1 //===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the LiveRangeCalc class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LiveRangeCalc.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/CodeGen/LiveInterval.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SlotIndexes.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/MC/LaneBitmask.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 #include <tuple>
34 #include <utility>
35 
36 using namespace llvm;
37 
38 #define DEBUG_TYPE "regalloc"
39 
40 // Reserve an address that indicates a value that is known to be "undef".
41 static VNInfo UndefVNI(0xbad, SlotIndex());
42 
43 void LiveRangeCalc::resetLiveOutMap() {
44   unsigned NumBlocks = MF->getNumBlockIDs();
45   Seen.clear();
46   Seen.resize(NumBlocks);
47   EntryInfos.clear();
48   Map.resize(NumBlocks);
49 }
50 
51 void LiveRangeCalc::reset(const MachineFunction *mf,
52                           SlotIndexes *SI,
53                           MachineDominatorTree *MDT,
54                           VNInfo::Allocator *VNIA) {
55   MF = mf;
56   MRI = &MF->getRegInfo();
57   Indexes = SI;
58   DomTree = MDT;
59   Alloc = VNIA;
60   resetLiveOutMap();
61   LiveIn.clear();
62 }
63 
64 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
65                           LiveRange &LR, const MachineOperand &MO) {
66   const MachineInstr &MI = *MO.getParent();
67   SlotIndex DefIdx =
68       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
69 
70   // Create the def in LR. This may find an existing def.
71   LR.createDeadDef(DefIdx, Alloc);
72 }
73 
74 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
75   assert(MRI && Indexes && "call reset() first");
76 
77   // Step 1: Create minimal live segments for every definition of Reg.
78   // Visit all def operands. If the same instruction has multiple defs of Reg,
79   // createDeadDef() will deduplicate.
80   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
81   unsigned Reg = LI.reg;
82   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
83     if (!MO.isDef() && !MO.readsReg())
84       continue;
85 
86     unsigned SubReg = MO.getSubReg();
87     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
88       LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
89                                         : MRI->getMaxLaneMaskForVReg(Reg);
90       // If this is the first time we see a subregister def, initialize
91       // subranges by creating a copy of the main range.
92       if (!LI.hasSubRanges() && !LI.empty()) {
93         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
94         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
95       }
96 
97       LI.refineSubRanges(*Alloc, SubMask,
98           [&MO, this](LiveInterval::SubRange &SR) {
99         if (MO.isDef())
100           createDeadDef(*Indexes, *Alloc, SR, MO);
101       });
102     }
103 
104     // Create the def in the main liverange. We do not have to do this if
105     // subranges are tracked as we recreate the main range later in this case.
106     if (MO.isDef() && !LI.hasSubRanges())
107       createDeadDef(*Indexes, *Alloc, LI, MO);
108   }
109 
110   // We may have created empty live ranges for partially undefined uses, we
111   // can't keep them because we won't find defs in them later.
112   LI.removeEmptySubRanges();
113 
114   // Step 2: Extend live segments to all uses, constructing SSA form as
115   // necessary.
116   if (LI.hasSubRanges()) {
117     for (LiveInterval::SubRange &S : LI.subranges()) {
118       LiveRangeCalc SubLRC;
119       SubLRC.reset(MF, Indexes, DomTree, Alloc);
120       SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
121     }
122     LI.clear();
123     constructMainRangeFromSubranges(LI);
124   } else {
125     resetLiveOutMap();
126     extendToUses(LI, Reg, LaneBitmask::getAll());
127   }
128 }
129 
130 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
131   // First create dead defs at all defs found in subranges.
132   LiveRange &MainRange = LI;
133   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
134          "Expect empty main liverange");
135 
136   for (const LiveInterval::SubRange &SR : LI.subranges()) {
137     for (const VNInfo *VNI : SR.valnos) {
138       if (!VNI->isUnused() && !VNI->isPHIDef())
139         MainRange.createDeadDef(VNI->def, *Alloc);
140     }
141   }
142   resetLiveOutMap();
143   extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI);
144 }
145 
146 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
147   assert(MRI && Indexes && "call reset() first");
148 
149   // Visit all def operands. If the same instruction has multiple defs of Reg,
150   // LR.createDeadDef() will deduplicate.
