1 //===---- LiveRangeCalc.cpp - Calculate live ranges -----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Implementation of the LiveRangeCalc class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LiveRangeCalc.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineRegisterInfo.h" 18 19 using namespace llvm; 20 21 #define DEBUG_TYPE "regalloc" 22 23 void LiveRangeCalc::resetLiveOutMap() { 24 unsigned NumBlocks = MF->getNumBlockIDs(); 25 Seen.clear(); 26 Seen.resize(NumBlocks); 27 EntryInfoMap.clear(); 28 Map.resize(NumBlocks); 29 } 30 31 void LiveRangeCalc::reset(const MachineFunction *mf, 32 SlotIndexes *SI, 33 MachineDominatorTree *MDT, 34 VNInfo::Allocator *VNIA) { 35 MF = mf; 36 MRI = &MF->getRegInfo(); 37 Indexes = SI; 38 DomTree = MDT; 39 Alloc = VNIA; 40 resetLiveOutMap(); 41 LiveIn.clear(); 42 } 43 44 45 static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, 46 LiveRange &LR, const MachineOperand &MO) { 47 const MachineInstr &MI = *MO.getParent(); 48 SlotIndex DefIdx = 49 Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); 50 51 // Create the def in LR. This may find an existing def. 52 LR.createDeadDef(DefIdx, Alloc); 53 } 54 55 void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { 56 assert(MRI && Indexes && "call reset() first"); 57 58 // Step 1: Create minimal live segments for every definition of Reg. 59 // Visit all def operands. If the same instruction has multiple defs of Reg, 60 // createDeadDef() will deduplicate. 61 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 62 unsigned Reg = LI.reg; 63 for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 64 if (!MO.isDef() && !MO.readsReg()) 65 continue; 66 67 unsigned SubReg = MO.getSubReg(); 68 if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { 69 LaneBitmask WholeMask = MRI->getMaxLaneMaskForVReg(Reg); 70 LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) 71 : WholeMask; 72 // If this is the first time we see a subregister def, initialize 73 // subranges by creating a copy of the main range. 74 if (!LI.hasSubRanges() && !LI.empty()) { 75 LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); 76 LI.createSubRangeFrom(*Alloc, ClassMask, LI); 77 } 78 79 LaneBitmask Mask = SubMask; 80 for (LiveInterval::SubRange &S : LI.subranges()) { 81 // A Mask for subregs common to the existing subrange and current def. 82 LaneBitmask Common = S.LaneMask & Mask; 83 if (Common == 0) 84 continue; 85 LiveInterval::SubRange *CommonRange; 86 // A Mask for subregs covered by the subrange but not the current def. 87 if (LaneBitmask RM = S.LaneMask & ~Mask) { 88 // Split the subrange S into two parts: one covered by the current 89 // def (CommonRange), and the one not affected by it (updated S). 90 S.LaneMask = RM; 91 CommonRange = LI.createSubRangeFrom(*Alloc, Common, S); 92 } else { 93 assert(Common == S.LaneMask); 94 CommonRange = &S; 95 } 96 if (MO.isDef()) 97 createDeadDef(*Indexes, *Alloc, *CommonRange, MO); 98 Mask &= ~Common; 99 } 100 // Create a new SubRange for subregs we did not cover yet. 101 if (Mask != 0) { 102 LiveInterval::SubRange *NewRange = LI.createSubRange(*Alloc, Mask); 103 if (MO.isDef()) 104 createDeadDef(*Indexes, *Alloc, *NewRange, MO); 105 } 106 } 107 108 // Create the def in the main liverange. We do not have to do this if 109 // subranges are tracked as we recreate the main range later in this case. 110 if (MO.isDef() && !LI.hasSubRanges()) 111 createDeadDef(*Indexes, *Alloc, LI, MO); 112 } 113 114 // We may have created empty live ranges for partially undefined uses, we 115 // can't keep them because we won't find defs in them later. 116 LI.removeEmptySubRanges(); 117 118 // Step 2: Extend live segments to all uses, constructing SSA form as 119 // necessary. 