1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file implements the LiveInterval analysis pass which is used 10 /// by the Linear Scan Register allocator. This pass linearizes the 11 /// basic blocks of the function in DFS order and computes live intervals for 12 /// each virtual and physical register. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/LiveIntervals.h" 17 #include "LiveRangeCalc.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/LiveInterval.h" 25 #include "llvm/CodeGen/LiveVariables.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineDominators.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBundle.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/SlotIndexes.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/CodeGen/VirtRegMap.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/MC/LaneBitmask.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BlockFrequency.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <tuple> 54 #include <utility> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "regalloc" 59 60 char LiveIntervals::ID = 0; 61 char &llvm::LiveIntervalsID = LiveIntervals::ID; 62 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", 63 "Live Interval Analysis", false, false) 64 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 65 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 66 INITIALIZE_PASS_DEPENDENCY(SlotIndexes) 67 INITIALIZE_PASS_END(LiveIntervals, "liveintervals", 68 "Live Interval Analysis", false, false) 69 70 #ifndef NDEBUG 71 static cl::opt<bool> EnablePrecomputePhysRegs( 72 "precompute-phys-liveness", cl::Hidden, 73 cl::desc("Eagerly compute live intervals for all physreg units.")); 74 #else 75 static bool EnablePrecomputePhysRegs = false; 76 #endif // NDEBUG 77 78 namespace llvm { 79 80 cl::opt<bool> UseSegmentSetForPhysRegs( 81 "use-segment-set-for-physregs", cl::Hidden, cl::init(true), 82 cl::desc( 83 "Use segment set for the computation of the live ranges of physregs.")); 84 85 } // end namespace llvm 86 87 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const { 88 AU.setPreservesCFG(); 89 AU.addRequired<AAResultsWrapperPass>(); 90 AU.addPreserved<AAResultsWrapperPass>(); 91 AU.addPreserved<LiveVariables>(); 92 AU.addPreservedID(MachineLoopInfoID); 93 AU.addRequiredTransitiveID(MachineDominatorsID); 94 AU.addPreservedID(MachineDominatorsID); 95 AU.addPreserved<SlotIndexes>(); 96 AU.addRequiredTransitive<SlotIndexes>(); 97 MachineFunctionPass::getAnalysisUsage(AU); 98 } 99 100 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) { 101 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 102 } 103 104 LiveIntervals::~LiveIntervals() { 105 delete LRCalc; 106 } 107 108 void LiveIntervals::releaseMemory() { 109 // Free the live intervals themselves. 110 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i) 111 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)]; 112 VirtRegIntervals.clear(); 113 RegMaskSlots.clear(); 114 RegMaskBits.clear(); 115 RegMaskBlocks.clear(); 116 117 for (LiveRange *LR : RegUnitRanges) 118 delete LR; 119 RegUnitRanges.clear(); 120 121 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd. 122 VNInfoAllocator.Reset(); 123 } 124 125 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) { 126 MF = &fn; 127 MRI = &MF->getRegInfo(); 128 TRI = MF->getSubtarget().getRegisterInfo(); 129 TII = MF->getSubtarget().getInstrInfo(); 130 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 131 Indexes = &getAnalysis<SlotIndexes>(); 132 DomTree = &getAnalysis<MachineDominatorTree>(); 133 134 if (!LRCalc) 135 LRCalc = new LiveRangeCalc(); 136 137 // Allocate space for all virtual registers. 138 VirtRegIntervals.resize(MRI->getNumVirtRegs()); 139 140 computeVirtRegs(); 141 computeRegMasks(); 142 computeLiveInRegUnits(); 143 144 if (EnablePrecomputePhysRegs) { 145 // For stress testing, precompute live ranges of all physical register 146 // units, including reserved registers. 147 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 148 getRegUnit(i); 149 } 150 LLVM_DEBUG(dump()); 151 return true; 152 } 153 154 void LiveIntervals::print(raw_ostream &OS, const Module* ) const { 155 OS << "********** INTERVALS **********\n"; 156 157 // Dump the regunits. 158 for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit) 159 if (LiveRange *LR = RegUnitRanges[Unit]) 160 OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n'; 161 162 // Dump the virtregs. 163 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 164 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 165 if (hasInterval(Reg)) 166 OS << getInterval(Reg) << '\n'; 167 } 168 169 OS << "RegMasks:"; 170 for (SlotIndex Idx : RegMaskSlots) 171 OS << ' ' << Idx; 172 OS << '\n'; 173 174 printInstrs(OS); 175 } 176 177 void LiveIntervals::printInstrs(raw_ostream &OS) const { 178 OS << "********** MACHINEINSTRS **********\n"; 179 MF->print(OS, Indexes); 180 } 181 182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 183 LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const { 184 printInstrs(dbgs()); 185 } 186 #endif 187 188 LiveInterval* LiveIntervals::createInterval(unsigned reg) { 189 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? huge_valf : 0.0F; 190 return new LiveInterval(reg, Weight); 191 } 192 193 /// Compute the live interval of a virtual register, based on defs and uses. 194 void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) { 195 assert(LRCalc && "LRCalc not initialized."); 196 assert(LI.empty() && "Should only compute empty intervals."); 197 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 198 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg)); 199 computeDeadValues(LI, nullptr); 200 } 201 202 void LiveIntervals::computeVirtRegs() { 203 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 204 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 205 if (MRI->reg_nodbg_empty(Reg)) 206 continue; 207 createAndComputeVirtRegInterval(Reg); 208 } 209 } 210 211 void LiveIntervals::computeRegMasks() { 212 RegMaskBlocks.resize(MF->getNumBlockIDs()); 213 214 // Find all instructions with regmask operands. 215 for (const MachineBasicBlock &MBB : *MF) { 216 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()]; 217 RMB.first = RegMaskSlots.size(); 218 219 // Some block starts, such as EH funclets, create masks. 220 if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) { 221 RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB)); 222 RegMaskBits.push_back(Mask); 223 } 224 225 for (const MachineInstr &MI : MBB) { 226 for (const MachineOperand &MO : MI.operands()) { 227 if (!MO.isRegMask()) 228 continue; 229 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot()); 230 RegMaskBits.push_back(MO.getRegMask()); 231 } 232 } 233 234 // Some block ends, such as funclet returns, create masks. Put the mask on 235 // the last instruction of the block, because MBB slot index intervals are 236 // half-open. 237 if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) { 238 assert(!MBB.empty() && "empty return block?"); 239 RegMaskSlots.push_back( 240 Indexes->getInstructionIndex(MBB.back()).getRegSlot()); 241 RegMaskBits.push_back(Mask); 242 } 243 244 // Compute the number of register mask instructions in this block. 