1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "LiveRangeCalc.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBundle.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/Passes.h"
35 #include "llvm/CodeGen/SlotIndexes.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/MC/LaneBitmask.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BlockFrequency.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstdint>
52 #include <iterator>
53 #include <tuple>
54 #include <utility>
55 
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "regalloc"
59 
60 char LiveIntervals::ID = 0;
61 char &llvm::LiveIntervalsID = LiveIntervals::ID;
62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
63                 "Live Interval Analysis", false, false)
64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
68                 "Live Interval Analysis", false, false)
69 
70 #ifndef NDEBUG
71 static cl::opt<bool> EnablePrecomputePhysRegs(
72   "precompute-phys-liveness", cl::Hidden,
73   cl::desc("Eagerly compute live intervals for all physreg units."));
74 #else
75 static bool EnablePrecomputePhysRegs = false;
76 #endif // NDEBUG
77 
78 namespace llvm {
79 
80 cl::opt<bool> UseSegmentSetForPhysRegs(
81     "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
82     cl::desc(
83         "Use segment set for the computation of the live ranges of physregs."));
84 
85 } // end namespace llvm
86 
87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
88   AU.setPreservesCFG();
89   AU.addRequired<AAResultsWrapperPass>();
90   AU.addPreserved<AAResultsWrapperPass>();
91   AU.addPreserved<LiveVariables>();
92   AU.addPreservedID(MachineLoopInfoID);
93   AU.addRequiredTransitiveID(MachineDominatorsID);
94   AU.addPreservedID(MachineDominatorsID);
95   AU.addPreserved<SlotIndexes>();
96   AU.addRequiredTransitive<SlotIndexes>();
97   MachineFunctionPass::getAnalysisUsage(AU);
98 }
99 
100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
101   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
102 }
103 
104 LiveIntervals::~LiveIntervals() {
105   delete LRCalc;
106 }
107 
108 void LiveIntervals::releaseMemory() {
109   // Free the live intervals themselves.
110   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
111     delete VirtRegIntervals[Register::index2VirtReg(i)];
112   VirtRegIntervals.clear();
113   RegMaskSlots.clear();
114   RegMaskBits.clear();
115   RegMaskBlocks.clear();
116 
117   for (LiveRange *LR : RegUnitRanges)
118     delete LR;
119   RegUnitRanges.clear();
120 
121   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
122   VNInfoAllocator.Reset();
123 }
124 
125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
126   MF = &fn;
127   MRI = &MF->getRegInfo();
128   TRI = MF->getSubtarget().getRegisterInfo();
129   TII = MF->getSubtarget().getInstrInfo();
130   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
131   Indexes = &getAnalysis<SlotIndexes>();
132   DomTree = &getAnalysis<MachineDominatorTree>();
133 
134   if (!LRCalc)
135     LRCalc = new LiveRangeCalc();
136 
137   // Allocate space for all virtual registers.
138   VirtRegIntervals.resize(MRI->getNumVirtRegs());
139 
140   computeVirtRegs();
141   computeRegMasks();
142   computeLiveInRegUnits();
143 
144   if (EnablePrecomputePhysRegs) {
145     // For stress testing, precompute live ranges of all physical register
146     // units, including reserved registers.
147     for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
148       getRegUnit(i);
149   }
150   LLVM_DEBUG(dump());
151   return true;
152 }
153 
154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
155   OS << "********** INTERVALS **********\n";
156 
157   // Dump the regunits.
158   for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
159     if (LiveRange *LR = RegUnitRanges[Unit])
160       OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
161 
162   // Dump the virtregs.
163   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
164     unsigned Reg = Register::index2VirtReg(i);
165     if (hasInterval(Reg))
166       OS << getInterval(Reg) << '\n';
167   }
168 
169   OS << "RegMasks:";
170   for (SlotIndex Idx : RegMaskSlots)
171     OS << ' ' << Idx;
172   OS << '\n';
173 
174   printInstrs(OS);
175 }
176 
177 void LiveIntervals::printInstrs(raw_ostream &OS) const {
178   OS << "********** MACHINEINSTRS **********\n";
179   MF->print(OS, Indexes);
180 }
181 
182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
184   printInstrs(dbgs());
185 }
186 #endif
187 
188 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
189   float Weight = Register::isPhysicalRegister(reg) ? huge_valf : 0.0F;
190   return new LiveInterval(reg, Weight);
191 }
192 
193 /// Compute the live interval of a virtual register, based on defs and uses.
194 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
195   assert(LRCalc && "LRCalc not initialized.");
196   assert(LI.empty() && "Should only compute empty intervals.");
197   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
198   LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
199 
200   if (computeDeadValues(LI, nullptr)) {
201     SmallVector<LiveInterval *, 4> SplitIntervals;
202     splitSeparateComponents(LI, SplitIntervals);
203   }
204 }
205 
206 void LiveIntervals::computeVirtRegs() {
207   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
208     unsigned Reg = Register::index2VirtReg(i);
209     if (MRI->reg_nodbg_empty(Reg))
210       continue;
211     createAndComputeVirtRegInterval(Reg);
212   }
213 }
214 
215 void LiveIntervals::computeRegMasks() {
216   RegMaskBlocks.resize(MF->getNumBlockIDs());
217 
218   // Find all instructions with regmask operands.
219   for (const MachineBasicBlock &MBB : *MF) {
220     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
221     RMB.first = RegMaskSlots.size();
222 
223     // Some block starts, such as EH funclets, create masks.
224     if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
225       RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
226       RegMaskBits.push_back(Mask);
227     }
228 
229     for (const MachineInstr &MI : MBB) {
230       for (const MachineOperand &MO : MI.operands()) {
231         if (!MO.isRegMask())
232           continue;
233         RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
234         RegMaskBits.push_back(MO.getRegMask());
235       }
236     }
237 
238     // Some block ends, such as funclet returns, create masks. Put the mask on
239     // the last instruction of the block, because MBB slot index intervals are
240     // half-open.
241     if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
242       assert(!MBB.empty() && "empty return block?");
243       RegMaskSlots.push_back(
244           Indexes->getInstructionIndex(MBB.back()).getRegSlot());
245       RegMaskBits.push_back(Mask);
246     }
247 
248     // Compute the number of register mask instructions in this block.
249     RMB.second = RegMaskSlots.size() - RMB.first;
250   }
251 }
252 
253 //===----------------------------------------------------------------------===//
254 //                           Register Unit Liveness
255 //===----------------------------------------------------------------------===//
256 //
257 // Fixed interference typically comes from ABI boundaries: Function arguments
258 // and return values are passed in fixed registers, and so are exception
259 // pointers entering landing pads. Certain instructions require values to be
260 // present in specific registers. That is also represented through fixed
261 // interference.
262 //
263 
264 /// Compute the live range of a register unit, based on the uses and defs of
265 /// aliasing registers.  The range should be empty, or contain only dead
266 /// phi-defs from ABI blocks.
