1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the LiveRangeCalc class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LiveRangeCalc.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 
19 using namespace llvm;
20 
21 #define DEBUG_TYPE "regalloc"
22 
23 void LiveRangeCalc::resetLiveOutMap() {
24   unsigned NumBlocks = MF->getNumBlockIDs();
25   Seen.clear();
26   Seen.resize(NumBlocks);
27   EntryInfoMap.clear();
28   Map.resize(NumBlocks);
29 }
30 
31 void LiveRangeCalc::reset(const MachineFunction *mf,
32                           SlotIndexes *SI,
33                           MachineDominatorTree *MDT,
34                           VNInfo::Allocator *VNIA) {
35   MF = mf;
36   MRI = &MF->getRegInfo();
37   Indexes = SI;
38   DomTree = MDT;
39   Alloc = VNIA;
40   resetLiveOutMap();
41   LiveIn.clear();
42 }
43 
44 
45 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc,
46                           LiveRange &LR, const MachineOperand &MO) {
47   const MachineInstr &MI = *MO.getParent();
48   SlotIndex DefIdx =
49       Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber());
50 
51   // Create the def in LR. This may find an existing def.
52   LR.createDeadDef(DefIdx, Alloc);
53 }
54 
55 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) {
56   assert(MRI && Indexes && "call reset() first");
57 
58   // Step 1: Create minimal live segments for every definition of Reg.
59   // Visit all def operands. If the same instruction has multiple defs of Reg,
60   // createDeadDef() will deduplicate.
61   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
62   unsigned Reg = LI.reg;
63   for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
64     if (!MO.isDef() && !MO.readsReg())
65       continue;
66 
67     unsigned SubReg = MO.getSubReg();
68     if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) {
69       LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg)
70                                         : MRI->getMaxLaneMaskForVReg(Reg);
71       // If this is the first time we see a subregister def, initialize
72       // subranges by creating a copy of the main range.
73       if (!LI.hasSubRanges() && !LI.empty()) {
74         LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg);
75         LI.createSubRangeFrom(*Alloc, ClassMask, LI);
76       }
77 
78       LaneBitmask Mask = SubMask;
79       for (LiveInterval::SubRange &S : LI.subranges()) {
80         // A Mask for subregs common to the existing subrange and current def.
81         LaneBitmask Common = S.LaneMask & Mask;
82         if (Common == 0)
83           continue;
84         LiveInterval::SubRange *CommonRange;
85         // A Mask for subregs covered by the subrange but not the current def.
86         if (LaneBitmask RM = S.LaneMask & ~Mask) {
87           // Split the subrange S into two parts: one covered by the current
88           // def (CommonRange), and the one not affected by it (updated S).
89           S.LaneMask = RM;
90           CommonRange = LI.createSubRangeFrom(*Alloc, Common, S);
91         } else {
92           assert(Common == S.LaneMask);
93           CommonRange = &S;
94         }
95         if (MO.isDef())
96           createDeadDef(*Indexes, *Alloc, *CommonRange, MO);
97         Mask &= ~Common;
98       }
99       // Create a new SubRange for subregs we did not cover yet.
100       if (Mask != 0) {
101         LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask);
102         if (MO.isDef())
103           createDeadDef(*Indexes, *Alloc, *NewRange, MO);
104       }
105     }
106 
107     // Create the def in the main liverange. We do not have to do this if
108     // subranges are tracked as we recreate the main range later in this case.
109     if (MO.isDef() && !LI.hasSubRanges())
110       createDeadDef(*Indexes, *Alloc, LI, MO);
111   }
112 
113   // We may have created empty live ranges for partially undefined uses, we
114   // can't keep them because we won't find defs in them later.
115   LI.removeEmptySubRanges();
116 
117   // Step 2: Extend live segments to all uses, constructing SSA form as
118   // necessary.
119   if (LI.hasSubRanges()) {
120     for (LiveInterval::SubRange &S : LI.subranges()) {
121       LiveRangeCalc SubLRC;
122       SubLRC.reset(MF, Indexes, DomTree, Alloc);
123       SubLRC.extendToUses(S, Reg, S.LaneMask, &LI);
124     }
125     LI.clear();
126     constructMainRangeFromSubranges(LI);
127   } else {
128     resetLiveOutMap();
129     extendToUses(LI, Reg, ~0u);
130   }
131 }
132 
133 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) {
134   // First create dead defs at all defs found in subranges.
