation based on 18 // the machine code SSA form. This class computes live variable information for 19 // each virtual and _register allocatable_ physical register in a function. It 20 // uses the dominance properties of SSA form to efficiently compute live 21 // variables for virtual registers, and assumes that physical registers are only 22 // live within a single basic block (allowing it to do a single local analysis 23 // to resolve physical register lifetimes in each basic block). If a physical 24 // register is not register allocatable, it is not tracked. This is useful for 25 // things like the stack pointer and condition codes. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/CodeGen/LiveVariables.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Target/TargetInstrInfo.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/ADT/DepthFirstIterator.h" 38 #include "llvm/ADT/SmallPtrSet.h" 39 #include "llvm/ADT/SmallSet.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include <algorithm> 42 using namespace llvm; 43 44 char LiveVariables::ID = 0; 45 char &llvm::LiveVariablesID = LiveVariables::ID; 46 INITIALIZE_PASS_BEGIN(LiveVariables, "livevars", 47 "Live Variable Analysis", false, false) 48 INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim) 49 INITIALIZE_PASS_END(LiveVariables, "livevars", 50 "Live Variable Analysis", false, false) 51 52 53 void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const { 54 AU.addRequiredID(UnreachableMachineBlockElimID); 55 AU.setPreservesAll(); 56 MachineFunctionPass::getAnalysisUsage(AU); 57 } 58 59 MachineInstr * 60 LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { 61 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 62 if (Kills[i]->getParent() == MBB) 63 return Kills[i]; 64 return NULL; 65 } 66 67 void LiveVariables::VarInfo::dump() const { 68 dbgs() << " Alive in blocks: "; 69 for (SparseBitVector<>::iterator I = AliveBlocks.begin(), 70 E = AliveBlocks.end(); I != E; ++I) 71 dbgs() << *I << ", "; 72 dbgs() << "\n Killed by:"; 73 if (Kills.empty()) 74 dbgs() << " No instructions.\n"; 75 else { 76 for (unsigned i = 0, e = Kills.size(); i != e; ++i) 77 dbgs() << "\n #" << i << ": " << *Kills[i]; 78 dbgs() << "\n"; 79 } 80 } 81 82 /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. 83 LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { 84 assert(TargetRegisterInfo::isVirtualRegister(RegIdx) && 85 "getVarInfo: not a virtual register!"); 86 VirtRegInfo.grow(RegIdx); 87 return VirtRegInfo[RegIdx]; 88 } 89 90 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo, 91 MachineBasicBlock *DefBlock, 92 MachineBasicBlock *MBB, 93 std::vector<MachineBasicBlock*> &WorkList) { 94 unsigned BBNum = MBB->getNumber(); 95 96 // Check to see if this basic block is one of the killing blocks. If so, 97 // remove it. 98 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 99 if (VRInfo.Kills[i]->getParent() == MBB) { 100 VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry 101 break; 102 } 103 104 if (MBB == DefBlock) return; // Terminate recursion 105 106 if (VRInfo.AliveBlocks.test(BBNum)) 107 return; // We already know the block is live 108 109 // Mark the variable known alive in this bb 110 VRInfo.AliveBlocks.set(BBNum); 111 112 assert(MBB != &MF->front() && "Can't find reaching def for virtreg"); 113 WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend()); 114 } 115 116 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, 117 MachineBasicBlock *DefBlock, 118 MachineBasicBlock *MBB) { 119 std::vector<MachineBasicBlock*> WorkList; 120 MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); 121 122 while (!WorkList.empty()) { 123 MachineBasicBlock *Pred = WorkList.back(); 124 WorkList.pop_back(); 125 MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList); 126 } 127 } 128 129 void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, 130 MachineInstr *MI) { 131 assert(MRI->getVRegDef(reg) && "Register use before def!"); 132 133 unsigned BBNum = MBB->getNumber(); 134 135 VarInfo& VRInfo = getVarInfo(reg); 136 137 // Check to see if this basic block is already a kill block. 