267 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
268   assert(LRCalc && "LRCalc not initialized.");
269   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
270 
271   // The physregs aliasing Unit are the roots and their super-registers.
272   // Create all values as dead defs before extending to uses. Note that roots
273   // may share super-registers. That's OK because createDeadDefs() is
274   // idempotent. It is very rare for a register unit to have multiple roots, so
275   // uniquing super-registers is probably not worthwhile.
276   bool IsReserved = false;
277   for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
278     bool IsRootReserved = true;
279     for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
280          Super.isValid(); ++Super) {
281       unsigned Reg = *Super;
282       if (!MRI->reg_empty(Reg))
283         LRCalc->createDeadDefs(LR, Reg);
284       // A register unit is considered reserved if all its roots and all their
285       // super registers are reserved.
286       if (!MRI->isReserved(Reg))
287         IsRootReserved = false;
288     }
289     IsReserved |= IsRootReserved;
290   }
291   assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
292          "reserved computation mismatch");
293 
294   // Now extend LR to reach all uses.
295   // Ignore uses of reserved registers. We only track defs of those.
296   if (!IsReserved) {
297     for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
298       for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true);
299            Super.isValid(); ++Super) {
300         unsigned Reg = *Super;
301         if (!MRI->reg_empty(Reg))
302           LRCalc->extendToUses(LR, Reg);
303       }
304     }
305   }
306 
307   // Flush the segment set to the segment vector.
308   if (UseSegmentSetForPhysRegs)
309     LR.flushSegmentSet();
310 }
311 
312 /// Precompute the live ranges of any register units that are live-in to an ABI
313 /// block somewhere. Register values can appear without a corresponding def when
314 /// entering the entry block or a landing pad.
315 void LiveIntervals::computeLiveInRegUnits() {
316   RegUnitRanges.resize(TRI->getNumRegUnits());
317   LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
318 
319   // Keep track of the live range sets allocated.
320   SmallVector<unsigned, 8> NewRanges;
321 
322   // Check all basic blocks for live-ins.
323   for (const MachineBasicBlock &MBB : *MF) {
324     // We only care about ABI blocks: Entry + landing pads.
325     if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
326       continue;
327 
328     // Create phi-defs at Begin for all live-in registers.
329     SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
330     LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
331     for (const auto &LI : MBB.liveins()) {
332       for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) {
333         unsigned Unit = *Units;
334         LiveRange *LR = RegUnitRanges[Unit];
335         if (!LR) {
336           // Use segment set to speed-up initial computation of the live range.
337           LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
338           NewRanges.push_back(Unit);
339         }
340         VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
341         (void)VNI;
342         LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
343       }
344     }
345     LLVM_DEBUG(dbgs() << '\n');
346   }
347   LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
348 
349   // Compute the 'normal' part of the ranges.
350   for (unsigned Unit : NewRanges)
351     computeRegUnitRange(*RegUnitRanges[Unit], Unit);
352 }
353 
354 static void createSegmentsForValues(LiveRange &LR,
355     iterator_range<LiveInterval::vni_iterator> VNIs) {
356   for (VNInfo *VNI : VNIs) {
357     if (VNI->isUnused())
358       continue;
359     SlotIndex Def = VNI->def;
360     LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
361   }
362 }
363 
364 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
365                                          ShrinkToUsesWorkList &WorkList,
366                                          unsigned Reg, LaneBitmask LaneMask) {
367   // Keep track of the PHIs that are in use.
368   SmallPtrSet<VNInfo*, 8> UsedPHIs;
369   // Blocks that have already been added to WorkList as live-out.
370   SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
371 
372   auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
373         -> const LiveRange& {
374     if (M.none())
375       return I;
376     for (const LiveInterval::SubRange &SR : I.subranges()) {
377       if ((SR.LaneMask & M).any()) {
378         assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
379         return SR;
380       }
381     }
382     llvm_unreachable("Subrange for mask not found");
383   };
384 
385   const LiveInterval &LI = getInterval(Reg);
386   const LiveRange &OldRange = getSubRange(LI, LaneMask);
387 
388   // Extend intervals to reach all uses in WorkList.
389   while (!WorkList.empty()) {
390     SlotIndex Idx = WorkList.back().first;
391     VNInfo *VNI = WorkList.back().second;
392     WorkList.pop_back();
393     const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
394     SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
395 
396     // Extend the live range for VNI to be live at Idx.
397     if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
398       assert(ExtVNI == VNI && "Unexpected existing value number");
399       (void)ExtVNI;
400       // Is this a PHIDef we haven't seen before?
401       if (!VNI->isPHIDef() || VNI->def != BlockStart ||
402           !UsedPHIs.insert(VNI).second)
403         continue;
404       // The PHI is live, make sure the predecessors are live-out.
405       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
406         if (!LiveOut.insert(Pred).second)
407           continue;
408         SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
409         // A predecessor is not required to have a live-out value for a PHI.
410         if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
411           WorkList.push_back(std::make_pair(Stop, PVNI));
412       }
413       continue;
414     }
415 
416     // VNI is live-in to MBB.
417     LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
418     Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
419 
420     // Make sure VNI is live-out from the predecessors.
421     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
422       if (!LiveOut.insert(Pred).second)
423         continue;
424       SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
425       if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
426         assert(OldVNI == VNI && "Wrong value out of predecessor");
427         (void)OldVNI;
428         WorkList.push_back(std::make_pair(Stop, VNI));
429       } else {
430 #ifndef NDEBUG
431         // There was no old VNI. Verify that Stop is jointly dominated
432         // by <undef>s for this live range.
433         assert(LaneMask.any() &&
434                "Missing value out of predecessor for main range");
435         SmallVector<SlotIndex,8> Undefs;
436         LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
437         assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
438                "Missing value out of predecessor for subrange");
439 #endif
440       }
441     }
442   }
443 }
444 
445 bool LiveIntervals::shrinkToUses(LiveInterval *li,
446                                  SmallVectorImpl<MachineInstr*> *dead) {
447   LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
448   assert(Register::isVirtualRegister(li->reg) &&
449          "Can only shrink virtual registers");
450 
451   // Shrink subregister live ranges.
452   bool NeedsCleanup = false;
453   for (LiveInterval::SubRange &S : li->subranges()) {
454     shrinkToUses(S, li->reg);
455     if (S.empty())
456       NeedsCleanup = true;
457   }
458   if (NeedsCleanup)
459     li->removeEmptySubRanges();
460 
461   // Find all the values used, including PHI kills.
462   ShrinkToUsesWorkList WorkList;
463 
464   // Visit all instructions reading li->reg.
465   unsigned Reg = li->reg;
466   for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
467     if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg))
468       continue;
469     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
470     LiveQueryResult LRQ = li->Query(Idx);
471     VNInfo *VNI = LRQ.valueIn();
472     if (!VNI) {
473       // This shouldn't happen: readsVirtualRegister returns true, but there is
474       // no live value. It is likely caused by a target getting <undef> flags
475       // wrong.