135   LiveRange &MainRange = LI;
136   assert(MainRange.segments.empty() && MainRange.valnos.empty() &&
137          "Expect empty main liverange");
138 
139   for (const LiveInterval::SubRange &SR : LI.subranges()) {
140     for (const VNInfo *VNI : SR.valnos) {
141       if (!VNI->isUnused() && !VNI->isPHIDef())
142         MainRange.createDeadDef(VNI->def, *Alloc);
143     }
144   }
145   resetLiveOutMap();
146   extendToUses(MainRange, LI.reg, ~0U, &LI);
147 }
148 
149 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) {
150   assert(MRI && Indexes && "call reset() first");
151 
152   // Visit all def operands. If the same instruction has multiple defs of Reg,
153   // LR.createDeadDef() will deduplicate.
154   for (MachineOperand &MO : MRI->def_operands(Reg))
155     createDeadDef(*Indexes, *Alloc, LR, MO);
156 }
157 
158 
159 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask,
160                                  LiveInterval *LI) {
161   SmallVector<SlotIndex, 4> Undefs;
162   if (LI != nullptr)
163     LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes);
164 
165   // Visit all operands that read Reg. This may include partial defs.
166   bool IsSubRange = (Mask != ~0U);
167   const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo();
168   for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) {
169     // Clear all kill flags. They will be reinserted after register allocation
170     // by LiveIntervalAnalysis::addKillFlags().
171     if (MO.isUse())
172       MO.setIsKill(false);
173     // MO::readsReg returns "true" for subregister defs. This is for keeping
174     // liveness of the entire register (i.e. for the main range of the live
175     // interval). For subranges, definitions of non-overlapping subregisters
176     // do not count as uses.
177     if (!MO.readsReg() || (IsSubRange && MO.isDef()))
178       continue;
179 
180     unsigned SubReg = MO.getSubReg();
181     if (SubReg != 0) {
182       LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg);
183       if (MO.isDef())
184         SLM = ~SLM;
185       // Ignore uses not reading the current (sub)range.
186       if ((SLM & Mask) == 0)
187         continue;
188     }
189 
190     // Determine the actual place of the use.
191     const MachineInstr *MI = MO.getParent();
192     unsigned OpNo = (&MO - &MI->getOperand(0));
193     SlotIndex UseIdx;
194     if (MI->isPHI()) {
195       assert(!MO.isDef() && "Cannot handle PHI def of partial register.");
196       // The actual place where a phi operand is used is the end of the pred
197       // MBB. PHI operands are paired: (Reg, PredMBB).
198       UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB());
199     } else {
200       // Check for early-clobber redefs.
201       bool isEarlyClobber = false;
202       unsigned DefIdx;
203       if (MO.isDef())
204         isEarlyClobber = MO.isEarlyClobber();
205       else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) {
206         // FIXME: This would be a lot easier if tied early-clobber uses also
207         // had an early-clobber flag.
208         isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber();
209       }
210       UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber);
211     }
212 
213     // MI is reading Reg. We may have visited MI before if it happens to be
214     // reading Reg multiple times. That is OK, extend() is idempotent.
215     extend(LR, UseIdx, Reg, Undefs);
216   }
217 }
218 
219 
220 void LiveRangeCalc::updateFromLiveIns() {
221   LiveRangeUpdater Updater;
222   for (const LiveInBlock &I : LiveIn) {
223     if (!I.DomNode)
224       continue;
225     MachineBasicBlock *MBB = I.DomNode->getBlock();
226     assert(I.Value && "No live-in value found");
227     SlotIndex Start, End;
228     std::tie(Start, End) = Indexes->getMBBRange(MBB);
229 
230     if (I.Kill.isValid())
231       // Value is killed inside this block.
232       End = I.Kill;
233     else {
234       // The value is live-through, update LiveOut as well.
235       // Defer the Domtree lookup until it is needed.
