1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the LiveRangeCalc class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 19 using namespace llvm; 20 21 #define DEBUG_TYPE "regalloc" 22 23 void LiveRangeCalc::resetLiveOutMap() { 24 unsigned NumBlocks = MF->getNumBlockIDs(); 25 Seen.clear(); 26 Seen.resize(NumBlocks); 27 EntryInfoMap.clear(); 28 Map.resize(NumBlocks); 29 } 30 31 void LiveRangeCalc::reset(const MachineFunction *mf, 32 SlotIndexes *SI, 33 MachineDominatorTree *MDT, 34 VNInfo::Allocator *VNIA) { 35 MF = mf; 36 MRI = &MF->getRegInfo(); 37 Indexes = SI; 38 DomTree = MDT; 39 Alloc = VNIA; 40 resetLiveOutMap(); 41 LiveIn.clear(); 42 } 43 44 45 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, 46 LiveRange &LR, const MachineOperand &MO) { 47 const MachineInstr &MI = *MO.getParent(); 48 SlotIndex DefIdx = 49 Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); 50 51 // Create the def in LR. This may find an existing def. 52 LR.createDeadDef(DefIdx, Alloc); 53 } 54 55 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { 56 assert(MRI && Indexes && "call reset() first"); 57 58 // Step 1: Create minimal live segments for every definition of Reg. 59 // Visit all def operands. If the same instruction has multiple defs of Reg, 60 // createDeadDef() will deduplicate. 61 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 62 unsigned Reg = LI.reg; 63 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 64 if (!MO.isDef() && !MO.readsReg()) 65 continue; 66 67 unsigned SubReg = MO.getSubReg(); 68 if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { 69 LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) 70 : MRI->getMaxLaneMaskForVReg(Reg); 71 // If this is the first time we see a subregister def, initialize 72 // subranges by creating a copy of the main range. 73 if (!LI.hasSubRanges() && !LI.empty()) { 74 LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); 75 LI.createSubRangeFrom(*Alloc, ClassMask, LI); 76 } 77 78 LaneBitmask Mask = SubMask; 79 for (LiveInterval::SubRange &S : LI.subranges()) { 80 // A Mask for subregs common to the existing subrange and current def. 81 LaneBitmask Common = S.LaneMask & Mask; 82 if (Common == 0) 83 continue; 84 LiveInterval::SubRange *CommonRange; 85 // A Mask for subregs covered by the subrange but not the current def. 86 if (LaneBitmask RM = S.LaneMask & ~Mask) { 87 // Split the subrange S into two parts: one covered by the current 88 // def (CommonRange), and the one not affected by it (updated S). 89 S.LaneMask = RM; 90 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S); 91 } else { 92 assert(Common == S.LaneMask); 93 CommonRange = &S; 94 } 95 if (MO.isDef()) 96 createDeadDef(*Indexes, *Alloc, *CommonRange, MO); 97 Mask &= ~Common; 98 } 99 // Create a new SubRange for subregs we did not cover yet. 100 if (Mask != 0) { 101 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask); 102 if (MO.isDef()) 103 createDeadDef(*Indexes, *Alloc, *NewRange, MO); 104 } 105 } 106 107 // Create the def in the main liverange. We do not have to do this if 108 // subranges are tracked as we recreate the main range later in this case. 109 if (MO.isDef() && !LI.hasSubRanges()) 110 createDeadDef(*Indexes, *Alloc, LI, MO); 111 } 112 113 // We may have created empty live ranges for partially undefined uses, we 114 // can't keep them because we won't find defs in them later. 115 LI.removeEmptySubRanges(); 116 117 // Step 2: Extend live segments to all uses, constructing SSA form as 118 // necessary. 119 if (LI.hasSubRanges()) { 120 for (LiveInterval::SubRange &S : LI.subranges()) { 121 LiveRangeCalc SubLRC; 122 SubLRC.reset(MF, Indexes, DomTree, Alloc); 123 SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); 124 } 125 LI.clear(); 126 constructMainRangeFromSubranges(LI); 127 } else { 128 resetLiveOutMap(); 129 extendToUses(LI, Reg, ~0u); 130 } 131 } 132 133 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { 134 // First create dead defs at all defs found in subranges. 