138 if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { 139 // Yes, this register is killed in this basic block already. Increase the 140 // live range by updating the kill instruction. 141 VRInfo.Kills.back() = MI; 142 return; 143 } 144 145 #ifndef NDEBUG 146 for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) 147 assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); 148 #endif 149 150 // This situation can occur: 151 // 152 // ,------. 153 // | | 154 // | v 155 // | t2 = phi ... t1 ... 156 // | | 157 // | v 158 // | t1 = ... 159 // | ... = ... t1 ... 160 // | | 161 // `------' 162 // 163 // where there is a use in a PHI node that's a predecessor to the defining 164 // block. We don't want to mark all predecessors as having the value "alive" 165 // in this case. 166 if (MBB == MRI->getVRegDef(reg)->getParent()) return; 167 168 // Add a new kill entry for this basic block. If this virtual register is 169 // already marked as alive in this basic block, that means it is alive in at 170 // least one of the successor blocks, it's not a kill. 171 if (!VRInfo.AliveBlocks.test(BBNum)) 172 VRInfo.Kills.push_back(MI); 173 174 // Update all dominating blocks to mark them as "known live". 175 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 176 E = MBB->pred_end(); PI != E; ++PI) 177 MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI); 178 } 179 180 void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) { 181 VarInfo &VRInfo = getVarInfo(Reg); 182 183 if (VRInfo.AliveBlocks.empty()) 184 // If vr is not alive in any block, then defaults to dead. 185 VRInfo.Kills.push_back(MI); 186 } 187 188 /// FindLastPartialDef - Return the last partial def of the specified register. 189 /// Also returns the sub-registers that're defined by the instruction. 190 MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg, 191 SmallSet<unsigned,4> &PartDefRegs) { 192 unsigned LastDefReg = 0; 193 unsigned LastDefDist = 0; 194 MachineInstr *LastDef = NULL; 195 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 196 unsigned SubReg = *SubRegs; 197 MachineInstr *Def = PhysRegDef[SubReg]; 198 if (!Def) 199 continue; 200 unsigned Dist = DistanceMap[Def]; 201 if (Dist > LastDefDist) { 202 LastDefReg = SubReg; 203 LastDef = Def; 204 LastDefDist = Dist; 205 } 206 } 207 208 if (!LastDef) 209 return 0; 210 211 PartDefRegs.insert(LastDefReg); 212 for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) { 213 MachineOperand &MO = LastDef->getOperand(i); 214 if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0) 215 continue; 216 unsigned DefReg = MO.getReg(); 217 if (TRI->isSubRegister(Reg, DefReg)) { 218 PartDefRegs.insert(DefReg); 219 for (MCSubRegIterator SubRegs(DefReg, TRI); SubRegs.isValid(); ++SubRegs) 220 PartDefRegs.insert(*SubRegs); 221 } 222 } 223 return LastDef; 224 } 225 226 /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add 227 /// implicit defs to a machine instruction if there was an earlier def of its 228 /// super-register. 229 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { 230 MachineInstr *LastDef = PhysRegDef[Reg]; 231 // If there was a previous use or a "full" def all is well. 232 if (!LastDef && !PhysRegUse[Reg]) { 233 // Otherwise, the last sub-register def implicitly defines this register. 234 // e.g. 235 // AH = 236 // AL = ... <imp-def EAX>, <imp-kill AH> 237 // = AH 238 // ... 239 // = EAX 240 // All of the sub-registers must have been defined before the use of Reg! 241 SmallSet<unsigned, 4> PartDefRegs; 242 MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); 243 // If LastPartialDef is NULL, it must be using a livein register. 