1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/LiveInterval.h"
24 #include "llvm/CodeGen/LiveIntervalCalc.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/BlockFrequency.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <iterator>
54 #include <tuple>
55 #include <utility>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "regalloc"
60 
61 char LiveIntervals::ID = 0;
62 char &llvm::LiveIntervalsID = LiveIntervals::ID;
63 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
64                 "Live Interval Analysis", false, false)
65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
67 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
68 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
69                 "Live Interval Analysis", false, false)
70 
71 #ifndef NDEBUG
72 static cl::opt<bool> EnablePrecomputePhysRegs(
73   "precompute-phys-liveness", cl::Hidden,
74   cl::desc("Eagerly compute live intervals for all physreg units."));
75 #else
76 static bool EnablePrecomputePhysRegs = false;
77 #endif // NDEBUG
78 
79 namespace llvm {
80 
81 cl::opt<bool> UseSegmentSetForPhysRegs(
82     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
83     cl::desc(
84         "Use segment set for the computation of the live ranges of physregs."));
85 
86 } // end namespace llvm
87 
88 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
89   AU.setPreservesCFG();
90   AU.addRequired<AAResultsWrapperPass>();
91   AU.addPreserved<AAResultsWrapperPass>();
92   AU.addPreserved<LiveVariables>();
93   AU.addPreservedID(MachineLoopInfoID);
94   AU.addRequiredTransitiveID(MachineDominatorsID);
95   AU.addPreservedID(MachineDominatorsID);
96   AU.addPreserved<SlotIndexes>();
97   AU.addRequiredTransitive<SlotIndexes>();
98   MachineFunctionPass::getAnalysisUsage(AU);
99 }
100 
101 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
102   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
103 }
104 
105 LiveIntervals::~LiveIntervals() { delete LICalc; }
106 
107 void LiveIntervals::releaseMemory() {
108   // Free the live intervals themselves.
109   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
110     delete VirtRegIntervals[Register::index2VirtReg(i)];
111   VirtRegIntervals.clear();
112   RegMaskSlots.clear();
113   RegMaskBits.clear();
114   RegMaskBlocks.clear();
115 
116   for (LiveRange *LR : RegUnitRanges)
117     delete LR;
118   RegUnitRanges.clear();
119 
120   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
121   VNInfoAllocator.Reset();
122 }
123 
124 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
125   MF = &fn;
126   MRI = &MF->getRegInfo();
127   TRI = MF->getSubtarget().getRegisterInfo();
128   TII = MF->getSubtarget().getInstrInfo();
129   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
130   Indexes = &getAnalysis<SlotIndexes>();
131   DomTree = &getAnalysis<MachineDominatorTree>();
132 
133   if (!LICalc)
134     LICalc = new LiveIntervalCalc();
135 
136   // Allocate space for all virtual registers.
137   VirtRegIntervals.resize(MRI->getNumVirtRegs());
138 
139   computeVirtRegs();
140   computeRegMasks();
141   computeLiveInRegUnits();
142 
143   if (EnablePrecomputePhysRegs) {
144     // For stress testing, precompute live ranges of all physical register
145     // units, including reserved registers.
146     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
147       getRegUnit(i);
148   }
149   LLVM_DEBUG(dump());
150   return true;
151 }
152 
153 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
154   OS << "********** INTERVALS **********\n";
155 
156   // Dump the regunits.
157   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
158     if (LiveRange *LR = RegUnitRanges[Unit])
159       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
160 
161   // Dump the virtregs.
162   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
163     Register Reg = Register::index2VirtReg(i);
164     if (hasInterval(Reg))
165       OS << getInterval(Reg) << '\n';
166   }
167 
168   OS << "RegMasks:";
169   for (SlotIndex Idx : RegMaskSlots)
170     OS << ' ' << Idx;
171   OS << '\n';
172 
173   printInstrs(OS);
174 }
175 
176 void LiveIntervals::printInstrs(raw_ostream &OS) const {
177   OS << "********** MACHINEINSTRS **********\n";
178   MF->print(OS, Indexes);
179 }
180 
181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
182 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
183   printInstrs(dbgs());
184 }
185 #endif
186 
187 LiveInterval *LiveIntervals::createInterval(Register reg) {
188   float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
189   return new LiveInterval(reg, Weight);
190 }
191 
192 /// Compute the live interval of a virtual register, based on defs and uses.
193 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
194   assert(LICalc && "LICalc not initialized.");
195   assert(LI.empty() && "Should only compute empty intervals.");
196   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
197   LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
198   return computeDeadValues(LI, nullptr);
199 }
200 
201 void LiveIntervals::computeVirtRegs() {
202   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
203     Register Reg = Register::index2VirtReg(i);
204     if (MRI->reg_nodbg_empty(Reg))
205       continue;
206     LiveInterval &LI = createEmptyInterval(Reg);
207     bool NeedSplit = computeVirtRegInterval(LI);
208     if (NeedSplit) {
209       SmallVector<LiveInterval*, 8> SplitLIs;
210       splitSeparateComponents(LI, SplitLIs);
211     }
212   }
213 }
214 
215 void LiveIntervals::computeRegMasks() {
216   RegMaskBlocks.resize(MF->getNumBlockIDs());
217 
218   // Find all instructions with regmask operands.
219   for (const MachineBasicBlock &MBB : *MF) {
220     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
221     RMB.first = RegMaskSlots.size();
222 
223     // Some block starts, such as EH funclets, create masks.
224     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
225       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
226       RegMaskBits.push_back(Mask);
227     }
228 
229     // Unwinders may clobber additional registers.
230     // FIXME: This functionality can possibly be merged into
231     // MachineBasicBlock::getBeginClobberMask().
232     if (MBB.isEHPad())
233       if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
234         RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
235         RegMaskBits.push_back(Mask);
236       }
237 
238     for (const MachineInstr &MI : MBB) {
239       for (const MachineOperand &MO : MI.operands()) {
240         if (!MO.isRegMask())
241           continue;
242         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
243         RegMaskBits.push_back(MO.getRegMask());
244       }
245     }
246 
247     // Some block ends, such as funclet returns, create masks. Put the mask on
248     // the last instruction of the block, because MBB slot index intervals are
249     // half-open.
250     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
251       assert(!MBB.empty() && "empty return block?");
252       RegMaskSlots.push_back(
253           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
254       RegMaskBits.push_back(Mask);
255     }
256 
257     // Compute the number of register mask instructions in this block.
258     RMB.second = RegMaskSlots.size() - RMB.first;
259   }
260 }
261 
262 //===----------------------------------------------------------------------===//
263 //                           Register Unit Liveness
264 //===----------------------------------------------------------------------===//
265 //
266 // Fixed interference typically comes from ABI boundaries: Function arguments
267 // and return values are passed in fixed registers, and so are exception
268 // pointers entering landing pads. Certain instructions require values to be
269 // present in specific registers. That is also represented through fixed
270 // interference.
