1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LiveInterval analysis pass which is used 10 /// by the Linear Scan Register allocator. This pass linearizes the 11 /// basic blocks of the function in DFS order and computes live intervals for 12 /// each virtual and physical register. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DepthFirstIterator.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/iterator_range.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/CodeGen/LiveInterval.h" 24 #include "llvm/CodeGen/LiveIntervalCalc.h" 25 #include "llvm/CodeGen/LiveVariables.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/SlotIndexes.h" 36 #include "llvm/CodeGen/StackMaps.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/VirtRegMap.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/Statepoint.h" 42 #include "llvm/MC/LaneBitmask.h" 43 #include "llvm/MC/MCRegisterInfo.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <iterator> 54 #include <tuple> 55 #include <utility> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "regalloc" 60 61 char LiveIntervals::ID = 0; 62 char &llvm::LiveIntervalsID = LiveIntervals::ID; 63 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", 64 "Live Interval Analysis", false, false) 65 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 66 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 67 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 68 INITIALIZE_PASS_END(LiveIntervals, "liveintervals", 69 "Live Interval Analysis", false, false) 70 71 #ifndef NDEBUG 72 static cl::opt<bool> EnablePrecomputePhysRegs( 73 "precompute-phys-liveness", cl::Hidden, 74 cl::desc("Eagerly compute live intervals for all physreg units.")); 75 #else 76 static bool EnablePrecomputePhysRegs = false; 77 #endif // NDEBUG 78 79 namespace llvm { 80 81 cl::opt<bool> UseSegmentSetForPhysRegs( 82 "use-segment-set-for-physregs", cl::Hidden, cl::init(true), 83 cl::desc( 84 "Use segment set for the computation of the live ranges of physregs.")); 85 86 } // end namespace llvm 87 88 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { 89 AU.setPreservesCFG(); 90 AU.addRequired<AAResultsWrapperPass>(); 91 AU.addPreserved<AAResultsWrapperPass>(); 92 AU.addPreserved<LiveVariables>(); 93 AU.addPreservedID(MachineLoopInfoID); 94 AU.addRequiredTransitiveID(MachineDominatorsID); 95 AU.addPreservedID(MachineDominatorsID); 96 AU.addPreserved<SlotIndexes>(); 97 AU.addRequiredTransitive<SlotIndexes>(); 98 MachineFunctionPass::getAnalysisUsage(AU); 99 } 100 101 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { 102 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 103 } 104 105 LiveIntervals::~LiveIntervals() { delete LICalc; } 106 107 void LiveIntervals::releaseMemory() { 108 // Free the live intervals themselves. 109 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 110 delete VirtRegIntervals[Register::index2VirtReg(i)]; 111 VirtRegIntervals.clear(); 112 RegMaskSlots.clear(); 113 RegMaskBits.clear(); 114 RegMaskBlocks.clear(); 115 116 for (LiveRange *LR : RegUnitRanges) 117 delete LR; 118 RegUnitRanges.clear(); 119 120 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 121 VNInfoAllocator.Reset(); 122 } 123 124 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { 125 MF = &fn; 126 MRI = &MF->getRegInfo(); 127 TRI = MF->getSubtarget().getRegisterInfo(); 128 TII = MF->getSubtarget().getInstrInfo(); 129 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 130 Indexes = &getAnalysis<SlotIndexes>(); 131 DomTree = &getAnalysis<MachineDominatorTree>(); 132 133 if (!LICalc) 134 LICalc = new LiveIntervalCalc(); 135 136 // Allocate space for all virtual registers. 137 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 138 139 computeVirtRegs(); 140 computeRegMasks(); 141 computeLiveInRegUnits(); 142 143 if (EnablePrecomputePhysRegs) { 144 // For stress testing, precompute live ranges of all physical register 145 // units, including reserved registers. 146 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 147 getRegUnit(i); 148 } 149 LLVM_DEBUG(dump()); 150 return false; 151 } 152 153 void LiveIntervals::print(raw_ostream &OS, const Module* ) const { 154 OS << "********** INTERVALS **********\n"; 155 156 // Dump the regunits. 157 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) 158 if (LiveRange *LR = RegUnitRanges[Unit]) 159 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; 160 161 // Dump the virtregs. 162 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 163 Register Reg = Register::index2VirtReg(i); 164 if (hasInterval(Reg)) 165 OS << getInterval(Reg) << '\n'; 166 } 167 168 OS << "RegMasks:"; 169 for (SlotIndex Idx : RegMaskSlots) 170 OS << ' ' << Idx; 171 OS << '\n'; 172 173 printInstrs(OS); 174 } 175 176 void LiveIntervals::printInstrs(raw_ostream &OS) const { 177 OS << "********** MACHINEINSTRS **********\n"; 178 MF->print(OS, Indexes); 179 } 180 181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 182 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { 183 printInstrs(dbgs()); 184 } 185 #endif 186 187 LiveInterval *LiveIntervals::createInterval(Register reg) { 188 float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F; 189 return new LiveInterval(reg, Weight); 190 } 191 192 /// Compute the live interval of a virtual register, based on defs and uses. 193 bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 194 assert(LICalc && "LICalc not initialized."); 195 assert(LI.empty() && "Should only compute empty intervals."); 196 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 197 LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg())); 198 return computeDeadValues(LI, nullptr); 199 } 200 201 void LiveIntervals::computeVirtRegs() { 202 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 203 Register Reg = Register::index2VirtReg(i); 204 if (MRI->reg_nodbg_empty(Reg)) 205 continue; 206 LiveInterval &LI = createEmptyInterval(Reg); 207 bool NeedSplit = computeVirtRegInterval(LI); 208 if (NeedSplit) { 209 SmallVector<LiveInterval*, 8> SplitLIs; 210 splitSeparateComponents(LI, SplitLIs); 211 } 212 } 213 } 214 215 void LiveIntervals::computeRegMasks() { 216 RegMaskBlocks.resize(MF->getNumBlockIDs()); 217 218 // Find all instructions with regmask operands. 219 for (const MachineBasicBlock &MBB : *MF) { 220 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; 221 RMB.first = RegMaskSlots.size(); 222 223 // Some block starts, such as EH funclets, create masks. 224 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { 225 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 226 RegMaskBits.push_back(Mask); 227 } 228 229 // Unwinders may clobber additional registers. 230 // FIXME: This functionality can possibly be merged into 231 // MachineBasicBlock::getBeginClobberMask(). 232 if (MBB.isEHPad()) 233 if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) { 234 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 235 RegMaskBits.push_back(Mask); 236 } 237 238 for (const MachineInstr &MI : MBB) { 239 for (const MachineOperand &MO : MI.operands()) { 240 if (!MO.isRegMask()) 241 continue; 242 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 243 RegMaskBits.push_back(MO.getRegMask()); 244 } 245 } 246 247 // Some block ends, such as funclet returns, create masks. Put the mask on 248 // the last instruction of the block, because MBB slot index intervals are 249 // half-open. 250 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { 251 assert(!MBB.empty() && "empty return block?"); 252 RegMaskSlots.push_back( 253 Indexes->getInstructionIndex(MBB.back()).getRegSlot()); 254 RegMaskBits.push_back(Mask); 255 } 256 257 // Compute the number of register mask instructions in this block. 