1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include "llvm/Target/TargetRegisterInfo.h" 30 #include <algorithm> 31 using namespace llvm; 32 33 namespace { 34 //===----------------------------------------------------------------------===// 35 // Implementation of various methods necessary for calculation of live ranges. 36 // The implementation of the methods abstracts from the concrete type of the 37 // segment collection. 38 // 39 // Implementation of the class follows the Template design pattern. The base 40 // class contains generic algorithms that call collection-specific methods, 41 // which are provided in concrete subclasses. In order to avoid virtual calls 42 // these methods are provided by means of C++ template instantiation. 43 // The base class calls the methods of the subclass through method impl(), 44 // which casts 'this' pointer to the type of the subclass. 45 // 46 //===----------------------------------------------------------------------===// 47 48 template <typename ImplT, typename IteratorT, typename CollectionT> 49 class CalcLiveRangeUtilBase { 50 protected: 51 LiveRange *LR; 52 53 protected: 54 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} 55 56 public: 57 typedef LiveRange::Segment Segment; 58 typedef IteratorT iterator; 59 60 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { 61 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 62 63 iterator I = impl().find(Def); 64 if (I == segments().end()) { 65 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); 66 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); 67 return VNI; 68 } 69 70 Segment *S = segmentAt(I); 71 if (SlotIndex::isSameInstr(Def, S->start)) { 72 assert(S->valno->def == S->start && "Inconsistent existing value def"); 73 74 // It is possible to have both normal and early-clobber defs of the same 75 // register on an instruction. It doesn't make a lot of sense, but it is 76 // possible to specify in inline assembly. 77 // 78 // Just convert everything to early-clobber. 79 Def = std::min(Def, S->start); 80 if (Def != S->start) 81 S->start = S->valno->def = Def; 82 return S->valno; 83 } 84 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); 85 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); 86 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 87 return VNI; 88 } 89 90 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { 91 if (segments().empty()) 92 return nullptr; 93 iterator I = 94 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); 95 if (I == segments().begin()) 96 return nullptr; 97 --I; 98 if (I->end <= StartIdx) 99 return nullptr; 100 if (I->end < Use) 101 extendSegmentEndTo(I, Use); 102 return I->valno; 103 } 104 105 /// This method is used when we want to extend the segment specified 106 /// by I to end at the specified endpoint. To do this, we should 107 /// merge and eliminate all segments that this will overlap 108 /// with. The iterator is not invalidated. 109 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 110 assert(I != segments().end() && "Not a valid segment!"); 111 Segment *S = segmentAt(I); 112 VNInfo *ValNo = I->valno; 113 114 // Search for the first segment that we can't merge with. 115 iterator MergeTo = std::next(I); 116 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) 117 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 118 119 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 120 S->end = std::max(NewEnd, std::prev(MergeTo)->end); 121 122 // If the newly formed segment now touches the segment after it and if they 123 // have the same value number, merge the two segments into one segment. 124 if (MergeTo != segments().end() && MergeTo->start <= I->end && 125 MergeTo->valno == ValNo) { 126 S->end = MergeTo->end; 127 ++MergeTo; 128 } 129 130 // Erase any dead segments. 131 segments().erase(std::next(I), MergeTo); 132 } 133 134 /// This method is used when we want to extend the segment specified 135 /// by I to start at the specified endpoint. To do this, we should 136 /// merge and eliminate all segments that this will overlap with. 137 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { 138 assert(I != segments().end() && "Not a valid segment!"); 139 Segment *S = segmentAt(I); 140 VNInfo *ValNo = I->valno; 141 142 // Search for the first segment that we can't merge with. 143 iterator MergeTo = I; 144 do { 145 if (MergeTo == segments().begin()) { 146 S->start = NewStart; 147 segments().erase(MergeTo, I); 148 return I; 149 } 150 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 151 --MergeTo; 152 } while (NewStart <= MergeTo->start); 153 154 // If we start in the middle of another segment, just delete a range and 155 // extend that segment. 156 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 157 segmentAt(MergeTo)->end = S->end; 158 } else { 159 // Otherwise, extend the segment right after. 160 ++MergeTo; 161 Segment *MergeToSeg = segmentAt(MergeTo); 162 MergeToSeg->start = NewStart; 163 MergeToSeg->end = S->end; 164 } 165 166 segments().erase(std::next(MergeTo), std::next(I)); 167 return MergeTo; 168 } 169 170 iterator addSegment(Segment S) { 171 SlotIndex Start = S.start, End = S.end; 172 iterator I = impl().findInsertPos(S); 173 174 // If the inserted segment starts in the middle or right at the end of 175 // another segment, just extend that segment to contain the segment of S. 176 if (I != segments().begin()) { 177 iterator B = std::prev(I); 178 if (S.valno == B->valno) { 179 if (B->start <= Start && B->end >= Start) { 180 extendSegmentEndTo(B, End); 181 return B; 182 } 183 } else { 184 // Check to make sure that we are not overlapping two live segments with 185 // different valno's. 186 assert(B->end <= Start && 187 "Cannot overlap two segments with differing ValID's" 188 " (did you def the same reg twice in a MachineInstr?)"); 189 } 190 } 191 192 // Otherwise, if this segment ends in the middle of, or right next 193 // to, another segment, merge it into that segment. 194 if (I != segments().end()) { 195 if (S.valno == I->valno) { 196 if (I->start <= End) { 197 I = extendSegmentStartTo(I, Start); 198 199 // If S is a complete superset of a segment, we may need to grow its 200 // endpoint as well. 201 if (End > I->end) 202 extendSegmentEndTo(I, End); 203 return I; 204 } 205 } else { 206 // Check to make sure that we are not overlapping two live segments with 207 // different valno's. 208 assert(I->start >= End && 209 "Cannot overlap two segments with differing ValID's"); 210 } 211 } 212 213 // Otherwise, this is just a new segment that doesn't interact with 214 // anything. 