244 if (LastPartialDef) { 245 LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 246 true/*IsImp*/)); 247 PhysRegDef[Reg] = LastPartialDef; 248 SmallSet<unsigned, 8> Processed; 249 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 250 unsigned SubReg = *SubRegs; 251 if (Processed.count(SubReg)) 252 continue; 253 if (PartDefRegs.count(SubReg)) 254 continue; 255 // This part of Reg was defined before the last partial def. It's killed 256 // here. 257 LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg, 258 false/*IsDef*/, 259 true/*IsImp*/)); 260 PhysRegDef[SubReg] = LastPartialDef; 261 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) 262 Processed.insert(*SS); 263 } 264 } 265 } else if (LastDef && !PhysRegUse[Reg] && 266 !LastDef->findRegisterDefOperand(Reg)) 267 // Last def defines the super register, add an implicit def of reg. 268 LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/, 269 true/*IsImp*/)); 270 271 // Remember this use. 272 PhysRegUse[Reg] = MI; 273 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 274 PhysRegUse[*SubRegs] = MI; 275 } 276 277 /// FindLastRefOrPartRef - Return the last reference or partial reference of 278 /// the specified register. 279 MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) { 280 MachineInstr *LastDef = PhysRegDef[Reg]; 281 MachineInstr *LastUse = PhysRegUse[Reg]; 282 if (!LastDef && !LastUse) 283 return 0; 284 285 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 286 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 287 unsigned LastPartDefDist = 0; 288 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 289 unsigned SubReg = *SubRegs; 290 MachineInstr *Def = PhysRegDef[SubReg]; 291 if (Def && Def != LastDef) { 292 // There was a def of this sub-register in between. This is a partial 293 // def, keep track of the last one. 294 unsigned Dist = DistanceMap[Def]; 295 if (Dist > LastPartDefDist) 296 LastPartDefDist = Dist; 297 } else if (MachineInstr *Use = PhysRegUse[SubReg]) { 298 unsigned Dist = DistanceMap[Use]; 299 if (Dist > LastRefOrPartRefDist) { 300 LastRefOrPartRefDist = Dist; 301 LastRefOrPartRef = Use; 302 } 303 } 304 } 305 306 return LastRefOrPartRef; 307 } 308 309 bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) { 310 MachineInstr *LastDef = PhysRegDef[Reg]; 311 MachineInstr *LastUse = PhysRegUse[Reg]; 312 if (!LastDef && !LastUse) 313 return false; 314 315 MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; 316 unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; 317 // The whole register is used. 318 // AL = 319 // AH = 320 // 321 // = AX 322 // = AL, AX<imp-use, kill> 323 // AX = 324 // 325 // Or whole register is defined, but not used at all. 326 // AX<dead> = 327 // ... 328 // AX = 329 // 330 // Or whole register is defined, but only partly used. 331 // AX<dead> = AL<imp-def> 332 // = AL<kill> 333 // AX = 334 MachineInstr *LastPartDef = 0; 335 unsigned LastPartDefDist = 0; 336 SmallSet<unsigned, 8> PartUses; 337 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 338 unsigned SubReg = *SubRegs; 339 MachineInstr *Def = PhysRegDef[SubReg]; 340 if (Def && Def != LastDef) { 341 // There was a def of this sub-register in between. This is a partial 342 // def, keep track of the last one. 343 unsigned Dist = DistanceMap[Def]; 344 if (Dist > LastPartDefDist) { 345 LastPartDefDist = Dist; 346 LastPartDef = Def; 347 } 348 continue; 349 } 350 if (MachineInstr *Use = PhysRegUse[SubReg]) { 351 PartUses.insert(SubReg); 352 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) 353 PartUses.insert(*SS); 354 unsigned Dist = DistanceMap[Use]; 355 if (Dist > LastRefOrPartRefDist) { 356 LastRefOrPartRefDist = Dist; 357 LastRefOrPartRef = Use; 358 } 359 } 360 } 361 362 if (!PhysRegUse[Reg]) { 363 // Partial uses. Mark register def dead and add implicit def of 364 // sub-registers which are used. 365 // EAX<dead> = op AL<imp-def> 366 // That is, EAX def is dead but AL def extends pass it. 367 PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true); 368 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 369 unsigned SubReg = *SubRegs; 370 if (!PartUses.count(SubReg)) 371 continue; 372 bool NeedDef = true; 373 if (PhysRegDef[Reg] == PhysRegDef[SubReg]) { 374 MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg); 375 if (MO) { 376 NeedDef = false; 377 assert(!MO->isDead()); 378 } 379 } 380 if (NeedDef) 381 PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg, 382 true/*IsDef*/, true/*IsImp*/)); 383 MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg); 384 if (LastSubRef) 385 LastSubRef->addRegisterKilled(SubReg, TRI, true); 386 else { 387 LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true); 388 PhysRegUse[SubReg] = LastRefOrPartRef; 389 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) 390 PhysRegUse[*SS] = LastRefOrPartRef; 391 } 392 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) 393 PartUses.erase(*SS); 394 } 395 } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) { 396 if (LastPartDef) 397 // The last partial def kills the register. 398 LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/, 399 true/*IsImp*/, true/*IsKill*/)); 400 else { 401 MachineOperand *MO = 402 LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI); 403 bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; 404 // If the last reference is the last def, then it's not used at all. 405 // That is, unless we are currently processing the last reference itself. 406 LastRefOrPartRef->addRegisterDead(Reg, TRI, true); 407 if (NeedEC) { 408 // If we are adding a subreg def and the superreg def is marked early 409 // clobber, add an early clobber marker to the subreg def. 410 MO = LastRefOrPartRef->findRegisterDefOperand(Reg); 411 if (MO) 412 MO->setIsEarlyClobber(); 413 } 414 } 415 } else 416 LastRefOrPartRef->addRegisterKilled(Reg, TRI, true); 417 return true; 418 } 419 420 void LiveVariables::HandleRegMask(const MachineOperand &MO) { 421 // Call HandlePhysRegKill() for all live registers clobbered by Mask. 422 // Clobbered registers are always dead, sp there is no need to use 423 // HandlePhysRegDef(). 424 for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) { 425 // Skip dead regs. 426 if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) 427 continue; 428 // Skip mask-preserved regs. 429 if (!MO.clobbersPhysReg(Reg)) 430 continue; 431 // Kill the largest clobbered super-register. 432 // This avoids needless implicit operands. 433 unsigned Super = Reg; 434 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 435 if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR)) 436 Super = *SR; 437 HandlePhysRegKill(Super, 0); 438 } 439 } 440 441 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI, 442 SmallVector<unsigned, 4> &Defs) { 443 // What parts of the register are previously defined? 444 SmallSet<unsigned, 32> Live; 445 if (PhysRegDef[Reg] || PhysRegUse[Reg]) { 446 Live.insert(Reg); 447 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 448 Live.insert(*SubRegs); 449 } else { 450 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 451 unsigned SubReg = *SubRegs; 452 // If a register isn't itself defined, but all parts that make up of it 453 // are defined, then consider it also defined. 454 // e.g. 455 // AL = 456 // AH = 457 // = AX 458 if (Live.count(SubReg)) 459 continue; 460 if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) { 461 Live.insert(SubReg); 462 for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS) 463 Live.insert(*SS); 464 } 465 } 466 } 467 468 // Start from the largest piece, find the last time any part of the register 469 // is referenced. 470 HandlePhysRegKill(Reg, MI); 471 // Only some of the sub-registers are used. 472 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 473 unsigned SubReg = *SubRegs; 474 if (!Live.count(SubReg)) 475 // Skip if this sub-register isn't defined. 