1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the LiveRangeCalc class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "llvm/CodeGen/MachineDominators.h" 16 #include "llvm/CodeGen/MachineRegisterInfo.h" 17 18 using namespace llvm; 19 20 #define DEBUG_TYPE "regalloc" 21 22 void LiveRangeCalc::resetLiveOutMap() { 23 unsigned NumBlocks = MF->getNumBlockIDs(); 24 Seen.clear(); 25 Seen.resize(NumBlocks); 26 Map.resize(NumBlocks); 27 } 28 29 void LiveRangeCalc::reset(const MachineFunction *mf, 30 SlotIndexes *SI, 31 MachineDominatorTree *MDT, 32 VNInfo::Allocator *VNIA) { 33 MF = mf; 34 MRI = &MF->getRegInfo(); 35 Indexes = SI; 36 DomTree = MDT; 37 Alloc = VNIA; 38 resetLiveOutMap(); 39 LiveIn.clear(); 40 } 41 42 43 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, 44 LiveRange &LR, const MachineOperand &MO) { 45 const MachineInstr *MI = MO.getParent(); 46 SlotIndex DefIdx; 47 if (MI->isPHI()) 48 DefIdx = Indexes.getMBBStartIdx(MI->getParent()); 49 else 50 DefIdx = Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); 51 52 // Create the def in LR. This may find an existing def. 53 LR.createDeadDef(DefIdx, Alloc); 54 } 55 56 void LiveRangeCalc::calculate(LiveInterval &LI) { 57 assert(MRI && Indexes && "call reset() first"); 58 59 // Step 1: Create minimal live segments for every definition of Reg. 60 // Visit all def operands. If the same instruction has multiple defs of Reg, 61 // createDeadDef() will deduplicate. 62 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 63 unsigned Reg = LI.reg; 64 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 65 if (!MO.isDef() && !MO.readsReg()) 66 continue; 67 68 unsigned SubReg = MO.getSubReg(); 69 if (LI.hasSubRanges() || (SubReg != 0 && MRI->tracksSubRegLiveness())) { 70 unsigned Mask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) 71 : MRI->getMaxLaneMaskForVReg(Reg); 72 73 // If this is the first time we see a subregister def, initialize 74 // subranges by creating a copy of the main range. 75 if (!LI.hasSubRanges() && !LI.empty()) { 76 unsigned ClassMask = MRI->getMaxLaneMaskForVReg(Reg); 77 LI.createSubRangeFrom(*Alloc, ClassMask, LI); 78 } 79 80 for (LiveInterval::SubRange &S : LI.subranges()) { 81 // A Mask for subregs common to the existing subrange and current def. 82 unsigned Common = S.LaneMask & Mask; 83 if (Common == 0) 84 continue; 85 // A Mask for subregs covered by the subrange but not the current def. 86 unsigned LRest = S.LaneMask & ~Mask; 87 LiveInterval::SubRange *CommonRange; 88 if (LRest != 0) { 89 // Split current subrange into Common and LRest ranges. 90 S.LaneMask = LRest; 91 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S); 92 } else { 93 assert(Common == S.LaneMask); 94 CommonRange = &S; 95 } 96 if (MO.isDef()) 97 createDeadDef(*Indexes, *Alloc, *CommonRange, MO); 98 Mask &= ~Common; 99 } 100 // Create a new SubRange for subregs we did not cover yet. 101 if (Mask != 0) { 102 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask); 103 if (MO.isDef()) 104 createDeadDef(*Indexes, *Alloc, *NewRange, MO); 105 } 106 } 107 108 // Create the def in the main liverange. 109 if (MO.isDef()) 110 createDeadDef(*Indexes, *Alloc, LI, MO); 111 } 112 113 // We may have created empty live ranges for partially undefined uses, we 114 // can't keep them because we won't find defs in them later. 115 LI.removeEmptySubRanges(); 116 117 // Step 2: Extend live segments to all uses, constructing SSA form as 118 // necessary. 119 for (LiveInterval::SubRange &S : LI.subranges()) { 120 resetLiveOutMap(); 121 extendToUses(S, Reg, S.LaneMask); 122 } 123 124 resetLiveOutMap(); 125 extendToUses(LI, Reg, ~0u); 126 } 127 128 129 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { 130 assert(MRI && Indexes && "call reset() first"); 131 132 // Visit all def operands. If the same instruction has multiple defs of Reg, 133 // LR.createDeadDef() will deduplicate. 