271 //
272 
273 /// Compute the live range of a register unit, based on the uses and defs of
274 /// aliasing registers.  The range should be empty, or contain only dead
275 /// phi-defs from ABI blocks.
276 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
277   assert(LICalc && "LICalc not initialized.");
278   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
279 
280   // The physregs aliasing Unit are the roots and their super-registers.
281   // Create all values as dead defs before extending to uses. Note that roots
282   // may share super-registers. That's OK because createDeadDefs() is
283   // idempotent. It is very rare for a register unit to have multiple roots, so
284   // uniquing super-registers is probably not worthwhile.
285   bool IsReserved = false;
286   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
287     bool IsRootReserved = true;
288     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
289          Super.isValid(); ++Super) {
290       MCRegister Reg = *Super;
291       if (!MRI->reg_empty(Reg))
292         LICalc->createDeadDefs(LR, Reg);
293       // A register unit is considered reserved if all its roots and all their
294       // super registers are reserved.
295       if (!MRI->isReserved(Reg))
296         IsRootReserved = false;
297     }
298     IsReserved |= IsRootReserved;
299   }
300   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
301          "reserved computation mismatch");
302 
303   // Now extend LR to reach all uses.
304   // Ignore uses of reserved registers. We only track defs of those.
305   if (!IsReserved) {
306     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
307       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
308            Super.isValid(); ++Super) {
309         MCRegister Reg = *Super;
310         if (!MRI->reg_empty(Reg))
311           LICalc->extendToUses(LR, Reg);
312       }
313     }
314   }
315 
316   // Flush the segment set to the segment vector.
317   if (UseSegmentSetForPhysRegs)
318     LR.flushSegmentSet();
319 }
320 
321 /// Precompute the live ranges of any register units that are live-in to an ABI
322 /// block somewhere. Register values can appear without a corresponding def when
323 /// entering the entry block or a landing pad.
324 void LiveIntervals::computeLiveInRegUnits() {
325   RegUnitRanges.resize(TRI->getNumRegUnits());
326   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
327 
328   // Keep track of the live range sets allocated.
329   SmallVector<unsigned, 8> NewRanges;
330 
331   // Check all basic blocks for live-ins.
332   for (const MachineBasicBlock &MBB : *MF) {
333     // We only care about ABI blocks: Entry + landing pads.
334     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
335       continue;
336 
337     // Create phi-defs at Begin for all live-in registers.
338     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
339     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
340     for (const auto &LI : MBB.liveins()) {
341       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
342         unsigned Unit = *Units;
343         LiveRange *LR = RegUnitRanges[Unit];
344         if (!LR) {
345           // Use segment set to speed-up initial computation of the live range.
346           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
347           NewRanges.push_back(Unit);
348         }
349         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
350         (void)VNI;
351         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
352       }
353     }
354     LLVM_DEBUG(dbgs() << '\n');
355   }
356   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
357 
358   // Compute the 'normal' part of the ranges.
359   for (unsigned Unit : NewRanges)
360     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
361 }
362 
363 static void createSegmentsForValues(LiveRange &LR,
364     iterator_range<LiveInterval::vni_iterator> VNIs) {
365   for (VNInfo *VNI : VNIs) {
366     if (VNI->isUnused())
367       continue;
368     SlotIndex Def = VNI->def;
369     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
370   }
371 }
372 
373 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
374                                          ShrinkToUsesWorkList &WorkList,
375                                          Register Reg, LaneBitmask LaneMask) {
376   // Keep track of the PHIs that are in use.
377   SmallPtrSet<VNInfo*, 8> UsedPHIs;
378   // Blocks that have already been added to WorkList as live-out.
379   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
380 
381   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
382         -> const LiveRange& {
383     if (M.none())
384       return I;
385     for (const LiveInterval::SubRange &SR : I.subranges()) {
386       if ((SR.LaneMask & M).any()) {
387         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
388         return SR;
389       }
390     }
391     llvm_unreachable("Subrange for mask not found");
392   };
393 
394   const LiveInterval &LI = getInterval(Reg);
395   const LiveRange &OldRange = getSubRange(LI, LaneMask);
396 
397   // Extend intervals to reach all uses in WorkList.
398   while (!WorkList.empty()) {
399     SlotIndex Idx = WorkList.back().first;
400     VNInfo *VNI = WorkList.back().second;
401     WorkList.pop_back();
402     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
403     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
404 
405     // Extend the live range for VNI to be live at Idx.
406     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
407       assert(ExtVNI == VNI && "Unexpected existing value number");
408       (void)ExtVNI;
409       // Is this a PHIDef we haven't seen before?
410       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
411           !UsedPHIs.insert(VNI).second)
412         continue;
413       // The PHI is live, make sure the predecessors are live-out.
414       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
415         if (!LiveOut.insert(Pred).second)
416           continue;
417         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
418         // A predecessor is not required to have a live-out value for a PHI.
419         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
420           WorkList.push_back(std::make_pair(Stop, PVNI));
421       }
422       continue;
423     }
424 
425     // VNI is live-in to MBB.
426     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
427     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
428 
429     // Make sure VNI is live-out from the predecessors.
430     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
431       if (!LiveOut.insert(Pred).second)
432         continue;
433       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
434       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
435         assert(OldVNI == VNI && "Wrong value out of predecessor");
436         (void)OldVNI;
437         WorkList.push_back(std::make_pair(Stop, VNI));
438       } else {
439 #ifndef NDEBUG
440         // There was no old VNI. Verify that Stop is jointly dominated
441         // by <undef>s for this live range.
442         assert(LaneMask.any() &&
443                "Missing value out of predecessor for main range");
444         SmallVector<SlotIndex,8> Undefs;
445         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
446         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
447                "Missing value out of predecessor for subrange");
448 #endif
449       }
450     }
451   }
452 }
453 
454 bool LiveIntervals::shrinkToUses(LiveInterval *li,
455                                  SmallVectorImpl<MachineInstr*> *dead) {
456   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
457   assert(Register::isVirtualRegister(li->reg()) &&
458          "Can only shrink virtual registers");
459 
460   // Shrink subregister live ranges.
461   bool NeedsCleanup = false;
462   for (LiveInterval::SubRange &S : li->subranges()) {
463     shrinkToUses(S, li->reg());
464     if (S.empty())
465       NeedsCleanup = true;
466   }
467   if (NeedsCleanup)
468     li->removeEmptySubRanges();
469 
470   // Find all the values used, including PHI kills.
471   ShrinkToUsesWorkList WorkList;
472 
473   // Visit all instructions reading li->reg().
474   Register Reg = li->reg();
475   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
476     if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
477       continue;
478     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
479     LiveQueryResult LRQ = li->Query(Idx);
480     VNInfo *VNI = LRQ.valueIn();
481     if (!VNI) {
482       // This shouldn't happen: readsVirtualRegister returns true, but there is
483       // no live value. It is likely caused by a target getting <undef> flags
484       // wrong.
