1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file This file implements the LiveInterval analysis pass which is used 11 /// by the Linear Scan Register allocator. This pass linearizes the 12 /// basic blocks of the function in DFS order and computes live intervals for 13 /// each virtual and physical register. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/LiveIntervals.h" 18 #include "LiveRangeCalc.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DepthFirstIterator.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/CodeGen/LiveInterval.h" 26 #include "llvm/CodeGen/LiveVariables.h" 27 #include "llvm/CodeGen/MachineBasicBlock.h" 28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineInstr.h" 32 #include "llvm/CodeGen/MachineInstrBundle.h" 33 #include "llvm/CodeGen/MachineOperand.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/SlotIndexes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/CodeGen/VirtRegMap.h" 40 #include "llvm/MC/LaneBitmask.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BlockFrequency.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "regalloc" 59 60 char LiveIntervals::ID = 0; 61 char &llvm::LiveIntervalsID = LiveIntervals::ID; 62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", 63 "Live Interval Analysis", false, false) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals", 68 "Live Interval Analysis", false, false) 69 70 #ifndef NDEBUG 71 static cl::opt<bool> EnablePrecomputePhysRegs( 72 "precompute-phys-liveness", cl::Hidden, 73 cl::desc("Eagerly compute live intervals for all physreg units.")); 74 #else 75 static bool EnablePrecomputePhysRegs = false; 76 #endif // NDEBUG 77 78 namespace llvm { 79 80 cl::opt<bool> UseSegmentSetForPhysRegs( 81 "use-segment-set-for-physregs", cl::Hidden, cl::init(true), 82 cl::desc( 83 "Use segment set for the computation of the live ranges of physregs.")); 84 85 } // end namespace llvm 86 87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesCFG(); 89 AU.addRequired<AAResultsWrapperPass>(); 90 AU.addPreserved<AAResultsWrapperPass>(); 91 AU.addPreserved<LiveVariables>(); 92 AU.addPreservedID(MachineLoopInfoID); 93 AU.addRequiredTransitiveID(MachineDominatorsID); 94 AU.addPreservedID(MachineDominatorsID); 95 AU.addPreserved<SlotIndexes>(); 96 AU.addRequiredTransitive<SlotIndexes>(); 97 MachineFunctionPass::getAnalysisUsage(AU); 98 } 99 100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { 101 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 102 } 103 104 LiveIntervals::~LiveIntervals() { 105 delete LRCalc; 106 } 107 108 void LiveIntervals::releaseMemory() { 109 // Free the live intervals themselves. 110 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 111 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; 112 VirtRegIntervals.clear(); 113 RegMaskSlots.clear(); 114 RegMaskBits.clear(); 115 RegMaskBlocks.clear(); 116 117 for (LiveRange *LR : RegUnitRanges) 118 delete LR; 119 RegUnitRanges.clear(); 120 121 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 122 VNInfoAllocator.Reset(); 123 } 124 125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { 126 MF = &fn; 127 MRI = &MF->getRegInfo(); 128 TRI = MF->getSubtarget().getRegisterInfo(); 129 TII = MF->getSubtarget().getInstrInfo(); 130 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 131 Indexes = &getAnalysis<SlotIndexes>(); 132 DomTree = &getAnalysis<MachineDominatorTree>(); 133 134 if (!LRCalc) 135 LRCalc = new LiveRangeCalc(); 136 137 // Allocate space for all virtual registers. 138 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 139 140 computeVirtRegs(); 141 computeRegMasks(); 142 computeLiveInRegUnits(); 143 144 if (EnablePrecomputePhysRegs) { 145 // For stress testing, precompute live ranges of all physical register 146 // units, including reserved registers. 147 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 148 getRegUnit(i); 149 } 150 DEBUG(dump()); 151 return true; 152 } 153 154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const { 155 OS << "********** INTERVALS **********\n"; 156 157 // Dump the regunits. 158 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) 159 if (LiveRange *LR = RegUnitRanges[Unit]) 160 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; 161 162 // Dump the virtregs. 163 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 164 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 165 if (hasInterval(Reg)) 166 OS << getInterval(Reg) << '\n'; 167 } 168 169 OS << "RegMasks:"; 170 for (SlotIndex Idx : RegMaskSlots) 171 OS << ' ' << Idx; 172 OS << '\n'; 173 174 printInstrs(OS); 175 } 176 177 void LiveIntervals::printInstrs(raw_ostream &OS) const { 178 OS << "********** MACHINEINSTRS **********\n"; 179 MF->print(OS, Indexes); 180 } 181 182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { 184 printInstrs(dbgs()); 185 } 186 #endif 187 188 LiveInterval* LiveIntervals::createInterval(unsigned reg) { 189 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F; 190 return new LiveInterval(reg, Weight); 191 } 192 193 /// Compute the live interval of a virtual register, based on defs and uses. 194 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 195 assert(LRCalc && "LRCalc not initialized."); 196 assert(LI.empty() && "Should only compute empty intervals."); 197 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 198 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg)); 199 computeDeadValues(LI, nullptr); 200 } 201 202 void LiveIntervals::computeVirtRegs() { 203 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 204 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 205 if (MRI->reg_nodbg_empty(Reg)) 206 continue; 207 createAndComputeVirtRegInterval(Reg); 208 } 209 } 210 211 void LiveIntervals::computeRegMasks() { 212 RegMaskBlocks.resize(MF->getNumBlockIDs()); 213 214 // Find all instructions with regmask operands. 215 for (const MachineBasicBlock &MBB : *MF) { 216 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; 217 RMB.first = RegMaskSlots.size(); 218 219 // Some block starts, such as EH funclets, create masks. 220 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { 221 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 222 RegMaskBits.push_back(Mask); 223 } 224 225 for (const MachineInstr &MI : MBB) { 226 for (const MachineOperand &MO : MI.operands()) { 227 if (!MO.isRegMask()) 228 continue; 229 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 230 RegMaskBits.push_back(MO.getRegMask()); 231 } 232 } 233 234 // Some block ends, such as funclet returns, create masks. Put the mask on 235 // the last instruction of the block, because MBB slot index intervals are 236 // half-open. 237 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { 238 assert(!MBB.empty() && "empty return block?"); 239 RegMaskSlots.push_back( 240 Indexes->getInstructionIndex(MBB.back()).getRegSlot()); 241 RegMaskBits.push_back(Mask); 242 } 243 244 // Compute the number of register mask instructions in this block. 