120 if (LI.hasSubRanges()) { 121 for (LiveInterval::SubRange &S : LI.subranges()) { 122 LiveRangeCalc SubLRC; 123 SubLRC.reset(MF, Indexes, DomTree, Alloc); 124 SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); 125 } 126 LI.clear(); 127 constructMainRangeFromSubranges(LI); 128 } else { 129 resetLiveOutMap(); 130 extendToUses(LI, Reg, ~0u); 131 } 132 } 133 134 void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { 135 // First create dead defs at all defs found in subranges. 136 LiveRange &MainRange = LI; 137 assert(MainRange.segments.empty() && MainRange.valnos.empty() && 138 "Expect empty main liverange"); 139 140 for (const LiveInterval::SubRange &SR : LI.subranges()) { 141 for (const VNInfo *VNI : SR.valnos) { 142 if (!VNI->isUnused() && !VNI->isPHIDef()) 143 MainRange.createDeadDef(VNI->def, *Alloc); 144 } 145 } 146 resetLiveOutMap(); 147 extendToUses(MainRange, LI.reg, ~0U, &LI); 148 } 149 150 void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { 151 assert(MRI && Indexes && "call reset() first"); 152 153 // Visit all def operands. If the same instruction has multiple defs of Reg, 154 // LR.createDeadDef() will deduplicate. 155 for (MachineOperand &MO : MRI->def_operands(Reg)) 156 createDeadDef(*Indexes, *Alloc, LR, MO); 157 } 158 159 160 void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, 161 LiveInterval *LI) { 162 SmallVector<SlotIndex, 4> Undefs; 163 if (LI != nullptr) 164 LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); 165 166 // Visit all operands that read Reg. This may include partial defs. 167 const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); 168 for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { 169 // Clear all kill flags. They will be reinserted after register allocation 170 // by LiveIntervalAnalysis::addKillFlags(). 171 if (MO.isUse()) 172 MO.setIsKill(false); 173 if (!MO.readsReg()) 174 continue; 175 176 unsigned SubReg = MO.getSubReg(); 177 if (SubReg != 0) { 178 LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); 179 if (MO.isDef()) 180 SLM = MRI->getMaxLaneMaskForVReg(Reg) & ~SLM; 181 // Ignore uses not covering the current subrange. 182 if ((SLM & Mask) == 0) 183 continue; 184 } 185 186 // Determine the actual place of the use. 187 const MachineInstr *MI = MO.getParent(); 188 unsigned OpNo = (&MO - &MI->getOperand(0)); 189 SlotIndex UseIdx; 190 if (MI->isPHI()) { 191 assert(!MO.isDef() && "Cannot handle PHI def of partial register."); 192 // The actual place where a phi operand is used is the end of the pred 193 // MBB. PHI operands are paired: (Reg, PredMBB). 194 UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); 195 } else { 196 // Check for early-clobber redefs. 197 bool isEarlyClobber = false; 198 unsigned DefIdx; 199 if (MO.isDef()) 200 isEarlyClobber = MO.isEarlyClobber(); 201 else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { 202 // FIXME: This would be a lot easier if tied early-clobber uses also 203 // had an early-clobber flag. 204 isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); 205 } 206 UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); 207 } 208 209 // MI is reading Reg. We may have visited MI before if it happens to be 210 // reading Reg multiple times. That is OK, extend() is idempotent. 211 extend(LR, UseIdx, Reg, Undefs); 212 } 213 } 214 215 216 void LiveRangeCalc::updateFromLiveIns() { 217 LiveRangeUpdater Updater; 218 for (const LiveInBlock &I : LiveIn) { 219 if (!I.DomNode) 220 continue; 221 MachineBasicBlock *MBB = I.DomNode->getBlock(); 222 assert(I.Value && "No live-in value found"); 223 SlotIndex Start, End; 224 std::tie(Start, End) = Indexes->getMBBRange(MBB); 225 226 if (I.Kill.isValid()) 227 // Value is killed inside this block. 228 End = I.Kill; 229 else { 230 // The value is live-through, update LiveOut as well. 231 // Defer the Domtree lookup until it is needed. 