485       LLVM_DEBUG(
486           dbgs() << Idx << '\t' << UseMI
487                  << "Warning: Instr claims to read non-existent value in "
488                  << *li << '\n');
489       continue;
490     }
491     // Special case: An early-clobber tied operand reads and writes the
492     // register one slot early.
493     if (VNInfo *DefVNI = LRQ.valueDefined())
494       Idx = DefVNI->def;
495 
496     WorkList.push_back(std::make_pair(Idx, VNI));
497   }
498 
499   // Create new live ranges with only minimal live segments per def.
500   LiveRange NewLR;
501   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
502   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
503 
504   // Move the trimmed segments back.
505   li->segments.swap(NewLR.segments);
506 
507   // Handle dead values.
508   bool CanSeparate = computeDeadValues(*li, dead);
509   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
510   return CanSeparate;
511 }
512 
513 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
514                                       SmallVectorImpl<MachineInstr*> *dead) {
515   bool MayHaveSplitComponents = false;
516   bool HaveDeadDef = false;
517 
518   for (VNInfo *VNI : LI.valnos) {
519     if (VNI->isUnused())
520       continue;
521     SlotIndex Def = VNI->def;
522     LiveRange::iterator I = LI.FindSegmentContaining(Def);
523     assert(I != LI.end() && "Missing segment for VNI");
524 
525     // Is the register live before? Otherwise we may have to add a read-undef
526     // flag for subregister defs.
527     Register VReg = LI.reg();
528     if (MRI->shouldTrackSubRegLiveness(VReg)) {
529       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
530         MachineInstr *MI = getInstructionFromIndex(Def);
531         MI->setRegisterDefReadUndef(VReg);
532       }
533     }
534 
535     if (I->end != Def.getDeadSlot())
536       continue;
537     if (VNI->isPHIDef()) {
538       // This is a dead PHI. Remove it.
539       VNI->markUnused();
540       LI.removeSegment(I);
541       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
542       MayHaveSplitComponents = true;
543     } else {
544       // This is a dead def. Make sure the instruction knows.
545       MachineInstr *MI = getInstructionFromIndex(Def);
546       assert(MI && "No instruction defining live value");
547       MI->addRegisterDead(LI.reg(), TRI);
548       if (HaveDeadDef)
549         MayHaveSplitComponents = true;
550       HaveDeadDef = true;
551 
552       if (dead && MI->allDefsAreDead()) {
553         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
554         dead->push_back(MI);
555       }
556     }
557   }
558   return MayHaveSplitComponents;
559 }
560 
561 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
562   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
563   assert(Register::isVirtualRegister(Reg) &&
564          "Can only shrink virtual registers");
565   // Find all the values used, including PHI kills.
566   ShrinkToUsesWorkList WorkList;
567 
568   // Visit all instructions reading Reg.
569   SlotIndex LastIdx;
570   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
571     // Skip "undef" uses.
572     if (!MO.readsReg())
573       continue;
574     // Maybe the operand is for a subregister we don't care about.
575     unsigned SubReg = MO.getSubReg();
576     if (SubReg != 0) {
577       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
578       if ((LaneMask & SR.LaneMask).none())
579         continue;
580     }
581     // We only need to visit each instruction once.
582     MachineInstr *UseMI = MO.getParent();
583     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
584     if (Idx == LastIdx)
585       continue;
586     LastIdx = Idx;
587 
588     LiveQueryResult LRQ = SR.Query(Idx);
589     VNInfo *VNI = LRQ.valueIn();
590     // For Subranges it is possible that only undef values are left in that
591     // part of the subregister, so there is no real liverange at the use
592     if (!VNI)
593       continue;
594 
595     // Special case: An early-clobber tied operand reads and writes the
596     // register one slot early.
597     if (VNInfo *DefVNI = LRQ.valueDefined())
598       Idx = DefVNI->def;
599 
600     WorkList.push_back(std::make_pair(Idx, VNI));
601   }
602 
603   // Create a new live ranges with only minimal live segments per def.
604   LiveRange NewLR;
605   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
606   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
607 
608   // Move the trimmed ranges back.
609   SR.segments.swap(NewLR.segments);
610 
611   // Remove dead PHI value numbers
612   for (VNInfo *VNI : SR.valnos) {
613     if (VNI->isUnused())
614       continue;
615     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
616     assert(Segment != nullptr && "Missing segment for VNI");
617     if (Segment->end != VNI->def.getDeadSlot())
618       continue;
619     if (VNI->isPHIDef()) {
620       // This is a dead PHI. Remove it.
621       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
622                         << " may separate interval\n");
623       VNI->markUnused();
624       SR.removeSegment(*Segment);
625     }
626   }
627 
628   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
629 }
630 
631 void LiveIntervals::extendToIndices(LiveRange &LR,
632                                     ArrayRef<SlotIndex> Indices,
633                                     ArrayRef<SlotIndex> Undefs) {
634   assert(LICalc && "LICalc not initialized.");
635   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
636   for (SlotIndex Idx : Indices)
637     LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
638 }
639 
640 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
641                                SmallVectorImpl<SlotIndex> *EndPoints) {
642   LiveQueryResult LRQ = LR.Query(Kill);
643   VNInfo *VNI = LRQ.valueOutOrDead();
644   if (!VNI)
645     return;
646 
647   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
648   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
649 
650   // If VNI isn't live out from KillMBB, the value is trivially pruned.
651   if (LRQ.endPoint() < MBBEnd) {
652     LR.removeSegment(Kill, LRQ.endPoint());
653     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
654     return;
655   }
656 
657   // VNI is live out of KillMBB.
658   LR.removeSegment(Kill, MBBEnd);
659   if (EndPoints) EndPoints->push_back(MBBEnd);
660 
661   // Find all blocks that are reachable from KillMBB without leaving VNI's live
662   // range. It is possible that KillMBB itself is reachable, so start a DFS
663   // from each successor.
664   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
665   VisitedTy Visited;
666   for (MachineBasicBlock *Succ : KillMBB->successors()) {
667     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
668          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
669          I != E;) {
670       MachineBasicBlock *MBB = *I;
671 
672       // Check if VNI is live in to MBB.
673       SlotIndex MBBStart, MBBEnd;
674       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
675       LiveQueryResult LRQ = LR.Query(MBBStart);
676       if (LRQ.valueIn() != VNI) {
677         // This block isn't part of the VNI segment. Prune the search.
678         I.skipChildren();
679         continue;
680       }
681 
682       // Prune the search if VNI is killed in MBB.
683       if (LRQ.endPoint() < MBBEnd) {
684         LR.removeSegment(MBBStart, LRQ.endPoint());
685         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
686         I.skipChildren();
687         continue;
688       }
689 
690       // VNI is live through MBB.