476       LLVM_DEBUG(
477           dbgs() << Idx << '\t' << UseMI
478                  << "Warning: Instr claims to read non-existent value in "
479                  << *li << '\n');
480       continue;
481     }
482     // Special case: An early-clobber tied operand reads and writes the
483     // register one slot early.
484     if (VNInfo *DefVNI = LRQ.valueDefined())
485       Idx = DefVNI->def;
486 
487     WorkList.push_back(std::make_pair(Idx, VNI));
488   }
489 
490   // Create new live ranges with only minimal live segments per def.
491   LiveRange NewLR;
492   createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end()));
493   extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
494 
495   // Move the trimmed segments back.
496   li->segments.swap(NewLR.segments);
497 
498   // Handle dead values.
499   bool CanSeparate = computeDeadValues(*li, dead);
500   LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
501   return CanSeparate;
502 }
503 
504 bool LiveIntervals::computeDeadValues(LiveInterval &LI,
505                                       SmallVectorImpl<MachineInstr*> *dead) {
506   bool MayHaveSplitComponents = false;
507   bool HaveDeadDef = false;
508 
509   for (VNInfo *VNI : LI.valnos) {
510     if (VNI->isUnused())
511       continue;
512     SlotIndex Def = VNI->def;
513     LiveRange::iterator I = LI.FindSegmentContaining(Def);
514     assert(I != LI.end() && "Missing segment for VNI");
515 
516     // Is the register live before? Otherwise we may have to add a read-undef
517     // flag for subregister defs.
518     unsigned VReg = LI.reg;
519     if (MRI->shouldTrackSubRegLiveness(VReg)) {
520       if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
521         MachineInstr *MI = getInstructionFromIndex(Def);
522         MI->setRegisterDefReadUndef(VReg);
523       }
524     }
525 
526     if (I->end != Def.getDeadSlot())
527       continue;
528     if (VNI->isPHIDef()) {
529       // This is a dead PHI. Remove it.
530       VNI->markUnused();
531       LI.removeSegment(I);
532       LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
533       MayHaveSplitComponents = true;
534     } else {
535       // This is a dead def. Make sure the instruction knows.
536       MachineInstr *MI = getInstructionFromIndex(Def);
537       assert(MI && "No instruction defining live value");
538       MI->addRegisterDead(LI.reg, TRI);
539       if (HaveDeadDef)
540         MayHaveSplitComponents = true;
541       HaveDeadDef = true;
542 
543       if (dead && MI->allDefsAreDead()) {
544         LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
545         dead->push_back(MI);
546       }
547     }
548   }
549   return MayHaveSplitComponents;
550 }
551 
552 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) {
553   LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
554   assert(Register::isVirtualRegister(Reg) &&
555          "Can only shrink virtual registers");
556   // Find all the values used, including PHI kills.
557   ShrinkToUsesWorkList WorkList;
558 
559   // Visit all instructions reading Reg.
560   SlotIndex LastIdx;
561   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
562     // Skip "undef" uses.
563     if (!MO.readsReg())
564       continue;
565     // Maybe the operand is for a subregister we don't care about.
566     unsigned SubReg = MO.getSubReg();
567     if (SubReg != 0) {
568       LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
569       if ((LaneMask & SR.LaneMask).none())
570         continue;
571     }
572     // We only need to visit each instruction once.
573     MachineInstr *UseMI = MO.getParent();
574     SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
575     if (Idx == LastIdx)
576       continue;
577     LastIdx = Idx;
578 
579     LiveQueryResult LRQ = SR.Query(Idx);
580     VNInfo *VNI = LRQ.valueIn();
581     // For Subranges it is possible that only undef values are left in that
582     // part of the subregister, so there is no real liverange at the use
583     if (!VNI)
584       continue;
585 
586     // Special case: An early-clobber tied operand reads and writes the
587     // register one slot early.
588     if (VNInfo *DefVNI = LRQ.valueDefined())
589       Idx = DefVNI->def;
590 
591     WorkList.push_back(std::make_pair(Idx, VNI));
592   }
593 
594   // Create a new live ranges with only minimal live segments per def.
595   LiveRange NewLR;
596   createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end()));
597   extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
598 
599   // Move the trimmed ranges back.
600   SR.segments.swap(NewLR.segments);
601 
602   // Remove dead PHI value numbers
603   for (VNInfo *VNI : SR.valnos) {
604     if (VNI->isUnused())
605       continue;
606     const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
607     assert(Segment != nullptr && "Missing segment for VNI");
608     if (Segment->end != VNI->def.getDeadSlot())
609       continue;
610     if (VNI->isPHIDef()) {
611       // This is a dead PHI. Remove it.
612       LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
613                         << " may separate interval\n");
614       VNI->markUnused();
615       SR.removeSegment(*Segment);
616     }
617   }
618 
619   LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
620 }
621 
622 void LiveIntervals::extendToIndices(LiveRange &LR,
623                                     ArrayRef<SlotIndex> Indices,
624                                     ArrayRef<SlotIndex> Undefs) {
625   assert(LRCalc && "LRCalc not initialized.");
626   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
627   for (SlotIndex Idx : Indices)
628     LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
629 }
630 
631 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
632                                SmallVectorImpl<SlotIndex> *EndPoints) {
633   LiveQueryResult LRQ = LR.Query(Kill);
634   VNInfo *VNI = LRQ.valueOutOrDead();
635   if (!VNI)
636     return;
637 
638   MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
639   SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
640 
641   // If VNI isn't live out from KillMBB, the value is trivially pruned.
642   if (LRQ.endPoint() < MBBEnd) {
643     LR.removeSegment(Kill, LRQ.endPoint());
644     if (EndPoints) EndPoints->push_back(LRQ.endPoint());
645     return;
646   }
647 
648   // VNI is live out of KillMBB.
649   LR.removeSegment(Kill, MBBEnd);
650   if (EndPoints) EndPoints->push_back(MBBEnd);
651 
652   // Find all blocks that are reachable from KillMBB without leaving VNI's live
653   // range. It is possible that KillMBB itself is reachable, so start a DFS
654   // from each successor.
655   using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
656   VisitedTy Visited;
657   for (MachineBasicBlock *Succ : KillMBB->successors()) {
658     for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
659          I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
660          I != E;) {
661       MachineBasicBlock *MBB = *I;
662 
663       // Check if VNI is live in to MBB.
664       SlotIndex MBBStart, MBBEnd;
665       std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
666       LiveQueryResult LRQ = LR.Query(MBBStart);
667       if (LRQ.valueIn() != VNI) {
668         // This block isn't part of the VNI segment. Prune the search.
669         I.skipChildren();
670         continue;
671       }
672 
673       // Prune the search if VNI is killed in MBB.