476 continue; 477 HandlePhysRegKill(SubReg, MI); 478 } 479 480 if (MI) 481 Defs.push_back(Reg); // Remember this def. 482 } 483 484 void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI, 485 SmallVector<unsigned, 4> &Defs) { 486 while (!Defs.empty()) { 487 unsigned Reg = Defs.back(); 488 Defs.pop_back(); 489 PhysRegDef[Reg] = MI; 490 PhysRegUse[Reg] = NULL; 491 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 492 unsigned SubReg = *SubRegs; 493 PhysRegDef[SubReg] = MI; 494 PhysRegUse[SubReg] = NULL; 495 } 496 } 497 } 498 499 bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { 500 MF = &mf; 501 MRI = &mf.getRegInfo(); 502 TRI = MF->getTarget().getRegisterInfo(); 503 504 ReservedRegisters = TRI->getReservedRegs(mf); 505 506 unsigned NumRegs = TRI->getNumRegs(); 507 PhysRegDef = new MachineInstr*[NumRegs]; 508 PhysRegUse = new MachineInstr*[NumRegs]; 509 PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; 510 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 511 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 512 PHIJoins.clear(); 513 514 // FIXME: LiveIntervals will be updated to remove its dependence on 515 // LiveVariables to improve compilation time and eliminate bizarre pass 516 // dependencies. Until then, we can't change much in -O0. 517 if (!MRI->isSSA()) 518 report_fatal_error("regalloc=... not currently supported with -O0"); 519 520 analyzePHINodes(mf); 521 522 // Calculate live variable information in depth first order on the CFG of the 523 // function. This guarantees that we will see the definition of a virtual 524 // register before its uses due to dominance properties of SSA (except for PHI 525 // nodes, which are treated as a special case). 526 MachineBasicBlock *Entry = MF->begin(); 527 SmallPtrSet<MachineBasicBlock*,16> Visited; 528 529 for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > 530 DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); 531 DFI != E; ++DFI) { 532 MachineBasicBlock *MBB = *DFI; 533 534 // Mark live-in registers as live-in. 535 SmallVector<unsigned, 4> Defs; 536 for (MachineBasicBlock::livein_iterator II = MBB->livein_begin(), 537 EE = MBB->livein_end(); II != EE; ++II) { 538 assert(TargetRegisterInfo::isPhysicalRegister(*II) && 539 "Cannot have a live-in virtual register!"); 540 HandlePhysRegDef(*II, 0, Defs); 541 } 542 543 // Loop over all of the instructions, processing them. 544 DistanceMap.clear(); 545 unsigned Dist = 0; 546 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); 547 I != E; ++I) { 548 MachineInstr *MI = I; 549 if (MI->isDebugValue()) 550 continue; 551 DistanceMap.insert(std::make_pair(MI, Dist++)); 552 553 // Process all of the operands of the instruction... 554 unsigned NumOperandsToProcess = MI->getNumOperands(); 555 556 // Unless it is a PHI node. In this case, ONLY process the DEF, not any 557 // of the uses. They will be handled in other basic blocks. 558 if (MI->isPHI()) 559 NumOperandsToProcess = 1; 560 561 // Clear kill and dead markers. LV will recompute them. 562 SmallVector<unsigned, 4> UseRegs; 563 SmallVector<unsigned, 4> DefRegs; 564 SmallVector<unsigned, 1> RegMasks; 565 for (unsigned i = 0; i != NumOperandsToProcess; ++i) { 566 MachineOperand &MO = MI->getOperand(i); 567 if (MO.isRegMask()) { 568 RegMasks.push_back(i); 569 continue; 570 } 571 if (!MO.isReg() || MO.getReg() == 0) 572 continue; 573 unsigned MOReg = MO.getReg(); 574 if (MO.isUse()) { 575 MO.setIsKill(false); 576 if (MO.readsReg()) 577 UseRegs.push_back(MOReg); 578 } else /*MO.isDef()*/ { 579 MO.setIsDead(false); 580 DefRegs.push_back(MOReg); 581 } 582 } 583 584 // Process all uses. 585 for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) { 586 unsigned MOReg = UseRegs[i]; 587 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 588 HandleVirtRegUse(MOReg, MBB, MI); 589 else if (!ReservedRegisters[MOReg]) 590 HandlePhysRegUse(MOReg, MI); 591 } 592 593 // Process all masked registers. (Call clobbers). 594 for (unsigned i = 0, e = RegMasks.size(); i != e; ++i) 595 HandleRegMask(MI->getOperand(RegMasks[i])); 596 597 // Process all defs. 598 for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) { 599 unsigned MOReg = DefRegs[i]; 600 if (TargetRegisterInfo::isVirtualRegister(MOReg)) 601 HandleVirtRegDef(MOReg, MI); 602 else if (!ReservedRegisters[MOReg]) 603 HandlePhysRegDef(MOReg, MI, Defs); 604 } 605 UpdatePhysRegDefs(MI, Defs); 606 } 607 608 // Handle any virtual assignments from PHI nodes which might be at the 609 // bottom of this basic block. We check all of our successor blocks to see 610 // if they have PHI nodes, and if so, we simulate an assignment at the end 611 // of the current block. 