245 RMB.second = RegMaskSlots.size() - RMB.first; 246 } 247 } 248 249 //===----------------------------------------------------------------------===// 250 // Register Unit Liveness 251 //===----------------------------------------------------------------------===// 252 // 253 // Fixed interference typically comes from ABI boundaries: Function arguments 254 // and return values are passed in fixed registers, and so are exception 255 // pointers entering landing pads. Certain instructions require values to be 256 // present in specific registers. That is also represented through fixed 257 // interference. 258 // 259 260 /// Compute the live range of a register unit, based on the uses and defs of 261 /// aliasing registers. The range should be empty, or contain only dead 262 /// phi-defs from ABI blocks. 263 void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) { 264 assert(LRCalc && "LRCalc not initialized."); 265 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 266 267 // The physregs aliasing Unit are the roots and their super-registers. 268 // Create all values as dead defs before extending to uses. Note that roots 269 // may share super-registers. That's OK because createDeadDefs() is 270 // idempotent. It is very rare for a register unit to have multiple roots, so 271 // uniquing super-registers is probably not worthwhile. 272 bool IsReserved = false; 273 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 274 bool IsRootReserved = true; 275 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 276 Super.isValid(); ++Super) { 277 unsigned Reg = *Super; 278 if (!MRI->reg_empty(Reg)) 279 LRCalc->createDeadDefs(LR, Reg); 280 // A register unit is considered reserved if all its roots and all their 281 // super registers are reserved. 282 if (!MRI->isReserved(Reg)) 283 IsRootReserved = false; 284 } 285 IsReserved |= IsRootReserved; 286 } 287 assert(IsReserved == MRI->isReservedRegUnit(Unit) && 288 "reserved computation mismatch"); 289 290 // Now extend LR to reach all uses. 291 // Ignore uses of reserved registers. We only track defs of those. 292 if (!IsReserved) { 293 for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) { 294 for (MCSuperRegIterator Super(*Root, TRI, /*IncludeSelf=*/true); 295 Super.isValid(); ++Super) { 296 unsigned Reg = *Super; 297 if (!MRI->reg_empty(Reg)) 298 LRCalc->extendToUses(LR, Reg); 299 } 300 } 301 } 302 303 // Flush the segment set to the segment vector. 304 if (UseSegmentSetForPhysRegs) 305 LR.flushSegmentSet(); 306 } 307 308 /// Precompute the live ranges of any register units that are live-in to an ABI 309 /// block somewhere. Register values can appear without a corresponding def when 310 /// entering the entry block or a landing pad. 311 void LiveIntervals::computeLiveInRegUnits() { 312 RegUnitRanges.resize(TRI->getNumRegUnits()); 313 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n"); 314 315 // Keep track of the live range sets allocated. 316 SmallVector<unsigned, 8> NewRanges; 317 318 // Check all basic blocks for live-ins. 319 for (const MachineBasicBlock &MBB : *MF) { 320 // We only care about ABI blocks: Entry + landing pads. 321 if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty()) 322 continue; 323 324 // Create phi-defs at Begin for all live-in registers. 325 SlotIndex Begin = Indexes->getMBBStartIdx(&MBB); 326 LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB)); 327 for (const auto &LI : MBB.liveins()) { 328 for (MCRegUnitIterator Units(LI.PhysReg, TRI); Units.isValid(); ++Units) { 329 unsigned Unit = *Units; 330 LiveRange *LR = RegUnitRanges[Unit]; 331 if (!LR) { 332 // Use segment set to speed-up initial computation of the live range. 333 LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs); 334 NewRanges.push_back(Unit); 335 } 336 VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator()); 337 (void)VNI; 338 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id); 339 } 340 } 341 LLVM_DEBUG(dbgs() << '\n'); 342 } 343 LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n"); 344 345 // Compute the 'normal' part of the ranges. 346 for (unsigned Unit : NewRanges) 347 computeRegUnitRange(*RegUnitRanges[Unit], Unit); 348 } 349 350 static void createSegmentsForValues(LiveRange &LR, 351 iterator_range<LiveInterval::vni_iterator> VNIs) { 352 for (VNInfo *VNI : VNIs) { 353 if (VNI->isUnused()) 354 continue; 355 SlotIndex Def = VNI->def; 356 LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI)); 357 } 358 } 359 360 void LiveIntervals::extendSegmentsToUses(LiveRange &Segments, 361 ShrinkToUsesWorkList &WorkList, 362 unsigned Reg, LaneBitmask LaneMask) { 363 // Keep track of the PHIs that are in use. 364 SmallPtrSet<VNInfo*, 8> UsedPHIs; 365 // Blocks that have already been added to WorkList as live-out. 366 SmallPtrSet<const MachineBasicBlock*, 16> LiveOut; 367 368 auto getSubRange = [](const LiveInterval &I, LaneBitmask M) 369 -> const LiveRange& { 370 if (M.none()) 371 return I; 372 for (const LiveInterval::SubRange &SR : I.subranges()) { 373 if ((SR.LaneMask & M).any()) { 374 assert(SR.LaneMask == M && "Expecting lane masks to match exactly"); 375 return SR; 376 } 377 } 378 llvm_unreachable("Subrange for mask not found"); 379 }; 380 381 const LiveInterval &LI = getInterval(Reg); 382 const LiveRange &OldRange = getSubRange(LI, LaneMask); 383 384 // Extend intervals to reach all uses in WorkList. 385 while (!WorkList.empty()) { 386 SlotIndex Idx = WorkList.back().first; 387 VNInfo *VNI = WorkList.back().second; 388 WorkList.pop_back(); 389 const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot()); 390 SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB); 391 392 // Extend the live range for VNI to be live at Idx. 393 if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) { 394 assert(ExtVNI == VNI && "Unexpected existing value number"); 395 (void)ExtVNI; 396 // Is this a PHIDef we haven't seen before? 397 if (!VNI->isPHIDef() || VNI->def != BlockStart || 398 !UsedPHIs.insert(VNI).second) 399 continue; 400 // The PHI is live, make sure the predecessors are live-out. 401 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 402 if (!LiveOut.insert(Pred).second) 403 continue; 404 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 405 // A predecessor is not required to have a live-out value for a PHI. 406 if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop)) 407 WorkList.push_back(std::make_pair(Stop, PVNI)); 408 } 409 continue; 410 } 411 412 // VNI is live-in to MBB. 413 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n'); 414 Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI)); 415 416 // Make sure VNI is live-out from the predecessors. 417 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 418 if (!LiveOut.insert(Pred).second) 419 continue; 420 SlotIndex Stop = Indexes->getMBBEndIdx(Pred); 421 if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) { 422 assert(OldVNI == VNI && "Wrong value out of predecessor"); 423 (void)OldVNI; 424 WorkList.push_back(std::make_pair(Stop, VNI)); 425 } else { 426 #ifndef NDEBUG 427 // There was no old VNI. Verify that Stop is jointly dominated 428 // by <undef>s for this live range. 429 assert(LaneMask.any() && 430 "Missing value out of predecessor for main range"); 431 SmallVector<SlotIndex,8> Undefs; 432 LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 433 assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) && 434 "Missing value out of predecessor for subrange"); 435 #endif 436 } 437 } 438 } 439 } 440 441 bool LiveIntervals::shrinkToUses(LiveInterval *li, 442 SmallVectorImpl<MachineInstr*> *dead) { 443 LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n'); 444 assert(TargetRegisterInfo::isVirtualRegister(li->reg) 445 && "Can only shrink virtual registers"); 446 447 // Shrink subregister live ranges. 