134 for (MachineOperand &MO : MRI->def_operands(Reg)) 135 createDeadDef(*Indexes, *Alloc, LR, MO); 136 } 137 138 139 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, unsigned Mask) { 140 // Visit all operands that read Reg. This may include partial defs. 141 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 142 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 143 // Clear all kill flags. They will be reinserted after register allocation 144 // by LiveIntervalAnalysis::addKillFlags(). 145 if (MO.isUse()) 146 MO.setIsKill(false); 147 else { 148 // We only care about uses, but on the main range (mask ~0u) this includes 149 // the "virtual" reads happening for subregister defs. 150 if (Mask != ~0u) 151 continue; 152 } 153 154 if (!MO.readsReg()) 155 continue; 156 unsigned SubReg = MO.getSubReg(); 157 if (SubReg != 0) { 158 unsigned SubRegMask = TRI.getSubRegIndexLaneMask(SubReg); 159 // Ignore uses not covering the current subrange. 160 if ((SubRegMask & Mask) == 0) 161 continue; 162 } 163 164 // Determine the actual place of the use. 165 const MachineInstr *MI = MO.getParent(); 166 unsigned OpNo = (&MO - &MI->getOperand(0)); 167 SlotIndex UseIdx; 168 if (MI->isPHI()) { 169 assert(!MO.isDef() && "Cannot handle PHI def of partial register."); 170 // The actual place where a phi operand is used is the end of the pred 171 // MBB. PHI operands are paired: (Reg, PredMBB). 172 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); 173 } else { 174 // Check for early-clobber redefs. 175 bool isEarlyClobber = false; 176 unsigned DefIdx; 177 if (MO.isDef()) 178 isEarlyClobber = MO.isEarlyClobber(); 179 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { 180 // FIXME: This would be a lot easier if tied early-clobber uses also 181 // had an early-clobber flag. 182 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); 183 } 184 UseIdx = Indexes->getInstructionIndex(MI).getRegSlot(isEarlyClobber); 185 } 186 187 // MI is reading Reg. We may have visited MI before if it happens to be 188 // reading Reg multiple times. That is OK, extend() is idempotent. 189 extend(LR, UseIdx, Reg); 190 } 191 } 192 193 194 void LiveRangeCalc::updateFromLiveIns() { 195 LiveRangeUpdater Updater; 196 for (const LiveInBlock &I : LiveIn) { 197 if (!I.DomNode) 198 continue; 199 MachineBasicBlock *MBB = I.DomNode->getBlock(); 200 assert(I.Value && "No live-in value found"); 201 SlotIndex Start, End; 202 std::tie(Start, End) = Indexes->getMBBRange(MBB); 203 204 if (I.Kill.isValid()) 205 // Value is killed inside this block. 206 End = I.Kill; 207 else { 208 // The value is live-through, update LiveOut as well. 209 // Defer the Domtree lookup until it is needed. 210 assert(Seen.test(MBB->getNumber())); 211 Map[MBB] = LiveOutPair(I.Value, nullptr); 212 } 213 Updater.setDest(&I.LR); 214 Updater.add(Start, End, I.Value); 215 } 216 LiveIn.clear(); 217 } 218 219 220 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Kill, unsigned PhysReg) { 221 assert(Kill.isValid() && "Invalid SlotIndex"); 222 assert(Indexes && "Missing SlotIndexes"); 223 assert(DomTree && "Missing dominator tree"); 224 225 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill.getPrevSlot()); 226 assert(KillMBB && "No MBB at Kill"); 227 228 // Is there a def in the same MBB we can extend? 229 if (LR.extendInBlock(Indexes->getMBBStartIdx(KillMBB), Kill)) 230 return; 231 232 // Find the single reaching def, or determine if Kill is jointly dominated by 233 // multiple values, and we may need to create even more phi-defs to preserve 234 // VNInfo SSA form. Perform a search for all predecessor blocks where we 235 // know the dominating VNInfo. 