258 RMB.second = RegMaskSlots.size() - RMB.first; 259 } 260 } 261 262 //===----------------------------------------------------------------------===// 263 // Register Unit Liveness 264 //===----------------------------------------------------------------------===// 265 // 266 // Fixed interference typically comes from ABI boundaries: Function arguments 267 // and return values are passed in fixed registers, and so are exception 268 // pointers entering landing pads. Certain instructions require values to be 269 // present in specific registers. That is also represented through fixed 270 // interference. 271 // 272 273 /// Compute the live range of a register unit, based on the uses and defs of 274 /// aliasing registers. The range should be empty, or contain only dead 275 /// phi-defs from ABI blocks. 276 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 277 assert(LICalc && "LICalc not initialized."); 278 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 279 280 // The physregs aliasing Unit are the roots and their super-registers. 281 // Create all values as dead defs before extending to uses. Note that roots 282 // may share super-registers. That's OK because createDeadDefs() is 283 // idempotent. It is very rare for a register unit to have multiple roots, so 284 // uniquing super-registers is probably not worthwhile. 285 bool IsReserved = false; 286 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 287 bool IsRootReserved = true; 288 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 289 Super.isValid(); ++Super) { 290 MCRegister Reg = *Super; 291 if (!MRI->reg_empty(Reg)) 292 LICalc->createDeadDefs(LR, Reg); 293 // A register unit is considered reserved if all its roots and all their 294 // super registers are reserved. 295 if (!MRI->isReserved(Reg)) 296 IsRootReserved = false; 297 } 298 IsReserved |= IsRootReserved; 299 } 300 assert(IsReserved == MRI->isReservedRegUnit(Unit) && 301 "reserved computation mismatch"); 302 303 // Now extend LR to reach all uses. 304 // Ignore uses of reserved registers. We only track defs of those. 305 if (!IsReserved) { 306 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 307 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 308 Super.isValid(); ++Super) { 309 MCRegister Reg = *Super; 310 if (!MRI->reg_empty(Reg)) 311 LICalc->extendToUses(LR, Reg); 312 } 313 } 314 } 315 316 // Flush the segment set to the segment vector. 317 if (UseSegmentSetForPhysRegs) 318 LR.flushSegmentSet(); 319 } 320 321 /// Precompute the live ranges of any register units that are live-in to an ABI 322 /// block somewhere. Register values can appear without a corresponding def when 323 /// entering the entry block or a landing pad. 324 void LiveIntervals::computeLiveInRegUnits() { 325 RegUnitRanges.resize(TRI->getNumRegUnits()); 326 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 327 328 // Keep track of the live range sets allocated. 329 SmallVector<unsigned, 8> NewRanges; 330 331 // Check all basic blocks for live-ins. 332 for (const MachineBasicBlock &MBB : *MF) { 333 // We only care about ABI blocks: Entry + landing pads. 334 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) 335 continue; 336 337 // Create phi-defs at Begin for all live-in registers. 338 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); 339 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); 340 for (const auto &LI : MBB.liveins()) { 341 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { 342 unsigned Unit = *Units; 343 LiveRange *LR = RegUnitRanges[Unit]; 344 if (!LR) { 345 // Use segment set to speed-up initial computation of the live range. 346 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); 347 NewRanges.push_back(Unit); 348 } 349 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 350 (void)VNI; 351 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); 352 } 353 } 354 LLVM_DEBUG(dbgs() << '\n'); 355 } 356 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 357 358 // Compute the 'normal' part of the ranges. 359 for (unsigned Unit : NewRanges) 360 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 361 } 362 363 static void createSegmentsForValues(LiveRange &LR, 364 iterator_range<LiveInterval::vni_iterator> VNIs) { 365 for (VNInfo *VNI : VNIs) { 366 if (VNI->isUnused()) 367 continue; 368 SlotIndex Def = VNI->def; 369 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); 370 } 371 } 372 373 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, 374 ShrinkToUsesWorkList &WorkList, 375 Register Reg, LaneBitmask LaneMask) { 376 // Keep track of the PHIs that are in use. 377 SmallPtrSet<VNInfo*, 8> UsedPHIs; 378 // Blocks that have already been added to WorkList as live-out. 379 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; 380 381 auto getSubRange = [](const LiveInterval &I, LaneBitmask M) 382 -> const LiveRange& { 383 if (M.none()) 384 return I; 385 for (const LiveInterval::SubRange &SR : I.subranges()) { 386 if ((SR.LaneMask & M).any()) { 387 assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); 388 return SR; 389 } 390 } 391 llvm_unreachable("Subrange for mask not found"); 392 }; 393 394 const LiveInterval &LI = getInterval(Reg); 395 const LiveRange &OldRange = getSubRange(LI, LaneMask); 396 397 // Extend intervals to reach all uses in WorkList. 398 while (!WorkList.empty()) { 399 SlotIndex Idx = WorkList.back().first; 400 VNInfo *VNI = WorkList.back().second; 401 WorkList.pop_back(); 402 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); 403 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); 404 405 // Extend the live range for VNI to be live at Idx. 406 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { 407 assert(ExtVNI == VNI && "Unexpected existing value number"); 408 (void)ExtVNI; 409 // Is this a PHIDef we haven't seen before? 410 if (!VNI->isPHIDef() || VNI->def != BlockStart || 411 !UsedPHIs.insert(VNI).second) 412 continue; 413 // The PHI is live, make sure the predecessors are live-out. 414 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 415 if (!LiveOut.insert(Pred).second) 416 continue; 417 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 418 // A predecessor is not required to have a live-out value for a PHI. 419 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) 420 WorkList.push_back(std::make_pair(Stop, PVNI)); 421 } 422 continue; 423 } 424 425 // VNI is live-in to MBB. 426 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 427 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 428 429 // Make sure VNI is live-out from the predecessors. 430 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 431 if (!LiveOut.insert(Pred).second) 432 continue; 433 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 434 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { 435 assert(OldVNI == VNI && "Wrong value out of predecessor"); 436 (void)OldVNI; 437 WorkList.push_back(std::make_pair(Stop, VNI)); 438 } else { 439 #ifndef NDEBUG 440 // There was no old VNI. Verify that Stop is jointly dominated 441 // by <undef>s for this live range. 442 assert(LaneMask.any() && 443 "Missing value out of predecessor for main range"); 444 SmallVector<SlotIndex,8> Undefs; 445 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 446 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && 447 "Missing value out of predecessor for subrange"); 448 #endif 449 } 450 } 451 } 452 } 453 454 bool LiveIntervals::shrinkToUses(LiveInterval *li, 455 SmallVectorImpl<MachineInstr*> *dead) { 456 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); 457 assert(Register::isVirtualRegister(li->reg()) && 458 "Can only shrink virtual registers"); 459 460 // Shrink subregister live ranges. 461 bool NeedsCleanup = false; 462 for (LiveInterval::SubRange &S : li->subranges()) { 463 shrinkToUses(S, li->reg()); 464 if (S.empty()) 465 NeedsCleanup = true; 466 } 467 if (NeedsCleanup) 468 li->removeEmptySubRanges(); 469 470 // Find all the values used, including PHI kills. 471 ShrinkToUsesWorkList WorkList; 472 473 // Visit all instructions reading li->reg(). 