232 assert(Seen.test(MBB->getNumber())); 233 Map[MBB] = LiveOutPair(I.Value, nullptr); 234 } 235 Updater.setDest(&I.LR); 236 Updater.add(Start, End, I.Value); 237 } 238 LiveIn.clear(); 239 } 240 241 void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, 242 ArrayRef<SlotIndex> Undefs) { 243 assert(Use.isValid() && "Invalid SlotIndex"); 244 assert(Indexes && "Missing SlotIndexes"); 245 assert(DomTree && "Missing dominator tree"); 246 247 MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); 248 assert(UseMBB && "No MBB at Use"); 249 250 // Is there a def in the same MBB we can extend? 251 auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); 252 if (EP.first != nullptr || EP.second) 253 return; 254 255 // Find the single reaching def, or determine if Use is jointly dominated by 256 // multiple values, and we may need to create even more phi-defs to preserve 257 // VNInfo SSA form. Perform a search for all predecessor blocks where we 258 // know the dominating VNInfo. 259 if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) 260 return; 261 262 // When there were multiple different values, we may need new PHIs. 263 calculateValues(); 264 } 265 266 267 // This function is called by a client after using the low-level API to add 268 // live-out and live-in blocks. The unique value optimization is not 269 // available, SplitEditor::transferValues handles that case directly anyway. 270 void LiveRangeCalc::calculateValues() { 271 assert(Indexes && "Missing SlotIndexes"); 272 assert(DomTree && "Missing dominator tree"); 273 updateSSA(); 274 updateFromLiveIns(); 275 } 276 277 278 bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, 279 MachineBasicBlock &MBB, BitVector &DefOnEntry, 280 BitVector &UndefOnEntry) { 281 unsigned BN = MBB.getNumber(); 282 if (DefOnEntry[BN]) 283 return true; 284 if (UndefOnEntry[BN]) 285 return false; 286 287 auto MarkDefined = 288 [this,BN,&DefOnEntry,&UndefOnEntry] (MachineBasicBlock &B) -> bool { 289 for (MachineBasicBlock *S : B.successors()) 290 DefOnEntry[S->getNumber()] = true; 291 DefOnEntry[BN] = true; 292 return true; 293 }; 294 295 SetVector<unsigned> WorkList; 296 // Checking if the entry of MBB is reached by some def: add all predecessors 297 // that are potentially defined-on-exit to the work list. 298 for (MachineBasicBlock *P : MBB.predecessors()) 299 WorkList.insert(P->getNumber()); 300 301 for (unsigned i = 0; i != WorkList.size(); ++i) { 302 // Determine if the exit from the block is reached by some def. 303 unsigned N = WorkList[i]; 304 MachineBasicBlock &B = *MF->getBlockNumbered(N); 305 if (Seen[N] && Map[&B].first != nullptr) 306 return MarkDefined(B); 307 SlotIndex Begin, End; 308 std::tie(Begin, End) = Indexes->getMBBRange(&B); 309 LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), End); 310 if (UB != LR.begin()) { 311 LiveRange::Segment &Seg = *std::prev(UB); 312 if (Seg.end > Begin) { 313 // There is a segment that overlaps B. If the range is not explicitly 314 // undefined between the end of the segment and the end of the block, 315 // treat the block as defined on exit. If it is, go to the next block 316 // on the work list. 317 if (LR.isUndefIn(Undefs, Seg.end, End)) 318 continue; 319 return MarkDefined(B); 320 } 321 } 322 323 // No segment overlaps with this block. If this block is not defined on 324 // entry, or it undefines the range, do not process its predecessors. 325 if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { 326 UndefOnEntry[N] = true; 327 continue; 328 } 329 if (DefOnEntry[N]) 330 return MarkDefined(B); 331 332 // Still don't know: add all predecessors to the work list. 333 for (MachineBasicBlock *P : B.predecessors()) 334 WorkList.insert(P->getNumber()); 335 } 336 337 UndefOnEntry[BN] = true; 338 return false; 339 } 340 341 bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, 342 SlotIndex Use, unsigned PhysReg, 343 ArrayRef<SlotIndex> Undefs) { 344 unsigned UseMBBNum = UseMBB.getNumber(); 345 346 // Block numbers where LR should be live-in. 347 SmallVector<unsigned, 16> WorkList(1, UseMBBNum); 348 349 // Remember if we have seen more than one value. 