135 LiveRange &MainRange = LI; 136 assert(MainRange.segments.empty() && MainRange.valnos.empty() && 137 "Expect empty main liverange"); 138 139 for (const LiveInterval::SubRange &SR : LI.subranges()) { 140 for (const VNInfo *VNI : SR.valnos) { 141 if (!VNI->isUnused() && !VNI->isPHIDef()) 142 MainRange.createDeadDef(VNI->def, *Alloc); 143 } 144 } 145 resetLiveOutMap(); 146 extendToUses(MainRange, LI.reg, ~0U, &LI); 147 } 148 149 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { 150 assert(MRI && Indexes && "call reset() first"); 151 152 // Visit all def operands. If the same instruction has multiple defs of Reg, 153 // LR.createDeadDef() will deduplicate. 154 for (MachineOperand &MO : MRI->def_operands(Reg)) 155 createDeadDef(*Indexes, *Alloc, LR, MO); 156 } 157 158 159 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, 160 LiveInterval *LI) { 161 SmallVector<SlotIndex, 4> Undefs; 162 if (LI != nullptr) 163 LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); 164 165 // Visit all operands that read Reg. This may include partial defs. 166 bool IsSubRange = (Mask != ~0U); 167 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 168 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 169 // Clear all kill flags. They will be reinserted after register allocation 170 // by LiveIntervalAnalysis::addKillFlags(). 171 if (MO.isUse()) 172 MO.setIsKill(false); 173 // MO::readsReg returns "true" for subregister defs. This is for keeping 174 // liveness of the entire register (i.e. for the main range of the live 175 // interval). For subranges, definitions of non-overlapping subregisters 176 // do not count as uses. 177 if (!MO.readsReg() || (IsSubRange && MO.isDef())) 178 continue; 179 180 unsigned SubReg = MO.getSubReg(); 181 if (SubReg != 0) { 182 LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); 183 if (MO.isDef()) 184 SLM = ~SLM; 185 // Ignore uses not reading the current (sub)range. 186 if ((SLM & Mask) == 0) 187 continue; 188 } 189 190 // Determine the actual place of the use. 191 const MachineInstr *MI = MO.getParent(); 192 unsigned OpNo = (&MO - &MI->getOperand(0)); 193 SlotIndex UseIdx; 194 if (MI->isPHI()) { 195 assert(!MO.isDef() && "Cannot handle PHI def of partial register."); 196 // The actual place where a phi operand is used is the end of the pred 197 // MBB. PHI operands are paired: (Reg, PredMBB). 198 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); 199 } else { 200 // Check for early-clobber redefs. 201 bool isEarlyClobber = false; 202 unsigned DefIdx; 203 if (MO.isDef()) 204 isEarlyClobber = MO.isEarlyClobber(); 205 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { 206 // FIXME: This would be a lot easier if tied early-clobber uses also 207 // had an early-clobber flag. 208 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); 209 } 210 UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); 211 } 212 213 // MI is reading Reg. We may have visited MI before if it happens to be 214 // reading Reg multiple times. That is OK, extend() is idempotent. 215 extend(LR, UseIdx, Reg, Undefs); 216 } 217 } 218 219 220 void LiveRangeCalc::updateFromLiveIns() { 221 LiveRangeUpdater Updater; 222 for (const LiveInBlock &I : LiveIn) { 223 if (!I.DomNode) 224 continue; 225 MachineBasicBlock *MBB = I.DomNode->getBlock(); 226 assert(I.Value && "No live-in value found"); 227 SlotIndex Start, End; 228 std::tie(Start, End) = Indexes->getMBBRange(MBB); 229 230 if (I.Kill.isValid()) 231 // Value is killed inside this block. 232 End = I.Kill; 233 else { 234 // The value is live-through, update LiveOut as well. 235 // Defer the Domtree lookup until it is needed. 