474 Register Reg = li->reg(); 475 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { 476 if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg)) 477 continue; 478 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 479 LiveQueryResult LRQ = li->Query(Idx); 480 VNInfo *VNI = LRQ.valueIn(); 481 if (!VNI) { 482 // This shouldn't happen: readsVirtualRegister returns true, but there is 483 // no live value. It is likely caused by a target getting <undef> flags 484 // wrong. 485 LLVM_DEBUG( 486 dbgs() << Idx << '\t' << UseMI 487 << "Warning: Instr claims to read non-existent value in " 488 << *li << '\n'); 489 continue; 490 } 491 // Special case: An early-clobber tied operand reads and writes the 492 // register one slot early. 493 if (VNInfo *DefVNI = LRQ.valueDefined()) 494 Idx = DefVNI->def; 495 496 WorkList.push_back(std::make_pair(Idx, VNI)); 497 } 498 499 // Create new live ranges with only minimal live segments per def. 500 LiveRange NewLR; 501 createSegmentsForValues(NewLR, li->vnis()); 502 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); 503 504 // Move the trimmed segments back. 505 li->segments.swap(NewLR.segments); 506 507 // Handle dead values. 508 bool CanSeparate = computeDeadValues(*li, dead); 509 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 510 return CanSeparate; 511 } 512 513 bool LiveIntervals::computeDeadValues(LiveInterval &LI, 514 SmallVectorImpl<MachineInstr*> *dead) { 515 bool MayHaveSplitComponents = false; 516 bool HaveDeadDef = false; 517 518 for (VNInfo *VNI : LI.valnos) { 519 if (VNI->isUnused()) 520 continue; 521 SlotIndex Def = VNI->def; 522 LiveRange::iterator I = LI.FindSegmentContaining(Def); 523 assert(I != LI.end() && "Missing segment for VNI"); 524 525 // Is the register live before? Otherwise we may have to add a read-undef 526 // flag for subregister defs. 527 Register VReg = LI.reg(); 528 if (MRI->shouldTrackSubRegLiveness(VReg)) { 529 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { 530 MachineInstr *MI = getInstructionFromIndex(Def); 531 MI->setRegisterDefReadUndef(VReg); 532 } 533 } 534 535 if (I->end != Def.getDeadSlot()) 536 continue; 537 if (VNI->isPHIDef()) { 538 // This is a dead PHI. Remove it. 539 VNI->markUnused(); 540 LI.removeSegment(I); 541 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); 542 MayHaveSplitComponents = true; 543 } else { 544 // This is a dead def. Make sure the instruction knows. 545 MachineInstr *MI = getInstructionFromIndex(Def); 546 assert(MI && "No instruction defining live value"); 547 MI->addRegisterDead(LI.reg(), TRI); 548 if (HaveDeadDef) 549 MayHaveSplitComponents = true; 550 HaveDeadDef = true; 551 552 if (dead && MI->allDefsAreDead()) { 553 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); 554 dead->push_back(MI); 555 } 556 } 557 } 558 return MayHaveSplitComponents; 559 } 560 561 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) { 562 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); 563 assert(Register::isVirtualRegister(Reg) && 564 "Can only shrink virtual registers"); 565 // Find all the values used, including PHI kills. 566 ShrinkToUsesWorkList WorkList; 567 568 // Visit all instructions reading Reg. 569 SlotIndex LastIdx; 570 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 571 // Skip "undef" uses. 572 if (!MO.readsReg()) 573 continue; 574 // Maybe the operand is for a subregister we don't care about. 575 unsigned SubReg = MO.getSubReg(); 576 if (SubReg != 0) { 577 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 578 if ((LaneMask & SR.LaneMask).none()) 579 continue; 580 } 581 // We only need to visit each instruction once. 582 MachineInstr *UseMI = MO.getParent(); 583 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); 584 if (Idx == LastIdx) 585 continue; 586 LastIdx = Idx; 587 588 LiveQueryResult LRQ = SR.Query(Idx); 589 VNInfo *VNI = LRQ.valueIn(); 590 // For Subranges it is possible that only undef values are left in that 591 // part of the subregister, so there is no real liverange at the use 592 if (!VNI) 593 continue; 594 595 // Special case: An early-clobber tied operand reads and writes the 596 // register one slot early. 597 if (VNInfo *DefVNI = LRQ.valueDefined()) 598 Idx = DefVNI->def; 599 600 WorkList.push_back(std::make_pair(Idx, VNI)); 601 } 602 603 // Create a new live ranges with only minimal live segments per def. 604 LiveRange NewLR; 605 createSegmentsForValues(NewLR, SR.vnis()); 606 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); 607 608 // Move the trimmed ranges back. 609 SR.segments.swap(NewLR.segments); 610 611 // Remove dead PHI value numbers 612 for (VNInfo *VNI : SR.valnos) { 613 if (VNI->isUnused()) 614 continue; 615 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); 616 assert(Segment != nullptr && "Missing segment for VNI"); 617 if (Segment->end != VNI->def.getDeadSlot()) 618 continue; 619 if (VNI->isPHIDef()) { 620 // This is a dead PHI. Remove it. 621 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def 622 << " may separate interval\n"); 623 VNI->markUnused(); 624 SR.removeSegment(*Segment); 625 } 626 } 627 628 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); 629 } 630 631 void LiveIntervals::extendToIndices(LiveRange &LR, 632 ArrayRef<SlotIndex> Indices, 633 ArrayRef<SlotIndex> Undefs) { 634 assert(LICalc && "LICalc not initialized."); 635 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 636 for (SlotIndex Idx : Indices) 637 LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); 638 } 639 640 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, 641 SmallVectorImpl<SlotIndex> *EndPoints) { 642 LiveQueryResult LRQ = LR.Query(Kill); 643 VNInfo *VNI = LRQ.valueOutOrDead(); 644 if (!VNI) 645 return; 646 647 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 648 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); 649 650 // If VNI isn't live out from KillMBB, the value is trivially pruned. 651 if (LRQ.endPoint() < MBBEnd) { 652 LR.removeSegment(Kill, LRQ.endPoint()); 653 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 654 return; 655 } 656 657 // VNI is live out of KillMBB. 658 LR.removeSegment(Kill, MBBEnd); 659 if (EndPoints) EndPoints->push_back(MBBEnd); 660 661 // Find all blocks that are reachable from KillMBB without leaving VNI's live 662 // range. It is possible that KillMBB itself is reachable, so start a DFS 663 // from each successor. 664 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; 665 VisitedTy Visited; 666 for (MachineBasicBlock *Succ : KillMBB->successors()) { 667 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 668 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); 669 I != E;) { 670 MachineBasicBlock *MBB = *I; 671 672 // Check if VNI is live in to MBB. 673 SlotIndex MBBStart, MBBEnd; 674 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 675 LiveQueryResult LRQ = LR.Query(MBBStart); 676 if (LRQ.valueIn() != VNI) { 677 // This block isn't part of the VNI segment. Prune the search. 678 I.skipChildren(); 679 continue; 680 } 681 682 // Prune the search if VNI is killed in MBB. 683 if (LRQ.endPoint() < MBBEnd) { 684 LR.removeSegment(MBBStart, LRQ.endPoint()); 685 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 686 I.skipChildren(); 687 continue; 688 } 689 690 // VNI is live through MBB. 691 LR.removeSegment(MBBStart, MBBEnd); 692 if (EndPoints) EndPoints->push_back(MBBEnd); 693 ++I; 694 } 695 } 696 } 697 698 //===----------------------------------------------------------------------===// 699 // Register allocator hooks. 700 // 701 702 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 703 // Keep track of regunit ranges. 