448 bool NeedsCleanup = false; 449 for (LiveInterval::SubRange &S : li->subranges()) { 450 shrinkToUses(S, li->reg); 451 if (S.empty()) 452 NeedsCleanup = true; 453 } 454 if (NeedsCleanup) 455 li->removeEmptySubRanges(); 456 457 // Find all the values used, including PHI kills. 458 ShrinkToUsesWorkList WorkList; 459 460 // Visit all instructions reading li->reg. 461 unsigned Reg = li->reg; 462 for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) { 463 if (UseMI.isDebugValue() || !UseMI.readsVirtualRegister(Reg)) 464 continue; 465 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot(); 466 LiveQueryResult LRQ = li->Query(Idx); 467 VNInfo *VNI = LRQ.valueIn(); 468 if (!VNI) { 469 // This shouldn't happen: readsVirtualRegister returns true, but there is 470 // no live value. It is likely caused by a target getting <undef> flags 471 // wrong. 472 LLVM_DEBUG( 473 dbgs() << Idx << '\t' << UseMI 474 << "Warning: Instr claims to read non-existent value in " 475 << *li << '\n'); 476 continue; 477 } 478 // Special case: An early-clobber tied operand reads and writes the 479 // register one slot early. 480 if (VNInfo *DefVNI = LRQ.valueDefined()) 481 Idx = DefVNI->def; 482 483 WorkList.push_back(std::make_pair(Idx, VNI)); 484 } 485 486 // Create new live ranges with only minimal live segments per def. 487 LiveRange NewLR; 488 createSegmentsForValues(NewLR, make_range(li->vni_begin(), li->vni_end())); 489 extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone()); 490 491 // Move the trimmed segments back. 492 li->segments.swap(NewLR.segments); 493 494 // Handle dead values. 495 bool CanSeparate = computeDeadValues(*li, dead); 496 LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n'); 497 return CanSeparate; 498 } 499 500 bool LiveIntervals::computeDeadValues(LiveInterval &LI, 501 SmallVectorImpl<MachineInstr*> *dead) { 502 bool MayHaveSplitComponents = false; 503 for (VNInfo *VNI : LI.valnos) { 504 if (VNI->isUnused()) 505 continue; 506 SlotIndex Def = VNI->def; 507 LiveRange::iterator I = LI.FindSegmentContaining(Def); 508 assert(I != LI.end() && "Missing segment for VNI"); 509 510 // Is the register live before? Otherwise we may have to add a read-undef 511 // flag for subregister defs. 512 unsigned VReg = LI.reg; 513 if (MRI->shouldTrackSubRegLiveness(VReg)) { 514 if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) { 515 MachineInstr *MI = getInstructionFromIndex(Def); 516 MI->setRegisterDefReadUndef(VReg); 517 } 518 } 519 520 if (I->end != Def.getDeadSlot()) 521 continue; 522 if (VNI->isPHIDef()) { 523 // This is a dead PHI. Remove it. 524 VNI->markUnused(); 525 LI.removeSegment(I); 526 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n"); 527 MayHaveSplitComponents = true; 528 } else { 529 // This is a dead def. Make sure the instruction knows. 530 MachineInstr *MI = getInstructionFromIndex(Def); 531 assert(MI && "No instruction defining live value"); 532 MI->addRegisterDead(LI.reg, TRI); 533 if (dead && MI->allDefsAreDead()) { 534 LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI); 535 dead->push_back(MI); 536 } 537 } 538 } 539 return MayHaveSplitComponents; 540 } 541 542 void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg) { 543 LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n'); 544 assert(TargetRegisterInfo::isVirtualRegister(Reg) 545 && "Can only shrink virtual registers"); 546 // Find all the values used, including PHI kills. 547 ShrinkToUsesWorkList WorkList; 548 549 // Visit all instructions reading Reg. 550 SlotIndex LastIdx; 551 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 552 // Skip "undef" uses. 553 if (!MO.readsReg()) 554 continue; 555 // Maybe the operand is for a subregister we don't care about. 556 unsigned SubReg = MO.getSubReg(); 557 if (SubReg != 0) { 558 LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg); 559 if ((LaneMask & SR.LaneMask).none()) 560 continue; 561 } 562 // We only need to visit each instruction once. 563 MachineInstr *UseMI = MO.getParent(); 564 SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot(); 565 if (Idx == LastIdx) 566 continue; 567 LastIdx = Idx; 568 569 LiveQueryResult LRQ = SR.Query(Idx); 570 VNInfo *VNI = LRQ.valueIn(); 571 // For Subranges it is possible that only undef values are left in that 572 // part of the subregister, so there is no real liverange at the use 573 if (!VNI) 574 continue; 575 576 // Special case: An early-clobber tied operand reads and writes the 577 // register one slot early. 578 if (VNInfo *DefVNI = LRQ.valueDefined()) 579 Idx = DefVNI->def; 580 581 WorkList.push_back(std::make_pair(Idx, VNI)); 582 } 583 584 // Create a new live ranges with only minimal live segments per def. 585 LiveRange NewLR; 586 createSegmentsForValues(NewLR, make_range(SR.vni_begin(), SR.vni_end())); 587 extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask); 588 589 // Move the trimmed ranges back. 590 SR.segments.swap(NewLR.segments); 591 592 // Remove dead PHI value numbers 593 for (VNInfo *VNI : SR.valnos) { 594 if (VNI->isUnused()) 595 continue; 596 const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def); 597 assert(Segment != nullptr && "Missing segment for VNI"); 598 if (Segment->end != VNI->def.getDeadSlot()) 599 continue; 600 if (VNI->isPHIDef()) { 601 // This is a dead PHI. Remove it. 602 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def 603 << " may separate interval\n"); 604 VNI->markUnused(); 605 SR.removeSegment(*Segment); 606 } 607 } 608 609 LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n'); 610 } 611 612 void LiveIntervals::extendToIndices(LiveRange &LR, 613 ArrayRef<SlotIndex> Indices, 614 ArrayRef<SlotIndex> Undefs) { 615 assert(LRCalc && "LRCalc not initialized."); 616 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 617 for (SlotIndex Idx : Indices) 618 LRCalc->extend(LR, Idx, /*PhysReg=*/0, Undefs); 619 } 620 621 void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill, 622 SmallVectorImpl<SlotIndex> *EndPoints) { 623 LiveQueryResult LRQ = LR.Query(Kill); 624 VNInfo *VNI = LRQ.valueOutOrDead(); 625 if (!VNI) 626 return; 627 628 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill); 629 SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB); 630 631 // If VNI isn't live out from KillMBB, the value is trivially pruned. 632 if (LRQ.endPoint() < MBBEnd) { 633 LR.removeSegment(Kill, LRQ.endPoint()); 634 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 635 return; 636 } 637 638 // VNI is live out of KillMBB. 639 LR.removeSegment(Kill, MBBEnd); 640 if (EndPoints) EndPoints->push_back(MBBEnd); 641 642 // Find all blocks that are reachable from KillMBB without leaving VNI's live 643 // range. It is possible that KillMBB itself is reachable, so start a DFS 644 // from each successor. 645 using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>; 646 VisitedTy Visited; 647 for (MachineBasicBlock *Succ : KillMBB->successors()) { 648 for (df_ext_iterator<MachineBasicBlock*, VisitedTy> 649 I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited); 650 I != E;) { 651 MachineBasicBlock *MBB = *I; 652 653 // Check if VNI is live in to MBB. 654 SlotIndex MBBStart, MBBEnd; 655 std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB); 656 LiveQueryResult LRQ = LR.Query(MBBStart); 657 if (LRQ.valueIn() != VNI) { 658 // This block isn't part of the VNI segment. Prune the search. 