151   for (MachineOperand &MO : MRI->def_operands(Reg))
152     createDeadDef(*Indexes, *Alloc, LR, MO);
153 }
154 
155 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
156                                  LiveInterval *LI) {
157   SmallVector<SlotIndex, 4> Undefs;
158   if (LI != nullptr)
159     LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
160 
161   // Visit all operands that read Reg. This may include partial defs.
162   bool IsSubRange = !Mask.all();
163   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
164   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
165     // Clear all kill flags. They will be reinserted after register allocation
166     // by LiveIntervals::addKillFlags().
167     if (MO.isUse())
168       MO.setIsKill(false);
169     // MO::readsReg returns "true" for subregister defs. This is for keeping
170     // liveness of the entire register (i.e. for the main range of the live
171     // interval). For subranges, definitions of non-overlapping subregisters
172     // do not count as uses.
173     if (!MO.readsReg() || (IsSubRange && MO.isDef()))
174       continue;
175 
176     unsigned SubReg = MO.getSubReg();
177     if (SubReg != 0) {
178       LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
179       if (MO.isDef())
180         SLM = ~SLM;
181       // Ignore uses not reading the current (sub)range.
182       if ((SLM & Mask).none())
183         continue;
184     }
185 
186     // Determine the actual place of the use.
187     const MachineInstr *MI = MO.getParent();
188     unsigned OpNo = (&MO - &MI->getOperand(0));
189     SlotIndex UseIdx;
190     if (MI->isPHI()) {
191       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
192       // The actual place where a phi operand is used is the end of the pred
193       // MBB. PHI operands are paired: (Reg, PredMBB).
194       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
195     } else {
196       // Check for early-clobber redefs.
197       bool isEarlyClobber = false;
198       unsigned DefIdx;
199       if (MO.isDef())
200         isEarlyClobber = MO.isEarlyClobber();
201       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
202         // FIXME: This would be a lot easier if tied early-clobber uses also
203         // had an early-clobber flag.
204         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
205       }
206       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
207     }
208 
209     // MI is reading Reg. We may have visited MI before if it happens to be
210     // reading Reg multiple times. That is OK, extend() is idempotent.
211     extend(LR, UseIdx, Reg, Undefs);
212   }
213 }
214 
215 void LiveRangeCalc::updateFromLiveIns() {
216   LiveRangeUpdater Updater;
217   for (const LiveInBlock &I : LiveIn) {
218     if (!I.DomNode)
219       continue;
220     MachineBasicBlock *MBB = I.DomNode->getBlock();
221     assert(I.Value && "No live-in value found");
222     SlotIndex Start, End;
223     std::tie(Start, End) = Indexes->getMBBRange(MBB);
224 
225     if (I.Kill.isValid())
226       // Value is killed inside this block.
227       End = I.Kill;
228     else {
229       // The value is live-through, update LiveOut as well.
230       // Defer the Domtree lookup until it is needed.
231       assert(Seen.test(MBB->getNumber()));
232       Map[MBB] = LiveOutPair(I.Value, nullptr);
233     }
234     Updater.setDest(&I.LR);
235     Updater.add(Start, End, I.Value);
236   }
237   LiveIn.clear();
238 }
239 
240 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
241                            ArrayRef<SlotIndex> Undefs) {
242   assert(Use.isValid() && "Invalid SlotIndex");
243   assert(Indexes && "Missing SlotIndexes");
244   assert(DomTree && "Missing dominator tree");
245 
246   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
247   assert(UseMBB && "No MBB at Use");
248 
249   // Is there a def in the same MBB we can extend?
250   auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
251   if (EP.first != nullptr || EP.second)
252     return;
253 
254   // Find the single reaching def, or determine if Use is jointly dominated by
255   // multiple values, and we may need to create even more phi-defs to preserve
256   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
257   // know the dominating VNInfo.
258   if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
259     return;
260 
261   // When there were multiple different values, we may need new PHIs.
262   calculateValues();
263 }
264 
265 // This function is called by a client after using the low-level API to add
266 // live-out and live-in blocks.  The unique value optimization is not
267 // available, SplitEditor::transferValues handles that case directly anyway.