236 assert(Seen.test(MBB->getNumber())); 237 Map[MBB] = LiveOutPair(I.Value, nullptr); 238 } 239 Updater.setDest(&I.LR); 240 Updater.add(Start, End, I.Value); 241 } 242 LiveIn.clear(); 243 } 244 245 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, 246 ArrayRef<SlotIndex> Undefs) { 247 assert(Use.isValid() && "Invalid SlotIndex"); 248 assert(Indexes && "Missing SlotIndexes"); 249 assert(DomTree && "Missing dominator tree"); 250 251 MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); 252 assert(UseMBB && "No MBB at Use"); 253 254 // Is there a def in the same MBB we can extend? 255 auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); 256 if (EP.first != nullptr || EP.second) 257 return; 258 259 // Find the single reaching def, or determine if Use is jointly dominated by 260 // multiple values, and we may need to create even more phi-defs to preserve 261 // VNInfo SSA form. Perform a search for all predecessor blocks where we 262 // know the dominating VNInfo. 263 if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) 264 return; 265 266 // When there were multiple different values, we may need new PHIs. 267 calculateValues(); 268 } 269 270 271 // This function is called by a client after using the low-level API to add 272 // live-out and live-in blocks. The unique value optimization is not 273 // available, SplitEditor::transferValues handles that case directly anyway. 274 void LiveRangeCalc::calculateValues() { 275 assert(Indexes && "Missing SlotIndexes"); 276 assert(DomTree && "Missing dominator tree"); 277 updateSSA(); 278 updateFromLiveIns(); 279 } 280 281 282 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, 283 MachineBasicBlock &MBB, BitVector &DefOnEntry, 284 BitVector &UndefOnEntry) { 285 unsigned BN = MBB.getNumber(); 286 if (DefOnEntry[BN]) 287 return true; 288 if (UndefOnEntry[BN]) 289 return false; 290 291 auto MarkDefined = 292 [this,BN,&DefOnEntry,&UndefOnEntry] (MachineBasicBlock &B) -> bool { 293 for (MachineBasicBlock *S : B.successors()) 294 DefOnEntry[S->getNumber()] = true; 295 DefOnEntry[BN] = true; 296 return true; 297 }; 298 299 SetVector<unsigned> WorkList; 300 // Checking if the entry of MBB is reached by some def: add all predecessors 301 // that are potentially defined-on-exit to the work list. 302 for (MachineBasicBlock *P : MBB.predecessors()) 303 WorkList.insert(P->getNumber()); 304 305 for (unsigned i = 0; i != WorkList.size(); ++i) { 306 // Determine if the exit from the block is reached by some def. 307 unsigned N = WorkList[i]; 308 MachineBasicBlock &B = *MF->getBlockNumbered(N); 309 if (Seen[N] && Map[&B].first != nullptr) 310 return MarkDefined(B); 311 SlotIndex Begin, End; 312 std::tie(Begin, End) = Indexes->getMBBRange(&B); 313 LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End); 314 if (UB != LR.begin()) { 315 LiveRange::Segment &Seg = *std::prev(UB); 316 if (Seg.end > Begin) { 317 // There is a segment that overlaps B. If the range is not explicitly 318 // undefined between the end of the segment and the end of the block, 319 // treat the block as defined on exit. If it is, go to the next block 320 // on the work list. 321 if (LR.isUndefIn(Undefs, Seg.end, End)) 322 continue; 323 return MarkDefined(B); 324 } 325 } 326 327 // No segment overlaps with this block. If this block is not defined on 328 // entry, or it undefines the range, do not process its predecessors. 329 if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { 330 UndefOnEntry[N] = true; 331 continue; 332 } 333 if (DefOnEntry[N]) 334 return MarkDefined(B); 335 336 // Still don't know: add all predecessors to the work list. 337 for (MachineBasicBlock *P : B.predecessors()) 338 WorkList.insert(P->getNumber()); 339 } 340 341 UndefOnEntry[BN] = true; 342 return false; 343 } 344 345 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, 346 SlotIndex Use, unsigned PhysReg, 347 ArrayRef<SlotIndex> Undefs) { 348 unsigned UseMBBNum = UseMBB.getNumber(); 349 350 // Block numbers where LR should be live-in. 351 SmallVector<unsigned, 16> WorkList(1, UseMBBNum); 352 353 // Remember if we have seen more than one value. 