659 I.skipChildren(); 660 continue; 661 } 662 663 // Prune the search if VNI is killed in MBB. 664 if (LRQ.endPoint() < MBBEnd) { 665 LR.removeSegment(MBBStart, LRQ.endPoint()); 666 if (EndPoints) EndPoints->push_back(LRQ.endPoint()); 667 I.skipChildren(); 668 continue; 669 } 670 671 // VNI is live through MBB. 672 LR.removeSegment(MBBStart, MBBEnd); 673 if (EndPoints) EndPoints->push_back(MBBEnd); 674 ++I; 675 } 676 } 677 } 678 679 //===----------------------------------------------------------------------===// 680 // Register allocator hooks. 681 // 682 683 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) { 684 // Keep track of regunit ranges. 685 SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU; 686 // Keep track of subregister ranges. 687 SmallVector<std::pair<const LiveInterval::SubRange*, 688 LiveRange::const_iterator>, 4> SRs; 689 690 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 691 unsigned Reg = TargetRegisterInfo::index2VirtReg(i); 692 if (MRI->reg_nodbg_empty(Reg)) 693 continue; 694 const LiveInterval &LI = getInterval(Reg); 695 if (LI.empty()) 696 continue; 697 698 // Find the regunit intervals for the assigned register. They may overlap 699 // the virtual register live range, cancelling any kills. 700 RU.clear(); 701 for (MCRegUnitIterator Unit(VRM->getPhys(Reg), TRI); Unit.isValid(); 702 ++Unit) { 703 const LiveRange &RURange = getRegUnit(*Unit); 704 if (RURange.empty()) 705 continue; 706 RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end))); 707 } 708 709 if (MRI->subRegLivenessEnabled()) { 710 SRs.clear(); 711 for (const LiveInterval::SubRange &SR : LI.subranges()) { 712 SRs.push_back(std::make_pair(&SR, SR.find(LI.begin()->end))); 713 } 714 } 715 716 // Every instruction that kills Reg corresponds to a segment range end 717 // point. 718 for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE; 719 ++RI) { 720 // A block index indicates an MBB edge. 721 if (RI->end.isBlock()) 722 continue; 723 MachineInstr *MI = getInstructionFromIndex(RI->end); 724 if (!MI) 725 continue; 726 727 // Check if any of the regunits are live beyond the end of RI. That could 728 // happen when a physreg is defined as a copy of a virtreg: 729 // 730 // %eax = COPY %5 731 // FOO %5 <--- MI, cancel kill because %eax is live. 732 // BAR killed %eax 733 // 734 // There should be no kill flag on FOO when %5 is rewritten as %eax. 735 for (auto &RUP : RU) { 736 const LiveRange &RURange = *RUP.first; 737 LiveRange::const_iterator &I = RUP.second; 738 if (I == RURange.end()) 739 continue; 740 I = RURange.advanceTo(I, RI->end); 741 if (I == RURange.end() || I->start >= RI->end) 742 continue; 743 // I is overlapping RI. 744 goto CancelKill; 745 } 746 747 if (MRI->subRegLivenessEnabled()) { 748 // When reading a partial undefined value we must not add a kill flag. 749 // The regalloc might have used the undef lane for something else. 750 // Example: 751 // %1 = ... ; R32: %1 752 // %2:high16 = ... ; R64: %2 753 // = read killed %2 ; R64: %2 754 // = read %1 ; R32: %1 755 // The <kill> flag is correct for %2, but the register allocator may 756 // assign R0L to %1, and R0 to %2 because the low 32bits of R0 757 // are actually never written by %2. After assignment the <kill> 758 // flag at the read instruction is invalid. 759 LaneBitmask DefinedLanesMask; 760 if (!SRs.empty()) { 761 // Compute a mask of lanes that are defined. 762 DefinedLanesMask = LaneBitmask::getNone(); 763 for (auto &SRP : SRs) { 764 const LiveInterval::SubRange &SR = *SRP.first; 765 LiveRange::const_iterator &I = SRP.second; 766 if (I == SR.end()) 767 continue; 768 I = SR.advanceTo(I, RI->end); 769 if (I == SR.end() || I->start >= RI->end) 770 continue; 771 // I is overlapping RI 772 DefinedLanesMask |= SR.LaneMask; 773 } 774 } else 775 DefinedLanesMask = LaneBitmask::getAll(); 776 777 bool IsFullWrite = false; 778 for (const MachineOperand &MO : MI->operands()) { 779 if (!MO.isReg() || MO.getReg() != Reg) 780 continue; 781 if (MO.isUse()) { 782 // Reading any undefined lanes? 783 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(MO.getSubReg()); 784 if ((UseMask & ~DefinedLanesMask).any()) 785 goto CancelKill; 786 } else if (MO.getSubReg() == 0) { 787 // Writing to the full register? 788 assert(MO.isDef()); 789 IsFullWrite = true; 790 } 791 } 792 793 // If an instruction writes to a subregister, a new segment starts in 794 // the LiveInterval. But as this is only overriding part of the register 795 // adding kill-flags is not correct here after registers have been 796 // assigned. 797 if (!IsFullWrite) { 798 // Next segment has to be adjacent in the subregister write case. 799 LiveRange::const_iterator N = std::next(RI); 800 if (N != LI.end() && N->start == RI->end) 801 goto CancelKill; 802 } 803 } 804 805 MI->addRegisterKilled(Reg, nullptr); 806 continue; 807 CancelKill: 808 MI->clearRegisterKills(Reg, nullptr); 809 } 810 } 811 } 812 813 MachineBasicBlock* 814 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const { 815 // A local live range must be fully contained inside the block, meaning it is 816 // defined and killed at instructions, not at block boundaries. It is not 817 // live in or out of any block. 818 // 819 // It is technically possible to have a PHI-defined live range identical to a 820 // single block, but we are going to return false in that case. 821 822 SlotIndex Start = LI.beginIndex(); 823 if (Start.isBlock()) 824 return nullptr; 825 826 SlotIndex Stop = LI.endIndex(); 827 if (Stop.isBlock()) 828 return nullptr; 829 830 // getMBBFromIndex doesn't need to search the MBB table when both indexes 831 // belong to proper instructions. 832 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start); 833 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop); 834 return MBB1 == MBB2 ? MBB1 : nullptr; 835 } 836 837 bool 838 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const { 839 for (const VNInfo *PHI : LI.valnos) { 840 if (PHI->isUnused() || !PHI->isPHIDef()) 841 continue; 842 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def); 843 // Conservatively return true instead of scanning huge predecessor lists. 844 if (PHIMBB->pred_size() > 100) 845 return true; 846 for (const MachineBasicBlock *Pred : PHIMBB->predecessors()) 847 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred))) 848 return true; 849 } 850 return false; 851 } 852 853 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 854 const MachineBlockFrequencyInfo *MBFI, 855 const MachineInstr &MI) { 856 return getSpillWeight(isDef, isUse, MBFI, MI.getParent()); 857 } 858 859 float LiveIntervals::getSpillWeight(bool isDef, bool isUse, 860 const MachineBlockFrequencyInfo *MBFI, 861 const MachineBasicBlock *MBB) { 862 BlockFrequency Freq = MBFI->getBlockFreq(MBB); 863 const float Scale = 1.0f / MBFI->getEntryFreq(); 864 return (isDef + isUse) * (Freq.getFrequency() * Scale); 865 } 866 867 LiveRange::Segment 868 LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr &startInst) { 869 LiveInterval& Interval = createEmptyInterval(reg); 870 VNInfo *VN = Interval.getNextValue( 871 SlotIndex(getInstructionIndex(startInst).getRegSlot()), 872 getVNInfoAllocator()); 873 LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()), 874 getMBBEndIdx(startInst.getParent()), VN); 875 Interval.addSegment(S); 876 877 return S; 878 } 879 880 //===----------------------------------------------------------------------===// 881 // Register mask functions 882 //===----------------------------------------------------------------------===// 883 884 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI, 885 BitVector &UsableRegs) { 886 if (LI.empty()) 887 return false; 888 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end(); 889 890 // Use a smaller arrays for local live ranges. 