245 RMB.second = RegMaskSlots.size() - RMB.first; 246 } 247 } 248 249 //===----------------------------------------------------------------------===// 250 // Register Unit Liveness 251 //===----------------------------------------------------------------------===// 252 // 253 // Fixed interference typically comes from ABI boundaries: Function arguments 254 // and return values are passed in fixed registers, and so are exception 255 // pointers entering landing pads. Certain instructions require values to be 256 // present in specific registers. That is also represented through fixed 257 // interference. 258 // 259 260 /// Compute the live range of a register unit, based on the uses and defs of 261 /// aliasing registers. The range should be empty, or contain only dead 262 /// phi-defs from ABI blocks. 263 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 264 assert(LRCalc && "LRCalc not initialized."); 265 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 266 267 // The physregs aliasing Unit are the roots and their super-registers. 268 // Create all values as dead defs before extending to uses. Note that roots 269 // may share super-registers. That's OK because createDeadDefs() is 270 // idempotent. It is very rare for a register unit to have multiple roots, so 271 // uniquing super-registers is probably not worthwhile. 272 bool IsReserved = false; 273 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 274 bool IsRootReserved = true; 275 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 276 Super.isValid(); ++Super) { 277 unsigned Reg = *Super; 278 if (!MRI->reg_empty(Reg)) 279 LRCalc->createDeadDefs(LR, Reg); 280 // A register unit is considered reserved if all its roots and all their 281 // super registers are reserved. 282 if (!MRI->isReserved(Reg)) 283 IsRootReserved = false; 284 } 285 IsReserved |= IsRootReserved; 286 } 287 assert(IsReserved == MRI->isReservedRegUnit(Unit) && 288 "reserved computation mismatch"); 289 290 // Now extend LR to reach all uses. 291 // Ignore uses of reserved registers. We only track defs of those. 292 if (!IsReserved) { 293 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 294 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 295 Super.isValid(); ++Super) { 296 unsigned Reg = *Super; 297 if (!MRI->reg_empty(Reg)) 298 LRCalc->extendToUses(LR, Reg); 299 } 300 } 301 } 302 303 // Flush the segment set to the segment vector. 304 if (UseSegmentSetForPhysRegs) 305 LR.flushSegmentSet(); 306 } 307 308 /// Precompute the live ranges of any register units that are live-in to an ABI 309 /// block somewhere. Register values can appear without a corresponding def when 310 /// entering the entry block or a landing pad. 311 void LiveIntervals::computeLiveInRegUnits() { 312 RegUnitRanges.resize(TRI->getNumRegUnits()); 313 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 314 315 // Keep track of the live range sets allocated. 316 SmallVector<unsigned, 8> NewRanges; 317 318 // Check all basic blocks for live-ins. 319 for (const MachineBasicBlock &MBB : *MF) { 320 // We only care about ABI blocks: Entry + landing pads. 321 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) 322 continue; 323 324 // Create phi-defs at Begin for all live-in registers. 325 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); 326 DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); 327 for (const auto &LI : MBB.liveins()) { 328 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { 329 unsigned Unit = *Units; 330 LiveRange *LR = RegUnitRanges[Unit]; 331 if (!LR) { 332 // Use segment set to speed-up initial computation of the live range. 333 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); 334 NewRanges.push_back(Unit); 335 } 336 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 337 (void)VNI; 338 DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); 339 } 340 } 341 DEBUG(dbgs() << '\n'); 342 } 343 DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 344 345 // Compute the 'normal' part of the ranges. 346 for (unsigned Unit : NewRanges) 347 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 348 } 349 350 static void createSegmentsForValues(LiveRange &LR, 351 iterator_range<LiveInterval::vni_iterator> VNIs) { 352 for (VNInfo *VNI : VNIs) { 353 if (VNI->isUnused()) 354 continue; 355 SlotIndex Def = VNI->def; 356 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); 357 } 358 } 359 360 using ShrinkToUsesWorkList = SmallVector<std::pair<SlotIndex, VNInfo*>, 16>; 361 362 static void extendSegmentsToUses(LiveRange &LR, const SlotIndexes &Indexes, 363 ShrinkToUsesWorkList &WorkList, 364 const LiveRange &OldRange) { 365 // Keep track of the PHIs that are in use. 366 SmallPtrSet<VNInfo*, 8> UsedPHIs; 367 // Blocks that have already been added to WorkList as live-out. 368 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; 369 370 // Extend intervals to reach all uses in WorkList. 371 while (!WorkList.empty()) { 372 SlotIndex Idx = WorkList.back().first; 373 VNInfo *VNI = WorkList.back().second; 374 WorkList.pop_back(); 375 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Idx.getPrevSlot()); 376 SlotIndex BlockStart = Indexes.getMBBStartIdx(MBB); 377 378 // Extend the live range for VNI to be live at Idx. 379 if (VNInfo *ExtVNI = LR.extendInBlock(BlockStart, Idx)) { 380 assert(ExtVNI == VNI && "Unexpected existing value number"); 381 (void)ExtVNI; 382 // Is this a PHIDef we haven't seen before? 383 if (!VNI->isPHIDef() || VNI->def != BlockStart || 384 !UsedPHIs.insert(VNI).second) 385 continue; 386 // The PHI is live, make sure the predecessors are live-out. 387 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 388 if (!LiveOut.insert(Pred).second) 389 continue; 390 SlotIndex Stop = Indexes.getMBBEndIdx(Pred); 391 // A predecessor is not required to have a live-out value for a PHI. 392 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) 393 WorkList.push_back(std::make_pair(Stop, PVNI)); 394 } 395 continue; 396 } 397 398 // VNI is live-in to MBB. 399 DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 400 LR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 401 402 // Make sure VNI is live-out from the predecessors. 403 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 404 if (!LiveOut.insert(Pred).second) 405 continue; 406 SlotIndex Stop = Indexes.getMBBEndIdx(Pred); 407 assert(OldRange.getVNInfoBefore(Stop) == VNI && 408 "Wrong value out of predecessor"); 409 WorkList.push_back(std::make_pair(Stop, VNI)); 410 } 411 } 412 } 413 414 bool LiveIntervals::shrinkToUses(LiveInterval *li, 415 SmallVectorImpl<MachineInstr*> *dead) { 416 DEBUG(dbgs() << "Shrink: " << *li << '\n'); 417 assert(TargetRegisterInfo::isVirtualRegister(li->reg) 418 && "Can only shrink virtual registers"); 419 420 // Shrink subregister live ranges. 421 bool NeedsCleanup = false; 422 for (LiveInterval::SubRange &S : li->subranges()) { 423 shrinkToUses(S, li->reg); 424 if (S.empty()) 425 NeedsCleanup = true; 426 } 427 if (NeedsCleanup) 428 li->removeEmptySubRanges(); 429 430 // Find all the values used, including PHI kills. 