1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LiveRangeCalc.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 
19 using namespace llvm;
20 
21 #define DEBUG_TYPE "regalloc"
22 
23 void LiveRangeCalc::resetLiveOutMap() {
24   unsigned NumBlocks = MF->getNumBlockIDs();
25   Seen.clear();
26   Seen.resize(NumBlocks);
27   EntryInfoMap.clear();
28   Map.resize(NumBlocks);
29 }
30 
31 void LiveRangeCalc::reset(const MachineFunction *mf,
32                           SlotIndexes *SI,
33                           MachineDominatorTree *MDT,
34                           VNInfo::Allocator *VNIA) {
35   MF = mf;
36   MRI = &MF->getRegInfo();
37   Indexes = SI;
38   DomTree = MDT;
39   Alloc = VNIA;
40   resetLiveOutMap();
41   LiveIn.clear();
42 }
43 
44 
45 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
46                           LiveRange &LR, const MachineOperand &MO) {
47   const MachineInstr &MI = *MO.getParent();
48   SlotIndex DefIdx =
49       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
50 
51   // Create the def in LR. This may find an existing def.
52   LR.createDeadDef(DefIdx, Alloc);
53 }
54 
55 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
56   assert(MRI && Indexes && "call reset() first");
57 
58   // Step 1: Create minimal live segments for every definition of Reg.
59   // Visit all def operands. If the same instruction has multiple defs of Reg,
60   // createDeadDef() will deduplicate.
61   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
62   unsigned Reg = LI.reg;
63   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
64     if (!MO.isDef() && !MO.readsReg())
65       continue;
66 
67     unsigned SubReg = MO.getSubReg();
68     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
69       LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
70                                         : MRI->getMaxLaneMaskForVReg(Reg);
71       // If this is the first time we see a subregister def, initialize
72       // subranges by creating a copy of the main range.
73       if (!LI.hasSubRanges() && !LI.empty()) {
74         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
75         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
76       }
77 
78       LaneBitmask Mask = SubMask;
79       for (LiveInterval::SubRange &S : LI.subranges()) {
80         // A Mask for subregs common to the existing subrange and current def.
81         LaneBitmask Common = S.LaneMask & Mask;
82         if (Common.none())
83           continue;
84         LiveInterval::SubRange *CommonRange;
85         // A Mask for subregs covered by the subrange but not the current def.
86         LaneBitmask RM = S.LaneMask & ~Mask;
87         if (RM.any()) {
88           // Split the subrange S into two parts: one covered by the current
89           // def (CommonRange), and the one not affected by it (updated S).
90           S.LaneMask = RM;
91           CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
92         } else {
93           assert(Common == S.LaneMask);
94           CommonRange = &S;
95         }
96         if (MO.isDef())
97           createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
98         Mask &= ~Common;
99       }
100       // Create a new SubRange for subregs we did not cover yet.
101       if (Mask.any()) {
102         LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
103         if (MO.isDef())
104           createDeadDef(*Indexes, *Alloc, *NewRange, MO);
105       }
106     }
107 
108     // Create the def in the main liverange. We do not have to do this if
109     // subranges are tracked as we recreate the main range later in this case.
110     if (MO.isDef() && !LI.hasSubRanges())
111       createDeadDef(*Indexes, *Alloc, LI, MO);
112   }
113 
114   // We may have created empty live ranges for partially undefined uses, we
115   // can't keep them because we won't find defs in them later.
116   LI.removeEmptySubRanges();
117 
118   // Step 2: Extend live segments to all uses, constructing SSA form as
119   // necessary.
120   if (LI.hasSubRanges()) {
121     for (LiveInterval::SubRange &S : LI.subranges()) {
122       LiveRangeCalc SubLRC;
123       SubLRC.reset(MF, Indexes, DomTree, Alloc);
124       SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
125     }
126     LI.clear();
127     constructMainRangeFromSubranges(LI);
128   } else {
129     resetLiveOutMap();
130     extendToUses(LI, Reg, LaneBitmask::getAll());
131   }
132 }
133 
134 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
135   // First create dead defs at all defs found in subranges.