215 // Insert it. 216 return segments().insert(I, S); 217 } 218 219 private: 220 ImplT &impl() { return *static_cast<ImplT *>(this); } 221 222 CollectionT &segments() { return impl().segmentsColl(); } 223 224 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } 225 }; 226 227 //===----------------------------------------------------------------------===// 228 // Instantiation of the methods for calculation of live ranges 229 // based on a segment vector. 230 //===----------------------------------------------------------------------===// 231 232 class CalcLiveRangeUtilVector; 233 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, 234 LiveRange::Segments> CalcLiveRangeUtilVectorBase; 235 236 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { 237 public: 238 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} 239 240 private: 241 friend CalcLiveRangeUtilVectorBase; 242 243 LiveRange::Segments &segmentsColl() { return LR->segments; } 244 245 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } 246 247 iterator find(SlotIndex Pos) { return LR->find(Pos); } 248 249 iterator findInsertPos(Segment S) { 250 return std::upper_bound(LR->begin(), LR->end(), S.start); 251 } 252 }; 253 254 //===----------------------------------------------------------------------===// 255 // Instantiation of the methods for calculation of live ranges 256 // based on a segment set. 257 //===----------------------------------------------------------------------===// 258 259 class CalcLiveRangeUtilSet; 260 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, 261 LiveRange::SegmentSet::iterator, 262 LiveRange::SegmentSet> CalcLiveRangeUtilSetBase; 263 264 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { 265 public: 266 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} 267 268 private: 269 friend CalcLiveRangeUtilSetBase; 270 271 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } 272 273 void insertAtEnd(const Segment &S) { 274 LR->segmentSet->insert(LR->segmentSet->end(), S); 275 } 276 277 iterator find(SlotIndex Pos) { 278 iterator I = 279 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); 280 if (I == LR->segmentSet->begin()) 281 return I; 282 iterator PrevI = std::prev(I); 283 if (Pos < (*PrevI).end) 284 return PrevI; 285 return I; 286 } 287 288 iterator findInsertPos(Segment S) { 289 iterator I = LR->segmentSet->upper_bound(S); 290 if (I != LR->segmentSet->end() && !(S.start < *I)) 291 ++I; 292 return I; 293 } 294 }; 295 } // namespace 296 297 //===----------------------------------------------------------------------===// 298 // LiveRange methods 299 //===----------------------------------------------------------------------===// 300 301 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 302 // This algorithm is basically std::upper_bound. 303 // Unfortunately, std::upper_bound cannot be used with mixed types until we 304 // adopt C++0x. Many libraries can do it, but not all. 305 if (empty() || Pos >= endIndex()) 306 return end(); 307 iterator I = begin(); 308 size_t Len = size(); 309 do { 310 size_t Mid = Len >> 1; 311 if (Pos < I[Mid].end) { 312 Len = Mid; 313 } else { 314 I += Mid + 1; 315 Len -= Mid + 1; 316 } 317 } while (Len); 318 return I; 319 } 320 321 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 322 VNInfo::Allocator &VNInfoAllocator) { 323 // Use the segment set, if it is available. 324 if (segmentSet != nullptr) 325 return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator); 326 // Otherwise use the segment vector. 327 return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator); 328 } 329 330 // overlaps - Return true if the intersection of the two live ranges is 331 // not empty. 332 // 333 // An example for overlaps(): 334 // 335 // 0: A = ... 336 // 4: B = ... 337 // 8: C = A + B ;; last use of A 338 // 339 // The live ranges should look like: 340 // 341 // A = [3, 11) 342 // B = [7, x) 343 // C = [11, y) 344 // 345 // A->overlaps(C) should return false since we want to be able to join 346 // A and C. 347 // 348 bool LiveRange::overlapsFrom(const LiveRange& other, 349 const_iterator StartPos) const { 350 assert(!empty() && "empty range"); 351 const_iterator i = begin(); 352 const_iterator ie = end(); 353 const_iterator j = StartPos; 354 const_iterator je = other.end(); 355 356 assert((StartPos->start <= i->start || StartPos == other.begin()) && 357 StartPos != other.end() && "Bogus start position hint!"); 358 359 if (i->start < j->start) { 360 i = std::upper_bound(i, ie, j->start); 361 if (i != begin()) --i; 362 } else if (j->start < i->start) { 363 ++StartPos; 364 if (StartPos != other.end() && StartPos->start <= i->start) { 365 assert(StartPos < other.end() && i < end()); 366 j = std::upper_bound(j, je, i->start); 367 if (j != other.begin()) --j; 368 } 369 } else { 370 return true; 371 } 372 373 if (j == je) return false; 374 375 while (i != ie) { 376 if (i->start > j->start) { 377 std::swap(i, j); 378 std::swap(ie, je); 379 } 380 381 if (i->end > j->start) 382 return true; 383 ++i; 384 } 385 386 return false; 387 } 388 389 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 390 const SlotIndexes &Indexes) const { 391 assert(!empty() && "empty range"); 392 if (Other.empty()) 393 return false; 394 395 // Use binary searches to find initial positions. 396 const_iterator I = find(Other.beginIndex()); 397 const_iterator IE = end(); 398 if (I == IE) 399 return false; 400 const_iterator J = Other.find(I->start); 401 const_iterator JE = Other.end(); 402 if (J == JE) 403 return false; 404 405 for (;;) { 406 // J has just been advanced to satisfy: 407 assert(J->end >= I->start); 408 // Check for an overlap. 409 if (J->start < I->end) { 410 // I and J are overlapping. Find the later start. 411 SlotIndex Def = std::max(I->start, J->start); 412 // Allow the overlap if Def is a coalescable copy. 413 if (Def.isBlock() || 414 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 415 return true; 416 } 417 // Advance the iterator that ends first to check for more overlaps. 418 if (J->end > I->end) { 419 std::swap(I, J); 420 std::swap(IE, JE); 421 } 422 // Advance J until J->end >= I->start. 423 do 424 if (++J == JE) 425 return false; 426 while (J->end < I->start); 427 } 428 } 429 430 /// overlaps - Return true if the live range overlaps an interval specified 431 /// by [Start, End). 432 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 433 assert(Start < End && "Invalid range"); 434 const_iterator I = std::lower_bound(begin(), end(), End); 435 return I != begin() && (--I)->end > Start; 436 } 437 438 bool LiveRange::covers(const LiveRange &Other) const { 439 if (empty()) 440 return Other.empty(); 441 442 const_iterator I = begin(); 443 for (const Segment &O : Other.segments) { 444 I = advanceTo(I, O.start); 445 if (I == end() || I->start > O.start) 446 return false; 447 448 // Check adjacent live segments and see if we can get behind O.end. 449 while (I->end < O.end) { 450 const_iterator Last = I; 451 // Get next segment and abort if it was not adjacent. 