674       if (LRQ.endPoint() < MBBEnd) {
675         LR.removeSegment(MBBStart, LRQ.endPoint());
676         if (EndPoints) EndPoints->push_back(LRQ.endPoint());
677         I.skipChildren();
678         continue;
679       }
680 
681       // VNI is live through MBB.
682       LR.removeSegment(MBBStart, MBBEnd);
683       if (EndPoints) EndPoints->push_back(MBBEnd);
684       ++I;
685     }
686   }
687 }
688 
689 //===----------------------------------------------------------------------===//
690 // Register allocator hooks.
691 //
692 
693 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
694   // Keep track of regunit ranges.
695   SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
696   // Keep track of subregister ranges.
697   SmallVector<std::pair<const LiveInterval::SubRange*,
698                         LiveRange::const_iterator>, 4> SRs;
699 
700   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
701     unsigned Reg = Register::index2VirtReg(i);
702     if (MRI->reg_nodbg_empty(Reg))
703       continue;
704     const LiveInterval &LI = getInterval(Reg);
705     if (LI.empty())
706       continue;
707 
708     // Find the regunit intervals for the assigned register. They may overlap
709     // the virtual register live range, cancelling any kills.
710     RU.clear();
711     for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid();
712          ++Unit) {
713       const LiveRange &RURange = getRegUnit(*Unit);
714       if (RURange.empty())
715         continue;
716       RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
717     }
718 
719     if (MRI->subRegLivenessEnabled()) {
720       SRs.clear();
721       for (const LiveInterval::SubRange &SR : LI.subranges()) {
722         SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end)));
723       }
724     }
725 
726     // Every instruction that kills Reg corresponds to a segment range end
727     // point.
728     for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
729          ++RI) {
730       // A block index indicates an MBB edge.
731       if (RI->end.isBlock())
732         continue;
733       MachineInstr *MI = getInstructionFromIndex(RI->end);
734       if (!MI)
735         continue;
736 
737       // Check if any of the regunits are live beyond the end of RI. That could
738       // happen when a physreg is defined as a copy of a virtreg:
739       //
740       //   %eax = COPY %5
741       //   FOO %5             <--- MI, cancel kill because %eax is live.
742       //   BAR killed %eax
743       //
744       // There should be no kill flag on FOO when %5 is rewritten as %eax.
745       for (auto &RUP : RU) {
746         const LiveRange &RURange = *RUP.first;
747         LiveRange::const_iterator &I = RUP.second;
748         if (I == RURange.end())
749           continue;
750         I = RURange.advanceTo(I, RI->end);
751         if (I == RURange.end() || I->start >= RI->end)
752           continue;
753         // I is overlapping RI.
754         goto CancelKill;
755       }
756 
757       if (MRI->subRegLivenessEnabled()) {
758         // When reading a partial undefined value we must not add a kill flag.
759         // The regalloc might have used the undef lane for something else.
760         // Example:
761         //     %1 = ...                  ; R32: %1
762         //     %2:high16 = ...           ; R64: %2
763         //        = read killed %2        ; R64: %2
764         //        = read %1              ; R32: %1
765         // The <kill> flag is correct for %2, but the register allocator may
766         // assign R0L to %1, and R0 to %2 because the low 32bits of R0
767         // are actually never written by %2. After assignment the <kill>
768         // flag at the read instruction is invalid.
769         LaneBitmask DefinedLanesMask;
770         if (!SRs.empty()) {
771           // Compute a mask of lanes that are defined.
772           DefinedLanesMask = LaneBitmask::getNone();
773           for (auto &SRP : SRs) {
774             const LiveInterval::SubRange &SR = *SRP.first;
775             LiveRange::const_iterator &I = SRP.second;
776             if (I == SR.end())
777               continue;
778             I = SR.advanceTo(I, RI->end);
779             if (I == SR.end() || I->start >= RI->end)
780               continue;
781             // I is overlapping RI
782             DefinedLanesMask |= SR.LaneMask;
783           }
784         } else
785           DefinedLanesMask = LaneBitmask::getAll();
786 
787         bool IsFullWrite = false;
788         for (const MachineOperand &MO : MI->operands()) {
789           if (!MO.isReg() || MO.getReg() != Reg)
790             continue;
791           if (MO.isUse()) {
792             // Reading any undefined lanes?
793             LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
794             if ((UseMask & ~DefinedLanesMask).any())
795               goto CancelKill;
796           } else if (MO.getSubReg() == 0) {
797             // Writing to the full register?
798             assert(MO.isDef());
799             IsFullWrite = true;
800           }
801         }
802 
803         // If an instruction writes to a subregister, a new segment starts in
804         // the LiveInterval. But as this is only overriding part of the register
805         // adding kill-flags is not correct here after registers have been
806         // assigned.
807         if (!IsFullWrite) {
808           // Next segment has to be adjacent in the subregister write case.
809           LiveRange::const_iterator N = std::next(RI);
810           if (N != LI.end() && N->start == RI->end)
811             goto CancelKill;
812         }
813       }
814 
815       MI->addRegisterKilled(Reg, nullptr);
816       continue;
817 CancelKill:
818       MI->clearRegisterKills(Reg, nullptr);
819     }
820   }
821 }
822 
823 MachineBasicBlock*
824 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
825   // A local live range must be fully contained inside the block, meaning it is
826   // defined and killed at instructions, not at block boundaries. It is not
827   // live in or out of any block.
828   //
829   // It is technically possible to have a PHI-defined live range identical to a
830   // single block, but we are going to return false in that case.
831 
832   SlotIndex Start = LI.beginIndex();
833   if (Start.isBlock())
834     return nullptr;
835 
836   SlotIndex Stop = LI.endIndex();
837   if (Stop.isBlock())
838     return nullptr;
839 
840   // getMBBFromIndex doesn't need to search the MBB table when both indexes
841   // belong to proper instructions.
842   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
843   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
844   return MBB1 == MBB2 ? MBB1 : nullptr;
845 }
846 
847 bool
848 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
849   for (const VNInfo *PHI : LI.valnos) {
850     if (PHI->isUnused() || !PHI->isPHIDef())
851       continue;
852     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
853     // Conservatively return true instead of scanning huge predecessor lists.
854     if (PHIMBB->pred_size() > 100)
855       return true;
856     for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
857       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
858         return true;
859   }
860   return false;
861 }
862 
863 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
864                                     const MachineBlockFrequencyInfo *MBFI,
865                                     const MachineInstr &MI) {
866   return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
867 }
868 
869 float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
870                                     const MachineBlockFrequencyInfo *MBFI,
871                                     const MachineBasicBlock *MBB) {
872   BlockFrequency Freq = MBFI->getBlockFreq(MBB);
873   const float Scale = 1.0f / MBFI->getEntryFreq();
874   return (isDef + isUse) * (Freq.getFrequency() * Scale);
875 }
876 
877 LiveRange::Segment
878 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) {
879   LiveInterval& Interval = createEmptyInterval(reg);
880   VNInfo *VN = Interval.getNextValue(
881       SlotIndex(getInstructionIndex(startInst).getRegSlot()),
882       getVNInfoAllocator());
883   LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
884                        getMBBEndIdx(startInst.getParent()), VN);
885   Interval.addSegment(S);
886 
887   return S;
888 }
889 
890 //===----------------------------------------------------------------------===//
891 //                          Register mask functions
892 //===----------------------------------------------------------------------===//
893 
894 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
895                                              BitVector &UsableRegs) {
896   if (LI.empty())
897     return false;
898   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
899 
900   // Use a smaller arrays for local live ranges.