136   LiveRange &MainRange = LI;
137   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
138          "Expect empty main liverange");
139 
140   for (const LiveInterval::SubRange &SR : LI.subranges()) {
141     for (const VNInfo *VNI : SR.valnos) {
142       if (!VNI->isUnused() && !VNI->isPHIDef())
143         MainRange.createDeadDef(VNI->def, *Alloc);
144     }
145   }
146   resetLiveOutMap();
147   extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
148 }
149 
150 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
151   assert(MRI && Indexes && "call reset() first");
152 
153   // Visit all def operands. If the same instruction has multiple defs of Reg,
154   // LR.createDeadDef() will deduplicate.
155   for (MachineOperand &MO : MRI->def_operands(Reg))
156     createDeadDef(*Indexes, *Alloc, LR, MO);
157 }
158 
159 
160 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
161                                  LiveInterval *LI) {
162   SmallVector<SlotIndex, 4> Undefs;
163   if (LI != nullptr)
164     LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
165 
166   // Visit all operands that read Reg. This may include partial defs.
167   bool IsSubRange = !Mask.all();
168   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
169   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
170     // Clear all kill flags. They will be reinserted after register allocation
171     // by LiveIntervalAnalysis::addKillFlags().
172     if (MO.isUse())
173       MO.setIsKill(false);
174     // MO::readsReg returns "true" for subregister defs. This is for keeping
175     // liveness of the entire register (i.e. for the main range of the live
176     // interval). For subranges, definitions of non-overlapping subregisters
177     // do not count as uses.
178     if (!MO.readsReg() || (IsSubRange && MO.isDef()))
179       continue;
180 
181     unsigned SubReg = MO.getSubReg();
182     if (SubReg != 0) {
183       LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
184       if (MO.isDef())
185         SLM = ~SLM;
186       // Ignore uses not reading the current (sub)range.
187       if ((SLM & Mask).none())
188         continue;
189     }
190 
191     // Determine the actual place of the use.
192     const MachineInstr *MI = MO.getParent();
193     unsigned OpNo = (&MO - &MI->getOperand(0));
194     SlotIndex UseIdx;
195     if (MI->isPHI()) {
196       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
197       // The actual place where a phi operand is used is the end of the pred
198       // MBB. PHI operands are paired: (Reg, PredMBB).
199       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
200     } else {
201       // Check for early-clobber redefs.
202       bool isEarlyClobber = false;
203       unsigned DefIdx;
204       if (MO.isDef())
205         isEarlyClobber = MO.isEarlyClobber();
206       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
207         // FIXME: This would be a lot easier if tied early-clobber uses also
208         // had an early-clobber flag.
209         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
210       }
211       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
212     }
213 
214     // MI is reading Reg. We may have visited MI before if it happens to be
215     // reading Reg multiple times. That is OK, extend() is idempotent.
216     extend(LR, UseIdx, Reg, Undefs);
217   }
218 }
219 
220 
221 void LiveRangeCalc::updateFromLiveIns() {
222   LiveRangeUpdater Updater;
223   for (const LiveInBlock &I : LiveIn) {
224     if (!I.DomNode)
225       continue;
226     MachineBasicBlock *MBB = I.DomNode->getBlock();
227     assert(I.Value && "No live-in value found");
228     SlotIndex Start, End;
229     std::tie(Start, End) = Indexes->getMBBRange(MBB);
230 
231     if (I.Kill.isValid())
232       // Value is killed inside this block.
233       End = I.Kill;
234     else {
235       // The value is live-through, update LiveOut as well.
236       // Defer the Domtree lookup until it is needed.