350 bool UniqueVNI = true; 351 VNInfo *TheVNI = nullptr; 352 353 bool FoundUndef = false; 354 355 // Using Seen as a visited set, perform a BFS for all reaching defs. 356 for (unsigned i = 0; i != WorkList.size(); ++i) { 357 MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); 358 359 #ifndef NDEBUG 360 if (Undefs.size() > 0 && MBB->pred_empty()) { 361 MBB->getParent()->verify(); 362 errs() << "Use of " << PrintReg(PhysReg) 363 << " does not have a corresponding definition on every path:\n"; 364 const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); 365 if (MI != nullptr) 366 errs() << Use << " " << *MI; 367 llvm_unreachable("Use not jointly dominated by defs."); 368 } 369 370 if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && 371 !MBB->isLiveIn(PhysReg)) { 372 MBB->getParent()->verify(); 373 errs() << "The register " << PrintReg(PhysReg) 374 << " needs to be live in to BB#" << MBB->getNumber() 375 << ", but is missing from the live-in list.\n"; 376 llvm_unreachable("Invalid global physical register"); 377 } 378 #endif 379 FoundUndef |= MBB->pred_empty(); 380 381 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 382 PE = MBB->pred_end(); PI != PE; ++PI) { 383 MachineBasicBlock *Pred = *PI; 384 385 // Is this a known live-out block? 386 if (Seen.test(Pred->getNumber())) { 387 if (VNInfo *VNI = Map[Pred].first) { 388 if (TheVNI && TheVNI != VNI) 389 UniqueVNI = false; 390 TheVNI = VNI; 391 } 392 continue; 393 } 394 395 SlotIndex Start, End; 396 std::tie(Start, End) = Indexes->getMBBRange(Pred); 397 398 // First time we see Pred. Try to determine the live-out value, but set 399 // it as null if Pred is live-through with an unknown value. 400 auto EP = LR.extendInBlock(Undefs, Start, End); 401 VNInfo *VNI = EP.first; 402 FoundUndef |= EP.second; 403 setLiveOutValue(Pred, VNI); 404 if (VNI) { 405 if (TheVNI && TheVNI != VNI) 406 UniqueVNI = false; 407 TheVNI = VNI; 408 } 409 if (VNI || EP.second) 410 continue; 411 412 // No, we need a live-in value for Pred as well 413 if (Pred != &UseMBB) 414 WorkList.push_back(Pred->getNumber()); 415 else 416 // Loopback to UseMBB, so value is really live through. 417 Use = SlotIndex(); 418 } 419 } 420 421 LiveIn.clear(); 422 FoundUndef |= (TheVNI == nullptr); 423 if (Undefs.size() > 0 && FoundUndef) 424 UniqueVNI = false; 425 426 // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but 427 // neither require it. Skip the sorting overhead for small updates. 428 if (WorkList.size() > 4) 429 array_pod_sort(WorkList.begin(), WorkList.end()); 430 431 // If a unique reaching def was found, blit in the live ranges immediately. 432 if (UniqueVNI) { 433 assert(TheVNI != nullptr); 434 LiveRangeUpdater Updater(&LR); 435 for (unsigned BN : WorkList) { 436 SlotIndex Start, End; 437 std::tie(Start, End) = Indexes->getMBBRange(BN); 438 // Trim the live range in UseMBB. 439 if (BN == UseMBBNum && Use.isValid()) 440 End = Use; 441 else 442 Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); 443 Updater.add(Start, End, TheVNI); 444 } 445 return true; 446 } 447 448 // Prepare the defined/undefined bit vectors. 449 auto EF = EntryInfoMap.find(&LR); 450 if (EF == EntryInfoMap.end()) { 451 unsigned N = MF->getNumBlockIDs(); 452 EF = EntryInfoMap.insert({&LR, {BitVector(), BitVector()}}).first; 453 EF->second.first.resize(N); 454 EF->second.second.resize(N); 455 } 456 BitVector &DefOnEntry = EF->second.first; 457 BitVector &UndefOnEntry = EF->second.second; 458 459 // Multiple values were found, so transfer the work list to the LiveIn array 460 // where UpdateSSA will use it as a work list. 461 LiveIn.reserve(WorkList.size()); 462 for (unsigned BN : WorkList) { 463 MachineBasicBlock *MBB = MF->getBlockNumbered(BN); 464 if (Undefs.size() > 0 && !