891 ArrayRef<SlotIndex> Slots; 892 ArrayRef<const uint32_t*> Bits; 893 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) { 894 Slots = getRegMaskSlotsInBlock(MBB->getNumber()); 895 Bits = getRegMaskBitsInBlock(MBB->getNumber()); 896 } else { 897 Slots = getRegMaskSlots(); 898 Bits = getRegMaskBits(); 899 } 900 901 // We are going to enumerate all the register mask slots contained in LI. 902 // Start with a binary search of RegMaskSlots to find a starting point. 903 ArrayRef<SlotIndex>::iterator SlotI = 904 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start); 905 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 906 907 // No slots in range, LI begins after the last call. 908 if (SlotI == SlotE) 909 return false; 910 911 bool Found = false; 912 while (true) { 913 assert(*SlotI >= LiveI->start); 914 // Loop over all slots overlapping this segment. 915 while (*SlotI < LiveI->end) { 916 // *SlotI overlaps LI. Collect mask bits. 917 if (!Found) { 918 // This is the first overlap. Initialize UsableRegs to all ones. 919 UsableRegs.clear(); 920 UsableRegs.resize(TRI->getNumRegs(), true); 921 Found = true; 922 } 923 // Remove usable registers clobbered by this mask. 924 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]); 925 if (++SlotI == SlotE) 926 return Found; 927 } 928 // *SlotI is beyond the current LI segment. 929 LiveI = LI.advanceTo(LiveI, *SlotI); 930 if (LiveI == LiveE) 931 return Found; 932 // Advance SlotI until it overlaps. 933 while (*SlotI < LiveI->start) 934 if (++SlotI == SlotE) 935 return Found; 936 } 937 } 938 939 //===----------------------------------------------------------------------===// 940 // IntervalUpdate class. 941 //===----------------------------------------------------------------------===// 942 943 /// Toolkit used by handleMove to trim or extend live intervals. 944 class LiveIntervals::HMEditor { 945 private: 946 LiveIntervals& LIS; 947 const MachineRegisterInfo& MRI; 948 const TargetRegisterInfo& TRI; 949 SlotIndex OldIdx; 950 SlotIndex NewIdx; 951 SmallPtrSet<LiveRange*, 8> Updated; 952 bool UpdateFlags; 953 954 public: 955 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI, 956 const TargetRegisterInfo& TRI, 957 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags) 958 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx), 959 UpdateFlags(UpdateFlags) {} 960 961 // FIXME: UpdateFlags is a workaround that creates live intervals for all 962 // physregs, even those that aren't needed for regalloc, in order to update 963 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill 964 // flags, and postRA passes will use a live register utility instead. 965 LiveRange *getRegUnitLI(unsigned Unit) { 966 if (UpdateFlags && !MRI.isReservedRegUnit(Unit)) 967 return &LIS.getRegUnit(Unit); 968 return LIS.getCachedRegUnit(Unit); 969 } 970 971 /// Update all live ranges touched by MI, assuming a move from OldIdx to 972 /// NewIdx. 973 void updateAllRanges(MachineInstr *MI) { 974 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " 975 << *MI); 976 bool hasRegMask = false; 977 for (MachineOperand &MO : MI->operands()) { 978 if (MO.isRegMask()) 979 hasRegMask = true; 980 if (!MO.isReg()) 981 continue; 982 if (MO.isUse()) { 983 if (!MO.readsReg()) 984 continue; 985 // Aggressively clear all kill flags. 986 // They are reinserted by VirtRegRewriter. 987 MO.setIsKill(false); 988 } 989 990 unsigned Reg = MO.getReg(); 991 if (!Reg) 992 continue; 993 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 994 LiveInterval &LI = LIS.getInterval(Reg); 995 if (LI.hasSubRanges()) { 996 unsigned SubReg = MO.getSubReg(); 997 LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg) 998 : MRI.getMaxLaneMaskForVReg(Reg); 999 for (LiveInterval::SubRange &S : LI.subranges()) { 1000 if ((S.LaneMask & LaneMask).none()) 1001 continue; 1002 updateRange(S, Reg, S.LaneMask); 1003 } 1004 } 1005 updateRange(LI, Reg, LaneBitmask::getNone()); 1006 continue; 1007 } 1008 1009 // For physregs, only update the regunits that actually have a 1010 // precomputed live range. 1011 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units) 1012 if (LiveRange *LR = getRegUnitLI(*Units)) 1013 updateRange(*LR, *Units, LaneBitmask::getNone()); 1014 } 1015 if (hasRegMask) 1016 updateRegMaskSlots(); 1017 } 1018 1019 private: 1020 /// Update a single live range, assuming an instruction has been moved from 1021 /// OldIdx to NewIdx. 1022 void updateRange(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { 1023 if (!Updated.insert(&LR).second) 1024 return; 1025 LLVM_DEBUG({ 1026 dbgs() << " "; 1027 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1028 dbgs() << printReg(Reg); 1029 if (LaneMask.any()) 1030 dbgs() << " L" << PrintLaneMask(LaneMask); 1031 } else { 1032 dbgs() << printRegUnit(Reg, &TRI); 1033 } 1034 dbgs() << ":\t" << LR << '\n'; 1035 }); 1036 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx)) 1037 handleMoveDown(LR); 1038 else 1039 handleMoveUp(LR, Reg, LaneMask); 1040 LLVM_DEBUG(dbgs() << " -->\t" << LR << '\n'); 1041 LR.verify(); 1042 } 1043 1044 /// Update LR to reflect an instruction has been moved downwards from OldIdx 1045 /// to NewIdx (OldIdx < NewIdx). 1046 void handleMoveDown(LiveRange &LR) { 1047 LiveRange::iterator E = LR.end(); 1048 // Segment going into OldIdx. 1049 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1050 1051 // No value live before or after OldIdx? Nothing to do. 1052 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1053 return; 1054 1055 LiveRange::iterator OldIdxOut; 1056 // Do we have a value live-in to OldIdx? 1057 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1058 // If the live-in value already extends to NewIdx, there is nothing to do. 1059 if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end)) 1060 return; 1061 // Aggressively remove all kill flags from the old kill point. 1062 // Kill flags shouldn't be used while live intervals exist, they will be 1063 // reinserted by VirtRegRewriter. 1064 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end)) 1065 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1066 if (MO->isReg() && MO->isUse()) 1067 MO->setIsKill(false); 1068 1069 // Is there a def before NewIdx which is not OldIdx? 1070 LiveRange::iterator Next = std::next(OldIdxIn); 1071 if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) && 1072 SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1073 // If we are here then OldIdx was just a use but not a def. We only have 1074 // to ensure liveness extends to NewIdx. 1075 LiveRange::iterator NewIdxIn = 1076 LR.advanceTo(Next, NewIdx.getBaseIndex()); 1077 // Extend the segment before NewIdx if necessary. 1078 if (NewIdxIn == E || 1079 !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) { 1080 LiveRange::iterator Prev = std::prev(NewIdxIn); 1081 Prev->end = NewIdx.getRegSlot(); 1082 } 1083 // Extend OldIdxIn. 1084 OldIdxIn->end = Next->start; 1085 return; 1086 } 1087 1088 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR 1089 // invalid by overlapping ranges. 