237       assert(Seen.test(MBB->getNumber()));
238       Map[MBB] = LiveOutPair(I.Value, nullptr);
239     }
240     Updater.setDest(&I.LR);
241     Updater.add(Start, End, I.Value);
242   }
243   LiveIn.clear();
244 }
245 
246 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
247                            ArrayRef<SlotIndex> Undefs) {
248   assert(Use.isValid() && "Invalid SlotIndex");
249   assert(Indexes && "Missing SlotIndexes");
250   assert(DomTree && "Missing dominator tree");
251 
252   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
253   assert(UseMBB && "No MBB at Use");
254 
255   // Is there a def in the same MBB we can extend?
256   auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
257   if (EP.first != nullptr || EP.second)
258     return;
259 
260   // Find the single reaching def, or determine if Use is jointly dominated by
261   // multiple values, and we may need to create even more phi-defs to preserve
262   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
263   // know the dominating VNInfo.
264   if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
265     return;
266 
267   // When there were multiple different values, we may need new PHIs.
268   calculateValues();
269 }
270 
271 
272 // This function is called by a client after using the low-level API to add
273 // live-out and live-in blocks.  The unique value optimization is not
274 // available, SplitEditor::transferValues handles that case directly anyway.
275 void LiveRangeCalc::calculateValues() {
276   assert(Indexes && "Missing SlotIndexes");
277   assert(DomTree && "Missing dominator tree");
278   updateSSA();
279   updateFromLiveIns();
280 }
281 
282 
283 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
284                                  MachineBasicBlock &MBB, BitVector &DefOnEntry,
285                                  BitVector &UndefOnEntry) {
286   unsigned BN = MBB.getNumber();
287   if (DefOnEntry[BN])
288     return true;
289   if (UndefOnEntry[BN])
290     return false;
291 
292   auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
293     for (MachineBasicBlock *S : B.successors())
294       DefOnEntry[S->getNumber()] = true;
295     DefOnEntry[BN] = true;
296     return true;
297   };
298 
299   SetVector<unsigned> WorkList;
300   // Checking if the entry of MBB is reached by some def: add all predecessors
301   // that are potentially defined-on-exit to the work list.
302   for (MachineBasicBlock *P : MBB.predecessors())
303     WorkList.insert(P->getNumber());
304 
305   for (unsigned i = 0; i != WorkList.size(); ++i) {
306     // Determine if the exit from the block is reached by some def.
307     unsigned N = WorkList[i];
308     MachineBasicBlock &B = *MF->getBlockNumbered(N);
309     if (Seen[N] && Map[&B].first != nullptr)
310       return MarkDefined(B);
311     SlotIndex Begin, End;
312     std::tie(Begin, End) = Indexes->getMBBRange(&B);
313     LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End);
314     if (UB != LR.begin()) {
315       LiveRange::Segment &Seg = *std::prev(UB);
316       if (Seg.end > Begin) {
317         // There is a segment that overlaps B. If the range is not explicitly
318         // undefined between the end of the segment and the end of the block,
319         // treat the block as defined on exit. If it is, go to the next block
320         // on the work list.
321         if (LR.isUndefIn(Undefs, Seg.end, End))
322           continue;
323         return MarkDefined(B);
324       }
325     }
326 
327     // No segment overlaps with this block. If this block is not defined on
328     // entry, or it undefines the range, do not process its predecessors.
329     if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
330       UndefOnEntry[N] = true;
331       continue;
332     }
333     if (DefOnEntry[N])
334       return MarkDefined(B);
335 
336     // Still don't know: add all predecessors to the work list.
337     for (MachineBasicBlock *P : B.predecessors())
338       WorkList.insert(P->getNumber());
339   }
340 
341   UndefOnEntry[BN] = true;
342   return false;
343 }
344 
345 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
346                                      SlotIndex Use, unsigned PhysReg,
347                                      ArrayRef<SlotIndex> Undefs) {
348   unsigned UseMBBNum = UseMBB.getNumber();
349 
350   // Block numbers where LR should be live-in.
351   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
352 
353   // Remember if we have seen more than one value.
354   bool UniqueVNI = true;
355   VNInfo *TheVNI = nullptr;
356 
357   bool FoundUndef = false;
358 
359   // Using Seen as a visited set, perform a BFS for all reaching defs.