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) 465 continue; 466 addLiveInBlock(LR, DomTree->getNode(MBB)); 467 if (MBB == &UseMBB) 468 LiveIn.back().Kill = Use; 469 } 470 471 return false; 472 } 473 474 475 // This is essentially the same iterative algorithm that SSAUpdater uses, 476 // except we already have a dominator tree, so we don't have to recompute it. 477 void LiveRangeCalc::updateSSA() { 478 assert(Indexes && "Missing SlotIndexes"); 479 assert(DomTree && "Missing dominator tree"); 480 481 // Interate until convergence. 482 unsigned Changes; 483 do { 484 Changes = 0; 485 // Propagate live-out values down the dominator tree, inserting phi-defs 486 // when necessary. 487 for (LiveInBlock &I : LiveIn) { 488 MachineDomTreeNode *Node = I.DomNode; 489 // Skip block if the live-in value has already been determined. 490 if (!Node) 491 continue; 492 MachineBasicBlock *MBB = Node->getBlock(); 493 MachineDomTreeNode *IDom = Node->getIDom(); 494 LiveOutPair IDomValue; 495 496 // We need a live-in value to a block with no immediate dominator? 497 // This is probably an unreachable block that has survived somehow. 498 bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); 499 500 // IDom dominates all of our predecessors, but it may not be their 501 // immediate dominator. Check if any of them have live-out values that are 502 // properly dominated by IDom. If so, we need a phi-def here. 503 if (!needPHI) { 504 IDomValue = Map[IDom->getBlock()]; 505 506 // Cache the DomTree node that defined the value. 507 if (IDomValue.first && !IDomValue.second) 508 Map[IDom->getBlock()].second = IDomValue.second = 509 DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); 510 511 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 512 PE = MBB->pred_end(); PI != PE; ++PI) { 513 LiveOutPair &Value = Map[*PI]; 514 if (!Value.first || Value.first == IDomValue.first) 515 continue; 516 517 // Cache the DomTree node that defined the value. 518 if (!Value.second) 519 Value.second = 520 DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); 521 522 // This predecessor is carrying something other than IDomValue. 523 // It could be because IDomValue hasn't propagated yet, or it could be 524 // because MBB is in the dominance frontier of that value. 525 if (DomTree->dominates(IDom, Value.second)) { 526 needPHI = true; 527 break; 528 } 529 } 530 } 531 532 // The value may be live-through even if Kill is set, as can happen when 533 // we are called from extendRange. In that case LiveOutSeen is true, and 534 // LiveOut indicates a foreign or missing value. 535 LiveOutPair &LOP = Map[MBB]; 536 537 // Create a phi-def if required. 538 if (needPHI) { 539 ++Changes; 540 assert(Alloc && "Need VNInfo allocator to create PHI-defs"); 541 SlotIndex Start, End; 542 std::tie(Start, End) = Indexes->getMBBRange(MBB); 543 LiveRange &LR = I.LR; 544 VNInfo *VNI = LR.getNextValue(Start, *Alloc); 545 I.Value = VNI; 546 // This block is done, we know the final value. 547 I.DomNode = nullptr; 548 549 // Add liveness since updateFromLiveIns now skips this node. 550 if (I.Kill.isValid()) { 551 if (VNI) 552 LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); 553 } else { 554 if (VNI) 555 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 556 LOP = LiveOutPair(VNI, Node); 557 } 558 } else if (IDomValue.first) { 559 // No phi-def here. Remember incoming value. 560 I.Value = IDomValue.first; 561 562 // If the IDomValue is killed in the block, don't propagate through. 563 if (I.Kill.isValid()) 564 continue; 565 566 // Propagate IDomValue if it isn't killed: 567 // MBB is live-out and doesn't define its own value. 568 if (LOP.first == IDomValue.first) 569 continue; 570 ++Changes; 571 LOP = IDomValue; 572 } 573 } 574 } while (Changes); 575 } 576