1 //===-- LiveIntervalUnion.cpp - Live interval union data structure --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // LiveIntervalUnion represents a coalesced set of live intervals. This may be 11 // used during coalescing to represent a congruence class, or during register 12 // allocation to model liveness of a physical register. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "regalloc" 17 #include "LiveIntervalUnion.h" 18 #include "llvm/ADT/SparseBitVector.h" 19 #include "llvm/CodeGen/MachineLoopRanges.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/raw_ostream.h" 22 #include "llvm/Target/TargetRegisterInfo.h" 23 24 using namespace llvm; 25 26 27 // Merge a LiveInterval's segments. Guarantee no overlaps. 28 void LiveIntervalUnion::unify(LiveInterval &VirtReg) { 29 if (VirtReg.empty()) 30 return; 31 32 // Insert each of the virtual register's live segments into the map. 33 LiveInterval::iterator RegPos = VirtReg.begin(); 34 LiveInterval::iterator RegEnd = VirtReg.end(); 35 SegmentIter SegPos = Segments.find(RegPos->start); 36 37 for (;;) { 38 SegPos.insert(RegPos->start, RegPos->end, &VirtReg); 39 if (++RegPos == RegEnd) 40 return; 41 SegPos.advanceTo(RegPos->start); 42 } 43 } 44 45 // Remove a live virtual register's segments from this union. 46 void LiveIntervalUnion::extract(LiveInterval &VirtReg) { 47 if (VirtReg.empty()) 48 return; 49 50 // Remove each of the virtual register's live segments from the map. 51 LiveInterval::iterator RegPos = VirtReg.begin(); 52 LiveInterval::iterator RegEnd = VirtReg.end(); 53 SegmentIter SegPos = Segments.find(RegPos->start); 54 55 for (;;) { 56 assert(SegPos.value() == &VirtReg && "Inconsistent LiveInterval"); 57 SegPos.erase(); 58 if (!SegPos.valid()) 59 return; 60 61 // Skip all segments that may have been coalesced. 62 RegPos = VirtReg.advanceTo(RegPos, SegPos.start()); 63 if (RegPos == RegEnd) 64 return; 65 66 SegPos.advanceTo(RegPos->start); 67 } 68 } 69 70 void 71 LiveIntervalUnion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const { 72 OS << "LIU " << PrintReg(RepReg, TRI); 73 if (empty()) { 74 OS << " empty\n"; 75 return; 76 } 77 for (LiveSegments::const_iterator SI = Segments.begin(); SI.valid(); ++SI) { 78 OS << " [" << SI.start() << ' ' << SI.stop() << "):" 79 << PrintReg(SI.value()->reg, TRI); 80 } 81 OS << '\n'; 82 } 83 84 void LiveIntervalUnion::InterferenceResult::print(raw_ostream &OS, 85 const TargetRegisterInfo *TRI) const { 86 OS << '[' << start() << ';' << stop() << "):" 87 << PrintReg(interference()->reg, TRI); 88 } 89 90 void LiveIntervalUnion::Query::print(raw_ostream &OS, 91 const TargetRegisterInfo *TRI) { 92 OS << "Interferences with "; 93 LiveUnion->print(OS, TRI); 94 InterferenceResult IR = firstInterference(); 95 while (isInterference(IR)) { 96 OS << " "; 97 IR.print(OS, TRI); 98 OS << '\n'; 99 nextInterference(IR); 100 } 101 } 102 103 #ifndef NDEBUG 104 // Verify the live intervals in this union and add them to the visited set. 105 void LiveIntervalUnion::verify(LiveVirtRegBitSet& VisitedVRegs) { 106 for (SegmentIter SI = Segments.begin(); SI.valid(); ++SI) 107 VisitedVRegs.set(SI.value()->reg); 108 } 109 #endif //!NDEBUG 110 111 // Private interface accessed by Query. 112 // 113 // Find a pair of segments that intersect, one in the live virtual register 114 // (LiveInterval), and the other in this LiveIntervalUnion. The caller (Query) 115 // is responsible for advancing the LiveIntervalUnion segments to find a 116 // "notable" intersection, which requires query-specific logic. 