360   for (unsigned i = 0; i != WorkList.size(); ++i) {
361     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
362 
363 #ifndef NDEBUG
364     if (MBB->pred_empty()) {
365       MBB->getParent()->verify();
366       errs() << "Use of " << PrintReg(PhysReg)
367              << " does not have a corresponding definition on every path:\n";
368       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
369       if (MI != nullptr)
370         errs() << Use << " " << *MI;
371       report_fatal_error("Use not jointly dominated by defs.");
372     }
373 
374     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
375         !MBB->isLiveIn(PhysReg)) {
376       MBB->getParent()->verify();
377       const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
378       errs() << "The register " << PrintReg(PhysReg, TRI)
379              << " needs to be live in to BB#" << MBB->getNumber()
380              << ", but is missing from the live-in list.\n";
381       report_fatal_error("Invalid global physical register");
382     }
383 #endif
384     FoundUndef |= MBB->pred_empty();
385 
386     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
387          PE = MBB->pred_end(); PI != PE; ++PI) {
388        MachineBasicBlock *Pred = *PI;
389 
390        // Is this a known live-out block?
391        if (Seen.test(Pred->getNumber())) {
392          if (VNInfo *VNI = Map[Pred].first) {
393            if (TheVNI && TheVNI != VNI)
394              UniqueVNI = false;
395            TheVNI = VNI;
396          }
397          continue;
398        }
399 
400        SlotIndex Start, End;
401        std::tie(Start, End) = Indexes->getMBBRange(Pred);
402 
403        // First time we see Pred.  Try to determine the live-out value, but set
404        // it as null if Pred is live-through with an unknown value.
405        auto EP = LR.extendInBlock(Undefs, Start, End);
406        VNInfo *VNI = EP.first;
407        FoundUndef |= EP.second;
408        setLiveOutValue(Pred, VNI);
409        if (VNI) {
410          if (TheVNI && TheVNI != VNI)
411            UniqueVNI = false;
412          TheVNI = VNI;
413        }
414        if (VNI || EP.second)
415          continue;
416 
417        // No, we need a live-in value for Pred as well
418        if (Pred != &UseMBB)
419          WorkList.push_back(Pred->getNumber());
420        else
421           // Loopback to UseMBB, so value is really live through.
422          Use = SlotIndex();
423     }
424   }
425 
426   LiveIn.clear();
427   FoundUndef |= (TheVNI == nullptr);
428   if (Undefs.size() > 0 && FoundUndef)
429     UniqueVNI = false;
430 
431   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
432   // neither require it. Skip the sorting overhead for small updates.
433   if (WorkList.size() > 4)
434     array_pod_sort(WorkList.begin(), WorkList.end());
435 
436   // If a unique reaching def was found, blit in the live ranges immediately.
437   if (UniqueVNI) {
438     assert(TheVNI != nullptr);
439     LiveRangeUpdater Updater(&LR);
440     for (unsigned BN : WorkList) {
441       SlotIndex Start, End;
442       std::tie(Start, End) = Indexes->getMBBRange(BN);
443       // Trim the live range in UseMBB.
444       if (BN == UseMBBNum && Use.isValid())
445         End = Use;
446       else
447         Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
448       Updater.add(Start, End, TheVNI);
449     }
450     return true;
451   }
452 
453   // Prepare the defined/undefined bit vectors.
454   auto EF = EntryInfoMap.find(&LR);
455   if (EF == EntryInfoMap.end()) {
456     unsigned N = MF->getNumBlockIDs();
457     EF = EntryInfoMap.insert({&LR, {BitVector(), BitVector()}}).first;
458     EF->second.first.resize(N);
459     EF->second.second.resize(N);
460   }
461   BitVector &DefOnEntry = EF->second.first;
462   BitVector &UndefOnEntry = EF->second.second;
463 
464   // Multiple values were found, so transfer the work list to the LiveIn array
465   // where UpdateSSA will use it as a work list.