431 ShrinkToUsesWorkList WorkList; 432 433 // Visit all instructions reading li->reg. 434 unsigned Reg = li->reg; 435 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { 436 if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg)) 437 continue; 438 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 439 LiveQueryResult LRQ = li->Query(Idx); 440 VNInfo *VNI = LRQ.valueIn(); 441 if (!VNI) { 442 // This shouldn't happen: readsVirtualRegister returns true, but there is 443 // no live value. It is likely caused by a target getting <undef> flags 444 // wrong. 445 DEBUG(dbgs() << Idx << '\t' << UseMI 446 << "Warning: Instr claims to read non-existent value in " 447 << *li << '\n'); 448 continue; 449 } 450 // Special case: An early-clobber tied operand reads and writes the 451 // register one slot early. 452 if (VNInfo *DefVNI = LRQ.valueDefined()) 453 Idx = DefVNI->def; 454 455 WorkList.push_back(std::make_pair(Idx, VNI)); 456 } 457 458 // Create new live ranges with only minimal live segments per def. 459 LiveRange NewLR; 460 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); 461 extendSegmentsToUses(NewLR, *Indexes, WorkList, *li); 462 463 // Move the trimmed segments back. 464 li->segments.swap(NewLR.segments); 465 466 // Handle dead values. 467 bool CanSeparate = computeDeadValues(*li, dead); 468 DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 469 return CanSeparate; 470 } 471 472 bool LiveIntervals::computeDeadValues(LiveInterval &LI, 473 SmallVectorImpl<MachineInstr*> *dead) { 474 bool MayHaveSplitComponents = false; 475 for (VNInfo *VNI : LI.valnos) { 476 if (VNI->isUnused()) 477 continue; 478 SlotIndex Def = VNI->def; 479 LiveRange::iterator I = LI.FindSegmentContaining(Def); 480 assert(I != LI.end() && "Missing segment for VNI"); 481 482 // Is the register live before? Otherwise we may have to add a read-undef 483 // flag for subregister defs. 484 unsigned VReg = LI.reg; 485 if (MRI->shouldTrackSubRegLiveness(VReg)) { 486 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { 487 MachineInstr *MI = getInstructionFromIndex(Def); 488 MI->setRegisterDefReadUndef(VReg); 489 } 490 } 491 492 if (I->end != Def.getDeadSlot()) 493 continue; 494 if (VNI->isPHIDef()) { 495 // This is a dead PHI. Remove it. 496 VNI->markUnused(); 497 LI.removeSegment(I); 498 DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); 499 MayHaveSplitComponents = true; 500 } else { 501 // This is a dead def. Make sure the instruction knows. 502 MachineInstr *MI = getInstructionFromIndex(Def); 503 assert(MI && "No instruction defining live value"); 504 MI->addRegisterDead(LI.reg, TRI); 505 if (dead && MI->allDefsAreDead()) { 506 DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); 507 dead->push_back(MI); 508 } 509 } 510 } 511 return MayHaveSplitComponents; 512 } 513 514 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) { 515 DEBUG(dbgs() << "Shrink: " << SR << '\n'); 516 assert(TargetRegisterInfo::isVirtualRegister(Reg) 517 && "Can only shrink virtual registers"); 518 // Find all the values used, including PHI kills. 519 ShrinkToUsesWorkList WorkList; 520 521 // Visit all instructions reading Reg. 522 SlotIndex LastIdx; 523 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 524 // Skip "undef" uses. 525 if (!MO.readsReg()) 526 continue; 527 // Maybe the operand is for a subregister we don't care about. 528 unsigned SubReg = MO.getSubReg(); 529 if (SubReg != 0) { 530 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 531 if ((LaneMask & SR.LaneMask).none()) 532 continue; 533 } 534 // We only need to visit each instruction once. 535 MachineInstr *UseMI = MO.getParent(); 536 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); 537 if (Idx == LastIdx) 538 continue; 539 LastIdx = Idx; 540 541 LiveQueryResult LRQ = SR.Query(Idx); 542 VNInfo *VNI = LRQ.valueIn(); 543 // For Subranges it is possible that only undef values are left in that 544 // part of the subregister, so there is no real liverange at the use 545 if (!VNI) 546 continue; 547 548 // Special case: An early-clobber tied operand reads and writes the 549 // register one slot early. 550 if (VNInfo *DefVNI = LRQ.valueDefined()) 551 Idx = DefVNI->def; 552 553 WorkList.push_back(std::make_pair(Idx, VNI)); 554 } 555 556 // Create a new live ranges with only minimal live segments per def. 557 LiveRange NewLR; 558 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); 559 extendSegmentsToUses(NewLR, *Indexes, WorkList, SR); 560 561 // Move the trimmed ranges back. 562 SR.segments.swap(NewLR.segments); 563 564 // Remove dead PHI value numbers 565 for (VNInfo *VNI : SR.valnos) { 566 if (VNI->isUnused()) 567 continue; 568 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); 569 assert(Segment != nullptr && "Missing segment for VNI"); 570 if (Segment->end != VNI->def.getDeadSlot()) 571 continue; 572 if (VNI->isPHIDef()) { 573 // This is a dead PHI. Remove it. 574 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n"); 575 VNI->markUnused(); 576 SR.removeSegment(*Segment); 577 } 578 } 579 580 DEBUG(dbgs() << "Shrunk: " << SR << '\n'); 581 } 582 583 void LiveIntervals::extendToIndices(LiveRange &LR, 584 ArrayRef<SlotIndex> Indices, 585 ArrayRef<SlotIndex> Undefs) { 586 assert(LRCalc && "LRCalc not initialized."); 587 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 588 for (SlotIndex Idx : Indices) 589 LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); 590 } 591 592 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, 593 SmallVectorImpl<SlotIndex> *EndPoints) { 594 LiveQueryResult LRQ = LR.Query(Kill); 595 VNInfo *VNI = LRQ.valueOutOrDead(); 596 if (!VNI) 597 return; 598 599 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 600 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); 601 602 // If VNI isn't live out from KillMBB, the value is trivially pruned. 603 if (LRQ.endPoint() < MBBEnd) { 604 LR.removeSegment(Kill, LRQ.endPoint()); 605 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 606 return; 607 } 608 609 // VNI is live out of KillMBB. 610 LR.removeSegment(Kill, MBBEnd); 611 if (EndPoints) EndPoints->push_back(MBBEnd); 612 613 // Find all blocks that are reachable from KillMBB without leaving VNI's live 614 // range. It is possible that KillMBB itself is reachable, so start a DFS 615 // from each successor. 616 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; 617 VisitedTy Visited; 618 for (MachineBasicBlock *Succ : KillMBB->successors()) { 619 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 620 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); 621 I != E;) { 622 MachineBasicBlock *MBB = *I; 623 624 // Check if VNI is live in to MBB. 625 SlotIndex MBBStart, MBBEnd; 626 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 627 LiveQueryResult LRQ = LR.Query(MBBStart); 628 if (LRQ.valueIn() != VNI) { 629 // This block isn't part of the VNI segment. Prune the search. 