704 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; 705 706 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 707 Register Reg = Register::index2VirtReg(i); 708 if (MRI->reg_nodbg_empty(Reg)) 709 continue; 710 const LiveInterval &LI = getInterval(Reg); 711 if (LI.empty()) 712 continue; 713 714 // Target may have not allocated this yet. 715 Register PhysReg = VRM->getPhys(Reg); 716 if (!PhysReg) 717 continue; 718 719 // Find the regunit intervals for the assigned register. They may overlap 720 // the virtual register live range, cancelling any kills. 721 RU.clear(); 722 for (MCRegUnitIterator Unit(PhysReg, TRI); Unit.isValid(); 723 ++Unit) { 724 const LiveRange &RURange = getRegUnit(*Unit); 725 if (RURange.empty()) 726 continue; 727 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); 728 } 729 // Every instruction that kills Reg corresponds to a segment range end 730 // point. 731 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; 732 ++RI) { 733 // A block index indicates an MBB edge. 734 if (RI->end.isBlock()) 735 continue; 736 MachineInstr *MI = getInstructionFromIndex(RI->end); 737 if (!MI) 738 continue; 739 740 // Check if any of the regunits are live beyond the end of RI. That could 741 // happen when a physreg is defined as a copy of a virtreg: 742 // 743 // %eax = COPY %5 744 // FOO %5 <--- MI, cancel kill because %eax is live. 745 // BAR killed %eax 746 // 747 // There should be no kill flag on FOO when %5 is rewritten as %eax. 748 for (auto &RUP : RU) { 749 const LiveRange &RURange = *RUP.first; 750 LiveRange::const_iterator &I = RUP.second; 751 if (I == RURange.end()) 752 continue; 753 I = RURange.advanceTo(I, RI->end); 754 if (I == RURange.end() || I->start >= RI->end) 755 continue; 756 // I is overlapping RI. 757 goto CancelKill; 758 } 759 760 if (MRI->subRegLivenessEnabled()) { 761 // When reading a partial undefined value we must not add a kill flag. 762 // The regalloc might have used the undef lane for something else. 763 // Example: 764 // %1 = ... ; R32: %1 765 // %2:high16 = ... ; R64: %2 766 // = read killed %2 ; R64: %2 767 // = read %1 ; R32: %1 768 // The <kill> flag is correct for %2, but the register allocator may 769 // assign R0L to %1, and R0 to %2 because the low 32bits of R0 770 // are actually never written by %2. After assignment the <kill> 771 // flag at the read instruction is invalid. 772 LaneBitmask DefinedLanesMask; 773 if (LI.hasSubRanges()) { 774 // Compute a mask of lanes that are defined. 775 DefinedLanesMask = LaneBitmask::getNone(); 776 for (const LiveInterval::SubRange &SR : LI.subranges()) 777 for (const LiveRange::Segment &Segment : SR.segments) { 778 if (Segment.start >= RI->end) 779 break; 780 if (Segment.end == RI->end) { 781 DefinedLanesMask |= SR.LaneMask; 782 break; 783 } 784 } 785 } else 786 DefinedLanesMask = LaneBitmask::getAll(); 787 788 bool IsFullWrite = false; 789 for (const MachineOperand &MO : MI->operands()) { 790 if (!MO.isReg() || MO.getReg() != Reg) 791 continue; 792 if (MO.isUse()) { 793 // Reading any undefined lanes? 794 unsigned SubReg = MO.getSubReg(); 795 LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg) 796 : MRI->getMaxLaneMaskForVReg(Reg); 797 if ((UseMask & ~DefinedLanesMask).any()) 798 goto CancelKill; 799 } else if (MO.getSubReg() == 0) { 800 // Writing to the full register? 801 assert(MO.isDef()); 802 IsFullWrite = true; 803 } 804 } 805 806 // If an instruction writes to a subregister, a new segment starts in 807 // the LiveInterval. But as this is only overriding part of the register 808 // adding kill-flags is not correct here after registers have been 809 // assigned. 810 if (!IsFullWrite) { 811 // Next segment has to be adjacent in the subregister write case. 812 LiveRange::const_iterator N = std::next(RI); 813 if (N != LI.end() && N->start == RI->end) 814 goto CancelKill; 815 } 816 } 817 818 MI->addRegisterKilled(Reg, nullptr); 819 continue; 820 CancelKill: 821 MI->clearRegisterKills(Reg, nullptr); 822 } 823 } 824 } 825 826 MachineBasicBlock* 827 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 828 assert(!LI.empty() && "LiveInterval is empty."); 829 830 // A local live range must be fully contained inside the block, meaning it is 831 // defined and killed at instructions, not at block boundaries. It is not 832 // live in or out of any block. 833 // 834 // It is technically possible to have a PHI-defined live range identical to a 835 // single block, but we are going to return false in that case. 836 837 SlotIndex Start = LI.beginIndex(); 838 if (Start.isBlock()) 839 return nullptr; 840 841 SlotIndex Stop = LI.endIndex(); 842 if (Stop.isBlock()) 843 return nullptr; 844 845 // getMBBFromIndex doesn't need to search the MBB table when both indexes 846 // belong to proper instructions. 847 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 848 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 849 return MBB1 == MBB2 ? MBB1 : nullptr; 850 } 851 852 bool 853 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 854 for (const VNInfo *PHI : LI.valnos) { 855 if (PHI->isUnused() || !PHI->isPHIDef()) 856 continue; 857 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 858 // Conservatively return true instead of scanning huge predecessor lists. 859 if (PHIMBB->pred_size() > 100) 860 return true; 861 for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) 862 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) 863 return true; 864 } 865 return false; 866 } 867 868 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 869 const MachineBlockFrequencyInfo *MBFI, 870 const MachineInstr &MI) { 871 return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); 872 } 873 874 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 875 const MachineBlockFrequencyInfo *MBFI, 876 const MachineBasicBlock *MBB) { 877 return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB); 878 } 879 880 LiveRange::Segment 881 LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) { 882 LiveInterval &Interval = createEmptyInterval(Reg); 883 VNInfo *VN = Interval.getNextValue( 884 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 885 getVNInfoAllocator()); 886 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), 887 getMBBEndIdx(startInst.getParent()), VN); 888 Interval.addSegment(S); 889 890 return S; 891 } 892 893 //===----------------------------------------------------------------------===// 894 // Register mask functions 895 //===----------------------------------------------------------------------===// 896 /// Check whether use of reg in MI is live-through. Live-through means that 897 /// the value is alive on exit from Machine instruction. The example of such 898 /// use is a deopt value in statepoint instruction. 899 static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) { 900 if (MI->getOpcode() != TargetOpcode::STATEPOINT) 901 return false; 902 StatepointOpers SO(MI); 903 if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn) 904 return false; 905 for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E; 906 ++Idx) { 907 const MachineOperand &MO = MI->getOperand(Idx); 908 if (MO.isReg() && MO.getReg() == Reg) 909 return true; 910 } 911 return false; 912 } 913 914 bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI, 915 BitVector &UsableRegs) { 916 if (LI.empty()) 917 return false; 918 LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end(); 919 920 // Use a smaller arrays for local live ranges. 921 ArrayRef<SlotIndex> Slots; 922 ArrayRef<const uint32_t*> Bits; 923 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 924 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 925 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 926 } else { 927 Slots = getRegMaskSlots(); 928 Bits = getRegMaskBits(); 929 } 930 931 // We are going to enumerate all the register mask slots contained in LI. 932 // Start with a binary search of RegMaskSlots to find a starting point. 933 ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start); 934 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 935 936 // No slots in range, LI begins after the last call. 937 if (SlotI == SlotE) 938 return false; 939 940 bool Found = false; 941 // Utility to union regmasks. 