452 ++I; 453 if (I == end() || Last->end != I->start) 454 return false; 455 } 456 } 457 return true; 458 } 459 460 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 461 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 462 /// it can be nuked later. 463 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 464 if (ValNo->id == getNumValNums()-1) { 465 do { 466 valnos.pop_back(); 467 } while (!valnos.empty() && valnos.back()->isUnused()); 468 } else { 469 ValNo->markUnused(); 470 } 471 } 472 473 /// RenumberValues - Renumber all values in order of appearance and delete the 474 /// remaining unused values. 475 void LiveRange::RenumberValues() { 476 SmallPtrSet<VNInfo*, 8> Seen; 477 valnos.clear(); 478 for (const Segment &S : segments) { 479 VNInfo *VNI = S.valno; 480 if (!Seen.insert(VNI).second) 481 continue; 482 assert(!VNI->isUnused() && "Unused valno used by live segment"); 483 VNI->id = (unsigned)valnos.size(); 484 valnos.push_back(VNI); 485 } 486 } 487 488 void LiveRange::addSegmentToSet(Segment S) { 489 CalcLiveRangeUtilSet(this).addSegment(S); 490 } 491 492 LiveRange::iterator LiveRange::addSegment(Segment S) { 493 // Use the segment set, if it is available. 494 if (segmentSet != nullptr) { 495 addSegmentToSet(S); 496 return end(); 497 } 498 // Otherwise use the segment vector. 499 return CalcLiveRangeUtilVector(this).addSegment(S); 500 } 501 502 void LiveRange::append(const Segment S) { 503 // Check that the segment belongs to the back of the list. 504 assert(segments.empty() || segments.back().end <= S.start); 505 segments.push_back(S); 506 } 507 508 /// extendInBlock - If this range is live before Kill in the basic 509 /// block that starts at StartIdx, extend it to be live up to Kill and return 510 /// the value. If there is no live range before Kill, return NULL. 511 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 512 // Use the segment set, if it is available. 513 if (segmentSet != nullptr) 514 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); 515 // Otherwise use the segment vector. 516 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); 517 } 518 519 /// Remove the specified segment from this range. Note that the segment must 520 /// be in a single Segment in its entirety. 521 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 522 bool RemoveDeadValNo) { 523 // Find the Segment containing this span. 524 iterator I = find(Start); 525 assert(I != end() && "Segment is not in range!"); 526 assert(I->containsInterval(Start, End) 527 && "Segment is not entirely in range!"); 528 529 // If the span we are removing is at the start of the Segment, adjust it. 530 VNInfo *ValNo = I->valno; 531 if (I->start == Start) { 532 if (I->end == End) { 533 if (RemoveDeadValNo) { 534 // Check if val# is dead. 535 bool isDead = true; 536 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 537 if (II != I && II->valno == ValNo) { 538 isDead = false; 539 break; 540 } 541 if (isDead) { 542 // Now that ValNo is dead, remove it. 543 markValNoForDeletion(ValNo); 544 } 545 } 546 547 segments.erase(I); // Removed the whole Segment. 548 } else 549 I->start = End; 550 return; 551 } 552 553 // Otherwise if the span we are removing is at the end of the Segment, 554 // adjust the other way. 555 if (I->end == End) { 556 I->end = Start; 557 return; 558 } 559 560 // Otherwise, we are splitting the Segment into two pieces. 561 SlotIndex OldEnd = I->end; 562 I->end = Start; // Trim the old segment. 563 564 // Insert the new one. 565 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 566 } 567 568 /// removeValNo - Remove all the segments defined by the specified value#. 569 /// Also remove the value# from value# list. 570 void LiveRange::removeValNo(VNInfo *ValNo) { 571 if (empty()) return; 572 segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) { 573 return S.valno == ValNo; 574 }), end()); 575 // Now that ValNo is dead, remove it. 576 markValNoForDeletion(ValNo); 577 } 578 579 void LiveRange::join(LiveRange &Other, 580 const int *LHSValNoAssignments, 581 const int *RHSValNoAssignments, 582 SmallVectorImpl<VNInfo *> &NewVNInfo) { 583 verify(); 584 585 // Determine if any of our values are mapped. This is uncommon, so we want 586 // to avoid the range scan if not. 587 bool MustMapCurValNos = false; 588 unsigned NumVals = getNumValNums(); 589 unsigned NumNewVals = NewVNInfo.size(); 590 for (unsigned i = 0; i != NumVals; ++i) { 591 unsigned LHSValID = LHSValNoAssignments[i]; 592 if (i != LHSValID || 593 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 594 MustMapCurValNos = true; 595 break; 596 } 597 } 598 599 // If we have to apply a mapping to our base range assignment, rewrite it now. 600 if (MustMapCurValNos && !empty()) { 601 // Map the first live range. 602 603 iterator OutIt = begin(); 604 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 605 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 606 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 607 assert(nextValNo && "Huh?"); 608 609 // If this live range has the same value # as its immediate predecessor, 610 // and if they are neighbors, remove one Segment. This happens when we 611 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 612 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 613 OutIt->end = I->end; 614 } else { 615 // Didn't merge. Move OutIt to the next segment, 616 ++OutIt; 617 OutIt->valno = nextValNo; 618 if (OutIt != I) { 619 OutIt->start = I->start; 620 OutIt->end = I->end; 621 } 622 } 623 } 624 // If we merge some segments, chop off the end. 625 ++OutIt; 626 segments.erase(OutIt, end()); 627 } 628 629 // Rewrite Other values before changing the VNInfo ids. 630 // This can leave Other in an invalid state because we're not coalescing 631 // touching segments that now have identical values. That's OK since Other is 632 // not supposed to be valid after calling join(); 633 for (Segment &S : Other.segments) 634 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 635 636 // Update val# info. Renumber them and make sure they all belong to this 637 // LiveRange now. Also remove dead val#'s. 638 unsigned NumValNos = 0; 639 for (unsigned i = 0; i < NumNewVals; ++i) { 640 VNInfo *VNI = NewVNInfo[i]; 641 if (VNI) { 642 if (NumValNos >= NumVals) 643 valnos.push_back(VNI); 644 else 645 valnos[NumValNos] = VNI; 646 VNI->id = NumValNos++; // Renumber val#. 647 } 648 } 649 if (NumNewVals < NumVals) 650 valnos.resize(NumNewVals); // shrinkify 651 652 // Okay, now insert the RHS live segments into the LHS. 653 LiveRangeUpdater Updater(this); 654 for (Segment &S : Other.segments) 655 Updater.add(S); 656 } 657 658 /// Merge all of the segments in RHS into this live range as the specified 659 /// value number. The segments in RHS are allowed to overlap with segments in 660 /// the current range, but only if the overlapping segments have the 661 /// specified value number. 