691       LR.removeSegment(MBBStart, MBBEnd);
692       if (EndPoints) EndPoints->push_back(MBBEnd);
693       ++I;
694     }
695   }
696 }
697 
698 //===----------------------------------------------------------------------===//
699 // Register allocator hooks.
700 //
701 
702 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
703   // Keep track of regunit ranges.
704   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
705 
706   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
707     Register Reg = Register::index2VirtReg(i);
708     if (MRI->reg_nodbg_empty(Reg))
709       continue;
710     const LiveInterval &LI = getInterval(Reg);
711     if (LI.empty())
712       continue;
713 
714     // Find the regunit intervals for the assigned register. They may overlap
715     // the virtual register live range, cancelling any kills.
716     RU.clear();
717     for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
718          ++Unit) {
719       const LiveRange &RURange = getRegUnit(*Unit);
720       if (RURange.empty())
721         continue;
722       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
723     }
724     // Every instruction that kills Reg corresponds to a segment range end
725     // point.
726     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
727          ++RI) {
728       // A block index indicates an MBB edge.
729       if (RI->end.isBlock())
730         continue;
731       MachineInstr *MI = getInstructionFromIndex(RI->end);
732       if (!MI)
733         continue;
734 
735       // Check if any of the regunits are live beyond the end of RI. That could
736       // happen when a physreg is defined as a copy of a virtreg:
737       //
738       //   %eax = COPY %5
739       //   FOO %5             <--- MI, cancel kill because %eax is live.
740       //   BAR killed %eax
741       //
742       // There should be no kill flag on FOO when %5 is rewritten as %eax.
743       for (auto &RUP : RU) {
744         const LiveRange &RURange = *RUP.first;
745         LiveRange::const_iterator &I = RUP.second;
746         if (I == RURange.end())
747           continue;
748         I = RURange.advanceTo(I, RI->end);
749         if (I == RURange.end() || I->start >= RI->end)
750           continue;
751         // I is overlapping RI.
752         goto CancelKill;
753       }
754 
755       if (MRI->subRegLivenessEnabled()) {
756         // When reading a partial undefined value we must not add a kill flag.
757         // The regalloc might have used the undef lane for something else.
758         // Example:
759         //     %1 = ...                  ; R32: %1
760         //     %2:high16 = ...           ; R64: %2
761         //        = read killed %2        ; R64: %2
762         //        = read %1              ; R32: %1
763         // The <kill> flag is correct for %2, but the register allocator may
764         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
765         // are actually never written by %2. After assignment the <kill>
766         // flag at the read instruction is invalid.
767         LaneBitmask DefinedLanesMask;
768         if (LI.hasSubRanges()) {
769           // Compute a mask of lanes that are defined.
770           DefinedLanesMask = LaneBitmask::getNone();
771           for (const LiveInterval::SubRange &SR : LI.subranges())
772             for (const LiveRange::Segment &Segment : SR.segments) {
773               if (Segment.start >= RI->end)
774                 break;
775               if (Segment.end == RI->end) {
776                 DefinedLanesMask |= SR.LaneMask;
777                 break;
778               }
779             }
780         } else
781           DefinedLanesMask = LaneBitmask::getAll();
782 
783         bool IsFullWrite = false;
784         for (const MachineOperand &MO : MI->operands()) {
785           if (!MO.isReg() || MO.getReg() != Reg)
786             continue;
787           if (MO.isUse()) {
788             // Reading any undefined lanes?
789             unsigned SubReg = MO.getSubReg();
790             LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
791                                          : MRI->getMaxLaneMaskForVReg(Reg);
792             if ((UseMask & ~DefinedLanesMask).any())
793               goto CancelKill;
794           } else if (MO.getSubReg() == 0) {
795             // Writing to the full register?
796             assert(MO.isDef());
797             IsFullWrite = true;
798           }
799         }
800 
801         // If an instruction writes to a subregister, a new segment starts in
802         // the LiveInterval. But as this is only overriding part of the register
803         // adding kill-flags is not correct here after registers have been
804         // assigned.
805         if (!IsFullWrite) {
806           // Next segment has to be adjacent in the subregister write case.
807           LiveRange::const_iterator N = std::next(RI);
808           if (N != LI.end() && N->start == RI->end)
809             goto CancelKill;
810         }
811       }
812 
813       MI->addRegisterKilled(Reg, nullptr);
814       continue;
815 CancelKill:
816       MI->clearRegisterKills(Reg, nullptr);
817     }
818   }
819 }
820 
821 MachineBasicBlock*
822 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
823   // A local live range must be fully contained inside the block, meaning it is
824   // defined and killed at instructions, not at block boundaries. It is not
825   // live in or out of any block.
826   //
827   // It is technically possible to have a PHI-defined live range identical to a
828   // single block, but we are going to return false in that case.
829 
830   SlotIndex Start = LI.beginIndex();
831   if (Start.isBlock())
832     return nullptr;
833 
834   SlotIndex Stop = LI.endIndex();
835   if (Stop.isBlock())
836     return nullptr;
837 
838   // getMBBFromIndex doesn't need to search the MBB table when both indexes
839   // belong to proper instructions.
840   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
841   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
842   return MBB1 == MBB2 ? MBB1 : nullptr;
843 }
844 
845 bool
846 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
847   for (const VNInfo *PHI : LI.valnos) {
848     if (PHI->isUnused() || !PHI->isPHIDef())
849       continue;
850     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
851     // Conservatively return true instead of scanning huge predecessor lists.
852     if (PHIMBB->pred_size() > 100)
853       return true;
854     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
855       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
856         return true;
857   }
858   return false;
859 }
860 
861 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
862                                     const MachineBlockFrequencyInfo *MBFI,
863                                     const MachineInstr &MI) {
864   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
865 }
866 
867 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
868                                     const MachineBlockFrequencyInfo *MBFI,
869                                     const MachineBasicBlock *MBB) {
870   return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
871 }
872 
873 LiveRange::Segment
874 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
875   LiveInterval &Interval = createEmptyInterval(Reg);
876   VNInfo *VN = Interval.getNextValue(
877       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
878       getVNInfoAllocator());
879   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
880                        getMBBEndIdx(startInst.getParent()), VN);
881   Interval.addSegment(S);
882 
883   return S;
884 }
885 
886 //===----------------------------------------------------------------------===//
887 //                          Register mask functions
888 //===----------------------------------------------------------------------===//
889 
890 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
891                                              BitVector &UsableRegs) {
892   if (LI.empty())
893     return false;
894   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
895 
896   // Use a smaller arrays for local live ranges.
897   ArrayRef<SlotIndex> Slots;
898   ArrayRef<const uint32_t*> Bits;
899   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
900     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
901     Bits = getRegMaskBitsInBlock(MBB->getNumber());
902   } else {
903     Slots = getRegMaskSlots();
904     Bits = getRegMaskBits();
905   }
906 
907   // We are going to enumerate all the register mask slots contained in LI.