630 I.skipChildren(); 631 continue; 632 } 633 634 // Prune the search if VNI is killed in MBB. 635 if (LRQ.endPoint() < MBBEnd) { 636 LR.removeSegment(MBBStart, LRQ.endPoint()); 637 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 638 I.skipChildren(); 639 continue; 640 } 641 642 // VNI is live through MBB. 643 LR.removeSegment(MBBStart, MBBEnd); 644 if (EndPoints) EndPoints->push_back(MBBEnd); 645 ++I; 646 } 647 } 648 } 649 650 //===----------------------------------------------------------------------===// 651 // Register allocator hooks. 652 // 653 654 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 655 // Keep track of regunit ranges. 656 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; 657 // Keep track of subregister ranges. 658 SmallVector<std::pair<const LiveInterval::SubRange*, 659 LiveRange::const_iterator>, 4> SRs; 660 661 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 662 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 663 if (MRI->reg_nodbg_empty(Reg)) 664 continue; 665 const LiveInterval &LI = getInterval(Reg); 666 if (LI.empty()) 667 continue; 668 669 // Find the regunit intervals for the assigned register. They may overlap 670 // the virtual register live range, cancelling any kills. 671 RU.clear(); 672 for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid(); 673 ++Unit) { 674 const LiveRange &RURange = getRegUnit(*Unit); 675 if (RURange.empty()) 676 continue; 677 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); 678 } 679 680 if (MRI->subRegLivenessEnabled()) { 681 SRs.clear(); 682 for (const LiveInterval::SubRange &SR : LI.subranges()) { 683 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end))); 684 } 685 } 686 687 // Every instruction that kills Reg corresponds to a segment range end 688 // point. 689 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; 690 ++RI) { 691 // A block index indicates an MBB edge. 692 if (RI->end.isBlock()) 693 continue; 694 MachineInstr *MI = getInstructionFromIndex(RI->end); 695 if (!MI) 696 continue; 697 698 // Check if any of the regunits are live beyond the end of RI. That could 699 // happen when a physreg is defined as a copy of a virtreg: 700 // 701 // %eax = COPY %5 702 // FOO %5 <--- MI, cancel kill because %eax is live. 703 // BAR killed %eax 704 // 705 // There should be no kill flag on FOO when %5 is rewritten as %eax. 706 for (auto &RUP : RU) { 707 const LiveRange &RURange = *RUP.first; 708 LiveRange::const_iterator &I = RUP.second; 709 if (I == RURange.end()) 710 continue; 711 I = RURange.advanceTo(I, RI->end); 712 if (I == RURange.end() || I->start >= RI->end) 713 continue; 714 // I is overlapping RI. 715 goto CancelKill; 716 } 717 718 if (MRI->subRegLivenessEnabled()) { 719 // When reading a partial undefined value we must not add a kill flag. 720 // The regalloc might have used the undef lane for something else. 721 // Example: 722 // %1 = ... ; R32: %1 723 // %2:high16 = ... ; R64: %2 724 // = read killed %2 ; R64: %2 725 // = read %1 ; R32: %1 726 // The <kill> flag is correct for %2, but the register allocator may 727 // assign R0L to %1, and R0 to %2 because the low 32bits of R0 728 // are actually never written by %2. After assignment the <kill> 729 // flag at the read instruction is invalid. 730 LaneBitmask DefinedLanesMask; 731 if (!SRs.empty()) { 732 // Compute a mask of lanes that are defined. 733 DefinedLanesMask = LaneBitmask::getNone(); 734 for (auto &SRP : SRs) { 735 const LiveInterval::SubRange &SR = *SRP.first; 736 LiveRange::const_iterator &I = SRP.second; 737 if (I == SR.end()) 738 continue; 739 I = SR.advanceTo(I, RI->end); 740 if (I == SR.end() || I->start >= RI->end) 741 continue; 742 // I is overlapping RI 743 DefinedLanesMask |= SR.LaneMask; 744 } 745 } else 746 DefinedLanesMask = LaneBitmask::getAll(); 747 748 bool IsFullWrite = false; 749 for (const MachineOperand &MO : MI->operands()) { 750 if (!MO.isReg() || MO.getReg() != Reg) 751 continue; 752 if (MO.isUse()) { 753 // Reading any undefined lanes? 754 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 755 if ((UseMask & ~DefinedLanesMask).any()) 756 goto CancelKill; 757 } else if (MO.getSubReg() == 0) { 758 // Writing to the full register? 759 assert(MO.isDef()); 760 IsFullWrite = true; 761 } 762 } 763 764 // If an instruction writes to a subregister, a new segment starts in 765 // the LiveInterval. But as this is only overriding part of the register 766 // adding kill-flags is not correct here after registers have been 767 // assigned. 768 if (!IsFullWrite) { 769 // Next segment has to be adjacent in the subregister write case. 770 LiveRange::const_iterator N = std::next(RI); 771 if (N != LI.end() && N->start == RI->end) 772 goto CancelKill; 773 } 774 } 775 776 MI->addRegisterKilled(Reg, nullptr); 777 continue; 778 CancelKill: 779 MI->clearRegisterKills(Reg, nullptr); 780 } 781 } 782 } 783 784 MachineBasicBlock* 785 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 786 // A local live range must be fully contained inside the block, meaning it is 787 // defined and killed at instructions, not at block boundaries. It is not 788 // live in or or out of any block. 789 // 790 // It is technically possible to have a PHI-defined live range identical to a 791 // single block, but we are going to return false in that case. 792 793 SlotIndex Start = LI.beginIndex(); 794 if (Start.isBlock()) 795 return nullptr; 796 797 SlotIndex Stop = LI.endIndex(); 798 if (Stop.isBlock()) 799 return nullptr; 800 801 // getMBBFromIndex doesn't need to search the MBB table when both indexes 802 // belong to proper instructions. 803 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 804 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 805 return MBB1 == MBB2 ? MBB1 : nullptr; 806 } 807 808 bool 809 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 810 for (const VNInfo *PHI : LI.valnos) { 811 if (PHI->isUnused() || !PHI->isPHIDef()) 812 continue; 813 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 814 // Conservatively return true instead of scanning huge predecessor lists. 815 if (PHIMBB->pred_size() > 100) 816 return true; 817 for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) 818 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) 819 return true; 820 } 821 return false; 822 } 823 824 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 825 const MachineBlockFrequencyInfo *MBFI, 826 const MachineInstr &MI) { 827 return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); 828 } 829 830 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 831 const MachineBlockFrequencyInfo *MBFI, 832 const MachineBasicBlock *MBB) { 833 BlockFrequency Freq = MBFI->getBlockFreq(MBB); 834 const float Scale = 1.0f / MBFI->getEntryFreq(); 835 return (isDef + isUse) * (Freq.getFrequency() * Scale); 836 } 837 838 LiveRange::Segment 839 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) { 840 LiveInterval& Interval = createEmptyInterval(reg); 841 VNInfo *VN = Interval.getNextValue( 842 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 843 getVNInfoAllocator()); 844 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), 845 getMBBEndIdx(startInst.getParent()), VN); 846 Interval.addSegment(S); 847 848 return S; 849 } 850 851 //===----------------------------------------------------------------------===// 852 // Register mask functions 853 //===----------------------------------------------------------------------===// 854 855 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, 856 BitVector &UsableRegs) { 857 if (LI.empty()) 858 return false; 859 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); 860 861 // Use a smaller arrays for local live ranges. 