236       assert(Seen.test(MBB->getNumber()));
237       Map[MBB] = LiveOutPair(I.Value, nullptr);
238     }
239     Updater.setDest(&I.LR);
240     Updater.add(Start, End, I.Value);
241   }
242   LiveIn.clear();
243 }
244 
245 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg,
246                            ArrayRef<SlotIndex> Undefs) {
247   assert(Use.isValid() && "Invalid SlotIndex");
248   assert(Indexes && "Missing SlotIndexes");
249   assert(DomTree && "Missing dominator tree");
250 
251   MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot());
252   assert(UseMBB && "No MBB at Use");
253 
254   // Is there a def in the same MBB we can extend?
255   auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use);
256   if (EP.first != nullptr || EP.second)
257     return;
258 
259   // Find the single reaching def, or determine if Use is jointly dominated by
260   // multiple values, and we may need to create even more phi-defs to preserve
261   // VNInfo SSA form.  Perform a search for all predecessor blocks where we
262   // know the dominating VNInfo.
263   if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs))
264     return;
265 
266   // When there were multiple different values, we may need new PHIs.
267   calculateValues();
268 }
269 
270 
271 // This function is called by a client after using the low-level API to add
272 // live-out and live-in blocks.  The unique value optimization is not
273 // available, SplitEditor::transferValues handles that case directly anyway.
274 void LiveRangeCalc::calculateValues() {
275   assert(Indexes && "Missing SlotIndexes");
276   assert(DomTree && "Missing dominator tree");
277   updateSSA();
278   updateFromLiveIns();
279 }
280 
281 
282 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
283                                  MachineBasicBlock &MBB, BitVector &DefOnEntry,
284                                  BitVector &UndefOnEntry) {
285   unsigned BN = MBB.getNumber();
286   if (DefOnEntry[BN])
287     return true;
288   if (UndefOnEntry[BN])
289     return false;
290 
291   auto MarkDefined =
292         [this,BN,&DefOnEntry,&UndefOnEntry] (MachineBasicBlock &B) -> bool {
293     for (MachineBasicBlock *S : B.successors())
294       DefOnEntry[S->getNumber()] = true;
295     DefOnEntry[BN] = true;
296     return true;
297   };
298 
299   SetVector<unsigned> WorkList;
300   // Checking if the entry of MBB is reached by some def: add all predecessors
301   // that are potentially defined-on-exit to the work list.
302   for (MachineBasicBlock *P : MBB.predecessors())
303     WorkList.insert(P->getNumber());
304 
305   for (unsigned i = 0; i != WorkList.size(); ++i) {
306     // Determine if the exit from the block is reached by some def.
307     unsigned N = WorkList[i];
308     MachineBasicBlock &B = *MF->getBlockNumbered(N);
309     if (Seen[N] && Map[&B].first != nullptr)
310       return MarkDefined(B);
311     SlotIndex Begin, End;
312     std::tie(Begin, End) = Indexes->getMBBRange(&B);
313     LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End);
314     if (UB != LR.begin()) {
315       LiveRange::Segment &Seg = *std::prev(UB);
316       if (Seg.end > Begin) {
317         // There is a segment that overlaps B. If the range is not explicitly
318         // undefined between the end of the segment and the end of the block,
319         // treat the block as defined on exit. If it is, go to the next block
320         // on the work list.
321         if (LR.isUndefIn(Undefs, Seg.end, End))
322           continue;
323         return MarkDefined(B);
324       }
325     }
326 
327     // No segment overlaps with this block. If this block is not defined on
328     // entry, or it undefines the range, do not process its predecessors.
329     if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
330       UndefOnEntry[N] = true;
331       continue;
332     }
333     if (DefOnEntry[N])
334       return MarkDefined(B);
335 
336     // Still don't know: add all predecessors to the work list.
337     for (MachineBasicBlock *P : B.predecessors())
338       WorkList.insert(P->getNumber());
339   }
340 
341   UndefOnEntry[BN] = true;
342   return false;
343 }
344 
345 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
346                                      SlotIndex Use, unsigned PhysReg,
347                                      ArrayRef<SlotIndex> Undefs) {
348   unsigned UseMBBNum = UseMBB.getNumber();
349 
350   // Block numbers where LR should be live-in.
351   SmallVector<unsigned, 16> WorkList(1, UseMBBNum);
352 
353   // Remember if we have seen more than one value.
