1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The LiveRangeEdit class represents changes done to a virtual register when it 11 // is spilled or split. 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/LiveRangeEdit.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/CodeGen/CalcSpillWeights.h" 17 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 #include "llvm/CodeGen/VirtRegMap.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetInstrInfo.h" 23 24 using namespace llvm; 25 26 #define DEBUG_TYPE "regalloc" 27 28 STATISTIC(NumDCEDeleted, "Number of instructions deleted by DCE"); 29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE"); 30 STATISTIC(NumFracRanges, "Number of live ranges fractured by DCE"); 31 32 void LiveRangeEdit::Delegate::anchor() { } 33 34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) { 35 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 36 if (VRM) { 37 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 38 } 39 LiveInterval &LI = LIS.createEmptyInterval(VReg); 40 return LI; 41 } 42 43 unsigned LiveRangeEdit::createFrom(unsigned OldReg) { 44 unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg)); 45 if (VRM) { 46 VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg)); 47 } 48 return VReg; 49 } 50 51 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI, 52 const MachineInstr *DefMI, 53 AliasAnalysis *aa) { 54 assert(DefMI && "Missing instruction"); 55 ScannedRemattable = true; 56 if (!TII.isTriviallyReMaterializable(DefMI, aa)) 57 return false; 58 Remattable.insert(VNI); 59 return true; 60 } 61 62 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) { 63 for (VNInfo *VNI : getParent().valnos) { 64 if (VNI->isUnused()) 65 continue; 66 unsigned Original = VRM->getOriginal(getReg()); 67 LiveInterval &OrigLI = LIS.getInterval(Original); 68 VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def); 69 MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def); 70 if (!DefMI) 71 continue; 72 checkRematerializable(OrigVNI, DefMI, aa); 73 } 74 ScannedRemattable = true; 75 } 76 77 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) { 78 if (!ScannedRemattable) 79 scanRemattable(aa); 80 return !Remattable.empty(); 81 } 82 83 /// allUsesAvailableAt - Return true if all registers used by OrigMI at 84 /// OrigIdx are also available with the same value at UseIdx. 85 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI, 86 SlotIndex OrigIdx, 87 SlotIndex UseIdx) const { 88 OrigIdx = OrigIdx.getRegSlot(true); 89 UseIdx = UseIdx.getRegSlot(true); 90 for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { 91 const MachineOperand &MO = OrigMI->getOperand(i); 92 if (!MO.isReg() || !MO.getReg() || !MO.readsReg()) 93 continue; 94 95 // We can't remat physreg uses, unless it is a constant. 96 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { 97 if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent())) 98 continue; 99 return false; 100 } 101 102 LiveInterval &li = LIS.getInterval(MO.getReg()); 103 const VNInfo *OVNI = li.getVNInfoAt(OrigIdx); 104 if (!OVNI) 105 continue; 106 107 // Don't allow rematerialization immediately after the original def. 108 // It would be incorrect if OrigMI redefines the register. 109 // See PR14098. 110 if (SlotIndex::isSameInstr(OrigIdx, UseIdx)) 111 return false; 112 113 if (OVNI != li.getVNInfoAt(UseIdx)) 114 return false; 115 } 116 return true; 117 } 118 119 bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI, 120 SlotIndex UseIdx, bool cheapAsAMove) { 121 assert(ScannedRemattable && "Call anyRematerializable first"); 122 123 // Use scanRemattable info. 124 if (!Remattable.count(OrigVNI)) 125 return false; 126 127 // No defining instruction provided. 128 SlotIndex DefIdx; 129 assert(RM.OrigMI && "No defining instruction for remattable value"); 130 DefIdx = LIS.getInstructionIndex(*RM.OrigMI); 131 132 // If only cheap remats were requested, bail out early. 133 if (cheapAsAMove && !TII.isAsCheapAsAMove(RM.OrigMI)) 134 return false; 135 136 // Verify that all used registers are available with the same values. 137 if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx)) 138 return false; 139 140 return true; 141 } 142 143 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB, 144 MachineBasicBlock::iterator MI, 145 unsigned DestReg, 146 const Remat &RM, 147 const TargetRegisterInfo &tri, 148 bool Late) { 149 assert(RM.OrigMI && "Invalid remat"); 150 TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri); 151 // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg 152 // to false anyway in case the isDead flag of RM.OrigMI's dest register 153 // is true. 154 (*--MI).getOperand(0).setIsDead(false); 155 Rematted.insert(RM.ParentVNI); 156 return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot(); 157 } 158 159 void LiveRangeEdit::eraseVirtReg(unsigned Reg) { 160 