908   // Start with a binary search of RegMaskSlots to find a starting point.
909   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
910   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
911 
912   // No slots in range, LI begins after the last call.
913   if (SlotI == SlotE)
914     return false;
915 
916   bool Found = false;
917   // Utility to union regmasks.
918   auto unionBitMask = [&](unsigned Idx) {
919       if (!Found) {
920         // This is the first overlap. Initialize UsableRegs to all ones.
921         UsableRegs.clear();
922         UsableRegs.resize(TRI->getNumRegs(), true);
923         Found = true;
924       }
925       // Remove usable registers clobbered by this mask.
926       UsableRegs.clearBitsNotInMask(Bits[Idx]);
927   };
928   while (true) {
929     assert(*SlotI >= LiveI->start);
930     // Loop over all slots overlapping this segment.
931     while (*SlotI < LiveI->end) {
932       // *SlotI overlaps LI. Collect mask bits.
933       unionBitMask(SlotI - Slots.begin());
934       if (++SlotI == SlotE)
935         return Found;
936     }
937     // *SlotI is beyond the current LI segment.
938     LiveI = LI.advanceTo(LiveI, *SlotI);
939     if (LiveI == LiveE)
940       return Found;
941     // Advance SlotI until it overlaps.
942     while (*SlotI < LiveI->start)
943       if (++SlotI == SlotE)
944         return Found;
945   }
946 }
947 
948 //===----------------------------------------------------------------------===//
949 //                         IntervalUpdate class.
950 //===----------------------------------------------------------------------===//
951 
952 /// Toolkit used by handleMove to trim or extend live intervals.
953 class LiveIntervals::HMEditor {
954 private:
955   LiveIntervals& LIS;
956   const MachineRegisterInfo& MRI;
957   const TargetRegisterInfo& TRI;
958   SlotIndex OldIdx;
959   SlotIndex NewIdx;
960   SmallPtrSet<LiveRange*, 8> Updated;
961   bool UpdateFlags;
962 
963 public:
964   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
965            const TargetRegisterInfo& TRI,
966            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
967     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
968       UpdateFlags(UpdateFlags) {}
969 
970   // FIXME: UpdateFlags is a workaround that creates live intervals for all
971   // physregs, even those that aren't needed for regalloc, in order to update
972   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
973   // flags, and postRA passes will use a live register utility instead.
974   LiveRange *getRegUnitLI(unsigned Unit) {
975     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
976       return &LIS.getRegUnit(Unit);
977     return LIS.getCachedRegUnit(Unit);
978   }
979 
980   /// Update all live ranges touched by MI, assuming a move from OldIdx to
981   /// NewIdx.
982   void updateAllRanges(MachineInstr *MI) {
983     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
984                       << *MI);
985     bool hasRegMask = false;
986     for (MachineOperand &MO : MI->operands()) {
987       if (MO.isRegMask())
988         hasRegMask = true;
989       if (!MO.isReg())
990         continue;
991       if (MO.isUse()) {
992         if (!MO.readsReg())
993           continue;
994         // Aggressively clear all kill flags.
995         // They are reinserted by VirtRegRewriter.
996         MO.setIsKill(false);
997       }
998 
999       Register Reg = MO.getReg();
1000       if (!Reg)
1001         continue;
1002       if (Register::isVirtualRegister(Reg)) {
1003         LiveInterval &LI = LIS.getInterval(Reg);
1004         if (LI.hasSubRanges()) {
1005           unsigned SubReg = MO.getSubReg();
1006           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1007                                         : MRI.getMaxLaneMaskForVReg(Reg);
1008           for (LiveInterval::SubRange &S : LI.subranges()) {
1009             if ((S.LaneMask & LaneMask).none())
1010               continue;
1011             updateRange(S, Reg, S.LaneMask);
1012           }
1013         }
1014         updateRange(LI, Reg, LaneBitmask::getNone());
1015         // If main range has a hole and we are moving a subrange use across
1016         // the hole updateRange() cannot properly handle it since it only
1017         // gets the LiveRange and not the whole LiveInterval. As a result
1018         // we may end up with a main range not covering all subranges.
1019         // This is extremely rare case, so let's check and reconstruct the
1020         // main range.
1021         for (LiveInterval::SubRange &S : LI.subranges()) {
1022           if (LI.covers(S))
1023             continue;
1024           LI.clear();
1025           LIS.constructMainRangeFromSubranges(LI);
1026           break;
1027         }
1028 
1029         continue;
1030       }
1031 
1032       // For physregs, only update the regunits that actually have a
1033       // precomputed live range.
1034       for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid();
1035            ++Units)
1036         if (LiveRange *LR = getRegUnitLI(*Units))
1037           updateRange(*LR, *Units, LaneBitmask::getNone());
1038     }
1039     if (hasRegMask)
1040       updateRegMaskSlots();
1041   }
1042 
1043 private:
1044   /// Update a single live range, assuming an instruction has been moved from
1045   /// OldIdx to NewIdx.
1046   void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1047     if (!Updated.insert(&LR).second)
1048       return;
1049     LLVM_DEBUG({
1050       dbgs() << "     ";
1051       if (Register::isVirtualRegister(Reg)) {
1052         dbgs() << printReg(Reg);
1053         if (LaneMask.any())
1054           dbgs() << " L" << PrintLaneMask(LaneMask);
1055       } else {
1056         dbgs() << printRegUnit(Reg, &TRI);
1057       }
1058       dbgs() << ":\t" << LR << '\n';
1059     });
1060     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1061       handleMoveDown(LR);
1062     else
1063       handleMoveUp(LR, Reg, LaneMask);
1064     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1065     LR.verify();
1066   }
1067 
1068   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1069   /// to NewIdx (OldIdx < NewIdx).
1070   void handleMoveDown(LiveRange &LR) {
1071     LiveRange::iterator E = LR.end();
1072     // Segment going into OldIdx.
1073     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1074 
1075     // No value live before or after OldIdx? Nothing to do.
1076     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1077       return;
1078 
1079     LiveRange::iterator OldIdxOut;
1080     // Do we have a value live-in to OldIdx?
1081     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1082       // If the live-in value already extends to NewIdx, there is nothing to do.
1083       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1084         return;
1085       // Aggressively remove all kill flags from the old kill point.
1086       // Kill flags shouldn't be used while live intervals exist, they will be
1087       // reinserted by VirtRegRewriter.
1088       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1089         for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1090           if (MOP.isReg() && MOP.isUse())
1091             MOP.setIsKill(false);
1092 
1093       // Is there a def before NewIdx which is not OldIdx?
1094       LiveRange::iterator Next = std::next(OldIdxIn);
1095       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1096           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1097         // If we are here then OldIdx was just a use but not a def. We only have
1098         // to ensure liveness extends to NewIdx.
1099         LiveRange::iterator NewIdxIn =
1100           LR.advanceTo(Next, NewIdx.getBaseIndex());
1101         // Extend the segment before NewIdx if necessary.