354 bool UniqueVNI = true; 355 VNInfo *TheVNI = nullptr; 356 357 bool FoundUndef = false; 358 359 // Using Seen as a visited set, perform a BFS for all reaching defs. 360 for (unsigned i = 0; i != WorkList.size(); ++i) { 361 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); 362 363 #ifndef NDEBUG 364 if (MBB->pred_empty()) { 365 MBB->getParent()->verify(); 366 errs() << "Use of " << PrintReg(PhysReg) 367 << " does not have a corresponding definition on every path:\n"; 368 const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); 369 if (MI != nullptr) 370 errs() << Use << " " << *MI; 371 report_fatal_error("Use not jointly dominated by defs."); 372 } 373 374 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && 375 !MBB->isLiveIn(PhysReg)) { 376 MBB->getParent()->verify(); 377 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); 378 errs() << "The register " << PrintReg(PhysReg, TRI) 379 << " needs to be live in to BB#" << MBB->getNumber() 380 << ", but is missing from the live-in list.\n"; 381 report_fatal_error("Invalid global physical register"); 382 } 383 #endif 384 FoundUndef |= MBB->pred_empty(); 385 386 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 387 PE = MBB->pred_end(); PI != PE; ++PI) { 388 MachineBasicBlock *Pred = *PI; 389 390 // Is this a known live-out block? 391 if (Seen.test(Pred->getNumber())) { 392 if (VNInfo *VNI = Map[Pred].first) { 393 if (TheVNI && TheVNI != VNI) 394 UniqueVNI = false; 395 TheVNI = VNI; 396 } 397 continue; 398 } 399 400 SlotIndex Start, End; 401 std::tie(Start, End) = Indexes->getMBBRange(Pred); 402 403 // First time we see Pred. Try to determine the live-out value, but set 404 // it as null if Pred is live-through with an unknown value. 405 auto EP = LR.extendInBlock(Undefs, Start, End); 406 VNInfo *VNI = EP.first; 407 FoundUndef |= EP.second; 408 setLiveOutValue(Pred, VNI); 409 if (VNI) { 410 if (TheVNI && TheVNI != VNI) 411 UniqueVNI = false; 412 TheVNI = VNI; 413 } 414 if (VNI || EP.second) 415 continue; 416 417 // No, we need a live-in value for Pred as well 418 if (Pred != &UseMBB) 419 WorkList.push_back(Pred->getNumber()); 420 else 421 // Loopback to UseMBB, so value is really live through. 422 Use = SlotIndex(); 423 } 424 } 425 426 LiveIn.clear(); 427 FoundUndef |= (TheVNI == nullptr); 428 if (Undefs.size() > 0 && FoundUndef) 429 UniqueVNI = false; 430 431 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but 432 // neither require it. Skip the sorting overhead for small updates. 433 if (WorkList.size() > 4) 434 array_pod_sort(WorkList.begin(), WorkList.end()); 435 436 // If a unique reaching def was found, blit in the live ranges immediately. 437 if (UniqueVNI) { 438 assert(TheVNI != nullptr); 439 LiveRangeUpdater Updater(&LR); 440 for (unsigned BN : WorkList) { 441 SlotIndex Start, End; 442 std::tie(Start, End) = Indexes->getMBBRange(BN); 443 // Trim the live range in UseMBB. 444 if (BN == UseMBBNum && Use.isValid()) 445 End = Use; 446 else 447 Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); 448 Updater.add(Start, End, TheVNI); 449 } 450 return true; 451 } 452 453 // Prepare the defined/undefined bit vectors. 