942 auto unionBitMask = [&](unsigned Idx) { 943 if (!Found) { 944 // This is the first overlap. Initialize UsableRegs to all ones. 945 UsableRegs.clear(); 946 UsableRegs.resize(TRI->getNumRegs(), true); 947 Found = true; 948 } 949 // Remove usable registers clobbered by this mask. 950 UsableRegs.clearBitsNotInMask(Bits[Idx]); 951 }; 952 while (true) { 953 assert(*SlotI >= LiveI->start); 954 // Loop over all slots overlapping this segment. 955 while (*SlotI < LiveI->end) { 956 // *SlotI overlaps LI. Collect mask bits. 957 unionBitMask(SlotI - Slots.begin()); 958 if (++SlotI == SlotE) 959 return Found; 960 } 961 // If segment ends with live-through use we need to collect its regmask. 962 if (*SlotI == LiveI->end) 963 if (MachineInstr *MI = getInstructionFromIndex(*SlotI)) 964 if (hasLiveThroughUse(MI, LI.reg())) 965 unionBitMask(SlotI++ - Slots.begin()); 966 // *SlotI is beyond the current LI segment. 967 // Special advance implementation to not miss next LiveI->end. 968 if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex()) 969 return Found; 970 while (LiveI->end < *SlotI) 971 ++LiveI; 972 // Advance SlotI until it overlaps. 973 while (*SlotI < LiveI->start) 974 if (++SlotI == SlotE) 975 return Found; 976 } 977 } 978 979 //===----------------------------------------------------------------------===// 980 // IntervalUpdate class. 981 //===----------------------------------------------------------------------===// 982 983 /// Toolkit used by handleMove to trim or extend live intervals. 984 class LiveIntervals::HMEditor { 985 private: 986 LiveIntervals& LIS; 987 const MachineRegisterInfo& MRI; 988 const TargetRegisterInfo& TRI; 989 SlotIndex OldIdx; 990 SlotIndex NewIdx; 991 SmallPtrSet<LiveRange*, 8> Updated; 992 bool UpdateFlags; 993 994 public: 995 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 996 const TargetRegisterInfo& TRI, 997 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 998 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 999 UpdateFlags(UpdateFlags) {} 1000 1001 // FIXME: UpdateFlags is a workaround that creates live intervals for all 1002 // physregs, even those that aren't needed for regalloc, in order to update 1003 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 1004 // flags, and postRA passes will use a live register utility instead. 1005 LiveRange *getRegUnitLI(unsigned Unit) { 1006 if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) 1007 return &LIS.getRegUnit(Unit); 1008 return LIS.getCachedRegUnit(Unit); 1009 } 1010 1011 /// Update all live ranges touched by MI, assuming a move from OldIdx to 1012 /// NewIdx. 1013 void updateAllRanges(MachineInstr *MI) { 1014 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " 1015 << *MI); 1016 bool hasRegMask = false; 1017 for (MachineOperand &MO : MI->operands()) { 1018 if (MO.isRegMask()) 1019 hasRegMask = true; 1020 if (!MO.isReg()) 1021 continue; 1022 if (MO.isUse()) { 1023 if (!MO.readsReg()) 1024 continue; 1025 // Aggressively clear all kill flags. 1026 // They are reinserted by VirtRegRewriter. 1027 MO.setIsKill(false); 1028 } 1029 1030 Register Reg = MO.getReg(); 1031 if (!Reg) 1032 continue; 1033 if (Register::isVirtualRegister(Reg)) { 1034 LiveInterval &LI = LIS.getInterval(Reg); 1035 if (LI.hasSubRanges()) { 1036 unsigned SubReg = MO.getSubReg(); 1037 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 1038 : MRI.getMaxLaneMaskForVReg(Reg); 1039 for (LiveInterval::SubRange &S : LI.subranges()) { 1040 if ((S.LaneMask & LaneMask).none()) 1041 continue; 1042 updateRange(S, Reg, S.LaneMask); 1043 } 1044 } 1045 updateRange(LI, Reg, LaneBitmask::getNone()); 1046 // If main range has a hole and we are moving a subrange use across 1047 // the hole updateRange() cannot properly handle it since it only 1048 // gets the LiveRange and not the whole LiveInterval. As a result 1049 // we may end up with a main range not covering all subranges. 1050 // This is extremely rare case, so let's check and reconstruct the 1051 // main range. 1052 if (LI.hasSubRanges()) { 1053 unsigned SubReg = MO.getSubReg(); 1054 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 1055 : MRI.getMaxLaneMaskForVReg(Reg); 1056 for (LiveInterval::SubRange &S : LI.subranges()) { 1057 if ((S.LaneMask & LaneMask).none() || LI.covers(S)) 1058 continue; 1059 LI.clear(); 1060 LIS.constructMainRangeFromSubranges(LI); 1061 break; 1062 } 1063 } 1064 1065 continue; 1066 } 1067 1068 // For physregs, only update the regunits that actually have a 1069 // precomputed live range. 1070 for (MCRegUnitIterator Units(Reg.asMCReg(), &TRI); Units.isValid(); 1071 ++Units) 1072 if (LiveRange *LR = getRegUnitLI(*Units)) 1073 updateRange(*LR, *Units, LaneBitmask::getNone()); 1074 } 1075 if (hasRegMask) 1076 updateRegMaskSlots(); 1077 } 1078 1079 private: 1080 /// Update a single live range, assuming an instruction has been moved from 1081 /// OldIdx to NewIdx. 1082 void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { 1083 if (!Updated.insert(&LR).second) 1084 return; 1085 LLVM_DEBUG({ 1086 dbgs() << " "; 1087 if (Register::isVirtualRegister(Reg)) { 1088 dbgs() << printReg(Reg); 1089 if (LaneMask.any()) 1090 dbgs() << " L" << PrintLaneMask(LaneMask); 1091 } else { 1092 dbgs() << printRegUnit(Reg, &TRI); 1093 } 1094 dbgs() << ":\t" << LR << '\n'; 1095 }); 1096 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 1097 handleMoveDown(LR); 1098 else 1099 handleMoveUp(LR, Reg, LaneMask); 1100 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); 1101 LR.verify(); 1102 } 1103 1104 /// Update LR to reflect an instruction has been moved downwards from OldIdx 1105 /// to NewIdx (OldIdx < NewIdx). 1106 void handleMoveDown(LiveRange &LR) { 1107 LiveRange::iterator E = LR.end(); 1108 // Segment going into OldIdx. 1109 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1110 1111 // No value live before or after OldIdx? Nothing to do. 1112 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1113 return; 1114 1115 LiveRange::iterator OldIdxOut; 1116 // Do we have a value live-in to OldIdx? 1117 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1118 // If the live-in value already extends to NewIdx, there is nothing to do. 1119 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) 1120 return; 1121 // Aggressively remove all kill flags from the old kill point. 1122 // Kill flags shouldn't be used while live intervals exist, they will be 1123 // reinserted by VirtRegRewriter. 1124 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) 1125 for (MachineOperand &MOP : mi_bundle_ops(*KillMI)) 1126 if (MOP.isReg() && MOP.isUse()) 1127 MOP.setIsKill(false); 1128 1129 // Is there a def before NewIdx which is not OldIdx? 1130 LiveRange::iterator Next = std::next(OldIdxIn); 1131 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && 1132 SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1133 // If we are here then OldIdx was just a use but not a def. We only have 1134 // to ensure liveness extends to NewIdx. 1135 LiveRange::iterator NewIdxIn = 1136 LR.advanceTo(Next, NewIdx.getBaseIndex()); 1137 // Extend the segment before NewIdx if necessary. 1138 if (NewIdxIn == E || 1139 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { 1140 LiveRange::iterator Prev = std::prev(NewIdxIn); 1141 Prev->end = NewIdx.getRegSlot(); 1142 } 1143 // Extend OldIdxIn. 1144 OldIdxIn->end = Next->start; 1145 return; 1146 } 1147 1148 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR 1149 // invalid by overlapping ranges. 1150 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1151 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); 1152 // If this was not a kill, then there was no def and we're done. 1153 if (!isKill) 1154 return; 1155 1156 // Did we have a Def at OldIdx? 