1102         if (NewIdxIn == E ||
1103             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1104           LiveRange::iterator Prev = std::prev(NewIdxIn);
1105           Prev->end = NewIdx.getRegSlot();
1106         }
1107         // Extend OldIdxIn.
1108         OldIdxIn->end = Next->start;
1109         return;
1110       }
1111 
1112       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1113       // invalid by overlapping ranges.
1114       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1115       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1116       // If this was not a kill, then there was no def and we're done.
1117       if (!isKill)
1118         return;
1119 
1120       // Did we have a Def at OldIdx?
1121       OldIdxOut = Next;
1122       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1123         return;
1124     } else {
1125       OldIdxOut = OldIdxIn;
1126     }
1127 
1128     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1129     // to the segment starting there.
1130     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1131            "No def?");
1132     VNInfo *OldIdxVNI = OldIdxOut->valno;
1133     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1134 
1135     // If the defined value extends beyond NewIdx, just move the beginning
1136     // of the segment to NewIdx.
1137     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1138     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1139       OldIdxVNI->def = NewIdxDef;
1140       OldIdxOut->start = OldIdxVNI->def;
1141       return;
1142     }
1143 
1144     // If we are here then we have a Definition at OldIdx which ends before
1145     // NewIdx.
1146 
1147     // Is there an existing Def at NewIdx?
1148     LiveRange::iterator AfterNewIdx
1149       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1150     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1151     if (!OldIdxDefIsDead &&
1152         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1153       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1154       VNInfo *DefVNI;
1155       if (OldIdxOut != LR.begin() &&
1156           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1157                                      OldIdxOut->start)) {
1158         // There is no gap between OldIdxOut and its predecessor anymore,
1159         // merge them.
1160         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1161         DefVNI = OldIdxVNI;
1162         IPrev->end = OldIdxOut->end;
1163       } else {
1164         // The value is live in to OldIdx
1165         LiveRange::iterator INext = std::next(OldIdxOut);
1166         assert(INext != E && "Must have following segment");
1167         // We merge OldIdxOut and its successor. As we're dealing with subreg
1168         // reordering, there is always a successor to OldIdxOut in the same BB
1169         // We don't need INext->valno anymore and will reuse for the new segment
1170         // we create later.
1171         DefVNI = OldIdxVNI;
1172         INext->start = OldIdxOut->end;
1173         INext->valno->def = INext->start;
1174       }
1175       // If NewIdx is behind the last segment, extend that and append a new one.
1176       if (AfterNewIdx == E) {
1177         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1178         // one position.
1179         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1180         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1181         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1182         // The last segment is undefined now, reuse it for a dead def.
1183         LiveRange::iterator NewSegment = std::prev(E);
1184         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1185                                          DefVNI);
1186         DefVNI->def = NewIdxDef;
1187 
1188         LiveRange::iterator Prev = std::prev(NewSegment);
1189         Prev->end = NewIdxDef;
1190       } else {
1191         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1192         // one position.
1193         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1194         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1195         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1196         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1197         // We have two cases:
1198         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1199           // Case 1: NewIdx is inside a liverange. Split this liverange at
1200           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1201           LiveRange::iterator NewSegment = AfterNewIdx;
1202           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1203           Prev->valno->def = NewIdxDef;
1204 
1205           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1206           DefVNI->def = Prev->start;
1207         } else {
1208           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1209           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1210           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1211           DefVNI->def = NewIdxDef;
1212           assert(DefVNI != AfterNewIdx->valno);
1213         }
1214       }
1215       return;
1216     }
1217 
1218     if (AfterNewIdx != E &&
1219         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1220       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1221       // that value.
1222       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1223       LR.removeValNo(OldIdxVNI);
1224     } else {
1225       // There was no existing def at NewIdx. We need to create a dead def
1226       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1227       // a new segment at the place where we want to construct the dead def.
1228       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1229       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1230       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1231       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1232       // We can reuse OldIdxVNI now.
1233       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1234       VNInfo *NewSegmentVNI = OldIdxVNI;
1235       NewSegmentVNI->def = NewIdxDef;
1236       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1237                                        NewSegmentVNI);
1238     }
1239   }
1240 
1241   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1242   /// to NewIdx (NewIdx < OldIdx).
1243   void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1244     LiveRange::iterator E = LR.end();
1245     // Segment going into OldIdx.
1246     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1247 
1248     // No value live before or after OldIdx? Nothing to do.
1249     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1250       return;
1251 
1252     LiveRange::iterator OldIdxOut;
1253     // Do we have a value live-in to OldIdx?
1254     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1255       // If the live-in value isn't killed here, then we have no Def at
1256       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1257       // to do.
1258       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1259       if (!isKill)
1260         return;
1261 
1262       // At this point we have to move OldIdxIn->end back to the nearest
1263       // previous use or (dead-)def but no further than NewIdx.
1264       SlotIndex DefBeforeOldIdx
1265         = std::max(OldIdxIn->start.getDeadSlot(),
1266                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1267       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1268 
1269       // Did we have a Def at OldIdx? If not we are done now.
1270       OldIdxOut = std::next(OldIdxIn);
1271       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1272         return;
1273     } else {
1274       OldIdxOut = OldIdxIn;
1275       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1276     }
1277 
1278     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1279     // to the segment starting there.
1280     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1281            "No def?");
1282     VNInfo *OldIdxVNI = OldIdxOut->valno;
1283     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1284     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1285 
1286     // Is there an existing def at NewIdx?
1287     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1288     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1289     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1290       assert(NewIdxOut->valno != OldIdxVNI &&
1291              "Same value defined more than once?");
1292       // If OldIdx was a dead def remove it.
1293       if (!OldIdxDefIsDead) {
1294         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1295         // NewIdx so it can take its place.
1296         OldIdxVNI->def = NewIdxDef;
1297         OldIdxOut->start = NewIdxDef;
1298         LR.removeValNo(NewIdxOut->valno);
1299       } else {
1300         // Simply remove the dead def at OldIdx.
1301         LR.removeValNo(OldIdxVNI);
1302       }
1303     } else {
1304       // Previously nothing was live after NewIdx, so all we have to do now is
1305       // move the begin of OldIdxOut to NewIdx.
1306       if (!OldIdxDefIsDead) {
1307         // Do we have any intermediate Defs between OldIdx and NewIdx?
1308         if (OldIdxIn != E &&
1309             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1310           // OldIdx is not a dead def and NewIdx is before predecessor start.
1311           LiveRange::iterator NewIdxIn = NewIdxOut;
1312           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1313           const SlotIndex SplitPos = NewIdxDef;
1314           OldIdxVNI = OldIdxIn->valno;
1315 
1316           SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1317           LiveRange::iterator Prev = std::prev(OldIdxIn);
1318           if (OldIdxIn != LR.begin() &&
1319               SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1320             // If the segment before OldIdx read a value defined earlier than
1321             // NewIdx, the moved instruction also reads and forwards that
1322             // value. Extend the lifetime of the new def point.