268 void LiveRangeCalc::calculateValues() {
269   assert(Indexes && "Missing SlotIndexes");
270   assert(DomTree && "Missing dominator tree");
271   updateSSA();
272   updateFromLiveIns();
273 }
274 
275 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
276                                  MachineBasicBlock &MBB, BitVector &DefOnEntry,
277                                  BitVector &UndefOnEntry) {
278   unsigned BN = MBB.getNumber();
279   if (DefOnEntry[BN])
280     return true;
281   if (UndefOnEntry[BN])
282     return false;
283 
284   auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
285     for (MachineBasicBlock *S : B.successors())
286       DefOnEntry[S->getNumber()] = true;
287     DefOnEntry[BN] = true;
288     return true;
289   };
290 
291   SetVector<unsigned> WorkList;
292   // Checking if the entry of MBB is reached by some def: add all predecessors
293   // that are potentially defined-on-exit to the work list.
294   for (MachineBasicBlock *P : MBB.predecessors())
295     WorkList.insert(P->getNumber());
296 
297   for (unsigned i = 0; i != WorkList.size(); ++i) {
298     // Determine if the exit from the block is reached by some def.
299     unsigned N = WorkList[i];
300     MachineBasicBlock &B = *MF->getBlockNumbered(N);
301     if (Seen[N]) {
302       const LiveOutPair &LOB = Map[&B];
303       if (LOB.first != nullptr && LOB.first != &UndefVNI)
304         return MarkDefined(B);
305     }
306     SlotIndex Begin, End;
307     std::tie(Begin, End) = Indexes->getMBBRange(&B);
308     // Treat End as not belonging to B.
309     // If LR has a segment S that starts at the next block, i.e. [End, ...),
310     // std::upper_bound will return the segment following S. Instead,
311     // S should be treated as the first segment that does not overlap B.
312     LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
313                                               End.getPrevSlot());
314     if (UB != LR.begin()) {
315       LiveRange::Segment &Seg = *std::prev(UB);
316       if (Seg.end > Begin) {
317         // There is a segment that overlaps B. If the range is not explicitly
318         // undefined between the end of the segment and the end of the block,
319         // treat the block as defined on exit. If it is, go to the next block
320         // on the work list.
321         if (LR.isUndefIn(Undefs, Seg.end, End))
322           continue;
323         return MarkDefined(B);
324       }
325     }
326 
327     // No segment overlaps with this block. If this block is not defined on
328     // entry, or it undefines the range, do not process its predecessors.
329     if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
330       UndefOnEntry[N] = true;
331       continue;
332     }
333     if (DefOnEntry[N])
334       return MarkDefined(B);
335 
336     // Still don't know: add all predecessors to the work list.
337     for (MachineBasicBlock *P : B.predecessors())
338       WorkList.insert(P->getNumber());
339   }
340 
341   UndefOnEntry[BN] = true;
342   return false;
343 }
344 
345 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
346                                      SlotIndex Use, unsigned PhysReg,
347                                      ArrayRef<SlotIndex> Undefs) {
348   unsigned UseMBBNum = UseMBB.getNumber();
349 
350   // Block numbers where LR should be live-in.
351   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
352 
353   // Remember if we have seen more than one value.
354   bool UniqueVNI = true;
355   VNInfo *TheVNI = nullptr;
356 
357   bool FoundUndef = false;
358 
359   // Using Seen as a visited set, perform a BFS for all reaching defs.
360   for (unsigned i = 0; i != WorkList.size(); ++i) {
361     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
362 
363 #ifndef NDEBUG
364     if (MBB->pred_empty()) {
365       MBB->getParent()->verify();
366       errs() << "Use of " << printReg(PhysReg, MRI->getTargetRegisterInfo())
367              << " does not have a corresponding definition on every path:\n";
368       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
369       if (MI != nullptr)
370         errs() << Use << " " << *MI;
371       report_fatal_error("Use not jointly dominated by defs.");
372     }
373 
374     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
375         !MBB->isLiveIn(PhysReg)) {
376       MBB->getParent()->verify();
377       const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
378       errs() << "The register " << printReg(PhysReg, TRI)
379              << " needs to be live in to " << printMBBReference(*MBB)
380              << ", but is missing from the live-in list.\n";
381       report_fatal_error("Invalid global physical register");
382     }
383 #endif
384     FoundUndef |= MBB->pred_empty();
385 
386     for (MachineBasicBlock *Pred : MBB->predecessors()) {
387        // Is this a known live-out block?