662 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 663 VNInfo *LHSValNo) { 664 LiveRangeUpdater Updater(this); 665 for (const Segment &S : RHS.segments) 666 Updater.add(S.start, S.end, LHSValNo); 667 } 668 669 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 670 /// in RHS into this live range as the specified value number. 671 /// The segments in RHS are allowed to overlap with segments in the 672 /// current range, it will replace the value numbers of the overlaped 673 /// segments with the specified value number. 674 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 675 const VNInfo *RHSValNo, 676 VNInfo *LHSValNo) { 677 LiveRangeUpdater Updater(this); 678 for (const Segment &S : RHS.segments) 679 if (S.valno == RHSValNo) 680 Updater.add(S.start, S.end, LHSValNo); 681 } 682 683 /// MergeValueNumberInto - This method is called when two value nubmers 684 /// are found to be equivalent. This eliminates V1, replacing all 685 /// segments with the V1 value number with the V2 value number. This can 686 /// cause merging of V1/V2 values numbers and compaction of the value space. 687 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 688 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 689 690 // This code actually merges the (numerically) larger value number into the 691 // smaller value number, which is likely to allow us to compactify the value 692 // space. The only thing we have to be careful of is to preserve the 693 // instruction that defines the result value. 694 695 // Make sure V2 is smaller than V1. 696 if (V1->id < V2->id) { 697 V1->copyFrom(*V2); 698 std::swap(V1, V2); 699 } 700 701 // Merge V1 segments into V2. 702 for (iterator I = begin(); I != end(); ) { 703 iterator S = I++; 704 if (S->valno != V1) continue; // Not a V1 Segment. 705 706 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 707 // range, extend it. 708 if (S != begin()) { 709 iterator Prev = S-1; 710 if (Prev->valno == V2 && Prev->end == S->start) { 711 Prev->end = S->end; 712 713 // Erase this live-range. 714 segments.erase(S); 715 I = Prev+1; 716 S = Prev; 717 } 718 } 719 720 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 721 // Ensure that it is a V2 live-range. 722 S->valno = V2; 723 724 // If we can merge it into later V2 segments, do so now. We ignore any 725 // following V1 segments, as they will be merged in subsequent iterations 726 // of the loop. 727 if (I != end()) { 728 if (I->start == S->end && I->valno == V2) { 729 S->end = I->end; 730 segments.erase(I); 731 I = S+1; 732 } 733 } 734 } 735 736 // Now that V1 is dead, remove it. 737 markValNoForDeletion(V1); 738 739 return V2; 740 } 741 742 void LiveRange::flushSegmentSet() { 743 assert(segmentSet != nullptr && "segment set must have been created"); 744 assert( 745 segments.empty() && 746 "segment set can be used only initially before switching to the array"); 747 segments.append(segmentSet->begin(), segmentSet->end()); 748 segmentSet = nullptr; 749 verify(); 750 } 751 752 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { 753 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); 754 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 755 756 // If there are no regmask slots, we have nothing to search. 757 if (SlotI == SlotE) 758 return false; 759 760 // Start our search at the first segment that ends after the first slot. 761 const_iterator SegmentI = find(*SlotI); 762 const_iterator SegmentE = end(); 763 764 // If there are no segments that end after the first slot, we're done. 765 if (SegmentI == SegmentE) 766 return false; 767 768 // Look for each slot in the live range. 769 for ( ; SlotI != SlotE; ++SlotI) { 770 // Go to the next segment that ends after the current slot. 771 // The slot may be within a hole in the range. 772 SegmentI = advanceTo(SegmentI, *SlotI); 773 if (SegmentI == SegmentE) 774 return false; 775 776 // If this segment contains the slot, we're done. 777 if (SegmentI->contains(*SlotI)) 778 return true; 779 // Otherwise, look for the next slot. 780 } 781 782 // We didn't find a segment containing any of the slots. 783 return false; 784 } 785 786 void LiveInterval::freeSubRange(SubRange *S) { 787 S->~SubRange(); 788 // Memory was allocated with BumpPtr allocator and is not freed here. 789 } 790 791 void LiveInterval::removeEmptySubRanges() { 792 SubRange **NextPtr = &SubRanges; 793 SubRange *I = *NextPtr; 794 while (I != nullptr) { 795 if (!I->empty()) { 796 NextPtr = &I->Next; 797 I = *NextPtr; 798 continue; 799 } 800 // Skip empty subranges until we find the first nonempty one. 801 do { 802 SubRange *Next = I->Next; 803 freeSubRange(I); 804 I = Next; 805 } while (I != nullptr && I->empty()); 806 *NextPtr = I; 807 } 808 } 809 810 void LiveInterval::clearSubRanges() { 811 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { 812 Next = I->Next; 813 freeSubRange(I); 814 } 815 SubRanges = nullptr; 816 } 817 818 /// Helper function for constructMainRangeFromSubranges(): Search the CFG 819 /// backwards until we find a place covered by a LiveRange segment that actually 820 /// has a valno set. 821 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR, 822 const MachineBasicBlock *MBB, 823 SmallPtrSetImpl<const MachineBasicBlock*> &Visited) { 824 // We start the search at the end of MBB. 825 SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB); 826 // In our use case we can't live the area covered by the live segments without 827 // finding an actual VNI def. 828 LiveRange::iterator I = LR.find(EndIdx.getPrevSlot()); 829 assert(I != LR.end()); 830 LiveRange::Segment &S = *I; 831 if (S.valno != nullptr) 832 return S.valno; 833 834 VNInfo *VNI = nullptr; 835 // Continue at predecessors (we could even go to idom with domtree available). 836 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 837 // Avoid going in circles. 838 if (!Visited.insert(Pred).second) 839 continue; 840 841 VNI = searchForVNI(Indexes, LR, Pred, Visited); 842 if (VNI != nullptr) { 843 S.valno = VNI; 844 break; 845 } 846 } 847 848 return VNI; 849 } 850 851 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) { 852 SmallPtrSet<const MachineBasicBlock*, 5> Visited; 853 854 LiveRange::iterator OutIt; 855 VNInfo *PrevValNo = nullptr; 856 for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 857 LiveRange::Segment &S = *I; 858 // Determine final VNI if necessary. 859 if (S.valno == nullptr) { 860 // This can only happen at the begin of a basic block. 