1323 
1324             // Extend to where the previous range started, unless there is
1325             // another redef first.
1326             NewDefEndPoint = std::min(OldIdxIn->start,
1327                                       std::next(NewIdxOut)->start);
1328           }
1329 
1330           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1331           OldIdxOut->valno->def = OldIdxIn->start;
1332           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1333                                           OldIdxOut->valno);
1334           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1335           // We Slide [NewIdxIn, OldIdxIn) down one position.
1336           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1337           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1338           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1339           // NewIdxIn is now considered undef so we can reuse it for the moved
1340           // value.
1341           LiveRange::iterator NewSegment = NewIdxIn;
1342           LiveRange::iterator Next = std::next(NewSegment);
1343           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1344             // There is no gap between NewSegment and its predecessor.
1345             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1346                                              Next->valno);
1347 
1348             *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1349             Next->valno->def = SplitPos;
1350           } else {
1351             // There is a gap between NewSegment and its predecessor
1352             // Value becomes live in.
1353             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1354             NewSegment->valno->def = SplitPos;
1355           }
1356         } else {
1357           // Leave the end point of a live def.
1358           OldIdxOut->start = NewIdxDef;
1359           OldIdxVNI->def = NewIdxDef;
1360           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1361             OldIdxIn->end = NewIdxDef;
1362         }
1363       } else if (OldIdxIn != E
1364           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1365           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1366         // OldIdxVNI is a dead def that has been moved into the middle of
1367         // another value in LR. That can happen when LR is a whole register,
1368         // but the dead def is a write to a subreg that is dead at NewIdx.
1369         // The dead def may have been moved across other values
1370         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1371         // down one position.
1372         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1373         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1374         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1375         // Modify the segment at NewIdxOut and the following segment to meet at
1376         // the point of the dead def, with the following segment getting
1377         // OldIdxVNI as its value number.
1378         *NewIdxOut = LiveRange::Segment(
1379             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1380         *(NewIdxOut + 1) = LiveRange::Segment(
1381             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1382         OldIdxVNI->def = NewIdxDef;
1383         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1384         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1385           Idx->valno = OldIdxVNI;
1386         // Aggressively remove all dead flags from the former dead definition.
1387         // Kill/dead flags shouldn't be used while live intervals exist; they
1388         // will be reinserted by VirtRegRewriter.
1389         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1390           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1391             if (MO->isReg() && !MO->isUse())
1392               MO->setIsDead(false);
1393       } else {
1394         // OldIdxVNI is a dead def. It may have been moved across other values
1395         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1396         // down one position.
1397         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1398         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1399         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1400         // OldIdxVNI can be reused now to build a new dead def segment.
1401         LiveRange::iterator NewSegment = NewIdxOut;
1402         VNInfo *NewSegmentVNI = OldIdxVNI;
1403         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1404                                          NewSegmentVNI);
1405         NewSegmentVNI->def = NewIdxDef;
1406       }
1407     }
1408   }
1409 
1410   void updateRegMaskSlots() {
1411     SmallVectorImpl<SlotIndex>::iterator RI =
1412         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1413     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1414            "No RegMask at OldIdx.");
1415     *RI = NewIdx.getRegSlot();
1416     assert((RI == LIS.RegMaskSlots.begin() ||
1417             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1418            "Cannot move regmask instruction above another call");
1419     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1420             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1421            "Cannot move regmask instruction below another call");
1422   }
1423 
1424   // Return the last use of reg between NewIdx and OldIdx.
1425   SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1426                               LaneBitmask LaneMask) {
1427     if (Register::isVirtualRegister(Reg)) {
1428       SlotIndex LastUse = Before;
1429       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1430         if (MO.isUndef())
1431           continue;
1432         unsigned SubReg = MO.getSubReg();
1433         if (SubReg != 0 && LaneMask.any()
1434             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1435           continue;
1436 
1437         const MachineInstr &MI = *MO.getParent();
1438         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1439         if (InstSlot > LastUse && InstSlot < OldIdx)
1440           LastUse = InstSlot.getRegSlot();
1441       }
1442       return LastUse;
1443     }
1444 
1445     // This is a regunit interval, so scanning the use list could be very
1446     // expensive. Scan upwards from OldIdx instead.
1447     assert(Before < OldIdx && "Expected upwards move");
1448     SlotIndexes *Indexes = LIS.getSlotIndexes();
1449     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1450 
1451     // OldIdx may not correspond to an instruction any longer, so set MII to
1452     // point to the next instruction after OldIdx, or MBB->end().
1453     MachineBasicBlock::iterator MII = MBB->end();
1454     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1455                            Indexes->getNextNonNullIndex(OldIdx)))
1456       if (MI->getParent() == MBB)
1457         MII = MI;
1458 
1459     MachineBasicBlock::iterator Begin = MBB->begin();
1460     while (MII != Begin) {
1461       if ((--MII)->isDebugInstr())
1462         continue;
1463       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1464 
1465       // Stop searching when Before is reached.
1466       if (!SlotIndex::isEarlierInstr(Before, Idx))
1467         return Before;
1468 
1469       // Check if MII uses Reg.
1470       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1471         if (MO->isReg() && !MO->isUndef() &&
1472             Register::isPhysicalRegister(MO->getReg()) &&
1473             TRI.hasRegUnit(MO->getReg(), Reg))
1474           return Idx.getRegSlot();
1475     }
1476     // Didn't reach Before. It must be the first instruction in the block.
1477     return Before;
1478   }
1479 };
1480 
1481 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1482   // It is fine to move a bundle as a whole, but not an individual instruction
1483   // inside it.
1484   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1485          "Cannot move instruction in bundle");
1486   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1487   Indexes->removeMachineInstrFromMaps(MI);
1488   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1489   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1490          OldIndex < getMBBEndIdx(MI.getParent()) &&
1491          "Cannot handle moves across basic block boundaries.");
1492 
1493   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1494   HME.updateAllRanges(&MI);
1495 }
1496 
1497 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1498                                             bool UpdateFlags) {
1499   assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1500          "Bundle start is not a bundle");
1501   SmallVector<SlotIndex, 16> ToProcess;
1502   const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1503   auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1504 
1505   auto I = BundleStart.getIterator();
1506   I++;
1507   while (I != BundleEnd) {
1508     if (!Indexes->hasIndex(*I))
1509       continue;
1510     SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1511     ToProcess.push_back(OldIndex);
1512     Indexes->removeMachineInstrFromMaps(*I, true);
1513     I++;
1514   }
1515   for (SlotIndex OldIndex : ToProcess) {
1516     HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1517     HME.updateAllRanges(&BundleStart);
1518   }
1519 
1520   // Fix up dead defs
1521   const SlotIndex Index = getInstructionIndex(BundleStart);
1522   for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1523     MachineOperand &MO = BundleStart.getOperand(Idx);
1524     if (!MO.isReg())
1525       continue;
1526     Register Reg = MO.getReg();
1527     if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1528       LiveInterval &LI = getInterval(Reg);
1529       LiveQueryResult LRQ = LI.Query(Index);
1530       if (LRQ.isDeadDef())
1531         MO.setIsDead();
1532     }
1533   }
1534 }
1535 
1536 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1537                                         const MachineBasicBlock::iterator End,
1538                                         const SlotIndex EndIdx, LiveRange &LR,
1539                                         const Register Reg,
1540                                         LaneBitmask LaneMask) {
1541   LiveInterval::iterator LII = LR.find(EndIdx);
1542   SlotIndex lastUseIdx;
1543   if (LII == LR.begin()) {
1544     // This happens when the function is called for a subregister that only
1545     // occurs _after_ the range that is to be repaired.