862 ArrayRef<SlotIndex> Slots; 863 ArrayRef<const uint32_t*> Bits; 864 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 865 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 866 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 867 } else { 868 Slots = getRegMaskSlots(); 869 Bits = getRegMaskBits(); 870 } 871 872 // We are going to enumerate all the register mask slots contained in LI. 873 // Start with a binary search of RegMaskSlots to find a starting point. 874 ArrayRef<SlotIndex>::iterator SlotI = 875 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); 876 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 877 878 // No slots in range, LI begins after the last call. 879 if (SlotI == SlotE) 880 return false; 881 882 bool Found = false; 883 while (true) { 884 assert(*SlotI >= LiveI->start); 885 // Loop over all slots overlapping this segment. 886 while (*SlotI < LiveI->end) { 887 // *SlotI overlaps LI. Collect mask bits. 888 if (!Found) { 889 // This is the first overlap. Initialize UsableRegs to all ones. 890 UsableRegs.clear(); 891 UsableRegs.resize(TRI->getNumRegs(), true); 892 Found = true; 893 } 894 // Remove usable registers clobbered by this mask. 895 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); 896 if (++SlotI == SlotE) 897 return Found; 898 } 899 // *SlotI is beyond the current LI segment. 900 LiveI = LI.advanceTo(LiveI, *SlotI); 901 if (LiveI == LiveE) 902 return Found; 903 // Advance SlotI until it overlaps. 904 while (*SlotI < LiveI->start) 905 if (++SlotI == SlotE) 906 return Found; 907 } 908 } 909 910 //===----------------------------------------------------------------------===// 911 // IntervalUpdate class. 912 //===----------------------------------------------------------------------===// 913 914 /// Toolkit used by handleMove to trim or extend live intervals. 915 class LiveIntervals::HMEditor { 916 private: 917 LiveIntervals& LIS; 918 const MachineRegisterInfo& MRI; 919 const TargetRegisterInfo& TRI; 920 SlotIndex OldIdx; 921 SlotIndex NewIdx; 922 SmallPtrSet<LiveRange*, 8> Updated; 923 bool UpdateFlags; 924 925 public: 926 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 927 const TargetRegisterInfo& TRI, 928 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 929 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 930 UpdateFlags(UpdateFlags) {} 931 932 // FIXME: UpdateFlags is a workaround that creates live intervals for all 933 // physregs, even those that aren't needed for regalloc, in order to update 934 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 935 // flags, and postRA passes will use a live register utility instead. 936 LiveRange *getRegUnitLI(unsigned Unit) { 937 if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) 938 return &LIS.getRegUnit(Unit); 939 return LIS.getCachedRegUnit(Unit); 940 } 941 942 /// Update all live ranges touched by MI, assuming a move from OldIdx to 943 /// NewIdx. 944 void updateAllRanges(MachineInstr *MI) { 945 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI); 946 bool hasRegMask = false; 947 for (MachineOperand &MO : MI->operands()) { 948 if (MO.isRegMask()) 949 hasRegMask = true; 950 if (!MO.isReg()) 951 continue; 952 if (MO.isUse()) { 953 if (!MO.readsReg()) 954 continue; 955 // Aggressively clear all kill flags. 956 // They are reinserted by VirtRegRewriter. 957 MO.setIsKill(false); 958 } 959 960 unsigned Reg = MO.getReg(); 961 if (!Reg) 962 continue; 963 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 964 LiveInterval &LI = LIS.getInterval(Reg); 965 if (LI.hasSubRanges()) { 966 unsigned SubReg = MO.getSubReg(); 967 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 968 : MRI.getMaxLaneMaskForVReg(Reg); 969 for (LiveInterval::SubRange &S : LI.subranges()) { 970 if ((S.LaneMask & LaneMask).none()) 971 continue; 972 updateRange(S, Reg, S.LaneMask); 973 } 974 } 975 updateRange(LI, Reg, LaneBitmask::getNone()); 976 continue; 977 } 978 979 // For physregs, only update the regunits that actually have a 980 // precomputed live range. 981 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) 982 if (LiveRange *LR = getRegUnitLI(*Units)) 983 updateRange(*LR, *Units, LaneBitmask::getNone()); 984 } 985 if (hasRegMask) 986 updateRegMaskSlots(); 987 } 988 989 private: 990 /// Update a single live range, assuming an instruction has been moved from 991 /// OldIdx to NewIdx. 992 void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { 993 if (!Updated.insert(&LR).second) 994 return; 995 DEBUG({ 996 dbgs() << " "; 997 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 998 dbgs() << printReg(Reg); 999 if (LaneMask.any()) 1000 dbgs() << " L" << PrintLaneMask(LaneMask); 1001 } else { 1002 dbgs() << printRegUnit(Reg, &TRI); 1003 } 1004 dbgs() << ":\t" << LR << '\n'; 1005 }); 1006 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 1007 handleMoveDown(LR); 1008 else 1009 handleMoveUp(LR, Reg, LaneMask); 1010 DEBUG(dbgs() << " -->\t" << LR << '\n'); 1011 LR.verify(); 1012 } 1013 1014 /// Update LR to reflect an instruction has been moved downwards from OldIdx 1015 /// to NewIdx (OldIdx < NewIdx). 1016 void handleMoveDown(LiveRange &LR) { 1017 LiveRange::iterator E = LR.end(); 1018 // Segment going into OldIdx. 1019 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1020 1021 // No value live before or after OldIdx? Nothing to do. 1022 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1023 return; 1024 1025 LiveRange::iterator OldIdxOut; 1026 // Do we have a value live-in to OldIdx? 1027 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1028 // If the live-in value already extends to NewIdx, there is nothing to do. 1029 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) 1030 return; 1031 // Aggressively remove all kill flags from the old kill point. 1032 // Kill flags shouldn't be used while live intervals exist, they will be 1033 // reinserted by VirtRegRewriter. 1034 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) 1035 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1036 if (MO->isReg() && MO->isUse()) 1037 MO->setIsKill(false); 1038 1039 // Is there a def before NewIdx which is not OldIdx? 1040 LiveRange::iterator Next = std::next(OldIdxIn); 1041 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && 1042 SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1043 // If we are here then OldIdx was just a use but not a def. We only have 1044 // to ensure liveness extends to NewIdx. 