if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg)) 161 LIS.removeInterval(Reg); 162 } 163 164 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI, 165 SmallVectorImpl<MachineInstr*> &Dead) { 166 MachineInstr *DefMI = nullptr, *UseMI = nullptr; 167 168 // Check that there is a single def and a single use. 169 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 170 MachineInstr *MI = MO.getParent(); 171 if (MO.isDef()) { 172 if (DefMI && DefMI != MI) 173 return false; 174 if (!MI->canFoldAsLoad()) 175 return false; 176 DefMI = MI; 177 } else if (!MO.isUndef()) { 178 if (UseMI && UseMI != MI) 179 return false; 180 // FIXME: Targets don't know how to fold subreg uses. 181 if (MO.getSubReg()) 182 return false; 183 UseMI = MI; 184 } 185 } 186 if (!DefMI || !UseMI) 187 return false; 188 189 // Since we're moving the DefMI load, make sure we're not extending any live 190 // ranges. 191 if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI), 192 LIS.getInstructionIndex(*UseMI))) 193 return false; 194 195 // We also need to make sure it is safe to move the load. 196 // Assume there are stores between DefMI and UseMI. 197 bool SawStore = true; 198 if (!DefMI->isSafeToMove(nullptr, SawStore)) 199 return false; 200 201 DEBUG(dbgs() << "Try to fold single def: " << *DefMI 202 << " into single use: " << *UseMI); 203 204 SmallVector<unsigned, 8> Ops; 205 if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second) 206 return false; 207 208 MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI); 209 if (!FoldMI) 210 return false; 211 DEBUG(dbgs() << " folded: " << *FoldMI); 212 LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI); 213 UseMI->eraseFromParent(); 214 DefMI->addRegisterDead(LI->reg, nullptr); 215 Dead.push_back(DefMI); 216 ++NumDCEFoldedLoads; 217 return true; 218 } 219 220 bool LiveRangeEdit::useIsKill(const LiveInterval &LI, 221 const MachineOperand &MO) const { 222 const MachineInstr &MI = *MO.getParent(); 223 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot(); 224 if (LI.Query(Idx).isKill()) 225 return true; 226 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 227 unsigned SubReg = MO.getSubReg(); 228 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg); 229 for (const LiveInterval::SubRange &S : LI.subranges()) { 230 if ((S.LaneMask & LaneMask) != 0 && S.Query(Idx).isKill()) 231 return true; 232 } 233 return false; 234 } 235 236 /// Find all live intervals that need to shrink, then remove the instruction. 237 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) { 238 assert(MI->allDefsAreDead() && "Def isn't really dead"); 239 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot(); 240 241 // Never delete a bundled instruction. 242 if (MI->isBundled()) { 243 return; 244 } 245 // Never delete inline asm. 246 if (MI->isInlineAsm()) { 247 DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI); 248 return; 249 } 250 251 // Use the same criteria as DeadMachineInstructionElim. 252 bool SawStore = false; 253 if (!MI->isSafeToMove(nullptr, SawStore)) { 254 DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI); 255 return; 256 } 257 258 DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI); 259 260 // Collect virtual registers to be erased after MI is gone. 261 SmallVector<unsigned, 8> RegsToErase; 262 bool ReadsPhysRegs = false; 263 bool isOrigDef = false; 264 unsigned Dest; 265 if (VRM && MI->getOperand(0).isReg()) { 266 Dest = MI->getOperand(0).getReg(); 267 unsigned Original = VRM->getOriginal(Dest); 268 LiveInterval &OrigLI = LIS.getInterval(Original); 269 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx); 270 isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx); 271 } 272 273 // Check for live intervals that may shrink 274 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 275 MOE = MI->operands_end(); MOI != MOE; ++MOI) { 276 if (!MOI->isReg()) 277 continue; 278 unsigned Reg = MOI->getReg(); 279 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 280 // Check if MI reads any unreserved physregs. 281 if (Reg && MOI->readsReg() && !MRI.isReserved(Reg)) 282 ReadsPhysRegs = true; 283 else if (MOI->isDef()) 284 LIS.removePhysRegDefAt(Reg, Idx); 285 continue; 286 } 287 LiveInterval &LI = LIS.getInterval(Reg); 288 289 // Shrink read registers, unless it is likely to be expensive and 290 // unlikely to change anything. We typically don't want to shrink the 291 // PIC base register that has lots of uses everywhere. 292 // Always shrink COPY uses that probably come from live range splitting. 293 if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) || 294 (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI)))) 295 ToShrink.insert(&LI); 296 297 // Remove defined value. 