388        if (Seen.test(Pred->getNumber())) {
389          if (VNInfo *VNI = Map[Pred].first) {
390            if (TheVNI && TheVNI != VNI)
391              UniqueVNI = false;
392            TheVNI = VNI;
393          }
394          continue;
395        }
396 
397        SlotIndex Start, End;
398        std::tie(Start, End) = Indexes->getMBBRange(Pred);
399 
400        // First time we see Pred.  Try to determine the live-out value, but set
401        // it as null if Pred is live-through with an unknown value.
402        auto EP = LR.extendInBlock(Undefs, Start, End);
403        VNInfo *VNI = EP.first;
404        FoundUndef |= EP.second;
405        setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI);
406        if (VNI) {
407          if (TheVNI && TheVNI != VNI)
408            UniqueVNI = false;
409          TheVNI = VNI;
410        }
411        if (VNI || EP.second)
412          continue;
413 
414        // No, we need a live-in value for Pred as well
415        if (Pred != &UseMBB)
416          WorkList.push_back(Pred->getNumber());
417        else
418           // Loopback to UseMBB, so value is really live through.
419          Use = SlotIndex();
420     }
421   }
422 
423   LiveIn.clear();
424   FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI);
425   if (!Undefs.empty() && FoundUndef)
426     UniqueVNI = false;
427 
428   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
429   // neither require it. Skip the sorting overhead for small updates.
430   if (WorkList.size() > 4)
431     array_pod_sort(WorkList.begin(), WorkList.end());
432 
433   // If a unique reaching def was found, blit in the live ranges immediately.
434   if (UniqueVNI) {
435     assert(TheVNI != nullptr && TheVNI != &UndefVNI);
436     LiveRangeUpdater Updater(&LR);
437     for (unsigned BN : WorkList) {
438       SlotIndex Start, End;
439       std::tie(Start, End) = Indexes->getMBBRange(BN);
440       // Trim the live range in UseMBB.
441       if (BN == UseMBBNum && Use.isValid())
442         End = Use;
443       else
444         Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
445       Updater.add(Start, End, TheVNI);
446     }
447     return true;
448   }
449 
450   // Prepare the defined/undefined bit vectors.
451   EntryInfoMap::iterator Entry;
452   bool DidInsert;
453   std::tie(Entry, DidInsert) = EntryInfos.insert(
454       std::make_pair(&LR, std::make_pair(BitVector(), BitVector())));
455   if (DidInsert) {
456     // Initialize newly inserted entries.
457     unsigned N = MF->getNumBlockIDs();
458     Entry->second.first.resize(N);
459     Entry->second.second.resize(N);
460   }
461   BitVector &DefOnEntry = Entry->second.first;
462   BitVector &UndefOnEntry = Entry->second.second;
463 
464   // Multiple values were found, so transfer the work list to the LiveIn array
465   // where UpdateSSA will use it as a work list.
466   LiveIn.reserve(WorkList.size());
467   for (unsigned BN : WorkList) {
468     MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
469     if (!Undefs.empty() &&
470         !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
471       continue;
472     addLiveInBlock(LR, DomTree->getNode(MBB));
473     if (MBB == &UseMBB)
474       LiveIn.back().Kill = Use;
475   }
476 
477   return false;
478 }
479 
480 // This is essentially the same iterative algorithm that SSAUpdater uses,
481 // except we already have a dominator tree, so we don't have to recompute it.
482 void LiveRangeCalc::updateSSA() {
483   assert(Indexes && "Missing SlotIndexes");
484   assert(DomTree && "Missing dominator tree");
485 
486   // Interate until convergence.
487   bool Changed;
488   do {
489     Changed = false;
490     // Propagate live-out values down the dominator tree, inserting phi-defs
491     // when necessary.