901   ArrayRef<SlotIndex> Slots;
902   ArrayRef<const uint32_t*> Bits;
903   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
904     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
905     Bits = getRegMaskBitsInBlock(MBB->getNumber());
906   } else {
907     Slots = getRegMaskSlots();
908     Bits = getRegMaskBits();
909   }
910 
911   // We are going to enumerate all the register mask slots contained in LI.
912   // Start with a binary search of RegMaskSlots to find a starting point.
913   ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
914   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
915 
916   // No slots in range, LI begins after the last call.
917   if (SlotI == SlotE)
918     return false;
919 
920   bool Found = false;
921   while (true) {
922     assert(*SlotI >= LiveI->start);
923     // Loop over all slots overlapping this segment.
924     while (*SlotI < LiveI->end) {
925       // *SlotI overlaps LI. Collect mask bits.
926       if (!Found) {
927         // This is the first overlap. Initialize UsableRegs to all ones.
928         UsableRegs.clear();
929         UsableRegs.resize(TRI->getNumRegs(), true);
930         Found = true;
931       }
932       // Remove usable registers clobbered by this mask.
933       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
934       if (++SlotI == SlotE)
935         return Found;
936     }
937     // *SlotI is beyond the current LI segment.
938     LiveI = LI.advanceTo(LiveI, *SlotI);
939     if (LiveI == LiveE)
940       return Found;
941     // Advance SlotI until it overlaps.
942     while (*SlotI < LiveI->start)
943       if (++SlotI == SlotE)
944         return Found;
945   }
946 }
947 
948 //===----------------------------------------------------------------------===//
949 //                         IntervalUpdate class.
950 //===----------------------------------------------------------------------===//
951 
952 /// Toolkit used by handleMove to trim or extend live intervals.
953 class LiveIntervals::HMEditor {
954 private:
955   LiveIntervals& LIS;
956   const MachineRegisterInfo& MRI;
957   const TargetRegisterInfo& TRI;
958   SlotIndex OldIdx;
959   SlotIndex NewIdx;
960   SmallPtrSet<LiveRange*, 8> Updated;
961   bool UpdateFlags;
962 
963 public:
964   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
965            const TargetRegisterInfo& TRI,
966            SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
967     : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
968       UpdateFlags(UpdateFlags) {}
969 
970   // FIXME: UpdateFlags is a workaround that creates live intervals for all
971   // physregs, even those that aren't needed for regalloc, in order to update
972   // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
973   // flags, and postRA passes will use a live register utility instead.
974   LiveRange *getRegUnitLI(unsigned Unit) {
975     if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
976       return &LIS.getRegUnit(Unit);
977     return LIS.getCachedRegUnit(Unit);
978   }
979 
980   /// Update all live ranges touched by MI, assuming a move from OldIdx to
981   /// NewIdx.
982   void updateAllRanges(MachineInstr *MI) {
983     LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
984                       << *MI);
985     bool hasRegMask = false;
986     for (MachineOperand &MO : MI->operands()) {
987       if (MO.isRegMask())
988         hasRegMask = true;
989       if (!MO.isReg())
990         continue;
991       if (MO.isUse()) {
992         if (!MO.readsReg())
993           continue;
994         // Aggressively clear all kill flags.
995         // They are reinserted by VirtRegRewriter.
996         MO.setIsKill(false);
997       }
998 
999       Register Reg = MO.getReg();
1000       if (!Reg)
1001         continue;
1002       if (Register::isVirtualRegister(Reg)) {
1003         LiveInterval &LI = LIS.getInterval(Reg);
1004         if (LI.hasSubRanges()) {
1005           unsigned SubReg = MO.getSubReg();
1006           LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1007                                         : MRI.getMaxLaneMaskForVReg(Reg);
1008           for (LiveInterval::SubRange &S : LI.subranges()) {
1009             if ((S.LaneMask & LaneMask).none())
1010               continue;
1011             updateRange(S, Reg, S.LaneMask);
1012           }
1013         }
1014         updateRange(LI, Reg, LaneBitmask::getNone());
1015         continue;
1016       }
1017 
1018       // For physregs, only update the regunits that actually have a
1019       // precomputed live range.
1020       for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1021         if (LiveRange *LR = getRegUnitLI(*Units))
1022           updateRange(*LR, *Units, LaneBitmask::getNone());
1023     }
1024     if (hasRegMask)
1025       updateRegMaskSlots();
1026   }
1027 
1028 private:
1029   /// Update a single live range, assuming an instruction has been moved from
1030   /// OldIdx to NewIdx.
1031   void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1032     if (!Updated.insert(&LR).second)
1033       return;
1034     LLVM_DEBUG({
1035       dbgs() << "     ";
1036       if (Register::isVirtualRegister(Reg)) {
1037         dbgs() << printReg(Reg);
1038         if (LaneMask.any())
1039           dbgs() << " L" << PrintLaneMask(LaneMask);
1040       } else {
1041         dbgs() << printRegUnit(Reg, &TRI);
1042       }
1043       dbgs() << ":\t" << LR << '\n';
1044     });
1045     if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1046       handleMoveDown(LR);
1047     else
1048       handleMoveUp(LR, Reg, LaneMask);
1049     LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1050     LR.verify();
1051   }
1052 
1053   /// Update LR to reflect an instruction has been moved downwards from OldIdx
1054   /// to NewIdx (OldIdx < NewIdx).
1055   void handleMoveDown(LiveRange &LR) {
1056     LiveRange::iterator E = LR.end();
1057     // Segment going into OldIdx.
1058     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1059 
1060     // No value live before or after OldIdx? Nothing to do.
1061     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1062       return;
1063 
1064     LiveRange::iterator OldIdxOut;
1065     // Do we have a value live-in to OldIdx?
1066     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1067       // If the live-in value already extends to NewIdx, there is nothing to do.
1068       if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1069         return;
1070       // Aggressively remove all kill flags from the old kill point.
1071       // Kill flags shouldn't be used while live intervals exist, they will be
1072       // reinserted by VirtRegRewriter.
1073       if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1074         for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1075           if (MO->isReg() && MO->isUse())
1076             MO->setIsKill(false);
1077 
1078       // Is there a def before NewIdx which is not OldIdx?