861 assert(S.start.isBlock() && "valno should only be missing at block begin"); 862 863 Visited.clear(); 864 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start); 865 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 866 VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited); 867 if (VNI != nullptr) { 868 S.valno = VNI; 869 break; 870 } 871 } 872 assert(S.valno != nullptr && "could not determine valno"); 873 } 874 // Merge with previous segment if it has the same VNI. 875 if (PrevValNo == S.valno && OutIt->end == S.start) { 876 OutIt->end = S.end; 877 } else { 878 // Didn't merge. Move OutIt to next segment. 879 if (PrevValNo == nullptr) 880 OutIt = LI.begin(); 881 else 882 ++OutIt; 883 884 if (OutIt != I) 885 *OutIt = *I; 886 PrevValNo = S.valno; 887 } 888 } 889 // If we merged some segments chop off the end. 890 ++OutIt; 891 LI.segments.erase(OutIt, LI.end()); 892 } 893 894 void LiveInterval::constructMainRangeFromSubranges( 895 const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) { 896 // The basic observations on which this algorithm is based: 897 // - Each Def/ValNo in a subrange must have a corresponding def on the main 898 // range, but not further defs/valnos are necessary. 899 // - If any of the subranges is live at a point the main liverange has to be 900 // live too, conversily if no subrange is live the main range mustn't be 901 // live either. 902 // We do this by scanning through all the subranges simultaneously creating new 903 // segments in the main range as segments start/ends come up in the subranges. 904 assert(hasSubRanges() && "expected subranges to be present"); 905 assert(segments.empty() && valnos.empty() && "expected empty main range"); 906 907 // Collect subrange, iterator pairs for the walk and determine first and last 908 // SlotIndex involved. 909 SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs; 910 SlotIndex First; 911 SlotIndex Last; 912 for (const SubRange &SR : subranges()) { 913 if (SR.empty()) 914 continue; 915 SRs.push_back(std::make_pair(&SR, SR.begin())); 916 if (!First.isValid() || SR.segments.front().start < First) 917 First = SR.segments.front().start; 918 if (!Last.isValid() || SR.segments.back().end > Last) 919 Last = SR.segments.back().end; 920 } 921 922 // Walk over all subranges simultaneously. 923 Segment CurrentSegment; 924 bool ConstructingSegment = false; 925 bool NeedVNIFixup = false; 926 LaneBitmask ActiveMask = 0; 927 SlotIndex Pos = First; 928 while (true) { 929 SlotIndex NextPos = Last; 930 enum { 931 NOTHING, 932 BEGIN_SEGMENT, 933 END_SEGMENT, 934 } Event = NOTHING; 935 // Which subregister lanes are affected by the current event. 936 LaneBitmask EventMask = 0; 937 // Whether a BEGIN_SEGMENT is also a valno definition point. 938 bool IsDef = false; 939 // Find the next begin or end of a subrange segment. Combine masks if we 940 // have multiple begins/ends at the same position. Ends take precedence over 941 // Begins. 942 for (auto &SRP : SRs) { 943 const SubRange &SR = *SRP.first; 944 const_iterator &I = SRP.second; 945 // Advance iterator of subrange to a segment involving Pos; the earlier 946 // segments are already merged at this point. 947 while (I != SR.end() && 948 (I->end < Pos || 949 (I->end == Pos && (ActiveMask & SR.LaneMask) == 0))) 950 ++I; 951 if (I == SR.end()) 952 continue; 953 if ((ActiveMask & SR.LaneMask) == 0 && 954 Pos <= I->start && I->start <= NextPos) { 955 // Merge multiple begins at the same position. 956 if (I->start == NextPos && Event == BEGIN_SEGMENT) { 957 EventMask |= SR.LaneMask; 958 IsDef |= I->valno->def == I->start; 959 } else if (I->start < NextPos || Event != END_SEGMENT) { 960 Event = BEGIN_SEGMENT; 961 NextPos = I->start; 962 EventMask = SR.LaneMask; 963 IsDef = I->valno->def == I->start; 964 } 965 } 966 if ((ActiveMask & SR.LaneMask) != 0 && 967 Pos <= I->end && I->end <= NextPos) { 968 // Merge multiple ends at the same position. 969 if (I->end == NextPos && Event == END_SEGMENT) 970 EventMask |= SR.LaneMask; 971 else { 972 Event = END_SEGMENT; 973 NextPos = I->end; 974 EventMask = SR.LaneMask; 975 } 976 } 977 } 978 979 // Advance scan position. 980 Pos = NextPos; 981 if (Event == BEGIN_SEGMENT) { 982 if (ConstructingSegment && IsDef) { 983 // Finish previous segment because we have to start a new one. 984 CurrentSegment.end = Pos; 985 append(CurrentSegment); 986 ConstructingSegment = false; 987 } 988 989 // Start a new segment if necessary. 990 if (!ConstructingSegment) { 991 // Determine value number for the segment. 992 VNInfo *VNI; 993 if (IsDef) { 994 VNI = getNextValue(Pos, VNIAllocator); 995 } else { 996 // We have to reuse an existing value number, if we are lucky 997 // then we already passed one of the predecessor blocks and determined 998 // its value number (with blocks in reverse postorder this would be 999 // always true but we have no such guarantee). 1000 assert(Pos.isBlock()); 1001 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos); 1002 // See if any of the predecessor blocks has a lower number and a VNI 1003 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 1004 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1005 VNI = getVNInfoBefore(PredEnd); 1006 if (VNI != nullptr) 1007 break; 1008 } 1009 // Def will come later: We have to do an extra fixup pass. 1010 if (VNI == nullptr) 1011 NeedVNIFixup = true; 1012 } 1013 1014 // In rare cases we can produce adjacent segments with the same value 1015 // number (if they come from different subranges, but happen to have 1016 // the same defining instruction). VNIFixup will fix those cases. 1017 if (!empty() && segments.back().end == Pos && 1018 segments.back().valno == VNI) 1019 NeedVNIFixup = true; 1020 CurrentSegment.start = Pos; 1021 CurrentSegment.valno = VNI; 1022 ConstructingSegment = true; 1023 } 1024 ActiveMask |= EventMask; 1025 } else if (Event == END_SEGMENT) { 1026 assert(ConstructingSegment); 1027 // Finish segment if no lane is active anymore. 1028 ActiveMask &= ~EventMask; 1029 if (ActiveMask == 0) { 1030 CurrentSegment.end = Pos; 1031 append(CurrentSegment); 1032 ConstructingSegment = false; 1033 } 1034 } else { 1035 // We reached the end of the last subranges and can stop. 1036 assert(Event == NOTHING); 1037 break; 1038 } 1039 } 1040 1041 // We might not be able to assign new valnos for all segments if the basic 1042 // block containing the definition comes after a segment using the valno. 