1157 OldIdxOut = Next; 1158 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1159 return; 1160 } else { 1161 OldIdxOut = OldIdxIn; 1162 } 1163 1164 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1165 // to the segment starting there. 1166 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1167 "No def?"); 1168 VNInfo *OldIdxVNI = OldIdxOut->valno; 1169 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1170 1171 // If the defined value extends beyond NewIdx, just move the beginning 1172 // of the segment to NewIdx. 1173 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1174 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { 1175 OldIdxVNI->def = NewIdxDef; 1176 OldIdxOut->start = OldIdxVNI->def; 1177 return; 1178 } 1179 1180 // If we are here then we have a Definition at OldIdx which ends before 1181 // NewIdx. 1182 1183 // Is there an existing Def at NewIdx? 1184 LiveRange::iterator AfterNewIdx 1185 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); 1186 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1187 if (!OldIdxDefIsDead && 1188 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { 1189 // OldIdx is not a dead def, and NewIdxDef is inside a new interval. 1190 VNInfo *DefVNI; 1191 if (OldIdxOut != LR.begin() && 1192 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, 1193 OldIdxOut->start)) { 1194 // There is no gap between OldIdxOut and its predecessor anymore, 1195 // merge them. 1196 LiveRange::iterator IPrev = std::prev(OldIdxOut); 1197 DefVNI = OldIdxVNI; 1198 IPrev->end = OldIdxOut->end; 1199 } else { 1200 // The value is live in to OldIdx 1201 LiveRange::iterator INext = std::next(OldIdxOut); 1202 assert(INext != E && "Must have following segment"); 1203 // We merge OldIdxOut and its successor. As we're dealing with subreg 1204 // reordering, there is always a successor to OldIdxOut in the same BB 1205 // We don't need INext->valno anymore and will reuse for the new segment 1206 // we create later. 1207 DefVNI = OldIdxVNI; 1208 INext->start = OldIdxOut->end; 1209 INext->valno->def = INext->start; 1210 } 1211 // If NewIdx is behind the last segment, extend that and append a new one. 1212 if (AfterNewIdx == E) { 1213 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1214 // one position. 1215 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end 1216 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end 1217 std::copy(std::next(OldIdxOut), E, OldIdxOut); 1218 // The last segment is undefined now, reuse it for a dead def. 1219 LiveRange::iterator NewSegment = std::prev(E); 1220 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1221 DefVNI); 1222 DefVNI->def = NewIdxDef; 1223 1224 LiveRange::iterator Prev = std::prev(NewSegment); 1225 Prev->end = NewIdxDef; 1226 } else { 1227 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1228 // one position. 1229 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| 1230 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| 1231 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); 1232 LiveRange::iterator Prev = std::prev(AfterNewIdx); 1233 // We have two cases: 1234 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { 1235 // Case 1: NewIdx is inside a liverange. Split this liverange at 1236 // NewIdxDef into the segment "Prev" followed by "NewSegment". 1237 LiveRange::iterator NewSegment = AfterNewIdx; 1238 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); 1239 Prev->valno->def = NewIdxDef; 1240 1241 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); 1242 DefVNI->def = Prev->start; 1243 } else { 1244 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and 1245 // turn Prev into a segment from NewIdx to AfterNewIdx->start. 1246 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); 1247 DefVNI->def = NewIdxDef; 1248 assert(DefVNI != AfterNewIdx->valno); 1249 } 1250 } 1251 return; 1252 } 1253 1254 if (AfterNewIdx != E && 1255 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { 1256 // There is an existing def at NewIdx. The def at OldIdx is coalesced into 1257 // that value. 1258 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); 1259 LR.removeValNo(OldIdxVNI); 1260 } else { 1261 // There was no existing def at NewIdx. We need to create a dead def 1262 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees 1263 // a new segment at the place where we want to construct the dead def. 1264 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| 1265 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| 1266 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); 1267 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); 1268 // We can reuse OldIdxVNI now. 1269 LiveRange::iterator NewSegment = std::prev(AfterNewIdx); 1270 VNInfo *NewSegmentVNI = OldIdxVNI; 1271 NewSegmentVNI->def = NewIdxDef; 1272 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1273 NewSegmentVNI); 1274 } 1275 } 1276 1277 /// Update LR to reflect an instruction has been moved upwards from OldIdx 1278 /// to NewIdx (NewIdx < OldIdx). 1279 void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) { 1280 LiveRange::iterator E = LR.end(); 1281 // Segment going into OldIdx. 1282 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1283 1284 // No value live before or after OldIdx? Nothing to do. 1285 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1286 return; 1287 1288 LiveRange::iterator OldIdxOut; 1289 // Do we have a value live-in to OldIdx? 1290 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1291 // If the live-in value isn't killed here, then we have no Def at 1292 // OldIdx, moreover the value must be live at NewIdx so there is nothing 1293 // to do. 1294 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1295 if (!isKill) 1296 return; 1297 1298 // At this point we have to move OldIdxIn->end back to the nearest 1299 // previous use or (dead-)def but no further than NewIdx. 1300 SlotIndex DefBeforeOldIdx 1301 = std::max(OldIdxIn->start.getDeadSlot(), 1302 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); 1303 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); 1304 1305 // Did we have a Def at OldIdx? If not we are done now. 1306 OldIdxOut = std::next(OldIdxIn); 1307 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1308 return; 1309 } else { 1310 OldIdxOut = OldIdxIn; 1311 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; 1312 } 1313 1314 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1315 // to the segment starting there. 1316 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1317 "No def?"); 1318 VNInfo *OldIdxVNI = OldIdxOut->valno; 1319 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1320 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1321 1322 // Is there an existing def at NewIdx? 1323 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1324 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); 1325 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { 1326 assert(NewIdxOut->valno != OldIdxVNI && 1327 "Same value defined more than once?"); 1328 // If OldIdx was a dead def remove it. 1329 if (!OldIdxDefIsDead) { 1330 // Remove segment starting at NewIdx and move begin of OldIdxOut to 1331 // NewIdx so it can take its place. 1332 OldIdxVNI->def = NewIdxDef; 1333 OldIdxOut->start = NewIdxDef; 1334 LR.removeValNo(NewIdxOut->valno); 1335 } else { 1336 // Simply remove the dead def at OldIdx. 1337 LR.removeValNo(OldIdxVNI); 1338 } 1339 } else { 1340 // Previously nothing was live after NewIdx, so all we have to do now is 1341 // move the begin of OldIdxOut to NewIdx. 1342 if (!OldIdxDefIsDead) { 1343 // Do we have any intermediate Defs between OldIdx and NewIdx? 1344 if (OldIdxIn != E && 1345 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { 1346 // OldIdx is not a dead def and NewIdx is before predecessor start. 