1079       LiveRange::iterator Next = std::next(OldIdxIn);
1080       if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1081           SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1082         // If we are here then OldIdx was just a use but not a def. We only have
1083         // to ensure liveness extends to NewIdx.
1084         LiveRange::iterator NewIdxIn =
1085           LR.advanceTo(Next, NewIdx.getBaseIndex());
1086         // Extend the segment before NewIdx if necessary.
1087         if (NewIdxIn == E ||
1088             !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1089           LiveRange::iterator Prev = std::prev(NewIdxIn);
1090           Prev->end = NewIdx.getRegSlot();
1091         }
1092         // Extend OldIdxIn.
1093         OldIdxIn->end = Next->start;
1094         return;
1095       }
1096 
1097       // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1098       // invalid by overlapping ranges.
1099       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1100       OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1101       // If this was not a kill, then there was no def and we're done.
1102       if (!isKill)
1103         return;
1104 
1105       // Did we have a Def at OldIdx?
1106       OldIdxOut = Next;
1107       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1108         return;
1109     } else {
1110       OldIdxOut = OldIdxIn;
1111     }
1112 
1113     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1114     // to the segment starting there.
1115     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1116            "No def?");
1117     VNInfo *OldIdxVNI = OldIdxOut->valno;
1118     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1119 
1120     // If the defined value extends beyond NewIdx, just move the beginning
1121     // of the segment to NewIdx.
1122     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1123     if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1124       OldIdxVNI->def = NewIdxDef;
1125       OldIdxOut->start = OldIdxVNI->def;
1126       return;
1127     }
1128 
1129     // If we are here then we have a Definition at OldIdx which ends before
1130     // NewIdx.
1131 
1132     // Is there an existing Def at NewIdx?
1133     LiveRange::iterator AfterNewIdx
1134       = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1135     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1136     if (!OldIdxDefIsDead &&
1137         SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1138       // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1139       VNInfo *DefVNI;
1140       if (OldIdxOut != LR.begin() &&
1141           !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1142                                      OldIdxOut->start)) {
1143         // There is no gap between OldIdxOut and its predecessor anymore,
1144         // merge them.
1145         LiveRange::iterator IPrev = std::prev(OldIdxOut);
1146         DefVNI = OldIdxVNI;
1147         IPrev->end = OldIdxOut->end;
1148       } else {
1149         // The value is live in to OldIdx
1150         LiveRange::iterator INext = std::next(OldIdxOut);
1151         assert(INext != E && "Must have following segment");
1152         // We merge OldIdxOut and its successor. As we're dealing with subreg
1153         // reordering, there is always a successor to OldIdxOut in the same BB
1154         // We don't need INext->valno anymore and will reuse for the new segment
1155         // we create later.
1156         DefVNI = OldIdxVNI;
1157         INext->start = OldIdxOut->end;
1158         INext->valno->def = INext->start;
1159       }
1160       // If NewIdx is behind the last segment, extend that and append a new one.
1161       if (AfterNewIdx == E) {
1162         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1163         // one position.
1164         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1165         // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1166         std::copy(std::next(OldIdxOut), E, OldIdxOut);
1167         // The last segment is undefined now, reuse it for a dead def.
1168         LiveRange::iterator NewSegment = std::prev(E);
1169         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1170                                          DefVNI);
1171         DefVNI->def = NewIdxDef;
1172 
1173         LiveRange::iterator Prev = std::prev(NewSegment);
1174         Prev->end = NewIdxDef;
1175       } else {
1176         // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1177         // one position.
1178         //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1179         // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1180         std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1181         LiveRange::iterator Prev = std::prev(AfterNewIdx);
1182         // We have two cases:
1183         if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1184           // Case 1: NewIdx is inside a liverange. Split this liverange at
1185           // NewIdxDef into the segment "Prev" followed by "NewSegment".
1186           LiveRange::iterator NewSegment = AfterNewIdx;
1187           *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1188           Prev->valno->def = NewIdxDef;
1189 
1190           *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1191           DefVNI->def = Prev->start;
1192         } else {
1193           // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1194           // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1195           *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1196           DefVNI->def = NewIdxDef;
1197           assert(DefVNI != AfterNewIdx->valno);
1198         }
1199       }
1200       return;
1201     }
1202 
1203     if (AfterNewIdx != E &&
1204         SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1205       // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1206       // that value.
1207       assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1208       LR.removeValNo(OldIdxVNI);
1209     } else {
1210       // There was no existing def at NewIdx. We need to create a dead def
1211       // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1212       // a new segment at the place where we want to construct the dead def.
1213       //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1214       // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1215       assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1216       std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1217       // We can reuse OldIdxVNI now.
1218       LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1219       VNInfo *NewSegmentVNI = OldIdxVNI;
1220       NewSegmentVNI->def = NewIdxDef;
1221       *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1222                                        NewSegmentVNI);
1223     }
1224   }
1225 
1226   /// Update LR to reflect an instruction has been moved upwards from OldIdx
1227   /// to NewIdx (NewIdx < OldIdx).
1228   void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) {
1229     LiveRange::iterator E = LR.end();
1230     // Segment going into OldIdx.
1231     LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1232 
1233     // No value live before or after OldIdx? Nothing to do.
1234     if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1235       return;
1236 
1237     LiveRange::iterator OldIdxOut;
1238     // Do we have a value live-in to OldIdx?
1239     if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1240       // If the live-in value isn't killed here, then we have no Def at
1241       // OldIdx, moreover the value must be live at NewIdx so there is nothing
1242       // to do.
1243       bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1244       if (!isKill)
1245         return;
1246 
1247       // At this point we have to move OldIdxIn->end back to the nearest
1248       // previous use or (dead-)def but no further than NewIdx.
1249       SlotIndex DefBeforeOldIdx
1250         = std::max(OldIdxIn->start.getDeadSlot(),
1251                    NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1252       OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1253 
1254       // Did we have a Def at OldIdx? If not we are done now.
1255       OldIdxOut = std::next(OldIdxIn);
1256       if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1257         return;
1258     } else {
1259       OldIdxOut = OldIdxIn;
1260       OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1261     }
1262 
1263     // If we are here then there is a Definition at OldIdx. OldIdxOut points
1264     // to the segment starting there.
1265     assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1266            "No def?");
1267     VNInfo *OldIdxVNI = OldIdxOut->valno;
1268     assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1269     bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1270 
1271     // Is there an existing def at NewIdx?
1272     SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1273     LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1274     if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1275       assert(NewIdxOut->valno != OldIdxVNI &&
1276              "Same value defined more than once?");
1277       // If OldIdx was a dead def remove it.
1278       if (!OldIdxDefIsDead) {
1279         // Remove segment starting at NewIdx and move begin of OldIdxOut to
1280         // NewIdx so it can take its place.
1281         OldIdxVNI->def = NewIdxDef;
1282         OldIdxOut->start = NewIdxDef;
1283         LR.removeValNo(NewIdxOut->valno);
1284       } else {
1285         // Simply remove the dead def at OldIdx.