1043 // Do a fixup pass for this uncommon case. 1044 if (NeedVNIFixup) 1045 determineMissingVNIs(Indexes, *this); 1046 1047 assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended"); 1048 verify(); 1049 } 1050 1051 unsigned LiveInterval::getSize() const { 1052 unsigned Sum = 0; 1053 for (const Segment &S : segments) 1054 Sum += S.start.distance(S.end); 1055 return Sum; 1056 } 1057 1058 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 1059 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 1060 } 1061 1062 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1063 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { 1064 dbgs() << *this << "\n"; 1065 } 1066 #endif 1067 1068 void LiveRange::print(raw_ostream &OS) const { 1069 if (empty()) 1070 OS << "EMPTY"; 1071 else { 1072 for (const Segment &S : segments) { 1073 OS << S; 1074 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 1075 } 1076 } 1077 1078 // Print value number info. 1079 if (getNumValNums()) { 1080 OS << " "; 1081 unsigned vnum = 0; 1082 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 1083 ++i, ++vnum) { 1084 const VNInfo *vni = *i; 1085 if (vnum) OS << " "; 1086 OS << vnum << "@"; 1087 if (vni->isUnused()) { 1088 OS << "x"; 1089 } else { 1090 OS << vni->def; 1091 if (vni->isPHIDef()) 1092 OS << "-phi"; 1093 } 1094 } 1095 } 1096 } 1097 1098 void LiveInterval::print(raw_ostream &OS) const { 1099 OS << PrintReg(reg) << ' '; 1100 super::print(OS); 1101 // Print subranges 1102 for (const SubRange &SR : subranges()) { 1103 OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR; 1104 } 1105 } 1106 1107 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1108 LLVM_DUMP_METHOD void LiveRange::dump() const { 1109 dbgs() << *this << "\n"; 1110 } 1111 1112 LLVM_DUMP_METHOD void LiveInterval::dump() const { 1113 dbgs() << *this << "\n"; 1114 } 1115 #endif 1116 1117 #ifndef NDEBUG 1118 void LiveRange::verify() const { 1119 for (const_iterator I = begin(), E = end(); I != E; ++I) { 1120 assert(I->start.isValid()); 1121 assert(I->end.isValid()); 1122 assert(I->start < I->end); 1123 assert(I->valno != nullptr); 1124 assert(I->valno->id < valnos.size()); 1125 assert(I->valno == valnos[I->valno->id]); 1126 if (std::next(I) != E) { 1127 assert(I->end <= std::next(I)->start); 1128 if (I->end == std::next(I)->start) 1129 assert(I->valno != std::next(I)->valno); 1130 } 1131 } 1132 } 1133 1134 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 1135 super::verify(); 1136 1137 // Make sure SubRanges are fine and LaneMasks are disjunct. 1138 LaneBitmask Mask = 0; 1139 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; 1140 for (const SubRange &SR : subranges()) { 1141 // Subrange lanemask should be disjunct to any previous subrange masks. 1142 assert((Mask & SR.LaneMask) == 0); 1143 Mask |= SR.LaneMask; 1144 1145 // subrange mask should not contained in maximum lane mask for the vreg. 1146 assert((Mask & ~MaxMask) == 0); 1147 // empty subranges must be removed. 1148 assert(!SR.empty()); 1149 1150 SR.verify(); 1151 // Main liverange should cover subrange. 1152 assert(covers(SR)); 1153 } 1154 } 1155 #endif 1156 1157 1158 //===----------------------------------------------------------------------===// 1159 // LiveRangeUpdater class 1160 //===----------------------------------------------------------------------===// 1161 // 1162 // The LiveRangeUpdater class always maintains these invariants: 1163 // 1164 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 1165 // This is the initial state, and the state created by flush(). 1166 // In this state, isDirty() returns false. 1167 // 1168 // Otherwise, segments are kept in three separate areas: 1169 // 1170 // 1. [begin; WriteI) at the front of LR. 1171 // 2. [ReadI; end) at the back of LR. 1172 // 3. Spills. 1173 // 1174 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 1175 // - Segments in all three areas are fully ordered and coalesced. 1176 // - Segments in area 1 precede and can't coalesce with segments in area 2. 1177 // - Segments in Spills precede and can't coalesce with segments in area 2. 1178 // - No coalescing is possible between segments in Spills and segments in area 1179 // 1, and there are no overlapping segments. 1180 // 1181 // The segments in Spills are not ordered with respect to the segments in area 1182 // 1. They need to be merged. 1183 // 1184 // When they exist, Spills.back().start <= LastStart, 1185 // and WriteI[-1].start <= LastStart. 1186 1187 void LiveRangeUpdater::print(raw_ostream &OS) const { 1188 if (!isDirty()) { 1189 if (LR) 1190 OS << "Clean updater: " << *LR << '\n'; 1191 else 1192 OS << "Null updater.\n"; 1193 return; 1194 } 1195 assert(LR && "Can't have null LR in dirty updater."); 1196 OS << " updater with gap = " << (ReadI - WriteI) 1197 << ", last start = " << LastStart 1198 << ":\n Area 1:"; 1199 for (const auto &S : make_range(LR->begin(), WriteI)) 1200 OS << ' ' << S; 1201 OS << "\n Spills:"; 1202 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 1203 OS << ' ' << Spills[I]; 1204 OS << "\n Area 2:"; 1205 for (const auto &S : make_range(ReadI, LR->end())) 1206 OS << ' ' << S; 1207 OS << '\n'; 1208 } 1209 1210 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { 1211 print(errs()); 1212 } 1213 1214 // Determine if A and B should be coalesced. 1215 static inline bool coalescable(const LiveRange::Segment &A, 1216 const LiveRange::Segment &B) { 1217 assert(A.start <= B.start && "Unordered live segments."); 1218 if (A.end == B.start) 1219 return A.valno == B.valno; 1220 if (A.end < B.start) 1221 return false; 1222 assert(A.valno == B.valno && "Cannot overlap different values"); 1223 return true; 1224 } 1225 1226 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 1227 assert(LR && "Cannot add to a null destination"); 1228 1229 // Fall back to the regular add method if the live range 1230 // is using the segment set instead of the segment vector. 1231 if (LR->segmentSet != nullptr) { 1232 LR->addSegmentToSet(Seg); 1233 return; 1234 } 1235 1236 // Flush the state if Start moves backwards. 1237 if (!LastStart.isValid() || LastStart > Seg.start) { 1238 if (isDirty()) 1239 flush(); 1240 // This brings us to an uninitialized state. Reinitialize. 1241 assert(Spills.empty() && "Leftover spilled segments"); 1242 WriteI = ReadI = LR->begin(); 1243 } 1244 1245 // Remember start for next time. 1246 LastStart = Seg.start; 1247 1248 // Advance ReadI until it ends after Seg.start. 1249 LiveRange::iterator E = LR->end(); 1250 if (ReadI != E && ReadI->end <= Seg.start) { 1251 // First try to close the gap between WriteI and ReadI with spills. 1252 if (ReadI != WriteI) 1253 mergeSpills(); 1254 // Then advance ReadI. 1255 if (ReadI == WriteI) 1256 ReadI = WriteI = LR->find(Seg.start); 1257 else 1258 while (ReadI != E && ReadI->end <= Seg.start) 1259 *WriteI++ = *ReadI++; 1260 } 1261 1262 assert(ReadI == E || ReadI->end > Seg.start); 1263 1264 // Check if the ReadI segment begins early. 1265 if (ReadI != E && ReadI->start <= Seg.start) { 1266 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1267 // Bail if Seg is completely contained in ReadI. 1268 if (ReadI->end >= Seg.end) 1269 return; 1270 // Coalesce into Seg. 1271 Seg.start = ReadI->start; 1272 ++ReadI; 1273 } 1274 1275 // Coalesce as much as possible from ReadI into Seg. 1276 while (ReadI != E && coalescable(Seg, *ReadI)) { 1277 Seg.end = std::max(Seg.end, ReadI->end); 1278 ++ReadI; 1279 } 1280 1281 // Try coalescing Spills.back() into Seg. 1282 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1283 Seg.start = Spills.back().start; 1284 Seg.end = std::max(Spills.back().end, Seg.end); 1285 Spills.pop_back(); 1286 } 1287 1288 // Try coalescing Seg into WriteI[-1]. 