1045 LiveRange::iterator NewIdxIn = 1046 LR.advanceTo(Next, NewIdx.getBaseIndex()); 1047 // Extend the segment before NewIdx if necessary. 1048 if (NewIdxIn == E || 1049 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { 1050 LiveRange::iterator Prev = std::prev(NewIdxIn); 1051 Prev->end = NewIdx.getRegSlot(); 1052 } 1053 // Extend OldIdxIn. 1054 OldIdxIn->end = Next->start; 1055 return; 1056 } 1057 1058 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR 1059 // invalid by overlapping ranges. 1060 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1061 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); 1062 // If this was not a kill, then there was no def and we're done. 1063 if (!isKill) 1064 return; 1065 1066 // Did we have a Def at OldIdx? 1067 OldIdxOut = Next; 1068 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1069 return; 1070 } else { 1071 OldIdxOut = OldIdxIn; 1072 } 1073 1074 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1075 // to the segment starting there. 1076 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1077 "No def?"); 1078 VNInfo *OldIdxVNI = OldIdxOut->valno; 1079 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1080 1081 // If the defined value extends beyond NewIdx, just move the beginning 1082 // of the segment to NewIdx. 1083 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1084 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { 1085 OldIdxVNI->def = NewIdxDef; 1086 OldIdxOut->start = OldIdxVNI->def; 1087 return; 1088 } 1089 1090 // If we are here then we have a Definition at OldIdx which ends before 1091 // NewIdx. 1092 1093 // Is there an existing Def at NewIdx? 1094 LiveRange::iterator AfterNewIdx 1095 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); 1096 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1097 if (!OldIdxDefIsDead && 1098 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { 1099 // OldIdx is not a dead def, and NewIdxDef is inside a new interval. 1100 VNInfo *DefVNI; 1101 if (OldIdxOut != LR.begin() && 1102 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, 1103 OldIdxOut->start)) { 1104 // There is no gap between OldIdxOut and its predecessor anymore, 1105 // merge them. 1106 LiveRange::iterator IPrev = std::prev(OldIdxOut); 1107 DefVNI = OldIdxVNI; 1108 IPrev->end = OldIdxOut->end; 1109 } else { 1110 // The value is live in to OldIdx 1111 LiveRange::iterator INext = std::next(OldIdxOut); 1112 assert(INext != E && "Must have following segment"); 1113 // We merge OldIdxOut and its successor. As we're dealing with subreg 1114 // reordering, there is always a successor to OldIdxOut in the same BB 1115 // We don't need INext->valno anymore and will reuse for the new segment 1116 // we create later. 1117 DefVNI = OldIdxVNI; 1118 INext->start = OldIdxOut->end; 1119 INext->valno->def = INext->start; 1120 } 1121 // If NewIdx is behind the last segment, extend that and append a new one. 1122 if (AfterNewIdx == E) { 1123 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1124 // one position. 1125 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end 1126 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end 1127 std::copy(std::next(OldIdxOut), E, OldIdxOut); 1128 // The last segment is undefined now, reuse it for a dead def. 1129 LiveRange::iterator NewSegment = std::prev(E); 1130 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1131 DefVNI); 1132 DefVNI->def = NewIdxDef; 1133 1134 LiveRange::iterator Prev = std::prev(NewSegment); 1135 Prev->end = NewIdxDef; 1136 } else { 1137 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1138 // one position. 1139 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| 1140 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| 1141 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); 1142 LiveRange::iterator Prev = std::prev(AfterNewIdx); 1143 // We have two cases: 1144 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { 1145 // Case 1: NewIdx is inside a liverange. Split this liverange at 1146 // NewIdxDef into the segment "Prev" followed by "NewSegment". 1147 LiveRange::iterator NewSegment = AfterNewIdx; 1148 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); 1149 Prev->valno->def = NewIdxDef; 1150 1151 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); 1152 DefVNI->def = Prev->start; 1153 } else { 1154 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and 1155 // turn Prev into a segment from NewIdx to AfterNewIdx->start. 1156 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); 1157 DefVNI->def = NewIdxDef; 1158 assert(DefVNI != AfterNewIdx->valno); 1159 } 1160 } 1161 return; 1162 } 1163 1164 if (AfterNewIdx != E && 1165 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { 1166 // There is an existing def at NewIdx. The def at OldIdx is coalesced into 1167 // that value. 1168 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); 1169 LR.removeValNo(OldIdxVNI); 1170 } else { 1171 // There was no existing def at NewIdx. We need to create a dead def 1172 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees 1173 // a new segment at the place where we want to construct the dead def. 1174 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| 1175 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| 1176 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); 1177 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); 1178 // We can reuse OldIdxVNI now. 1179 LiveRange::iterator NewSegment = std::prev(AfterNewIdx); 1180 VNInfo *NewSegmentVNI = OldIdxVNI; 1181 NewSegmentVNI->def = NewIdxDef; 1182 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1183 NewSegmentVNI); 1184 } 1185 } 1186 1187 /// Update LR to reflect an instruction has been moved upwards from OldIdx 1188 /// to NewIdx (NewIdx < OldIdx). 1189 void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { 1190 LiveRange::iterator E = LR.end(); 1191 // Segment going into OldIdx. 1192 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1193 1194 // No value live before or after OldIdx? Nothing to do. 1195 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1196 return; 1197 1198 LiveRange::iterator OldIdxOut; 1199 // Do we have a value live-in to OldIdx? 1200 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1201 // If the live-in value isn't killed here, then we have no Def at 1202 // OldIdx, moreover the value must be live at NewIdx so there is nothing 1203 // to do. 1204 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1205 if (!isKill) 1206 return; 1207 1208 // At this point we have to move OldIdxIn->end back to the nearest 1209 // previous use or (dead-)def but no further than NewIdx. 