1286         LR.removeValNo(OldIdxVNI);
1287       }
1288     } else {
1289       // Previously nothing was live after NewIdx, so all we have to do now is
1290       // move the begin of OldIdxOut to NewIdx.
1291       if (!OldIdxDefIsDead) {
1292         // Do we have any intermediate Defs between OldIdx and NewIdx?
1293         if (OldIdxIn != E &&
1294             SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1295           // OldIdx is not a dead def and NewIdx is before predecessor start.
1296           LiveRange::iterator NewIdxIn = NewIdxOut;
1297           assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1298           const SlotIndex SplitPos = NewIdxDef;
1299           OldIdxVNI = OldIdxIn->valno;
1300 
1301           // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1302           OldIdxOut->valno->def = OldIdxIn->start;
1303           *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1304                                           OldIdxOut->valno);
1305           // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1306           // We Slide [NewIdxIn, OldIdxIn) down one position.
1307           //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1308           // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1309           std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1310           // NewIdxIn is now considered undef so we can reuse it for the moved
1311           // value.
1312           LiveRange::iterator NewSegment = NewIdxIn;
1313           LiveRange::iterator Next = std::next(NewSegment);
1314           if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1315             // There is no gap between NewSegment and its predecessor.
1316             *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1317                                              Next->valno);
1318             *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI);
1319             Next->valno->def = SplitPos;
1320           } else {
1321             // There is a gap between NewSegment and its predecessor
1322             // Value becomes live in.
1323             *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1324             NewSegment->valno->def = SplitPos;
1325           }
1326         } else {
1327           // Leave the end point of a live def.
1328           OldIdxOut->start = NewIdxDef;
1329           OldIdxVNI->def = NewIdxDef;
1330           if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1331             OldIdxIn->end = NewIdx.getRegSlot();
1332         }
1333       } else if (OldIdxIn != E
1334           && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1335           && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1336         // OldIdxVNI is a dead def that has been moved into the middle of
1337         // another value in LR. That can happen when LR is a whole register,
1338         // but the dead def is a write to a subreg that is dead at NewIdx.
1339         // The dead def may have been moved across other values
1340         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1341         // down one position.
1342         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1343         // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1344         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1345         // Modify the segment at NewIdxOut and the following segment to meet at
1346         // the point of the dead def, with the following segment getting
1347         // OldIdxVNI as its value number.
1348         *NewIdxOut = LiveRange::Segment(
1349             NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1350         *(NewIdxOut + 1) = LiveRange::Segment(
1351             NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1352         OldIdxVNI->def = NewIdxDef;
1353         // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1354         for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1355           Idx->valno = OldIdxVNI;
1356         // Aggressively remove all dead flags from the former dead definition.
1357         // Kill/dead flags shouldn't be used while live intervals exist; they
1358         // will be reinserted by VirtRegRewriter.
1359         if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1360           for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1361             if (MO->isReg() && !MO->isUse())
1362               MO->setIsDead(false);
1363       } else {
1364         // OldIdxVNI is a dead def. It may have been moved across other values
1365         // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1366         // down one position.
1367         //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1368         // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1369         std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1370         // OldIdxVNI can be reused now to build a new dead def segment.
1371         LiveRange::iterator NewSegment = NewIdxOut;
1372         VNInfo *NewSegmentVNI = OldIdxVNI;
1373         *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1374                                          NewSegmentVNI);
1375         NewSegmentVNI->def = NewIdxDef;
1376       }
1377     }
1378   }
1379 
1380   void updateRegMaskSlots() {
1381     SmallVectorImpl<SlotIndex>::iterator RI =
1382         llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1383     assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1384            "No RegMask at OldIdx.");
1385     *RI = NewIdx.getRegSlot();
1386     assert((RI == LIS.RegMaskSlots.begin() ||
1387             SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1388            "Cannot move regmask instruction above another call");
1389     assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1390             SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1391            "Cannot move regmask instruction below another call");
1392   }
1393 
1394   // Return the last use of reg between NewIdx and OldIdx.
1395   SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg,
1396                               LaneBitmask LaneMask) {
1397     if (Register::isVirtualRegister(Reg)) {
1398       SlotIndex LastUse = Before;
1399       for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1400         if (MO.isUndef())
1401           continue;
1402         unsigned SubReg = MO.getSubReg();
1403         if (SubReg != 0 && LaneMask.any()
1404             && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1405           continue;
1406 
1407         const MachineInstr &MI = *MO.getParent();
1408         SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1409         if (InstSlot > LastUse && InstSlot < OldIdx)
1410           LastUse = InstSlot.getRegSlot();
1411       }
1412       return LastUse;
1413     }
1414 
1415     // This is a regunit interval, so scanning the use list could be very
1416     // expensive. Scan upwards from OldIdx instead.
1417     assert(Before < OldIdx && "Expected upwards move");
1418     SlotIndexes *Indexes = LIS.getSlotIndexes();
1419     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1420 
1421     // OldIdx may not correspond to an instruction any longer, so set MII to
1422     // point to the next instruction after OldIdx, or MBB->end().
1423     MachineBasicBlock::iterator MII = MBB->end();
1424     if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1425                            Indexes->getNextNonNullIndex(OldIdx)))
1426       if (MI->getParent() == MBB)
1427         MII = MI;
1428 
1429     MachineBasicBlock::iterator Begin = MBB->begin();
1430     while (MII != Begin) {
1431       if ((--MII)->isDebugInstr())
1432         continue;
1433       SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1434 
1435       // Stop searching when Before is reached.
1436       if (!SlotIndex::isEarlierInstr(Before, Idx))
1437         return Before;
1438 
1439       // Check if MII uses Reg.
1440       for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1441         if (MO->isReg() && !MO->isUndef() &&
1442             Register::isPhysicalRegister(MO->getReg()) &&
1443             TRI.hasRegUnit(MO->getReg(), Reg))
1444           return Idx.getRegSlot();
1445     }
1446     // Didn't reach Before. It must be the first instruction in the block.
1447     return Before;
1448   }
1449 };
1450 
1451 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1452   // It is fine to move a bundle as a whole, but not an individual instruction
1453   // inside it.
1454   assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1455          "Cannot move instruction in bundle");
1456   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1457   Indexes->removeMachineInstrFromMaps(MI);
1458   SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1459   assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1460          OldIndex < getMBBEndIdx(MI.getParent()) &&
1461          "Cannot handle moves across basic block boundaries.");
1462 
1463   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1464   HME.updateAllRanges(&MI);
1465 }
1466 
1467 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI,
1468                                          MachineInstr &BundleStart,
1469                                          bool UpdateFlags) {
1470   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1471   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1472   HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1473   HME.updateAllRanges(&MI);
1474 }
1475 
1476 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1477                                         const MachineBasicBlock::iterator End,
1478                                         const SlotIndex endIdx,
1479                                         LiveRange &LR, const unsigned Reg,
1480                                         LaneBitmask LaneMask) {
1481   LiveInterval::iterator LII = LR.find(endIdx);
1482   SlotIndex lastUseIdx;
1483   if (LII == LR.begin()) {
1484     // This happens when the function is called for a subregister that only
1485     // occurs _after_ the range that is to be repaired.