117 // 118 // This design assumes only a fast mechanism for intersecting a single live 119 // virtual register segment with a set of LiveIntervalUnion segments. This may 120 // be ok since most virtual registers have very few segments. If we had a data 121 // structure that optimizd MxN intersection of segments, then we would bypass 122 // the loop that advances within the LiveInterval. 123 // 124 // If no intersection exists, set VirtRegI = VirtRegEnd, and set SI to the first 125 // segment whose start point is greater than LiveInterval's end point. 126 // 127 // Assumes that segments are sorted by start position in both 128 // LiveInterval and LiveSegments. 129 void LiveIntervalUnion::Query::findIntersection(InterferenceResult &IR) const { 130 // Search until reaching the end of the LiveUnion segments. 131 LiveInterval::iterator VirtRegEnd = VirtReg->end(); 132 if (IR.VirtRegI == VirtRegEnd) 133 return; 134 while (IR.LiveUnionI.valid()) { 135 // Slowly advance the live virtual reg iterator until we surpass the next 136 // segment in LiveUnion. 137 // 138 // Note: If this is ever used for coalescing of fixed registers and we have 139 // a live vreg with thousands of segments, then change this code to use 140 // upperBound instead. 141 IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start()); 142 if (IR.VirtRegI == VirtRegEnd) 143 break; // Retain current (nonoverlapping) LiveUnionI 144 145 // VirtRegI may have advanced far beyond LiveUnionI, catch up. 146 IR.LiveUnionI.advanceTo(IR.VirtRegI->start); 147 148 // Check if no LiveUnionI exists with VirtRegI->Start < LiveUnionI.end 149 if (!IR.LiveUnionI.valid()) 150 break; 151 if (IR.LiveUnionI.start() < IR.VirtRegI->end) { 152 assert(overlap(*IR.VirtRegI, IR.LiveUnionI) && 153 "upperBound postcondition"); 154 break; 155 } 156 } 157 if (!IR.LiveUnionI.valid()) 158 IR.VirtRegI = VirtRegEnd; 159 } 160 161 // Find the first intersection, and cache interference info 162 // (retain segment iterators into both VirtReg and LiveUnion). 163 const LiveIntervalUnion::InterferenceResult & 164 LiveIntervalUnion::Query::firstInterference() { 165 if (CheckedFirstInterference) 166 return FirstInterference; 167 CheckedFirstInterference = true; 168 InterferenceResult &IR = FirstInterference; 169 170 // Quickly skip interference check for empty sets. 171 if (VirtReg->empty() || LiveUnion->empty()) { 172 IR.VirtRegI = VirtReg->end(); 173 } else if (VirtReg->beginIndex() < LiveUnion->startIndex()) { 174 // VirtReg starts first, perform double binary search. 175 IR.VirtRegI = VirtReg->find(LiveUnion->startIndex()); 176 if (IR.VirtRegI != VirtReg->end()) 177 IR.LiveUnionI = LiveUnion->find(IR.VirtRegI->start); 178 } else { 179 // LiveUnion starts first, perform double binary search. 180 IR.LiveUnionI = LiveUnion->find(VirtReg->beginIndex()); 181 if (IR.LiveUnionI.valid()) 182 IR.VirtRegI = VirtReg->find(IR.LiveUnionI.start()); 183 else 184 IR.VirtRegI = VirtReg->end(); 185 } 186 findIntersection(FirstInterference); 187 assert((IR.VirtRegI == VirtReg->end() || IR.LiveUnionI.valid()) 188 && "Uninitialized iterator"); 189 return FirstInterference; 190 } 191 192 // Treat the result as an iterator and advance to the next interfering pair 193 // of segments. This is a plain iterator with no filter. 194 bool LiveIntervalUnion::Query::nextInterference(InterferenceResult &IR) const { 195 assert(isInterference(IR) && "iteration past end of interferences"); 196 197 // Advance either the VirtReg or LiveUnion segment to ensure that we visit all 198 // unique overlapping pairs. 199 if (IR.VirtRegI->end < IR.LiveUnionI.stop()) { 200 if (++IR.VirtRegI == VirtReg->end()) 201 return false; 202 } 203 else { 204 if (!(++IR.LiveUnionI).valid()) { 205 IR.VirtRegI = VirtReg->end(); 206 return false; 207 } 208 } 209 // Short-circuit findIntersection() if possible. 