454 auto EF = EntryInfoMap.find(&LR); 455 if (EF == EntryInfoMap.end()) { 456 unsigned N = MF->getNumBlockIDs(); 457 EF = EntryInfoMap.insert({&LR, {BitVector(), BitVector()}}).first; 458 EF->second.first.resize(N); 459 EF->second.second.resize(N); 460 } 461 BitVector &DefOnEntry = EF->second.first; 462 BitVector &UndefOnEntry = EF->second.second; 463 464 // Multiple values were found, so transfer the work list to the LiveIn array 465 // where UpdateSSA will use it as a work list. 466 LiveIn.reserve(WorkList.size()); 467 for (unsigned BN : WorkList) { 468 MachineBasicBlock *MBB = MF->getBlockNumbered(BN); 469 if (Undefs.size() > 0 && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) 470 continue; 471 addLiveInBlock(LR, DomTree->getNode(MBB)); 472 if (MBB == &UseMBB) 473 LiveIn.back().Kill = Use; 474 } 475 476 return false; 477 } 478 479 480 // This is essentially the same iterative algorithm that SSAUpdater uses, 481 // except we already have a dominator tree, so we don't have to recompute it. 482 void LiveRangeCalc::updateSSA() { 483 assert(Indexes && "Missing SlotIndexes"); 484 assert(DomTree && "Missing dominator tree"); 485 486 // Interate until convergence. 487 unsigned Changes; 488 do { 489 Changes = 0; 490 // Propagate live-out values down the dominator tree, inserting phi-defs 491 // when necessary. 492 for (LiveInBlock &I : LiveIn) { 493 MachineDomTreeNode *Node = I.DomNode; 494 // Skip block if the live-in value has already been determined. 495 if (!Node) 496 continue; 497 MachineBasicBlock *MBB = Node->getBlock(); 498 MachineDomTreeNode *IDom = Node->getIDom(); 499 LiveOutPair IDomValue; 500 501 // We need a live-in value to a block with no immediate dominator? 502 // This is probably an unreachable block that has survived somehow. 503 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); 504 505 // IDom dominates all of our predecessors, but it may not be their 506 // immediate dominator. Check if any of them have live-out values that are 507 // properly dominated by IDom. If so, we need a phi-def here. 508 if (!needPHI) { 509 IDomValue = Map[IDom->getBlock()]; 510 511 // Cache the DomTree node that defined the value. 512 if (IDomValue.first && !IDomValue.second) 513 Map[IDom->getBlock()].second = IDomValue.second = 514 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); 515 516 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 517 PE = MBB->pred_end(); PI != PE; ++PI) { 518 LiveOutPair &Value = Map[*PI]; 519 if (!Value.first || Value.first == IDomValue.first) 520 continue; 521 522 // Cache the DomTree node that defined the value. 523 if (!Value.second) 524 Value.second = 525 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); 526 527 // This predecessor is carrying something other than IDomValue. 528 // It could be because IDomValue hasn't propagated yet, or it could be 529 // because MBB is in the dominance frontier of that value. 530 if (DomTree->dominates(IDom, Value.second)) { 531 needPHI = true; 532 break; 533 } 534 } 535 } 536 537 // The value may be live-through even if Kill is set, as can happen when 538 // we are called from extendRange. In that case LiveOutSeen is true, and 539 // LiveOut indicates a foreign or missing value. 540 LiveOutPair &LOP = Map[MBB]; 541 542 // Create a phi-def if required. 543 if (needPHI) { 544 ++Changes; 545 assert(Alloc && "Need VNInfo allocator to create PHI-defs"); 546 SlotIndex Start, End; 547 std::tie(Start, End) = Indexes->getMBBRange(MBB); 548 LiveRange &LR = I.LR; 549 VNInfo *VNI = LR.getNextValue(Start, *Alloc); 550 I.Value = VNI; 551 // This block is done, we know the final value. 552 I.DomNode = nullptr; 553 554 // Add liveness since updateFromLiveIns now skips this node. 555 if (I.Kill.isValid()) { 556 if (VNI) 557 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); 558 } else { 559 if (VNI) 560 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 561 LOP = LiveOutPair(VNI, Node); 562 } 563 } else if (IDomValue.first) { 564 // No phi-def here. Remember incoming value. 565 I.Value = IDomValue.first; 566 567 // If the IDomValue is killed in the block, don't propagate through. 568 if (I.Kill.isValid()) 569 continue; 570 571 // Propagate IDomValue if it isn't killed: 572 // MBB is live-out and doesn't define its own value. 573 if (LOP.first == IDomValue.first) 574 continue; 575 ++Changes; 576 LOP = IDomValue; 577 } 578 } 579 } while (Changes); 580 } 581