1289 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1290 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1291 return; 1292 } 1293 1294 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1295 if (WriteI != ReadI) { 1296 *WriteI++ = Seg; 1297 return; 1298 } 1299 1300 // Finally, append to LR or Spills. 1301 if (WriteI == E) { 1302 LR->segments.push_back(Seg); 1303 WriteI = ReadI = LR->end(); 1304 } else 1305 Spills.push_back(Seg); 1306 } 1307 1308 // Merge as many spilled segments as possible into the gap between WriteI 1309 // and ReadI. Advance WriteI to reflect the inserted instructions. 1310 void LiveRangeUpdater::mergeSpills() { 1311 // Perform a backwards merge of Spills and [SpillI;WriteI). 1312 size_t GapSize = ReadI - WriteI; 1313 size_t NumMoved = std::min(Spills.size(), GapSize); 1314 LiveRange::iterator Src = WriteI; 1315 LiveRange::iterator Dst = Src + NumMoved; 1316 LiveRange::iterator SpillSrc = Spills.end(); 1317 LiveRange::iterator B = LR->begin(); 1318 1319 // This is the new WriteI position after merging spills. 1320 WriteI = Dst; 1321 1322 // Now merge Src and Spills backwards. 1323 while (Src != Dst) { 1324 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1325 *--Dst = *--Src; 1326 else 1327 *--Dst = *--SpillSrc; 1328 } 1329 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1330 Spills.erase(SpillSrc, Spills.end()); 1331 } 1332 1333 void LiveRangeUpdater::flush() { 1334 if (!isDirty()) 1335 return; 1336 // Clear the dirty state. 1337 LastStart = SlotIndex(); 1338 1339 assert(LR && "Cannot add to a null destination"); 1340 1341 // Nothing to merge? 1342 if (Spills.empty()) { 1343 LR->segments.erase(WriteI, ReadI); 1344 LR->verify(); 1345 return; 1346 } 1347 1348 // Resize the WriteI - ReadI gap to match Spills. 1349 size_t GapSize = ReadI - WriteI; 1350 if (GapSize < Spills.size()) { 1351 // The gap is too small. Make some room. 1352 size_t WritePos = WriteI - LR->begin(); 1353 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1354 // This also invalidated ReadI, but it is recomputed below. 1355 WriteI = LR->begin() + WritePos; 1356 } else { 1357 // Shrink the gap if necessary. 1358 LR->segments.erase(WriteI + Spills.size(), ReadI); 1359 } 1360 ReadI = WriteI + Spills.size(); 1361 mergeSpills(); 1362 LR->verify(); 1363 } 1364 1365 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { 1366 // Create initial equivalence classes. 1367 EqClass.clear(); 1368 EqClass.grow(LR.getNumValNums()); 1369 1370 const VNInfo *used = nullptr, *unused = nullptr; 1371 1372 // Determine connections. 1373 for (const VNInfo *VNI : LR.valnos) { 1374 // Group all unused values into one class. 1375 if (VNI->isUnused()) { 1376 if (unused) 1377 EqClass.join(unused->id, VNI->id); 1378 unused = VNI; 1379 continue; 1380 } 1381 used = VNI; 1382 if (VNI->isPHIDef()) { 1383 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1384 assert(MBB && "Phi-def has no defining MBB"); 1385 // Connect to values live out of predecessors. 1386 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 1387 PE = MBB->pred_end(); PI != PE; ++PI) 1388 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 1389 EqClass.join(VNI->id, PVNI->id); 1390 } else { 1391 // Normal value defined by an instruction. Check for two-addr redef. 1392 // FIXME: This could be coincidental. Should we really check for a tied 1393 // operand constraint? 1394 // Note that VNI->def may be a use slot for an early clobber def. 1395 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) 1396 EqClass.join(VNI->id, UVNI->id); 1397 } 1398 } 1399 1400 // Lump all the unused values in with the last used value. 1401 if (used && unused) 1402 EqClass.join(used->id, unused->id); 1403 1404 EqClass.compress(); 1405 return EqClass.getNumClasses(); 1406 } 1407 1408 template<typename LiveRangeT, typename EqClassesT> 1409 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[], 1410 EqClassesT VNIClasses) { 1411 // Move segments to new intervals. 1412 LiveRange::iterator J = LR.begin(), E = LR.end(); 1413 while (J != E && VNIClasses[J->valno->id] == 0) 1414 ++J; 1415 for (LiveRange::iterator I = J; I != E; ++I) { 1416 if (unsigned eq = VNIClasses[I->valno->id]) { 1417 assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) && 1418 "New intervals should be empty"); 1419 SplitLRs[eq-1]->segments.push_back(*I); 1420 } else 1421 *J++ = *I; 1422 } 1423 LR.segments.erase(J, E); 1424 1425 // Transfer VNInfos to their new owners and renumber them. 1426 unsigned j = 0, e = LR.getNumValNums(); 1427 while (j != e && VNIClasses[j] == 0) 1428 ++j; 1429 for (unsigned i = j; i != e; ++i) { 1430 VNInfo *VNI = LR.getValNumInfo(i); 1431 if (unsigned eq = VNIClasses[i]) { 1432 VNI->id = SplitLRs[eq-1]->getNumValNums(); 1433 SplitLRs[eq-1]->valnos.push_back(VNI); 1434 } else { 1435 VNI->id = j; 1436 LR.valnos[j++] = VNI; 1437 } 1438 } 1439 LR.valnos.resize(j); 1440 } 1441 1442 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], 1443 MachineRegisterInfo &MRI) { 1444 // Rewrite instructions. 1445 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 1446 RE = MRI.reg_end(); RI != RE;) { 1447 MachineOperand &MO = *RI; 1448 MachineInstr *MI = RI->getParent(); 1449 ++RI; 1450 // DBG_VALUE instructions don't have slot indexes, so get the index of the 1451 // instruction before them. 1452 // Normally, DBG_VALUE instructions are removed before this function is 1453 // called, but it is not a requirement. 1454 SlotIndex Idx; 1455 if (MI->isDebugValue()) 1456 Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); 1457 else 1458 Idx = LIS.getInstructionIndex(*MI); 1459 LiveQueryResult LRQ = LI.Query(Idx); 1460 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1461 // In the case of an <undef> use that isn't tied to any def, VNI will be 1462 // NULL. If the use is tied to a def, VNI will be the defined value. 1463 if (!VNI) 1464 continue; 1465 if (unsigned EqClass = getEqClass(VNI)) 1466 MO.setReg(LIV[EqClass-1]->reg); 1467 } 1468 1469 // Distribute subregister liveranges. 1470 if (LI.hasSubRanges()) { 1471 unsigned NumComponents = EqClass.getNumClasses(); 1472 SmallVector<unsigned, 8> VNIMapping; 1473 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1474 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1475 for (LiveInterval::SubRange &SR : LI.subranges()) { 1476 // Create new subranges in the split intervals and construct a mapping 1477 // for the VNInfos in the subrange. 