612 if (!PHIVarInfo[MBB->getNumber()].empty()) { 613 SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; 614 615 for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), 616 E = VarInfoVec.end(); I != E; ++I) 617 // Mark it alive only in the block we are representing. 618 MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(), 619 MBB); 620 } 621 622 // Finally, if the last instruction in the block is a return, make sure to 623 // mark it as using all of the live-out values in the function. 624 // Things marked both call and return are tail calls; do not do this for 625 // them. The tail callee need not take the same registers as input 626 // that it produces as output, and there are dependencies for its input 627 // registers elsewhere. 628 if (!MBB->empty() && MBB->back().isReturn() 629 && !MBB->back().isCall()) { 630 MachineInstr *Ret = &MBB->back(); 631 632 for (MachineRegisterInfo::liveout_iterator 633 I = MF->getRegInfo().liveout_begin(), 634 E = MF->getRegInfo().liveout_end(); I != E; ++I) { 635 assert(TargetRegisterInfo::isPhysicalRegister(*I) && 636 "Cannot have a live-out virtual register!"); 637 HandlePhysRegUse(*I, Ret); 638 639 // Add live-out registers as implicit uses. 640 if (!Ret->readsRegister(*I)) 641 Ret->addOperand(MachineOperand::CreateReg(*I, false, true)); 642 } 643 } 644 645 // MachineCSE may CSE instructions which write to non-allocatable physical 646 // registers across MBBs. Remember if any reserved register is liveout. 647 SmallSet<unsigned, 4> LiveOuts; 648 for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(), 649 SE = MBB->succ_end(); SI != SE; ++SI) { 650 MachineBasicBlock *SuccMBB = *SI; 651 if (SuccMBB->isLandingPad()) 652 continue; 653 for (MachineBasicBlock::livein_iterator LI = SuccMBB->livein_begin(), 654 LE = SuccMBB->livein_end(); LI != LE; ++LI) { 655 unsigned LReg = *LI; 656 if (!TRI->isInAllocatableClass(LReg)) 657 // Ignore other live-ins, e.g. those that are live into landing pads. 658 LiveOuts.insert(LReg); 659 } 660 } 661 662 // Loop over PhysRegDef / PhysRegUse, killing any registers that are 663 // available at the end of the basic block. 664 for (unsigned i = 0; i != NumRegs; ++i) 665 if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i)) 666 HandlePhysRegDef(i, 0, Defs); 667 668 std::fill(PhysRegDef, PhysRegDef + NumRegs, (MachineInstr*)0); 669 std::fill(PhysRegUse, PhysRegUse + NumRegs, (MachineInstr*)0); 670 } 671 672 // Convert and transfer the dead / killed information we have gathered into 673 // VirtRegInfo onto MI's. 674 for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { 675 const unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 676 for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) 677 if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) 678 VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI); 679 else 680 VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI); 681 } 682 683 // Check to make sure there are no unreachable blocks in the MC CFG for the 684 // function. If so, it is due to a bug in the instruction selector or some 685 // other part of the code generator if this happens. 686 #ifndef NDEBUG 687 for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) 688 assert(Visited.count(&*i) != 0 && "unreachable basic block found"); 689 #endif 690 691 delete[] PhysRegDef; 692 delete[] PhysRegUse; 693 delete[] PHIVarInfo; 694 695 return false; 696 } 697 698 /// replaceKillInstruction - Update register kill info by replacing a kill 699 /// instruction with a new one. 700 void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI, 701 MachineInstr *NewMI) { 702 VarInfo &VI = getVarInfo(Reg); 703 std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI); 704 } 705 706 /// removeVirtualRegistersKilled - Remove all killed info for the specified 707 /// instruction. 