1347 LiveRange::iterator NewIdxIn = NewIdxOut; 1348 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); 1349 const SlotIndex SplitPos = NewIdxDef; 1350 OldIdxVNI = OldIdxIn->valno; 1351 1352 SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end; 1353 LiveRange::iterator Prev = std::prev(OldIdxIn); 1354 if (OldIdxIn != LR.begin() && 1355 SlotIndex::isEarlierInstr(NewIdx, Prev->end)) { 1356 // If the segment before OldIdx read a value defined earlier than 1357 // NewIdx, the moved instruction also reads and forwards that 1358 // value. Extend the lifetime of the new def point. 1359 1360 // Extend to where the previous range started, unless there is 1361 // another redef first. 1362 NewDefEndPoint = std::min(OldIdxIn->start, 1363 std::next(NewIdxOut)->start); 1364 } 1365 1366 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. 1367 OldIdxOut->valno->def = OldIdxIn->start; 1368 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, 1369 OldIdxOut->valno); 1370 // OldIdxIn and OldIdxVNI are now undef and can be overridden. 1371 // We Slide [NewIdxIn, OldIdxIn) down one position. 1372 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| 1373 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| 1374 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); 1375 // NewIdxIn is now considered undef so we can reuse it for the moved 1376 // value. 1377 LiveRange::iterator NewSegment = NewIdxIn; 1378 LiveRange::iterator Next = std::next(NewSegment); 1379 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1380 // There is no gap between NewSegment and its predecessor. 1381 *NewSegment = LiveRange::Segment(Next->start, SplitPos, 1382 Next->valno); 1383 1384 *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI); 1385 Next->valno->def = SplitPos; 1386 } else { 1387 // There is a gap between NewSegment and its predecessor 1388 // Value becomes live in. 1389 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); 1390 NewSegment->valno->def = SplitPos; 1391 } 1392 } else { 1393 // Leave the end point of a live def. 1394 OldIdxOut->start = NewIdxDef; 1395 OldIdxVNI->def = NewIdxDef; 1396 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) 1397 OldIdxIn->end = NewIdxDef; 1398 } 1399 } else if (OldIdxIn != E 1400 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) 1401 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { 1402 // OldIdxVNI is a dead def that has been moved into the middle of 1403 // another value in LR. That can happen when LR is a whole register, 1404 // but the dead def is a write to a subreg that is dead at NewIdx. 1405 // The dead def may have been moved across other values 1406 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1407 // down one position. 1408 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1409 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1410 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1411 // Modify the segment at NewIdxOut and the following segment to meet at 1412 // the point of the dead def, with the following segment getting 1413 // OldIdxVNI as its value number. 1414 *NewIdxOut = LiveRange::Segment( 1415 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); 1416 *(NewIdxOut + 1) = LiveRange::Segment( 1417 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); 1418 OldIdxVNI->def = NewIdxDef; 1419 // Modify subsequent segments to be defined by the moved def OldIdxVNI. 1420 for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) 1421 Idx->valno = OldIdxVNI; 1422 // Aggressively remove all dead flags from the former dead definition. 1423 // Kill/dead flags shouldn't be used while live intervals exist; they 1424 // will be reinserted by VirtRegRewriter. 1425 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) 1426 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1427 if (MO->isReg() && !MO->isUse()) 1428 MO->setIsDead(false); 1429 } else { 1430 // OldIdxVNI is a dead def. It may have been moved across other values 1431 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1432 // down one position. 1433 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1434 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1435 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1436 // OldIdxVNI can be reused now to build a new dead def segment. 1437 LiveRange::iterator NewSegment = NewIdxOut; 1438 VNInfo *NewSegmentVNI = OldIdxVNI; 1439 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1440 NewSegmentVNI); 1441 NewSegmentVNI->def = NewIdxDef; 1442 } 1443 } 1444 } 1445 1446 void updateRegMaskSlots() { 1447 SmallVectorImpl<SlotIndex>::iterator RI = 1448 llvm::lower_bound(LIS.RegMaskSlots, OldIdx); 1449 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 1450 "No RegMask at OldIdx."); 1451 *RI = NewIdx.getRegSlot(); 1452 assert((RI == LIS.RegMaskSlots.begin() || 1453 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 1454 "Cannot move regmask instruction above another call"); 1455 assert((std::next(RI) == LIS.RegMaskSlots.end() || 1456 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 1457 "Cannot move regmask instruction below another call"); 1458 } 1459 1460 // Return the last use of reg between NewIdx and OldIdx. 1461 SlotIndex findLastUseBefore(SlotIndex Before, Register Reg, 1462 LaneBitmask LaneMask) { 1463 if (Register::isVirtualRegister(Reg)) { 1464 SlotIndex LastUse = Before; 1465 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { 1466 if (MO.isUndef()) 1467 continue; 1468 unsigned SubReg = MO.getSubReg(); 1469 if (SubReg != 0 && LaneMask.any() 1470 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) 1471 continue; 1472 1473 const MachineInstr &MI = *MO.getParent(); 1474 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 1475 if (InstSlot > LastUse && InstSlot < OldIdx) 1476 LastUse = InstSlot.getRegSlot(); 1477 } 1478 return LastUse; 1479 } 1480 1481 // This is a regunit interval, so scanning the use list could be very 1482 // expensive. Scan upwards from OldIdx instead. 1483 assert(Before < OldIdx && "Expected upwards move"); 1484 SlotIndexes *Indexes = LIS.getSlotIndexes(); 1485 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); 1486 1487 // OldIdx may not correspond to an instruction any longer, so set MII to 1488 // point to the next instruction after OldIdx, or MBB->end(). 1489 MachineBasicBlock::iterator MII = MBB->end(); 1490 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 1491 Indexes->getNextNonNullIndex(OldIdx))) 1492 if (MI->getParent() == MBB) 1493 MII = MI; 1494 1495 MachineBasicBlock::iterator Begin = MBB->begin(); 1496 while (MII != Begin) { 1497 if ((--MII)->isDebugOrPseudoInstr()) 1498 continue; 1499 SlotIndex Idx = Indexes->getInstructionIndex(*MII); 1500 1501 // Stop searching when Before is reached. 1502 if (!SlotIndex::isEarlierInstr(Before, Idx)) 1503 return Before; 1504 1505 // Check if MII uses Reg. 1506 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) 1507 if (MO->isReg() && !MO->isUndef() && 1508 Register::isPhysicalRegister(MO->getReg()) && 1509 TRI.hasRegUnit(MO->getReg(), Reg)) 1510 return Idx.getRegSlot(); 1511 } 1512 // Didn't reach Before. It must be the first instruction in the block. 