1090 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1091 OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()); 1092 // If this was not a kill, then there was no def and we're done. 1093 if (!isKill) 1094 return; 1095 1096 // Did we have a Def at OldIdx? 1097 OldIdxOut = Next; 1098 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1099 return; 1100 } else { 1101 OldIdxOut = OldIdxIn; 1102 } 1103 1104 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1105 // to the segment starting there. 1106 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1107 "No def?"); 1108 VNInfo *OldIdxVNI = OldIdxOut->valno; 1109 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1110 1111 // If the defined value extends beyond NewIdx, just move the beginning 1112 // of the segment to NewIdx. 1113 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1114 if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) { 1115 OldIdxVNI->def = NewIdxDef; 1116 OldIdxOut->start = OldIdxVNI->def; 1117 return; 1118 } 1119 1120 // If we are here then we have a Definition at OldIdx which ends before 1121 // NewIdx. 1122 1123 // Is there an existing Def at NewIdx? 1124 LiveRange::iterator AfterNewIdx 1125 = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot()); 1126 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1127 if (!OldIdxDefIsDead && 1128 SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) { 1129 // OldIdx is not a dead def, and NewIdxDef is inside a new interval. 1130 VNInfo *DefVNI; 1131 if (OldIdxOut != LR.begin() && 1132 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end, 1133 OldIdxOut->start)) { 1134 // There is no gap between OldIdxOut and its predecessor anymore, 1135 // merge them. 1136 LiveRange::iterator IPrev = std::prev(OldIdxOut); 1137 DefVNI = OldIdxVNI; 1138 IPrev->end = OldIdxOut->end; 1139 } else { 1140 // The value is live in to OldIdx 1141 LiveRange::iterator INext = std::next(OldIdxOut); 1142 assert(INext != E && "Must have following segment"); 1143 // We merge OldIdxOut and its successor. As we're dealing with subreg 1144 // reordering, there is always a successor to OldIdxOut in the same BB 1145 // We don't need INext->valno anymore and will reuse for the new segment 1146 // we create later. 1147 DefVNI = OldIdxVNI; 1148 INext->start = OldIdxOut->end; 1149 INext->valno->def = INext->start; 1150 } 1151 // If NewIdx is behind the last segment, extend that and append a new one. 1152 if (AfterNewIdx == E) { 1153 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1154 // one position. 1155 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end 1156 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end 1157 std::copy(std::next(OldIdxOut), E, OldIdxOut); 1158 // The last segment is undefined now, reuse it for a dead def. 1159 LiveRange::iterator NewSegment = std::prev(E); 1160 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1161 DefVNI); 1162 DefVNI->def = NewIdxDef; 1163 1164 LiveRange::iterator Prev = std::prev(NewSegment); 1165 Prev->end = NewIdxDef; 1166 } else { 1167 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up 1168 // one position. 1169 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -| 1170 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -| 1171 std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut); 1172 LiveRange::iterator Prev = std::prev(AfterNewIdx); 1173 // We have two cases: 1174 if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) { 1175 // Case 1: NewIdx is inside a liverange. Split this liverange at 1176 // NewIdxDef into the segment "Prev" followed by "NewSegment". 1177 LiveRange::iterator NewSegment = AfterNewIdx; 1178 *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno); 1179 Prev->valno->def = NewIdxDef; 1180 1181 *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI); 1182 DefVNI->def = Prev->start; 1183 } else { 1184 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and 1185 // turn Prev into a segment from NewIdx to AfterNewIdx->start. 1186 *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI); 1187 DefVNI->def = NewIdxDef; 1188 assert(DefVNI != AfterNewIdx->valno); 1189 } 1190 } 1191 return; 1192 } 1193 1194 if (AfterNewIdx != E && 1195 SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) { 1196 // There is an existing def at NewIdx. The def at OldIdx is coalesced into 1197 // that value. 1198 assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?"); 1199 LR.removeValNo(OldIdxVNI); 1200 } else { 1201 // There was no existing def at NewIdx. We need to create a dead def 1202 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees 1203 // a new segment at the place where we want to construct the dead def. 1204 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -| 1205 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -| 1206 assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators"); 1207 std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut); 1208 // We can reuse OldIdxVNI now. 1209 LiveRange::iterator NewSegment = std::prev(AfterNewIdx); 1210 VNInfo *NewSegmentVNI = OldIdxVNI; 1211 NewSegmentVNI->def = NewIdxDef; 1212 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1213 NewSegmentVNI); 1214 } 1215 } 1216 1217 /// Update LR to reflect an instruction has been moved upwards from OldIdx 1218 /// to NewIdx (NewIdx < OldIdx). 1219 void handleMoveUp(LiveRange &LR, unsigned Reg, LaneBitmask LaneMask) { 1220 LiveRange::iterator E = LR.end(); 1221 // Segment going into OldIdx. 1222 LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex()); 1223 1224 // No value live before or after OldIdx? Nothing to do. 1225 if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start)) 1226 return; 1227 1228 LiveRange::iterator OldIdxOut; 1229 // Do we have a value live-in to OldIdx? 1230 if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) { 1231 // If the live-in value isn't killed here, then we have no Def at 1232 // OldIdx, moreover the value must be live at NewIdx so there is nothing 1233 // to do. 1234 bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end); 1235 if (!isKill) 1236 return; 1237 1238 // At this point we have to move OldIdxIn->end back to the nearest 1239 // previous use or (dead-)def but no further than NewIdx. 1240 SlotIndex DefBeforeOldIdx 1241 = std::max(OldIdxIn->start.getDeadSlot(), 1242 NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber())); 1243 OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask); 1244 1245 // Did we have a Def at OldIdx? If not we are done now. 1246 OldIdxOut = std::next(OldIdxIn); 1247 if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start)) 1248 return; 1249 } else { 1250 OldIdxOut = OldIdxIn; 1251 OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E; 1252 } 1253 1254 // If we are here then there is a Definition at OldIdx. OldIdxOut points 1255 // to the segment starting there. 1256 assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) && 1257 "No def?"); 1258 VNInfo *OldIdxVNI = OldIdxOut->valno; 1259 assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def"); 1260 bool OldIdxDefIsDead = OldIdxOut->end.isDead(); 1261 1262 // Is there an existing def at NewIdx? 1263 SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber()); 1264 LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot()); 1265 if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) { 1266 assert(NewIdxOut->valno != OldIdxVNI && 1267 "Same value defined more than once?"); 1268 // If OldIdx was a dead def remove it. 1269 if (!OldIdxDefIsDead) { 1270 // Remove segment starting at NewIdx and move begin of OldIdxOut to 1271 // NewIdx so it can take its place. 