708 void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { 709 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 710 MachineOperand &MO = MI->getOperand(i); 711 if (MO.isReg() && MO.isKill()) { 712 MO.setIsKill(false); 713 unsigned Reg = MO.getReg(); 714 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 715 bool removed = getVarInfo(Reg).removeKill(MI); 716 assert(removed && "kill not in register's VarInfo?"); 717 (void)removed; 718 } 719 } 720 } 721 } 722 723 /// analyzePHINodes - Gather information about the PHI nodes in here. In 724 /// particular, we want to map the variable information of a virtual register 725 /// which is used in a PHI node. We map that to the BB the vreg is coming from. 726 /// 727 void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { 728 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); 729 I != E; ++I) 730 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); 731 BBI != BBE && BBI->isPHI(); ++BBI) 732 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 733 if (BBI->getOperand(i).readsReg()) 734 PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()] 735 .push_back(BBI->getOperand(i).getReg()); 736 } 737 738 bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, 739 unsigned Reg, 740 MachineRegisterInfo &MRI) { 741 unsigned Num = MBB.getNumber(); 742 743 // Reg is live-through. 744 if (AliveBlocks.test(Num)) 745 return true; 746 747 // Registers defined in MBB cannot be live in. 748 const MachineInstr *Def = MRI.getVRegDef(Reg); 749 if (Def && Def->getParent() == &MBB) 750 return false; 751 752 // Reg was not defined in MBB, was it killed here? 753 return findKill(&MBB); 754 } 755 756 bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) { 757 LiveVariables::VarInfo &VI = getVarInfo(Reg); 758 759 // Loop over all of the successors of the basic block, checking to see if 760 // the value is either live in the block, or if it is killed in the block. 761 SmallVector<MachineBasicBlock*, 8> OpSuccBlocks; 762 for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(), 763 E = MBB.succ_end(); SI != E; ++SI) { 764 MachineBasicBlock *SuccMBB = *SI; 765 766 // Is it alive in this successor? 767 unsigned SuccIdx = SuccMBB->getNumber(); 768 if (VI.AliveBlocks.test(SuccIdx)) 769 return true; 770 OpSuccBlocks.push_back(SuccMBB); 771 } 772 773 // Check to see if this value is live because there is a use in a successor 774 // that kills it. 775 switch (OpSuccBlocks.size()) { 776 case 1: { 777 MachineBasicBlock *SuccMBB = OpSuccBlocks[0]; 778 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 779 if (VI.Kills[i]->getParent() == SuccMBB) 780 return true; 781 break; 782 } 783 case 2: { 784 MachineBasicBlock *SuccMBB1 = OpSuccBlocks[0], *SuccMBB2 = OpSuccBlocks[1]; 785 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 786 if (VI.Kills[i]->getParent() == SuccMBB1 || 787 VI.Kills[i]->getParent() == SuccMBB2) 788 return true; 789 break; 790 } 791 default: 792 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); 793 for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i) 794 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), 795 VI.Kills[i]->getParent())) 796 return true; 797 } 798 return false; 799 } 800 801 /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All 802 /// variables that are live out of DomBB will be marked as passing live through 803 /// BB. 804 void LiveVariables::addNewBlock(MachineBasicBlock *BB, 805 MachineBasicBlock *DomBB, 806 MachineBasicBlock *SuccBB) { 807 const unsigned NumNew = BB->getNumber(); 808 809 // All registers used by PHI nodes in SuccBB must be live through BB. 810 for (MachineBasicBlock::iterator BBI = SuccBB->begin(), 811 BBE = SuccBB->end(); BBI != BBE && BBI->isPHI(); ++BBI) 812 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) 813 if (BBI->getOperand(i+1).getMBB() == BB) 814 getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); 815 816 // Update info for all live variables 817 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 818 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 819 VarInfo &VI = getVarInfo(Reg); 820 if (!VI.AliveBlocks.test(NumNew) && VI.isLiveIn(*SuccBB, Reg, *MRI)) 821 VI.AliveBlocks.set(NumNew); 822 } 823 } 824