1486     return;
1487   }
1488   if (LII != LR.end() && LII->start < endIdx)
1489     lastUseIdx = LII->end;
1490   else
1491     --LII;
1492 
1493   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1494     --I;
1495     MachineInstr &MI = *I;
1496     if (MI.isDebugInstr())
1497       continue;
1498 
1499     SlotIndex instrIdx = getInstructionIndex(MI);
1500     bool isStartValid = getInstructionFromIndex(LII->start);
1501     bool isEndValid = getInstructionFromIndex(LII->end);
1502 
1503     // FIXME: This doesn't currently handle early-clobber or multiple removed
1504     // defs inside of the region to repair.
1505     for (MachineInstr::mop_iterator OI = MI.operands_begin(),
1506                                     OE = MI.operands_end();
1507          OI != OE; ++OI) {
1508       const MachineOperand &MO = *OI;
1509       if (!MO.isReg() || MO.getReg() != Reg)
1510         continue;
1511 
1512       unsigned SubReg = MO.getSubReg();
1513       LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1514       if ((Mask & LaneMask).none())
1515         continue;
1516 
1517       if (MO.isDef()) {
1518         if (!isStartValid) {
1519           if (LII->end.isDead()) {
1520             SlotIndex prevStart;
1521             if (LII != LR.begin())
1522               prevStart = std::prev(LII)->start;
1523 
1524             // FIXME: This could be more efficient if there was a
1525             // removeSegment method that returned an iterator.
1526             LR.removeSegment(*LII, true);
1527             if (prevStart.isValid())
1528               LII = LR.find(prevStart);
1529             else
1530               LII = LR.begin();
1531           } else {
1532             LII->start = instrIdx.getRegSlot();
1533             LII->valno->def = instrIdx.getRegSlot();
1534             if (MO.getSubReg() && !MO.isUndef())
1535               lastUseIdx = instrIdx.getRegSlot();
1536             else
1537               lastUseIdx = SlotIndex();
1538             continue;
1539           }
1540         }
1541 
1542         if (!lastUseIdx.isValid()) {
1543           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1544           LiveRange::Segment S(instrIdx.getRegSlot(),
1545                                instrIdx.getDeadSlot(), VNI);
1546           LII = LR.addSegment(S);
1547         } else if (LII->start != instrIdx.getRegSlot()) {
1548           VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1549           LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1550           LII = LR.addSegment(S);
1551         }
1552 
1553         if (MO.getSubReg() && !MO.isUndef())
1554           lastUseIdx = instrIdx.getRegSlot();
1555         else
1556           lastUseIdx = SlotIndex();
1557       } else if (MO.isUse()) {
1558         // FIXME: This should probably be handled outside of this branch,
1559         // either as part of the def case (for defs inside of the region) or
1560         // after the loop over the region.
1561         if (!isEndValid && !LII->end.isBlock())
1562           LII->end = instrIdx.getRegSlot();
1563         if (!lastUseIdx.isValid())
1564           lastUseIdx = instrIdx.getRegSlot();
1565       }
1566     }
1567   }
1568 }
1569 
1570 void
1571 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1572                                       MachineBasicBlock::iterator Begin,
1573                                       MachineBasicBlock::iterator End,
1574                                       ArrayRef<unsigned> OrigRegs) {
1575   // Find anchor points, which are at the beginning/end of blocks or at
1576   // instructions that already have indexes.
1577   while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin))
1578     --Begin;
1579   while (End != MBB->end() && !Indexes->hasIndex(*End))
1580     ++End;
1581 
1582   SlotIndex endIdx;
1583   if (End == MBB->end())
1584     endIdx = getMBBEndIdx(MBB).getPrevSlot();
1585   else
1586     endIdx = getInstructionIndex(*End);
1587 
1588   Indexes->repairIndexesInRange(MBB, Begin, End);
1589 
1590   for (MachineBasicBlock::iterator I = End; I != Begin;) {
1591     --I;
1592     MachineInstr &MI = *I;
1593     if (MI.isDebugInstr())
1594       continue;
1595     for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1596                                           MOE = MI.operands_end();
1597          MOI != MOE; ++MOI) {
1598       if (MOI->isReg() && Register::isVirtualRegister(MOI->getReg()) &&
1599           !hasInterval(MOI->getReg())) {
1600         createAndComputeVirtRegInterval(MOI->getReg());
1601       }
1602     }
1603   }
1604 
1605   for (unsigned Reg : OrigRegs) {
1606     if (!Register::isVirtualRegister(Reg))
1607       continue;
1608 
1609     LiveInterval &LI = getInterval(Reg);
1610     // FIXME: Should we support undefs that gain defs?
1611     if (!LI.hasAtLeastOneValue())
1612       continue;
1613 
1614     for (LiveInterval::SubRange &S : LI.subranges())
1615       repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask);
1616 
1617     repairOldRegInRange(Begin, End, endIdx, LI, Reg);
1618   }
1619 }
1620 
1621 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) {
1622   for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
1623     if (LiveRange *LR = getCachedRegUnit(*Unit))
1624       if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1625         LR->removeValNo(VNI);
1626   }
1627 }
1628 
1629 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1630   // LI may not have the main range computed yet, but its subranges may
1631   // be present.
1632   VNInfo *VNI = LI.getVNInfoAt(Pos);
1633   if (VNI != nullptr) {
1634     assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1635     LI.removeValNo(VNI);
1636   }
1637 
1638   // Also remove the value defined in subranges.
1639   for (LiveInterval::SubRange &S : LI.subranges()) {
1640     if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1641       if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1642         S.removeValNo(SVNI);
1643   }
1644   LI.removeEmptySubRanges();
1645 }
1646 
1647 void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1648     SmallVectorImpl<LiveInterval*> &SplitLIs) {
1649   ConnectedVNInfoEqClasses ConEQ(*this);
1650   unsigned NumComp = ConEQ.Classify(LI);
1651   if (NumComp <= 1)
1652     return;
1653   LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1654   unsigned Reg = LI.reg;
1655   const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
1656   for (unsigned I = 1; I < NumComp; ++I) {
1657     Register NewVReg = MRI->createVirtualRegister(RegClass);
1658     LiveInterval &NewLI = createEmptyInterval(NewVReg);
1659     SplitLIs.push_back(&NewLI);
1660   }
1661   ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1662 }
1663 
1664 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1665   assert(LRCalc && "LRCalc not initialized.");
1666   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1667   LRCalc->constructMainRangeFromSubranges(LI);
1668 }
1669