1210 SlotIndex DefBeforeOldIdx 1211 = std::max(OldIdxIn->start.getDeadSlot(), 1212 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); 1213 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); 1214 1215 // Did we have a Def at OldIdx? If not we are done now. 1216 OldIdxOut = std::next(OldIdxIn); 1217 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1218 return; 1219 } else { 1220 OldIdxOut = OldIdxIn; 1221 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; 1222 } 1223 1224 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1225 // to the segment starting there. 1226 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1227 "No def?"); 1228 VNInfo *OldIdxVNI = OldIdxOut->valno; 1229 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1230 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1231 1232 // Is there an existing def at NewIdx? 1233 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1234 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); 1235 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { 1236 assert(NewIdxOut->valno != OldIdxVNI && 1237 "Same value defined more than once?"); 1238 // If OldIdx was a dead def remove it. 1239 if (!OldIdxDefIsDead) { 1240 // Remove segment starting at NewIdx and move begin of OldIdxOut to 1241 // NewIdx so it can take its place. 1242 OldIdxVNI->def = NewIdxDef; 1243 OldIdxOut->start = NewIdxDef; 1244 LR.removeValNo(NewIdxOut->valno); 1245 } else { 1246 // Simply remove the dead def at OldIdx. 1247 LR.removeValNo(OldIdxVNI); 1248 } 1249 } else { 1250 // Previously nothing was live after NewIdx, so all we have to do now is 1251 // move the begin of OldIdxOut to NewIdx. 1252 if (!OldIdxDefIsDead) { 1253 // Do we have any intermediate Defs between OldIdx and NewIdx? 1254 if (OldIdxIn != E && 1255 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { 1256 // OldIdx is not a dead def and NewIdx is before predecessor start. 1257 LiveRange::iterator NewIdxIn = NewIdxOut; 1258 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); 1259 const SlotIndex SplitPos = NewIdxDef; 1260 OldIdxVNI = OldIdxIn->valno; 1261 1262 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. 1263 OldIdxOut->valno->def = OldIdxIn->start; 1264 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, 1265 OldIdxOut->valno); 1266 // OldIdxIn and OldIdxVNI are now undef and can be overridden. 1267 // We Slide [NewIdxIn, OldIdxIn) down one position. 1268 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| 1269 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| 1270 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); 1271 // NewIdxIn is now considered undef so we can reuse it for the moved 1272 // value. 1273 LiveRange::iterator NewSegment = NewIdxIn; 1274 LiveRange::iterator Next = std::next(NewSegment); 1275 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1276 // There is no gap between NewSegment and its predecessor. 1277 *NewSegment = LiveRange::Segment(Next->start, SplitPos, 1278 Next->valno); 1279 *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI); 1280 Next->valno->def = SplitPos; 1281 } else { 1282 // There is a gap between NewSegment and its predecessor 1283 // Value becomes live in. 1284 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); 1285 NewSegment->valno->def = SplitPos; 1286 } 1287 } else { 1288 // Leave the end point of a live def. 1289 OldIdxOut->start = NewIdxDef; 1290 OldIdxVNI->def = NewIdxDef; 1291 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) 1292 OldIdxIn->end = NewIdx.getRegSlot(); 1293 } 1294 } else { 1295 // OldIdxVNI is a dead def. It may have been moved across other values 1296 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1297 // down one position. 1298 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1299 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1300 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1301 // OldIdxVNI can be reused now to build a new dead def segment. 1302 LiveRange::iterator NewSegment = NewIdxOut; 1303 VNInfo *NewSegmentVNI = OldIdxVNI; 1304 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1305 NewSegmentVNI); 1306 NewSegmentVNI->def = NewIdxDef; 1307 } 1308 } 1309 } 1310 1311 void updateRegMaskSlots() { 1312 SmallVectorImpl<SlotIndex>::iterator RI = 1313 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), 1314 OldIdx); 1315 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 1316 "No RegMask at OldIdx."); 1317 *RI = NewIdx.getRegSlot(); 1318 assert((RI == LIS.RegMaskSlots.begin() || 1319 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 1320 "Cannot move regmask instruction above another call"); 1321 assert((std::next(RI) == LIS.RegMaskSlots.end() || 1322 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 1323 "Cannot move regmask instruction below another call"); 1324 } 1325 1326 // Return the last use of reg between NewIdx and OldIdx. 1327 SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg, 1328 LaneBitmask LaneMask) { 1329 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1330 SlotIndex LastUse = Before; 1331 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { 1332 if (MO.isUndef()) 1333 continue; 1334 unsigned SubReg = MO.getSubReg(); 1335 if (SubReg != 0 && LaneMask.any() 1336 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) 1337 continue; 1338 1339 const MachineInstr &MI = *MO.getParent(); 1340 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 1341 if (InstSlot > LastUse && InstSlot < OldIdx) 1342 LastUse = InstSlot.getRegSlot(); 1343 } 1344 return LastUse; 1345 } 1346 1347 // This is a regunit interval, so scanning the use list could be very 1348 // expensive. Scan upwards from OldIdx instead. 1349 assert(Before < OldIdx && "Expected upwards move"); 1350 SlotIndexes *Indexes = LIS.getSlotIndexes(); 1351 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); 1352 1353 // OldIdx may not correspond to an instruction any longer, so set MII to 1354 // point to the next instruction after OldIdx, or MBB->end(). 1355 MachineBasicBlock::iterator MII = MBB->end(); 1356 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 1357 Indexes->getNextNonNullIndex(OldIdx))) 1358 if (MI->getParent() == MBB) 1359 MII = MI; 1360 1361 MachineBasicBlock::iterator Begin = MBB->begin(); 1362 while (MII != Begin) { 1363 if ((--MII)->isDebugValue()) 1364 continue; 1365 SlotIndex Idx = Indexes->getInstructionIndex(*MII); 1366 1367 // Stop searching when Before is reached. 1368 if (!SlotIndex::isEarlierInstr(Before, Idx)) 1369 return Before; 1370 1371 // Check if MII uses Reg. 1372 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) 1373 if (MO->isReg() && !MO->isUndef() && 1374 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) && 1375 TRI.hasRegUnit(MO->getReg(), Reg)) 1376 return Idx.getRegSlot(); 1377 } 1378 // Didn't reach Before. It must be the first instruction in the block. 