210 if (overlap(*IR.VirtRegI, IR.LiveUnionI)) 211 return true; 212 213 // Find the next intersection. 214 findIntersection(IR); 215 return isInterference(IR); 216 } 217 218 // Scan the vector of interfering virtual registers in this union. Assume it's 219 // quite small. 220 bool LiveIntervalUnion::Query::isSeenInterference(LiveInterval *VirtReg) const { 221 SmallVectorImpl<LiveInterval*>::const_iterator I = 222 std::find(InterferingVRegs.begin(), InterferingVRegs.end(), VirtReg); 223 return I != InterferingVRegs.end(); 224 } 225 226 // Count the number of virtual registers in this union that interfere with this 227 // query's live virtual register. 228 // 229 // The number of times that we either advance IR.VirtRegI or call 230 // LiveUnion.upperBound() will be no more than the number of holes in 231 // VirtReg. So each invocation of collectInterferingVRegs() takes 232 // time proportional to |VirtReg Holes| * time(LiveUnion.upperBound()). 233 // 234 // For comments on how to speed it up, see Query::findIntersection(). 235 unsigned LiveIntervalUnion::Query:: 236 collectInterferingVRegs(unsigned MaxInterferingRegs) { 237 InterferenceResult IR = firstInterference(); 238 LiveInterval::iterator VirtRegEnd = VirtReg->end(); 239 LiveInterval *RecentInterferingVReg = NULL; 240 if (IR.VirtRegI != VirtRegEnd) while (IR.LiveUnionI.valid()) { 241 // Advance the union's iterator to reach an unseen interfering vreg. 242 do { 243 if (IR.LiveUnionI.value() == RecentInterferingVReg) 244 continue; 245 246 if (!isSeenInterference(IR.LiveUnionI.value())) 247 break; 248 249 // Cache the most recent interfering vreg to bypass isSeenInterference. 250 RecentInterferingVReg = IR.LiveUnionI.value(); 251 252 } while ((++IR.LiveUnionI).valid()); 253 if (!IR.LiveUnionI.valid()) 254 break; 255 256 // Advance the VirtReg iterator until surpassing the next segment in 257 // LiveUnion. 258 IR.VirtRegI = VirtReg->advanceTo(IR.VirtRegI, IR.LiveUnionI.start()); 259 if (IR.VirtRegI == VirtRegEnd) 260 break; 261 262 // Check for intersection with the union's segment. 263 if (overlap(*IR.VirtRegI, IR.LiveUnionI)) { 264 265 if (!IR.LiveUnionI.value()->isSpillable()) 266 SeenUnspillableVReg = true; 267 268 if (InterferingVRegs.size() == MaxInterferingRegs) 269 // Leave SeenAllInterferences set to false to indicate that at least one 270 // interference exists beyond those we collected. 271 return MaxInterferingRegs; 272 273 InterferingVRegs.push_back(IR.LiveUnionI.value()); 274 275 // Cache the most recent interfering vreg to bypass isSeenInterference. 276 RecentInterferingVReg = IR.LiveUnionI.value(); 277 ++IR.LiveUnionI; 278 continue; 279 } 280 // VirtRegI may have advanced far beyond LiveUnionI, 281 // do a fast intersection test to "catch up" 282 IR.LiveUnionI.advanceTo(IR.VirtRegI->start); 283 } 284 SeenAllInterferences = true; 285 return InterferingVRegs.size(); 286 } 287 288 bool LiveIntervalUnion::Query::checkLoopInterference(MachineLoopRange *Loop) { 289 // VirtReg is likely live throughout the loop, so start by checking LIU-Loop 290 // overlaps. 291 IntervalMapOverlaps<LiveIntervalUnion::Map, MachineLoopRange::Map> 292 Overlaps(LiveUnion->getMap(), Loop->getMap()); 293 if (!Overlaps.valid()) 294 return false; 295 296 // The loop is overlapping an LIU assignment. Check VirtReg as well. 297 LiveInterval::iterator VRI = VirtReg->find(Overlaps.start()); 298 299 for (;;) { 300 if (VRI == VirtReg->end()) 301 return false; 302 if (VRI->start < Overlaps.stop()) 303 return true; 304 305 Overlaps.advanceTo(VRI->start); 306 if (!Overlaps.valid()) 307 return false; 308 if (Overlaps.start() < VRI->end) 309 return true; 310 311 VRI = VirtReg->advanceTo(VRI, Overlaps.start()); 312 } 313 } 314