354   bool UniqueVNI = true;
355   VNInfo *TheVNI = nullptr;
356 
357   bool FoundUndef = false;
358 
359   // Using Seen as a visited set, perform a BFS for all reaching defs.
360   for (unsigned i = 0; i != WorkList.size(); ++i) {
361     MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);
362 
363 #ifndef NDEBUG
364     if (MBB->pred_empty()) {
365       MBB->getParent()->verify();
366       errs() << "Use of " << PrintReg(PhysReg)
367              << " does not have a corresponding definition on every path:\n";
368       const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
369       if (MI != nullptr)
370         errs() << Use << " " << *MI;
371       report_fatal_error("Use not jointly dominated by defs.");
372     }
373 
374     if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
375         !MBB->isLiveIn(PhysReg)) {
376       MBB->getParent()->verify();
377       const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
378       errs() << "The register " << PrintReg(PhysReg, TRI)
379              << " needs to be live in to BB#" << MBB->getNumber()
380              << ", but is missing from the live-in list.\n";
381       report_fatal_error("Invalid global physical register");
382     }
383 #endif
384     FoundUndef |= MBB->pred_empty();
385 
386     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
387          PE = MBB->pred_end(); PI != PE; ++PI) {
388        MachineBasicBlock *Pred = *PI;
389 
390        // Is this a known live-out block?
391        if (Seen.test(Pred->getNumber())) {
392          if (VNInfo *VNI = Map[Pred].first) {
393            if (TheVNI && TheVNI != VNI)
394              UniqueVNI = false;
395            TheVNI = VNI;
396          }
397          continue;
398        }
399 
400        SlotIndex Start, End;
401        std::tie(Start, End) = Indexes->getMBBRange(Pred);
402 
403        // First time we see Pred.  Try to determine the live-out value, but set
404        // it as null if Pred is live-through with an unknown value.
405        auto EP = LR.extendInBlock(Undefs, Start, End);
406        VNInfo *VNI = EP.first;
407        FoundUndef |= EP.second;
408        setLiveOutValue(Pred, VNI);
409        if (VNI) {
410          if (TheVNI && TheVNI != VNI)
411            UniqueVNI = false;
412          TheVNI = VNI;
413        }
414        if (VNI || EP.second)
415          continue;
416 
417        // No, we need a live-in value for Pred as well
418        if (Pred != &UseMBB)
419          WorkList.push_back(Pred->getNumber());
420        else
421           // Loopback to UseMBB, so value is really live through.
422          Use = SlotIndex();
423     }
424   }
425 
426   LiveIn.clear();
427   FoundUndef |= (TheVNI == nullptr);
428   if (Undefs.size() > 0 && FoundUndef)
429     UniqueVNI = false;
430 
431   // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
432   // neither require it. Skip the sorting overhead for small updates.
433   if (WorkList.size() > 4)
434     array_pod_sort(WorkList.begin(), WorkList.end());
435 
436   // If a unique reaching def was found, blit in the live ranges immediately.
437   if (UniqueVNI) {
438     assert(TheVNI != nullptr);
439     LiveRangeUpdater Updater(&LR);
440     for (unsigned BN : WorkList) {
441       SlotIndex Start, End;
442       std::tie(Start, End) = Indexes->getMBBRange(BN);
443       // Trim the live range in UseMBB.
444       if (BN == UseMBBNum && Use.isValid())
445         End = Use;
446       else
447         Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
448       Updater.add(Start, End, TheVNI);
449     }
450     return true;
451   }
452 
453   // Prepare the defined/undefined bit vectors.
454   auto EF = EntryInfoMap.find(&LR);
455   if (EF == EntryInfoMap.end()) {
456     unsigned N = MF->getNumBlockIDs();
457     EF = EntryInfoMap.insert({&LR, {BitVector(), BitVector()}}).first;
458     EF->second.first.resize(N);
459     EF->second.second.resize(N);
460   }
461   BitVector &DefOnEntry = EF->second.first;
462   BitVector &UndefOnEntry = EF->second.second;
463 
464   // Multiple values were found, so transfer the work list to the LiveIn array
465   // where UpdateSSA will use it as a work list.