1379 return Before; 1380 } 1381 }; 1382 1383 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { 1384 assert(!MI.isBundled() && "Can't handle bundled instructions yet."); 1385 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1386 Indexes->removeMachineInstrFromMaps(MI); 1387 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 1388 assert(getMBBStartIdx(MI.getParent()) <= OldIndex && 1389 OldIndex < getMBBEndIdx(MI.getParent()) && 1390 "Cannot handle moves across basic block boundaries."); 1391 1392 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1393 HME.updateAllRanges(&MI); 1394 } 1395 1396 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI, 1397 MachineInstr &BundleStart, 1398 bool UpdateFlags) { 1399 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1400 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); 1401 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1402 HME.updateAllRanges(&MI); 1403 } 1404 1405 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, 1406 const MachineBasicBlock::iterator End, 1407 const SlotIndex endIdx, 1408 LiveRange &LR, const unsigned Reg, 1409 LaneBitmask LaneMask) { 1410 LiveInterval::iterator LII = LR.find(endIdx); 1411 SlotIndex lastUseIdx; 1412 if (LII == LR.begin()) { 1413 // This happens when the function is called for a subregister that only 1414 // occurs _after_ the range that is to be repaired. 1415 return; 1416 } 1417 if (LII != LR.end() && LII->start < endIdx) 1418 lastUseIdx = LII->end; 1419 else 1420 --LII; 1421 1422 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1423 --I; 1424 MachineInstr &MI = *I; 1425 if (MI.isDebugValue()) 1426 continue; 1427 1428 SlotIndex instrIdx = getInstructionIndex(MI); 1429 bool isStartValid = getInstructionFromIndex(LII->start); 1430 bool isEndValid = getInstructionFromIndex(LII->end); 1431 1432 // FIXME: This doesn't currently handle early-clobber or multiple removed 1433 // defs inside of the region to repair. 1434 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 1435 OE = MI.operands_end(); 1436 OI != OE; ++OI) { 1437 const MachineOperand &MO = *OI; 1438 if (!MO.isReg() || MO.getReg() != Reg) 1439 continue; 1440 1441 unsigned SubReg = MO.getSubReg(); 1442 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1443 if ((Mask & LaneMask).none()) 1444 continue; 1445 1446 if (MO.isDef()) { 1447 if (!isStartValid) { 1448 if (LII->end.isDead()) { 1449 SlotIndex prevStart; 1450 if (LII != LR.begin()) 1451 prevStart = std::prev(LII)->start; 1452 1453 // FIXME: This could be more efficient if there was a 1454 // removeSegment method that returned an iterator. 1455 LR.removeSegment(*LII, true); 1456 if (prevStart.isValid()) 1457 LII = LR.find(prevStart); 1458 else 1459 LII = LR.begin(); 1460 } else { 1461 LII->start = instrIdx.getRegSlot(); 1462 LII->valno->def = instrIdx.getRegSlot(); 1463 if (MO.getSubReg() && !MO.isUndef()) 1464 lastUseIdx = instrIdx.getRegSlot(); 1465 else 1466 lastUseIdx = SlotIndex(); 1467 continue; 1468 } 1469 } 1470 1471 if (!lastUseIdx.isValid()) { 1472 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1473 LiveRange::Segment S(instrIdx.getRegSlot(), 1474 instrIdx.getDeadSlot(), VNI); 1475 LII = LR.addSegment(S); 1476 } else if (LII->start != instrIdx.getRegSlot()) { 1477 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1478 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 1479 LII = LR.addSegment(S); 1480 } 1481 1482 if (MO.getSubReg() && !MO.isUndef()) 1483 lastUseIdx = instrIdx.getRegSlot(); 1484 else 1485 lastUseIdx = SlotIndex(); 1486 } else if (MO.isUse()) { 1487 // FIXME: This should probably be handled outside of this branch, 1488 // either as part of the def case (for defs inside of the region) or 1489 // after the loop over the region. 1490 if (!isEndValid && !LII->end.isBlock()) 1491 LII->end = instrIdx.getRegSlot(); 1492 if (!lastUseIdx.isValid()) 1493 lastUseIdx = instrIdx.getRegSlot(); 1494 } 1495 } 1496 } 1497 } 1498 1499 void 1500 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 1501 MachineBasicBlock::iterator Begin, 1502 MachineBasicBlock::iterator End, 1503 ArrayRef<unsigned> OrigRegs) { 1504 // Find anchor points, which are at the beginning/end of blocks or at 1505 // instructions that already have indexes. 1506 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) 1507 --Begin; 1508 while (End != MBB->end() && !Indexes->hasIndex(*End)) 1509 ++End; 1510 1511 SlotIndex endIdx; 1512 if (End == MBB->end()) 1513 endIdx = getMBBEndIdx(MBB).getPrevSlot(); 1514 else 1515 endIdx = getInstructionIndex(*End); 1516 1517 Indexes->repairIndexesInRange(MBB, Begin, End); 1518 1519 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1520 --I; 1521 MachineInstr &MI = *I; 1522 if (MI.isDebugValue()) 1523 continue; 1524 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1525 MOE = MI.operands_end(); 1526 MOI != MOE; ++MOI) { 1527 if (MOI->isReg() && 1528 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) && 1529 !hasInterval(MOI->getReg())) { 1530 createAndComputeVirtRegInterval(MOI->getReg()); 1531 } 1532 } 1533 } 1534 1535 for (unsigned Reg : OrigRegs) { 1536 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1537 continue; 1538 1539 LiveInterval &LI = getInterval(Reg); 1540 // FIXME: Should we support undefs that gain defs? 1541 if (!LI.hasAtLeastOneValue()) 1542 continue; 1543 1544 for (LiveInterval::SubRange &S : LI.subranges()) 1545 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask); 1546 1547 repairOldRegInRange(Begin, End, endIdx, LI, Reg); 1548 } 1549 } 1550 1551 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) { 1552 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { 1553 if (LiveRange *LR = getCachedRegUnit(*Unit)) 1554 if (VNInfo *VNI = LR->getVNInfoAt(Pos)) 1555 LR->removeValNo(VNI); 1556 } 1557 } 1558 1559 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { 1560 // LI may not have the main range computed yet, but its subranges may 1561 // be present. 1562 VNInfo *VNI = LI.getVNInfoAt(Pos); 1563 if (VNI != nullptr) { 1564 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); 1565 LI.removeValNo(VNI); 1566 } 1567 1568 // Also remove the value defined in subranges. 1569 for (LiveInterval::SubRange &S : LI.subranges()) { 1570 if (VNInfo *SVNI = S.getVNInfoAt(Pos)) 1571 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) 1572 S.removeValNo(SVNI); 1573 } 1574 LI.removeEmptySubRanges(); 1575 } 1576 1577 void LiveIntervals::splitSeparateComponents(LiveInterval &LI, 1578 SmallVectorImpl<LiveInterval*> &SplitLIs) { 1579 ConnectedVNInfoEqClasses ConEQ(*this); 1580 unsigned NumComp = ConEQ.Classify(LI); 1581 if (NumComp <= 1) 1582 return; 1583 DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); 1584 unsigned Reg = LI.reg; 1585 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); 1586 for (unsigned I = 1; I < NumComp; ++I) { 1587 unsigned NewVReg = MRI->createVirtualRegister(RegClass); 1588 LiveInterval &NewLI = createEmptyInterval(NewVReg); 1589 SplitLIs.push_back(&NewLI); 1590 } 1591 ConEQ.Distribute(LI, SplitLIs.data(), *MRI); 1592 } 1593 1594 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { 1595 assert(LRCalc && "LRCalc not initialized."); 1596 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 1597 LRCalc->constructMainRangeFromSubranges(LI); 1598 } 1599