1272 OldIdxVNI->def = NewIdxDef; 1273 OldIdxOut->start = NewIdxDef; 1274 LR.removeValNo(NewIdxOut->valno); 1275 } else { 1276 // Simply remove the dead def at OldIdx. 1277 LR.removeValNo(OldIdxVNI); 1278 } 1279 } else { 1280 // Previously nothing was live after NewIdx, so all we have to do now is 1281 // move the begin of OldIdxOut to NewIdx. 1282 if (!OldIdxDefIsDead) { 1283 // Do we have any intermediate Defs between OldIdx and NewIdx? 1284 if (OldIdxIn != E && 1285 SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) { 1286 // OldIdx is not a dead def and NewIdx is before predecessor start. 1287 LiveRange::iterator NewIdxIn = NewIdxOut; 1288 assert(NewIdxIn == LR.find(NewIdx.getBaseIndex())); 1289 const SlotIndex SplitPos = NewIdxDef; 1290 OldIdxVNI = OldIdxIn->valno; 1291 1292 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut. 1293 OldIdxOut->valno->def = OldIdxIn->start; 1294 *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end, 1295 OldIdxOut->valno); 1296 // OldIdxIn and OldIdxVNI are now undef and can be overridden. 1297 // We Slide [NewIdxIn, OldIdxIn) down one position. 1298 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -| 1299 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -| 1300 std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut); 1301 // NewIdxIn is now considered undef so we can reuse it for the moved 1302 // value. 1303 LiveRange::iterator NewSegment = NewIdxIn; 1304 LiveRange::iterator Next = std::next(NewSegment); 1305 if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) { 1306 // There is no gap between NewSegment and its predecessor. 1307 *NewSegment = LiveRange::Segment(Next->start, SplitPos, 1308 Next->valno); 1309 *Next = LiveRange::Segment(SplitPos, Next->end, OldIdxVNI); 1310 Next->valno->def = SplitPos; 1311 } else { 1312 // There is a gap between NewSegment and its predecessor 1313 // Value becomes live in. 1314 *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI); 1315 NewSegment->valno->def = SplitPos; 1316 } 1317 } else { 1318 // Leave the end point of a live def. 1319 OldIdxOut->start = NewIdxDef; 1320 OldIdxVNI->def = NewIdxDef; 1321 if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end)) 1322 OldIdxIn->end = NewIdx.getRegSlot(); 1323 } 1324 } else if (OldIdxIn != E 1325 && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx) 1326 && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) { 1327 // OldIdxVNI is a dead def that has been moved into the middle of 1328 // another value in LR. That can happen when LR is a whole register, 1329 // but the dead def is a write to a subreg that is dead at NewIdx. 1330 // The dead def may have been moved across other values 1331 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1332 // down one position. 1333 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1334 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1335 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1336 // Modify the segment at NewIdxOut and the following segment to meet at 1337 // the point of the dead def, with the following segment getting 1338 // OldIdxVNI as its value number. 1339 *NewIdxOut = LiveRange::Segment( 1340 NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno); 1341 *(NewIdxOut + 1) = LiveRange::Segment( 1342 NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI); 1343 OldIdxVNI->def = NewIdxDef; 1344 // Modify subsequent segments to be defined by the moved def OldIdxVNI. 1345 for (auto Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx) 1346 Idx->valno = OldIdxVNI; 1347 // Aggressively remove all dead flags from the former dead definition. 1348 // Kill/dead flags shouldn't be used while live intervals exist; they 1349 // will be reinserted by VirtRegRewriter. 1350 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx)) 1351 for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO) 1352 if (MO->isReg() && !MO->isUse()) 1353 MO->setIsDead(false); 1354 } else { 1355 // OldIdxVNI is a dead def. It may have been moved across other values 1356 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut) 1357 // down one position. 1358 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - | 1359 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -| 1360 std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut)); 1361 // OldIdxVNI can be reused now to build a new dead def segment. 1362 LiveRange::iterator NewSegment = NewIdxOut; 1363 VNInfo *NewSegmentVNI = OldIdxVNI; 1364 *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(), 1365 NewSegmentVNI); 1366 NewSegmentVNI->def = NewIdxDef; 1367 } 1368 } 1369 } 1370 1371 void updateRegMaskSlots() { 1372 SmallVectorImpl<SlotIndex>::iterator RI = 1373 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(), 1374 OldIdx); 1375 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() && 1376 "No RegMask at OldIdx."); 1377 *RI = NewIdx.getRegSlot(); 1378 assert((RI == LIS.RegMaskSlots.begin() || 1379 SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) && 1380 "Cannot move regmask instruction above another call"); 1381 assert((std::next(RI) == LIS.RegMaskSlots.end() || 1382 SlotIndex::isEarlierInstr(*RI, *std::next(RI))) && 1383 "Cannot move regmask instruction below another call"); 1384 } 1385 1386 // Return the last use of reg between NewIdx and OldIdx. 1387 SlotIndex findLastUseBefore(SlotIndex Before, unsigned Reg, 1388 LaneBitmask LaneMask) { 1389 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1390 SlotIndex LastUse = Before; 1391 for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) { 1392 if (MO.isUndef()) 1393 continue; 1394 unsigned SubReg = MO.getSubReg(); 1395 if (SubReg != 0 && LaneMask.any() 1396 && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none()) 1397 continue; 1398 1399 const MachineInstr &MI = *MO.getParent(); 1400 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI); 1401 if (InstSlot > LastUse && InstSlot < OldIdx) 1402 LastUse = InstSlot.getRegSlot(); 1403 } 1404 return LastUse; 1405 } 1406 1407 // This is a regunit interval, so scanning the use list could be very 1408 // expensive. Scan upwards from OldIdx instead. 1409 assert(Before < OldIdx && "Expected upwards move"); 1410 SlotIndexes *Indexes = LIS.getSlotIndexes(); 1411 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before); 1412 1413 // OldIdx may not correspond to an instruction any longer, so set MII to 1414 // point to the next instruction after OldIdx, or MBB->end(). 1415 MachineBasicBlock::iterator MII = MBB->end(); 1416 if (MachineInstr *MI = Indexes->getInstructionFromIndex( 1417 Indexes->getNextNonNullIndex(OldIdx))) 1418 if (MI->getParent() == MBB) 1419 MII = MI; 1420 1421 MachineBasicBlock::iterator Begin = MBB->begin(); 1422 while (MII != Begin) { 1423 if ((--MII)->isDebugInstr()) 1424 continue; 1425 SlotIndex Idx = Indexes->getInstructionIndex(*MII); 1426 1427 // Stop searching when Before is reached. 1428 if (!SlotIndex::isEarlierInstr(Before, Idx)) 1429 return Before; 1430 1431 // Check if MII uses Reg. 1432 for (MIBundleOperands MO(*MII); MO.isValid(); ++MO) 1433 if (MO->isReg() && !MO->isUndef() && 1434 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) && 1435 TRI.hasRegUnit(MO->getReg(), Reg)) 1436 return Idx.getRegSlot(); 1437 } 1438 // Didn't reach Before. It must be the first instruction in the block. 