466   LiveIn.reserve(WorkList.size());
467   for (unsigned BN : WorkList) {
468     MachineBasicBlock *MBB = MF->getBlockNumbered(BN);
469     if (Undefs.size() > 0 && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry))
470       continue;
471     addLiveInBlock(LR, DomTree->getNode(MBB));
472     if (MBB == &UseMBB)
473       LiveIn.back().Kill = Use;
474   }
475 
476   return false;
477 }
478 
479 
480 // This is essentially the same iterative algorithm that SSAUpdater uses,
481 // except we already have a dominator tree, so we don't have to recompute it.
482 void LiveRangeCalc::updateSSA() {
483   assert(Indexes && "Missing SlotIndexes");
484   assert(DomTree && "Missing dominator tree");
485 
486   // Interate until convergence.
487   unsigned Changes;
488   do {
489     Changes = 0;
490     // Propagate live-out values down the dominator tree, inserting phi-defs
491     // when necessary.
492     for (LiveInBlock &I : LiveIn) {
493       MachineDomTreeNode *Node = I.DomNode;
494       // Skip block if the live-in value has already been determined.
495       if (!Node)
496         continue;
497       MachineBasicBlock *MBB = Node->getBlock();
498       MachineDomTreeNode *IDom = Node->getIDom();
499       LiveOutPair IDomValue;
500 
501       // We need a live-in value to a block with no immediate dominator?
502       // This is probably an unreachable block that has survived somehow.
503       bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());
504 
505       // IDom dominates all of our predecessors, but it may not be their
506       // immediate dominator. Check if any of them have live-out values that are
507       // properly dominated by IDom. If so, we need a phi-def here.
508       if (!needPHI) {
509         IDomValue = Map[IDom->getBlock()];
510 
511         // Cache the DomTree node that defined the value.
512         if (IDomValue.first && !IDomValue.second)
513           Map[IDom->getBlock()].second = IDomValue.second =
514             DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
515 
516         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
517                PE = MBB->pred_end(); PI != PE; ++PI) {
518           LiveOutPair &Value = Map[*PI];
519           if (!Value.first || Value.first == IDomValue.first)
520             continue;
521 
522           // Cache the DomTree node that defined the value.
523           if (!Value.second)
524             Value.second =
525               DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));
526 
527           // This predecessor is carrying something other than IDomValue.
528           // It could be because IDomValue hasn't propagated yet, or it could be
529           // because MBB is in the dominance frontier of that value.
530           if (DomTree->dominates(IDom, Value.second)) {
531             needPHI = true;
532             break;
533           }
534         }
535       }
536 
537       // The value may be live-through even if Kill is set, as can happen when
538       // we are called from extendRange. In that case LiveOutSeen is true, and
539       // LiveOut indicates a foreign or missing value.
540       LiveOutPair &LOP = Map[MBB];
541 
542       // Create a phi-def if required.
543       if (needPHI) {
544         ++Changes;
545         assert(Alloc && "Need VNInfo allocator to create PHI-defs");
546         SlotIndex Start, End;
547         std::tie(Start, End) = Indexes->getMBBRange(MBB);
548         LiveRange &LR = I.LR;
549         VNInfo *VNI = LR.getNextValue(Start, *Alloc);
550         I.Value = VNI;
551         // This block is done, we know the final value.
552         I.DomNode = nullptr;
553 
554         // Add liveness since updateFromLiveIns now skips this node.
555         if (I.Kill.isValid()) {
556           if (VNI)
557             LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
558         } else {
559           if (VNI)
560             LR.addSegment(LiveInterval::Segment(Start, End, VNI));
561           LOP = LiveOutPair(VNI, Node);
562         }
563       } else if (IDomValue.first) {
564         // No phi-def here. Remember incoming value.
565         I.Value = IDomValue.first;
566 
567         // If the IDomValue is killed in the block, don't propagate through.
568         if (I.Kill.isValid())
569           continue;
570 
571         // Propagate IDomValue if it isn't killed:
572         // MBB is live-out and doesn't define its own value.
573         if (LOP.first == IDomValue.first)
574           continue;
575         ++Changes;
576         LOP = IDomValue;
577       }
578     }
579   } while (Changes);
580 }
581