236 if (findReachingDefs(LR, *KillMBB, Kill, PhysReg)) 237 return; 238 239 // When there were multiple different values, we may need new PHIs. 240 calculateValues(); 241 } 242 243 244 // This function is called by a client after using the low-level API to add 245 // live-out and live-in blocks. The unique value optimization is not 246 // available, SplitEditor::transferValues handles that case directly anyway. 247 void LiveRangeCalc::calculateValues() { 248 assert(Indexes && "Missing SlotIndexes"); 249 assert(DomTree && "Missing dominator tree"); 250 updateSSA(); 251 updateFromLiveIns(); 252 } 253 254 255 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &KillMBB, 256 SlotIndex Kill, unsigned PhysReg) { 257 unsigned KillMBBNum = KillMBB.getNumber(); 258 259 // Block numbers where LR should be live-in. 260 SmallVector<unsigned, 16> WorkList(1, KillMBBNum); 261 262 // Remember if we have seen more than one value. 263 bool UniqueVNI = true; 264 VNInfo *TheVNI = nullptr; 265 266 // Using Seen as a visited set, perform a BFS for all reaching defs. 267 for (unsigned i = 0; i != WorkList.size(); ++i) { 268 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); 269 270 #ifndef NDEBUG 271 if (MBB->pred_empty()) { 272 MBB->getParent()->verify(); 273 llvm_unreachable("Use not jointly dominated by defs."); 274 } 275 276 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && 277 !MBB->isLiveIn(PhysReg)) { 278 MBB->getParent()->verify(); 279 errs() << "The register needs to be live in to BB#" << MBB->getNumber() 280 << ", but is missing from the live-in list.\n"; 281 llvm_unreachable("Invalid global physical register"); 282 } 283 #endif 284 285 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 286 PE = MBB->pred_end(); PI != PE; ++PI) { 287 MachineBasicBlock *Pred = *PI; 288 289 // Is this a known live-out block? 290 if (Seen.test(Pred->getNumber())) { 291 if (VNInfo *VNI = Map[Pred].first) { 292 if (TheVNI && TheVNI != VNI) 293 UniqueVNI = false; 294 TheVNI = VNI; 295 } 296 continue; 297 } 298 299 SlotIndex Start, End; 300 std::tie(Start, End) = Indexes->getMBBRange(Pred); 301 302 // First time we see Pred. Try to determine the live-out value, but set 303 // it as null if Pred is live-through with an unknown value. 304 VNInfo *VNI = LR.extendInBlock(Start, End); 305 setLiveOutValue(Pred, VNI); 306 if (VNI) { 307 if (TheVNI && TheVNI != VNI) 308 UniqueVNI = false; 309 TheVNI = VNI; 310 continue; 311 } 312 313 // No, we need a live-in value for Pred as well 314 if (Pred != &KillMBB) 315 WorkList.push_back(Pred->getNumber()); 316 else 317 // Loopback to KillMBB, so value is really live through. 318 Kill = SlotIndex(); 319 } 320 } 321 322 LiveIn.clear(); 323 324 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but 325 // neither require it. Skip the sorting overhead for small updates. 326 if (WorkList.size() > 4) 327 array_pod_sort(WorkList.begin(), WorkList.end()); 328 329 // If a unique reaching def was found, blit in the live ranges immediately. 330 if (UniqueVNI) { 331 LiveRangeUpdater Updater(&LR); 332 for (SmallVectorImpl<unsigned>::const_iterator I = WorkList.begin(), 333 E = WorkList.end(); I != E; ++I) { 334 SlotIndex Start, End; 335 std::tie(Start, End) = Indexes->getMBBRange(*I); 336 // Trim the live range in KillMBB. 