1439 return Before; 1440 } 1441 }; 1442 1443 void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) { 1444 assert(!MI.isBundled() && "Can't handle bundled instructions yet."); 1445 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1446 Indexes->removeMachineInstrFromMaps(MI); 1447 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI); 1448 assert(getMBBStartIdx(MI.getParent()) <= OldIndex && 1449 OldIndex < getMBBEndIdx(MI.getParent()) && 1450 "Cannot handle moves across basic block boundaries."); 1451 1452 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1453 HME.updateAllRanges(&MI); 1454 } 1455 1456 void LiveIntervals::handleMoveIntoBundle(MachineInstr &MI, 1457 MachineInstr &BundleStart, 1458 bool UpdateFlags) { 1459 SlotIndex OldIndex = Indexes->getInstructionIndex(MI); 1460 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart); 1461 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags); 1462 HME.updateAllRanges(&MI); 1463 } 1464 1465 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin, 1466 const MachineBasicBlock::iterator End, 1467 const SlotIndex endIdx, 1468 LiveRange &LR, const unsigned Reg, 1469 LaneBitmask LaneMask) { 1470 LiveInterval::iterator LII = LR.find(endIdx); 1471 SlotIndex lastUseIdx; 1472 if (LII == LR.begin()) { 1473 // This happens when the function is called for a subregister that only 1474 // occurs _after_ the range that is to be repaired. 1475 return; 1476 } 1477 if (LII != LR.end() && LII->start < endIdx) 1478 lastUseIdx = LII->end; 1479 else 1480 --LII; 1481 1482 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1483 --I; 1484 MachineInstr &MI = *I; 1485 if (MI.isDebugInstr()) 1486 continue; 1487 1488 SlotIndex instrIdx = getInstructionIndex(MI); 1489 bool isStartValid = getInstructionFromIndex(LII->start); 1490 bool isEndValid = getInstructionFromIndex(LII->end); 1491 1492 // FIXME: This doesn't currently handle early-clobber or multiple removed 1493 // defs inside of the region to repair. 1494 for (MachineInstr::mop_iterator OI = MI.operands_begin(), 1495 OE = MI.operands_end(); 1496 OI != OE; ++OI) { 1497 const MachineOperand &MO = *OI; 1498 if (!MO.isReg() || MO.getReg() != Reg) 1499 continue; 1500 1501 unsigned SubReg = MO.getSubReg(); 1502 LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg); 1503 if ((Mask & LaneMask).none()) 1504 continue; 1505 1506 if (MO.isDef()) { 1507 if (!isStartValid) { 1508 if (LII->end.isDead()) { 1509 SlotIndex prevStart; 1510 if (LII != LR.begin()) 1511 prevStart = std::prev(LII)->start; 1512 1513 // FIXME: This could be more efficient if there was a 1514 // removeSegment method that returned an iterator. 1515 LR.removeSegment(*LII, true); 1516 if (prevStart.isValid()) 1517 LII = LR.find(prevStart); 1518 else 1519 LII = LR.begin(); 1520 } else { 1521 LII->start = instrIdx.getRegSlot(); 1522 LII->valno->def = instrIdx.getRegSlot(); 1523 if (MO.getSubReg() && !MO.isUndef()) 1524 lastUseIdx = instrIdx.getRegSlot(); 1525 else 1526 lastUseIdx = SlotIndex(); 1527 continue; 1528 } 1529 } 1530 1531 if (!lastUseIdx.isValid()) { 1532 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1533 LiveRange::Segment S(instrIdx.getRegSlot(), 1534 instrIdx.getDeadSlot(), VNI); 1535 LII = LR.addSegment(S); 1536 } else if (LII->start != instrIdx.getRegSlot()) { 1537 VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator); 1538 LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI); 1539 LII = LR.addSegment(S); 1540 } 1541 1542 if (MO.getSubReg() && !MO.isUndef()) 1543 lastUseIdx = instrIdx.getRegSlot(); 1544 else 1545 lastUseIdx = SlotIndex(); 1546 } else if (MO.isUse()) { 1547 // FIXME: This should probably be handled outside of this branch, 1548 // either as part of the def case (for defs inside of the region) or 1549 // after the loop over the region. 1550 if (!isEndValid && !LII->end.isBlock()) 1551 LII->end = instrIdx.getRegSlot(); 1552 if (!lastUseIdx.isValid()) 1553 lastUseIdx = instrIdx.getRegSlot(); 1554 } 1555 } 1556 } 1557 } 1558 1559 void 1560 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB, 1561 MachineBasicBlock::iterator Begin, 1562 MachineBasicBlock::iterator End, 1563 ArrayRef<unsigned> OrigRegs) { 1564 // Find anchor points, which are at the beginning/end of blocks or at 1565 // instructions that already have indexes. 1566 while (Begin != MBB->begin() && !Indexes->hasIndex(*Begin)) 1567 --Begin; 1568 while (End != MBB->end() && !Indexes->hasIndex(*End)) 1569 ++End; 1570 1571 SlotIndex endIdx; 1572 if (End == MBB->end()) 1573 endIdx = getMBBEndIdx(MBB).getPrevSlot(); 1574 else 1575 endIdx = getInstructionIndex(*End); 1576 1577 Indexes->repairIndexesInRange(MBB, Begin, End); 1578 1579 for (MachineBasicBlock::iterator I = End; I != Begin;) { 1580 --I; 1581 MachineInstr &MI = *I; 1582 if (MI.isDebugInstr()) 1583 continue; 1584 for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(), 1585 MOE = MI.operands_end(); 1586 MOI != MOE; ++MOI) { 1587 if (MOI->isReg() && 1588 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) && 1589 !hasInterval(MOI->getReg())) { 1590 createAndComputeVirtRegInterval(MOI->getReg()); 1591 } 1592 } 1593 } 1594 1595 for (unsigned Reg : OrigRegs) { 1596 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 1597 continue; 1598 1599 LiveInterval &LI = getInterval(Reg); 1600 // FIXME: Should we support undefs that gain defs? 1601 if (!LI.hasAtLeastOneValue()) 1602 continue; 1603 1604 for (LiveInterval::SubRange &S : LI.subranges()) 1605 repairOldRegInRange(Begin, End, endIdx, S, Reg, S.LaneMask); 1606 1607 repairOldRegInRange(Begin, End, endIdx, LI, Reg); 1608 } 1609 } 1610 1611 void LiveIntervals::removePhysRegDefAt(unsigned Reg, SlotIndex Pos) { 1612 for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) { 1613 if (LiveRange *LR = getCachedRegUnit(*Unit)) 1614 if (VNInfo *VNI = LR->getVNInfoAt(Pos)) 1615 LR->removeValNo(VNI); 1616 } 1617 } 1618 1619 void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) { 1620 // LI may not have the main range computed yet, but its subranges may 1621 // be present. 1622 VNInfo *VNI = LI.getVNInfoAt(Pos); 1623 if (VNI != nullptr) { 1624 assert(VNI->def.getBaseIndex() == Pos.getBaseIndex()); 1625 LI.removeValNo(VNI); 1626 } 1627 1628 // Also remove the value defined in subranges. 1629 for (LiveInterval::SubRange &S : LI.subranges()) { 1630 if (VNInfo *SVNI = S.getVNInfoAt(Pos)) 1631 if (SVNI->def.getBaseIndex() == Pos.getBaseIndex()) 1632 S.removeValNo(SVNI); 1633 } 1634 LI.removeEmptySubRanges(); 1635 } 1636 1637 void LiveIntervals::splitSeparateComponents(LiveInterval &LI, 1638 SmallVectorImpl<LiveInterval*> &SplitLIs) { 1639 ConnectedVNInfoEqClasses ConEQ(*this); 1640 unsigned NumComp = ConEQ.Classify(LI); 1641 if (NumComp <= 1) 1642 return; 1643 LLVM_DEBUG(dbgs() << " Split " << NumComp << " components: " << LI << '\n'); 1644 unsigned Reg = LI.reg; 1645 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg); 1646 for (unsigned I = 1; I < NumComp; ++I) { 1647 unsigned NewVReg = MRI->createVirtualRegister(RegClass); 1648 LiveInterval &NewLI = createEmptyInterval(NewVReg); 1649 SplitLIs.push_back(&NewLI); 1650 } 1651 ConEQ.Distribute(LI, SplitLIs.data(), *MRI); 1652 } 1653 1654 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) { 1655 assert(LRCalc && "LRCalc not initialized."); 1656 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator()); 1657 LRCalc->constructMainRangeFromSubranges(LI); 1658 } 1659