492     for (LiveInBlock &I : LiveIn) {
493       MachineDomTreeNode *Node = I.DomNode;
494       // Skip block if the live-in value has already been determined.
495       if (!Node)
496         continue;
497       MachineBasicBlock *MBB = Node->getBlock();
498       MachineDomTreeNode *IDom = Node->getIDom();
499       LiveOutPair IDomValue;
500 
501       // We need a live-in value to a block with no immediate dominator?
502       // This is probably an unreachable block that has survived somehow.
503       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
504 
505       // IDom dominates all of our predecessors, but it may not be their
506       // immediate dominator. Check if any of them have live-out values that are
507       // properly dominated by IDom. If so, we need a phi-def here.
508       if (!needPHI) {
509         IDomValue = Map[IDom->getBlock()];
510 
511         // Cache the DomTree node that defined the value.
512         if (IDomValue.first && IDomValue.first != &UndefVNI &&
513             !IDomValue.second) {
514           Map[IDom->getBlock()].second = IDomValue.second =
515             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
516         }
517 
518         for (MachineBasicBlock *Pred : MBB->predecessors()) {
519           LiveOutPair &Value = Map[Pred];
520           if (!Value.first || Value.first == IDomValue.first)
521             continue;
522           if (Value.first == &UndefVNI) {
523             needPHI = true;
524             break;
525           }
526 
527           // Cache the DomTree node that defined the value.
528           if (!Value.second)
529             Value.second =
530               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
531 
532           // This predecessor is carrying something other than IDomValue.
533           // It could be because IDomValue hasn't propagated yet, or it could be
534           // because MBB is in the dominance frontier of that value.
535           if (DomTree->dominates(IDom, Value.second)) {
536             needPHI = true;
537             break;
538           }
539         }
540       }
541 
542       // The value may be live-through even if Kill is set, as can happen when
543       // we are called from extendRange. In that case LiveOutSeen is true, and
544       // LiveOut indicates a foreign or missing value.
545       LiveOutPair &LOP = Map[MBB];
546 
547       // Create a phi-def if required.
548       if (needPHI) {
549         Changed = true;
550         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
551         SlotIndex Start, End;
552         std::tie(Start, End) = Indexes->getMBBRange(MBB);
553         LiveRange &LR = I.LR;
554         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
555         I.Value = VNI;
556         // This block is done, we know the final value.
557         I.DomNode = nullptr;
558 
559         // Add liveness since updateFromLiveIns now skips this node.
560         if (I.Kill.isValid()) {
561           if (VNI)
562             LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
563         } else {
564           if (VNI)
565             LR.addSegment(LiveInterval::Segment(Start, End, VNI));
566           LOP = LiveOutPair(VNI, Node);
567         }
568       } else if (IDomValue.first && IDomValue.first != &UndefVNI) {
569         // No phi-def here. Remember incoming value.
570         I.Value = IDomValue.first;
571 
572         // If the IDomValue is killed in the block, don't propagate through.
573         if (I.Kill.isValid())
574           continue;
575 
576         // Propagate IDomValue if it isn't killed:
577         // MBB is live-out and doesn't define its own value.
578         if (LOP.first == IDomValue.first)
579           continue;
580         Changed = true;
581         LOP = IDomValue;
582       }
583     }
584   } while (Changed);
585 }
586 
587 bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB,
588                                        ArrayRef<SlotIndex> Defs,
589                                        const SlotIndexes &Indexes) {
590   const MachineFunction &MF = *MBB->getParent();
591   BitVector DefBlocks(MF.getNumBlockIDs());
592   for (SlotIndex I : Defs)
593     DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber());
594 
595   SetVector<unsigned> PredQueue;
596   PredQueue.insert(MBB->getNumber());
597   for (unsigned i = 0; i != PredQueue.size(); ++i) {
598     unsigned BN = PredQueue[i];
599     if (DefBlocks[BN])
600       return true;
601     const MachineBasicBlock *B = MF.getBlockNumbered(BN);
602     for (const MachineBasicBlock *P : B->predecessors())
603       PredQueue.insert(P->getNumber());
604   }
605   return false;
606 }
607