337 if (*I == KillMBBNum && Kill.isValid()) 338 End = Kill; 339 else 340 Map[MF->getBlockNumbered(*I)] = LiveOutPair(TheVNI, nullptr); 341 Updater.add(Start, End, TheVNI); 342 } 343 return true; 344 } 345 346 // Multiple values were found, so transfer the work list to the LiveIn array 347 // where UpdateSSA will use it as a work list. 348 LiveIn.reserve(WorkList.size()); 349 for (SmallVectorImpl<unsigned>::const_iterator 350 I = WorkList.begin(), E = WorkList.end(); I != E; ++I) { 351 MachineBasicBlock *MBB = MF->getBlockNumbered(*I); 352 addLiveInBlock(LR, DomTree->getNode(MBB)); 353 if (MBB == &KillMBB) 354 LiveIn.back().Kill = Kill; 355 } 356 357 return false; 358 } 359 360 361 // This is essentially the same iterative algorithm that SSAUpdater uses, 362 // except we already have a dominator tree, so we don't have to recompute it. 363 void LiveRangeCalc::updateSSA() { 364 assert(Indexes && "Missing SlotIndexes"); 365 assert(DomTree && "Missing dominator tree"); 366 367 // Interate until convergence. 368 unsigned Changes; 369 do { 370 Changes = 0; 371 // Propagate live-out values down the dominator tree, inserting phi-defs 372 // when necessary. 373 for (LiveInBlock &I : LiveIn) { 374 MachineDomTreeNode *Node = I.DomNode; 375 // Skip block if the live-in value has already been determined. 376 if (!Node) 377 continue; 378 MachineBasicBlock *MBB = Node->getBlock(); 379 MachineDomTreeNode *IDom = Node->getIDom(); 380 LiveOutPair IDomValue; 381 382 // We need a live-in value to a block with no immediate dominator? 383 // This is probably an unreachable block that has survived somehow. 384 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); 385 386 // IDom dominates all of our predecessors, but it may not be their 387 // immediate dominator. Check if any of them have live-out values that are 388 // properly dominated by IDom. If so, we need a phi-def here. 389 if (!needPHI) { 390 IDomValue = Map[IDom->getBlock()]; 391 392 // Cache the DomTree node that defined the value. 393 if (IDomValue.first && !IDomValue.second) 394 Map[IDom->getBlock()].second = IDomValue.second = 395 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); 396 397 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 398 PE = MBB->pred_end(); PI != PE; ++PI) { 399 LiveOutPair &Value = Map[*PI]; 400 if (!Value.first || Value.first == IDomValue.first) 401 continue; 402 403 // Cache the DomTree node that defined the value. 404 if (!Value.second) 405 Value.second = 406 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); 407 408 // This predecessor is carrying something other than IDomValue. 409 // It could be because IDomValue hasn't propagated yet, or it could be 410 // because MBB is in the dominance frontier of that value. 411 if (DomTree->dominates(IDom, Value.second)) { 412 needPHI = true; 413 break; 414 } 415 } 416 } 417 418 // The value may be live-through even if Kill is set, as can happen when 419 // we are called from extendRange. In that case LiveOutSeen is true, and 420 // LiveOut indicates a foreign or missing value. 421 LiveOutPair &LOP = Map[MBB]; 422 423 // Create a phi-def if required. 424 if (needPHI) { 425 ++Changes; 426 assert(Alloc && "Need VNInfo allocator to create PHI-defs"); 427 SlotIndex Start, End; 428 std::tie(Start, End) = Indexes->getMBBRange(MBB); 429 LiveRange &LR = I.LR; 430 VNInfo *VNI = LR.getNextValue(Start, *Alloc); 431 I.Value = VNI; 432 // This block is done, we know the final value. 433 I.DomNode = nullptr; 434 435 // Add liveness since updateFromLiveIns now skips this node. 436 if (I.Kill.isValid()) 437 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); 438 else { 439 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 440 LOP = LiveOutPair(VNI, Node); 441 } 442 } else if (IDomValue.first) { 443 // No phi-def here. Remember incoming value. 444 I.Value = IDomValue.first; 445 446 // If the IDomValue is killed in the block, don't propagate through. 447 if (I.Kill.isValid()) 448 continue; 449 450 // Propagate IDomValue if it isn't killed: 451 // MBB is live-out and doesn't define its own value. 452 if (LOP.first == IDomValue.first) 453 continue; 454 ++Changes; 455 LOP = IDomValue; 456 } 457 } 458 } while (Changes); 459 } 460