298 if (MOI->isDef()) { 299 if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr) 300 TheDelegate->LRE_WillShrinkVirtReg(LI.reg); 301 LIS.removeVRegDefAt(LI, Idx); 302 if (LI.empty()) 303 RegsToErase.push_back(Reg); 304 } 305 } 306 307 // Currently, we don't support DCE of physreg live ranges. If MI reads 308 // any unreserved physregs, don't erase the instruction, but turn it into 309 // a KILL instead. This way, the physreg live ranges don't end up 310 // dangling. 311 // FIXME: It would be better to have something like shrinkToUses() for 312 // physregs. That could potentially enable more DCE and it would free up 313 // the physreg. It would not happen often, though. 314 if (ReadsPhysRegs) { 315 MI->setDesc(TII.get(TargetOpcode::KILL)); 316 // Remove all operands that aren't physregs. 317 for (unsigned i = MI->getNumOperands(); i; --i) { 318 const MachineOperand &MO = MI->getOperand(i-1); 319 if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 320 continue; 321 MI->RemoveOperand(i-1); 322 } 323 DEBUG(dbgs() << "Converted physregs to:\t" << *MI); 324 } else { 325 // If the dest of MI is an original reg, don't delete the inst. Replace 326 // the dest with a new reg, keep the inst for remat of other siblings. 327 // The inst is saved in LiveRangeEdit::DeadRemats and will be deleted 328 // after all the allocations of the func are done. 329 if (isOrigDef) { 330 LiveInterval &NewLI = createEmptyIntervalFrom(Dest); 331 VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator()); 332 NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI)); 333 pop_back(); 334 markDeadRemat(MI); 335 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 336 MI->substituteRegister(Dest, NewLI.reg, 0, TRI); 337 MI->getOperand(0).setIsDead(true); 338 } else { 339 if (TheDelegate) 340 TheDelegate->LRE_WillEraseInstruction(MI); 341 LIS.RemoveMachineInstrFromMaps(*MI); 342 MI->eraseFromParent(); 343 ++NumDCEDeleted; 344 } 345 } 346 347 // Erase any virtregs that are now empty and unused. There may be <undef> 348 // uses around. Keep the empty live range in that case. 349 for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) { 350 unsigned Reg = RegsToErase[i]; 351 if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) { 352 ToShrink.remove(&LIS.getInterval(Reg)); 353 eraseVirtReg(Reg); 354 } 355 } 356 } 357 358 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead, 359 ArrayRef<unsigned> RegsBeingSpilled) { 360 ToShrinkSet ToShrink; 361 362 for (;;) { 363 // Erase all dead defs. 364 while (!Dead.empty()) 365 eliminateDeadDef(Dead.pop_back_val(), ToShrink); 366 367 if (ToShrink.empty()) 368 break; 369 370 // Shrink just one live interval. Then delete new dead defs. 371 LiveInterval *LI = ToShrink.back(); 372 ToShrink.pop_back(); 373 if (foldAsLoad(LI, Dead)) 374 continue; 375 unsigned VReg = LI->reg; 376 if (TheDelegate) 377 TheDelegate->LRE_WillShrinkVirtReg(VReg); 378 if (!LIS.shrinkToUses(LI, &Dead)) 379 continue; 380 381 // Don't create new intervals for a register being spilled. 382 // The new intervals would have to be spilled anyway so its not worth it. 383 // Also they currently aren't spilled so creating them and not spilling 384 // them results in incorrect code. 385 bool BeingSpilled = false; 386 for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) { 387 if (VReg == RegsBeingSpilled[i]) { 388 BeingSpilled = true; 389 break; 390 } 391 } 392 393 if (BeingSpilled) continue; 394 395 // LI may have been separated, create new intervals. 396 LI->RenumberValues(); 397 SmallVector<LiveInterval*, 8> SplitLIs; 398 LIS.splitSeparateComponents(*LI, SplitLIs); 399 if (!SplitLIs.empty()) 400 ++NumFracRanges; 401 402 unsigned Original = VRM ? VRM->getOriginal(VReg) : 0; 403 for (const LiveInterval *SplitLI : SplitLIs) { 404 // If LI is an original interval that hasn't been split yet, make the new 405 // intervals their own originals instead of referring to LI. The original 406 // interval must contain all the split products, and LI doesn't. 407 if (Original != VReg && Original != 0) 408 VRM->setIsSplitFromReg(SplitLI->reg, Original); 409 if (TheDelegate) 410 TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg, VReg); 411 } 412 } 413 } 414 415 // Keep track of new virtual registers created via 416 // MachineRegisterInfo::createVirtualRegister. 417 void 418 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg) 419 { 420 if (VRM) 421 VRM->grow(); 422 423 NewRegs.push_back(VReg); 424 } 425 426 void 427 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF, 428 const MachineLoopInfo &Loops, 429 const MachineBlockFrequencyInfo &MBFI) { 430 VirtRegAuxInfo VRAI(MF, LIS, VRM, Loops, MBFI); 431 for (unsigned I = 0, Size = size(); I < Size; ++I) { 432 LiveInterval &LI = LIS.getInterval(get(I)); 433 if (MRI.recomputeRegClass(LI.reg)) 434 DEBUG({ 435 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 436 dbgs() << "Inflated " << PrintReg(LI.reg) << " to " 437 << TRI->getRegClassName(MRI.getRegClass(LI.reg)) << '\n'; 438 }); 439 VRAI.calculateSpillWeightAndHint(LI); 440 } 441 } 442