466   LiveIn.reserve(WorkList.size());
467   for (unsigned BN : WorkList) {
468     MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
469     if (Undefs.size() > 0 && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
470       continue;
471     addLiveInBlock(LR, DomTree->getNode(MBB));
472     if (MBB == &UseMBB)
473       LiveIn.back().Kill = Use;
474   }
475 
476   return false;
477 }
478 
479 
480 // This is essentially the same iterative algorithm that SSAUpdater uses,
481 // except we already have a dominator tree, so we don't have to recompute it.
482 void LiveRangeCalc::updateSSA() {
483   assert(Indexes && "Missing SlotIndexes");
484   assert(DomTree && "Missing dominator tree");
485 
486   // Interate until convergence.
487   unsigned Changes;
488   do {
489     Changes = 0;
490     // Propagate live-out values down the dominator tree, inserting phi-defs
491     // when necessary.
492     for (LiveInBlock &I : LiveIn) {
493       MachineDomTreeNode *Node = I.DomNode;
494       // Skip block if the live-in value has already been determined.
495       if (!Node)
496         continue;
497       MachineBasicBlock *MBB = Node->getBlock();
498       MachineDomTreeNode *IDom = Node->getIDom();
499       LiveOutPair IDomValue;
500 
501       // We need a live-in value to a block with no immediate dominator?
502       // This is probably an unreachable block that has survived somehow.
503       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
504 
505       // IDom dominates all of our predecessors, but it may not be their
506       // immediate dominator. Check if any of them have live-out values that are
507       // properly dominated by IDom. If so, we need a phi-def here.
508       if (!needPHI) {
509         IDomValue = Map[IDom->getBlock()];
510 
511         // Cache the DomTree node that defined the value.
512         if (IDomValue.first && !IDomValue.second)
513           Map[IDom->getBlock()].second = IDomValue.second =
514             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
515 
516         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
517                PE = MBB->pred_end(); PI != PE; ++PI) {
518           LiveOutPair &Value = Map[*PI];
519           if (!Value.first || Value.first == IDomValue.first)
520             continue;
521 
522           // Cache the DomTree node that defined the value.
523           if (!Value.second)
524             Value.second =
525               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
526 
527           // This predecessor is carrying something other than IDomValue.
528           // It could be because IDomValue hasn't propagated yet, or it could be
529           // because MBB is in the dominance frontier of that value.
530           if (DomTree->dominates(IDom, Value.second)) {
531             needPHI = true;
532             break;
533           }
534         }
535       }
536 
537       // The value may be live-through even if Kill is set, as can happen when
538       // we are called from extendRange. In that case LiveOutSeen is true, and
539       // LiveOut indicates a foreign or missing value.
540       LiveOutPair &LOP = Map[MBB];
541 
542       // Create a phi-def if required.
543       if (needPHI) {
544         ++Changes;
545         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
546         SlotIndex Start, End;
547         std::tie(Start, End) = Indexes->getMBBRange(MBB);
548         LiveRange &LR = I.LR;
549         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
550         I.Value = VNI;
551         // This block is done, we know the final value.
552         I.DomNode = nullptr;
553 
554         // Add liveness since updateFromLiveIns now skips this node.
555         if (I.Kill.isValid()) {
556           if (VNI)
557             LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
558         } else {
559           if (VNI)
560             LR.addSegment(LiveInterval::Segment(Start, End, VNI));
561           LOP = LiveOutPair(VNI, Node);
562         }
563       } else if (IDomValue.first) {
564         // No phi-def here. Remember incoming value.
565         I.Value = IDomValue.first;
566 
567         // If the IDomValue is killed in the block, don't propagate through.
568         if (I.Kill.isValid())
569           continue;
570 
571         // Propagate IDomValue if it isn't killed:
572         // MBB is live-out and doesn't define its own value.
573         if (LOP.first == IDomValue.first)
574           continue;
575         ++Changes;
576         LOP = IDomValue;
577       }
578     }
579   } while (Changes);
580 }
581