1513 return Before; 1514 } 1515 }; 1516 1517 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { 1518 // It is fine to move a bundle as a whole, but not an individual instruction 1519 // inside it. 1520 assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) && 1521 "Cannot move instruction in bundle"); 1522 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1523 Indexes->removeMachineInstrFromMaps(MI); 1524 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 1525 assert(getMBBStartIdx(MI.getParent()) <= OldIndex && 1526 OldIndex < getMBBEndIdx(MI.getParent()) && 1527 "Cannot handle moves across basic block boundaries."); 1528 1529 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1530 HME.updateAllRanges(&MI); 1531 } 1532 1533 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart, 1534 bool UpdateFlags) { 1535 assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) && 1536 "Bundle start is not a bundle"); 1537 SmallVector<SlotIndex, 16> ToProcess; 1538 const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart); 1539 auto BundleEnd = getBundleEnd(BundleStart.getIterator()); 1540 1541 auto I = BundleStart.getIterator(); 1542 I++; 1543 while (I != BundleEnd) { 1544 if (!Indexes->hasIndex(*I)) 1545 continue; 1546 SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true); 1547 ToProcess.push_back(OldIndex); 1548 Indexes->removeMachineInstrFromMaps(*I, true); 1549 I++; 1550 } 1551 for (SlotIndex OldIndex : ToProcess) { 1552 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1553 HME.updateAllRanges(&BundleStart); 1554 } 1555 1556 // Fix up dead defs 1557 const SlotIndex Index = getInstructionIndex(BundleStart); 1558 for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) { 1559 MachineOperand &MO = BundleStart.getOperand(Idx); 1560 if (!MO.isReg()) 1561 continue; 1562 Register Reg = MO.getReg(); 1563 if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) { 1564 LiveInterval &LI = getInterval(Reg); 1565 LiveQueryResult LRQ = LI.Query(Index); 1566 if (LRQ.isDeadDef()) 1567 MO.setIsDead(); 1568 } 1569 } 1570 } 1571 1572 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, 1573 const MachineBasicBlock::iterator End, 1574 const SlotIndex EndIdx, LiveRange &LR, 1575 const Register Reg, 1576 LaneBitmask LaneMask) { 1577 LiveInterval::iterator LII = LR.find(EndIdx); 1578 SlotIndex lastUseIdx; 1579 if (LII != LR.end() && LII->start < EndIdx) { 1580 lastUseIdx = LII->end; 1581 } else if (LII == LR.begin()) { 1582 // We may not have a liverange at all if this is a subregister untouched 1583 // between \p Begin and \p End. 1584 } else { 1585 --LII; 1586 } 1587 1588 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1589 --I; 1590 MachineInstr &MI = *I; 1591 if (MI.isDebugOrPseudoInstr()) 1592 continue; 1593 1594 SlotIndex instrIdx = getInstructionIndex(MI); 1595 bool isStartValid = getInstructionFromIndex(LII->start); 1596 bool isEndValid = getInstructionFromIndex(LII->end); 1597 1598 // FIXME: This doesn't currently handle early-clobber or multiple removed 1599 // defs inside of the region to repair. 1600 for (const MachineOperand &MO : MI.operands()) { 1601 if (!MO.isReg() || MO.getReg() != Reg) 1602 continue; 1603 1604 unsigned SubReg = MO.getSubReg(); 1605 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1606 if ((Mask & LaneMask).none()) 1607 continue; 1608 1609 if (MO.isDef()) { 1610 if (!isStartValid) { 1611 if (LII->end.isDead()) { 1612 LII = LR.removeSegment(LII, true); 1613 if (LII != LR.begin()) 1614 --LII; 1615 } else { 1616 LII->start = instrIdx.getRegSlot(); 1617 LII->valno->def = instrIdx.getRegSlot(); 1618 if (MO.getSubReg() && !MO.isUndef()) 1619 lastUseIdx = instrIdx.getRegSlot(); 1620 else 1621 lastUseIdx = SlotIndex(); 1622 continue; 1623 } 1624 } 1625 1626 if (!lastUseIdx.isValid()) { 1627 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1628 LiveRange::Segment S(instrIdx.getRegSlot(), 1629 instrIdx.getDeadSlot(), VNI); 1630 LII = LR.addSegment(S); 1631 } else if (LII->start != instrIdx.getRegSlot()) { 1632 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1633 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 1634 LII = LR.addSegment(S); 1635 } 1636 1637 if (MO.getSubReg() && !MO.isUndef()) 1638 lastUseIdx = instrIdx.getRegSlot(); 1639 else 1640 lastUseIdx = SlotIndex(); 1641 } else if (MO.isUse()) { 1642 // FIXME: This should probably be handled outside of this branch, 1643 // either as part of the def case (for defs inside of the region) or 1644 // after the loop over the region. 1645 if (!isEndValid && !LII->end.isBlock()) 1646 LII->end = instrIdx.getRegSlot(); 1647 if (!lastUseIdx.isValid()) 1648 lastUseIdx = instrIdx.getRegSlot(); 1649 } 1650 } 1651 } 1652 1653 bool isStartValid = getInstructionFromIndex(LII->start); 1654 if (!isStartValid && LII->end.isDead()) 1655 LR.removeSegment(*LII, true); 1656 } 1657 1658 void 1659 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 1660 MachineBasicBlock::iterator Begin, 1661 MachineBasicBlock::iterator End, 1662 ArrayRef<Register> OrigRegs) { 1663 // Find anchor points, which are at the beginning/end of blocks or at 1664 // instructions that already have indexes. 1665 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) 1666 --Begin; 1667 while (End != MBB->end() && !Indexes->hasIndex(*End)) 1668 ++End; 1669 1670 SlotIndex EndIdx; 1671 if (End == MBB->end()) 1672 EndIdx = getMBBEndIdx(MBB).getPrevSlot(); 1673 else 1674 EndIdx = getInstructionIndex(*End); 1675 1676 Indexes->repairIndexesInRange(MBB, Begin, End); 1677 1678 // Make sure a live interval exists for all register operands in the range. 1679 SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end()); 1680 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1681 --I; 1682 MachineInstr &MI = *I; 1683 if (MI.isDebugOrPseudoInstr()) 1684 continue; 1685 for (const MachineOperand &MO : MI.operands()) { 1686 if (MO.isReg() && MO.getReg().isVirtual()) { 1687 Register Reg = MO.getReg(); 1688 // If the new instructions refer to subregs but the old instructions did 1689 // not, throw away any old live interval so it will be recomputed with 1690 // subranges. 1691 if (MO.getSubReg() && hasInterval(Reg) && 1692 !getInterval(Reg).hasSubRanges() && 1693 MRI->shouldTrackSubRegLiveness(Reg)) 1694 removeInterval(Reg); 1695 if (!hasInterval(Reg)) { 1696 createAndComputeVirtRegInterval(Reg); 1697 // Don't bother to repair a freshly calculated live interval. 1698 erase_value(RegsToRepair, Reg); 1699 } 1700 } 1701 } 1702 } 1703 1704 for (Register Reg : RegsToRepair) { 1705 if (!Reg.isVirtual()) 1706 continue; 1707 1708 LiveInterval &LI = getInterval(Reg); 1709 // FIXME: Should we support undefs that gain defs? 1710 if (!LI.hasAtLeastOneValue()) 1711 continue; 1712 1713 for (LiveInterval::SubRange &S : LI.subranges()) 1714 repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask); 1715 LI.removeEmptySubRanges(); 1716 1717 repairOldRegInRange(Begin, End, EndIdx, LI, Reg); 1718 } 1719 } 1720 1721 void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) { 1722 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { 1723 if (LiveRange *LR = getCachedRegUnit(*Unit)) 1724 if (VNInfo *VNI = LR->getVNInfoAt(Pos)) 1725 LR->removeValNo(VNI); 1726 } 1727 } 1728 1729 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { 1730 // LI may not have the main range computed yet, but its subranges may 1731 // be present. 1732 VNInfo *VNI = LI.getVNInfoAt(Pos); 1733 if (VNI != nullptr) { 1734 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); 1735 LI.removeValNo(VNI); 1736 } 1737 1738 // Also remove the value defined in subranges. 1739 for (LiveInterval::SubRange &S : LI.subranges()) { 1740 if (VNInfo *SVNI = S.getVNInfoAt(Pos)) 1741 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) 1742 S.removeValNo(SVNI); 1743 } 1744 LI.removeEmptySubRanges(); 1745 } 1746 1747 void LiveIntervals::splitSeparateComponents(LiveInterval &LI, 1748 SmallVectorImpl<LiveInterval*> &SplitLIs) { 1749 ConnectedVNInfoEqClasses ConEQ(*this); 1750 unsigned NumComp = ConEQ.Classify(LI); 1751 if (NumComp <= 1) 1752 return; 1753 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); 1754 Register Reg = LI.reg(); 1755 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); 1756 for (unsigned I = 1; I < NumComp; ++I) { 1757 Register NewVReg = MRI->createVirtualRegister(RegClass); 1758 LiveInterval &NewLI = createEmptyInterval(NewVReg); 1759 SplitLIs.push_back(&NewLI); 1760 } 1761 ConEQ.Distribute(LI, SplitLIs.data(), *MRI); 1762 } 1763 1764 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { 1765 assert(LICalc && "LICalc not initialized."); 1766 LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 1767 LICalc->constructMainRangeFromSubranges(LI); 1768 } 1769