1546     return;
1547   }
1548   if (LII != LR.end() && LII->start < EndIdx)
1549     lastUseIdx = LII->end;
1550   else
1551     --LII;
1552 
1553   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1554     --I;
1555     MachineInstr &MI = *I;
1556     if (MI.isDebugInstr())
1557       continue;
1558 
1559     SlotIndex instrIdx = getInstructionIndex(MI);
1560     bool isStartValid = getInstructionFromIndex(LII->start);
1561     bool isEndValid = getInstructionFromIndex(LII->end);
1562 
1563     // FIXME: This doesn't currently handle early-clobber or multiple removed
1564     // defs inside of the region to repair.
1565     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1566                                     OE = MI.operands_end();
1567          OI != OE; ++OI) {
1568       const MachineOperand &MO = *OI;
1569       if (!MO.isReg() || MO.getReg() != Reg)
1570         continue;
1571 
1572       unsigned SubReg = MO.getSubReg();
1573       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1574       if ((Mask & LaneMask).none())
1575         continue;
1576 
1577       if (MO.isDef()) {
1578         if (!isStartValid) {
1579           if (LII->end.isDead()) {
1580             SlotIndex prevStart;
1581             if (LII != LR.begin())
1582               prevStart = std::prev(LII)->start;
1583 
1584             // FIXME: This could be more efficient if there was a
1585             // removeSegment method that returned an iterator.
1586             LR.removeSegment(*LII, true);
1587             if (prevStart.isValid())
1588               LII = LR.find(prevStart);
1589             else
1590               LII = LR.begin();
1591           } else {
1592             LII->start = instrIdx.getRegSlot();
1593             LII->valno->def = instrIdx.getRegSlot();
1594             if (MO.getSubReg() && !MO.isUndef())
1595               lastUseIdx = instrIdx.getRegSlot();
1596             else
1597               lastUseIdx = SlotIndex();
1598             continue;
1599           }
1600         }
1601 
1602         if (!lastUseIdx.isValid()) {
1603           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1604           LiveRange::Segment S(instrIdx.getRegSlot(),
1605                                instrIdx.getDeadSlot(), VNI);
1606           LII = LR.addSegment(S);
1607         } else if (LII->start != instrIdx.getRegSlot()) {
1608           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1609           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1610           LII = LR.addSegment(S);
1611         }
1612 
1613         if (MO.getSubReg() && !MO.isUndef())
1614           lastUseIdx = instrIdx.getRegSlot();
1615         else
1616           lastUseIdx = SlotIndex();
1617       } else if (MO.isUse()) {
1618         // FIXME: This should probably be handled outside of this branch,
1619         // either as part of the def case (for defs inside of the region) or
1620         // after the loop over the region.
1621         if (!isEndValid && !LII->end.isBlock())
1622           LII->end = instrIdx.getRegSlot();
1623         if (!lastUseIdx.isValid())
1624           lastUseIdx = instrIdx.getRegSlot();
1625       }
1626     }
1627   }
1628 }
1629 
1630 void
1631 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1632                                       MachineBasicBlock::iterator Begin,
1633                                       MachineBasicBlock::iterator End,
1634                                       ArrayRef<Register> OrigRegs) {
1635   // Find anchor points, which are at the beginning/end of blocks or at
1636   // instructions that already have indexes.
1637   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1638     --Begin;
1639   while (End != MBB->end() && !Indexes->hasIndex(*End))
1640     ++End;
1641 
1642   SlotIndex EndIdx;
1643   if (End == MBB->end())
1644     EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1645   else
1646     EndIdx = getInstructionIndex(*End);
1647 
1648   Indexes->repairIndexesInRange(MBB, Begin, End);
1649 
1650   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1651     --I;
1652     MachineInstr &MI = *I;
1653     if (MI.isDebugInstr())
1654       continue;
1655     for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1656                                           MOE = MI.operands_end();
1657          MOI != MOE; ++MOI) {
1658       if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1659           !hasInterval(MOI->getReg())) {
1660         createAndComputeVirtRegInterval(MOI->getReg());
1661       }
1662     }
1663   }
1664 
1665   for (Register Reg : OrigRegs) {
1666     if (!Reg.isVirtual())
1667       continue;
1668 
1669     LiveInterval &LI = getInterval(Reg);
1670     // FIXME: Should we support undefs that gain defs?
1671     if (!LI.hasAtLeastOneValue())
1672       continue;
1673 
1674     for (LiveInterval::SubRange &S : LI.subranges())
1675       repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1676 
1677     repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1678   }
1679 }
1680 
1681 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1682   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1683     if (LiveRange *LR = getCachedRegUnit(*Unit))
1684       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1685         LR->removeValNo(VNI);
1686   }
1687 }
1688 
1689 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1690   // LI may not have the main range computed yet, but its subranges may
1691   // be present.
1692   VNInfo *VNI = LI.getVNInfoAt(Pos);
1693   if (VNI != nullptr) {
1694     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1695     LI.removeValNo(VNI);
1696   }
1697 
1698   // Also remove the value defined in subranges.
1699   for (LiveInterval::SubRange &S : LI.subranges()) {
1700     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1701       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1702         S.removeValNo(SVNI);
1703   }
1704   LI.removeEmptySubRanges();
1705 }
1706 
1707 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1708     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1709   ConnectedVNInfoEqClasses ConEQ(*this);
1710   unsigned NumComp = ConEQ.Classify(LI);
1711   if (NumComp <= 1)
1712     return;
1713   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1714   Register Reg = LI.reg();
1715   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1716   for (unsigned I = 1; I < NumComp; ++I) {
1717     Register NewVReg = MRI->createVirtualRegister(RegClass);
1718     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1719     SplitLIs.push_back(&NewLI);
1720   }
1721   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1722 }
1723 
1724 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1725   assert(LICalc && "LICalc not initialized.");
1726   LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1727   LICalc->constructMainRangeFromSubranges(LI);
1728 }
1729