1478 unsigned NumValNos = SR.valnos.size(); 1479 VNIMapping.clear(); 1480 VNIMapping.reserve(NumValNos); 1481 SubRanges.clear(); 1482 SubRanges.resize(NumComponents-1, nullptr); 1483 for (unsigned I = 0; I < NumValNos; ++I) { 1484 const VNInfo &VNI = *SR.valnos[I]; 1485 unsigned ComponentNum; 1486 if (VNI.isUnused()) { 1487 ComponentNum = 0; 1488 } else { 1489 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); 1490 assert(MainRangeVNI != nullptr 1491 && "SubRange def must have corresponding main range def"); 1492 ComponentNum = getEqClass(MainRangeVNI); 1493 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { 1494 SubRanges[ComponentNum-1] 1495 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); 1496 } 1497 } 1498 VNIMapping.push_back(ComponentNum); 1499 } 1500 DistributeRange(SR, SubRanges.data(), VNIMapping); 1501 } 1502 LI.removeEmptySubRanges(); 1503 } 1504 1505 // Distribute main liverange. 1506 DistributeRange(LI, LIV, EqClass); 1507 } 1508 1509 void ConnectedSubRegClasses::renameComponents(LiveInterval &LI) const { 1510 // Shortcut: We cannot have split components with a single definition. 1511 if (LI.valnos.size() < 2) 1512 return; 1513 1514 SmallVector<SubRangeInfo, 4> SubRangeInfos; 1515 IntEqClasses Classes; 1516 if (!findComponents(Classes, SubRangeInfos, LI)) 1517 return; 1518 1519 // Create a new VReg for each class. 1520 unsigned Reg = LI.reg; 1521 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); 1522 SmallVector<LiveInterval*, 4> Intervals; 1523 Intervals.push_back(&LI); 1524 for (unsigned I = 1, NumClasses = Classes.getNumClasses(); I < NumClasses; 1525 ++I) { 1526 unsigned NewVReg = MRI.createVirtualRegister(RegClass); 1527 LiveInterval &NewLI = LIS.createEmptyInterval(NewVReg); 1528 Intervals.push_back(&NewLI); 1529 } 1530 1531 rewriteOperands(Classes, SubRangeInfos, Intervals); 1532 distribute(Classes, SubRangeInfos, Intervals); 1533 computeMainRangesFixFlags(Classes, SubRangeInfos, Intervals); 1534 } 1535 1536 bool ConnectedSubRegClasses::findComponents(IntEqClasses &Classes, 1537 SmallVectorImpl<ConnectedSubRegClasses::SubRangeInfo> &SubRangeInfos, 1538 LiveInterval &LI) const { 1539 // First step: Create connected components for the VNInfos inside the 1540 // subranges and count the global number of such components. 1541 unsigned NumComponents = 0; 1542 for (LiveInterval::SubRange &SR : LI.subranges()) { 1543 SubRangeInfos.push_back(SubRangeInfo(LIS, SR, NumComponents)); 1544 ConnectedVNInfoEqClasses &ConEQ = SubRangeInfos.back().ConEQ; 1545 1546 unsigned NumSubComponents = ConEQ.Classify(SR); 1547 NumComponents += NumSubComponents; 1548 } 1549 // Shortcut: With only 1 subrange, the normal separate component tests are 1550 // enough and we do not need to perform the union-find on the subregister 1551 // segments. 1552 if (SubRangeInfos.size() < 2) 1553 return false; 1554 1555 // Next step: Build union-find structure over all subranges and merge classes 1556 // across subranges when they are affected by the same MachineOperand. 1557 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1558 Classes.grow(NumComponents); 1559 unsigned Reg = LI.reg; 1560 for (const MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) { 1561 if (!MO.isDef() && !MO.readsReg()) 1562 continue; 1563 unsigned SubRegIdx = MO.getSubReg(); 1564 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx); 1565 unsigned MergedID = ~0u; 1566 for (auto &SRInfo : SubRangeInfos) { 1567 const LiveInterval::SubRange &SR = *SRInfo.SR; 1568 if ((SR.LaneMask & LaneMask) == 0) 1569 continue; 1570 SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()); 1571 Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber()) 1572 : Pos.getBaseIndex(); 1573 const VNInfo *VNI = SR.getVNInfoAt(Pos); 1574 if (VNI == nullptr) 1575 continue; 1576 1577 // Map to local representant ID. 1578 unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI); 1579 // Global ID 1580 unsigned ID = LocalID + SRInfo.Index; 1581 // Merge other sets 1582 MergedID = MergedID == ~0u ? ID : Classes.join(MergedID, ID); 1583 } 1584 } 1585 1586 // Early exit if we ended up with a single equivalence class. 1587 Classes.compress(); 1588 unsigned NumClasses = Classes.getNumClasses(); 1589 return NumClasses > 1; 1590 } 1591 1592 void ConnectedSubRegClasses::rewriteOperands(const IntEqClasses &Classes, 1593 const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, 1594 const SmallVectorImpl<LiveInterval*> &Intervals) const { 1595 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1596 unsigned Reg = Intervals[0]->reg;; 1597 for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(Reg), 1598 E = MRI.reg_nodbg_end(); I != E; ) { 1599 MachineOperand &MO = *I++; 1600 if (!MO.isDef() && !MO.readsReg()) 1601 continue; 1602 1603 MachineInstr &MI = *MO.getParent(); 1604 1605 SlotIndex Pos = LIS.getInstructionIndex(MI); 1606 unsigned SubRegIdx = MO.getSubReg(); 1607 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx); 1608 1609 unsigned ID = ~0u; 1610 for (auto &SRInfo : SubRangeInfos) { 1611 const LiveInterval::SubRange &SR = *SRInfo.SR; 1612 if ((SR.LaneMask & LaneMask) == 0) 1613 continue; 1614 LiveRange::const_iterator I = SR.find(Pos); 1615 if (I == SR.end()) 1616 continue; 1617 1618 const VNInfo &VNI = *I->valno; 1619 // Map to local representant ID. 1620 unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI); 1621 // Global ID 1622 ID = Classes[LocalID + SRInfo.Index]; 1623 break; 1624 } 1625 1626 unsigned VReg = Intervals[ID]->reg; 1627 MO.setReg(VReg); 1628 } 1629 } 1630 1631 void ConnectedSubRegClasses::distribute(const IntEqClasses &Classes, 1632 const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, 1633 const SmallVectorImpl<LiveInterval*> &Intervals) const { 1634 unsigned NumClasses = Classes.getNumClasses(); 1635 SmallVector<unsigned, 8> VNIMapping; 1636 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1637 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1638 for (auto &SRInfo : SubRangeInfos) { 1639 LiveInterval::SubRange &SR = *SRInfo.SR; 1640 unsigned NumValNos = SR.valnos.size(); 1641 VNIMapping.clear(); 1642 VNIMapping.reserve(NumValNos); 1643 SubRanges.clear(); 1644 SubRanges.resize(NumClasses-1, nullptr); 1645 for (unsigned I = 0; I < NumValNos; ++I) { 1646 const VNInfo &VNI = *SR.valnos[I]; 1647 unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI); 1648 unsigned ID = Classes[LocalID + SRInfo.Index]; 1649 VNIMapping.push_back(ID); 1650 if (ID > 0 && SubRanges[ID-1] == nullptr) 1651 SubRanges[ID-1] = Intervals[ID]->createSubRange(Allocator, SR.LaneMask); 1652 } 1653 DistributeRange(SR, SubRanges.data(), VNIMapping); 1654 } 1655 } 1656 1657 void ConnectedSubRegClasses::computeMainRangesFixFlags( 1658 const IntEqClasses &Classes, 1659 const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, 1660 const SmallVectorImpl<LiveInterval*> &Intervals) const { 1661 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1662 for (size_t I = 0, E = Intervals.size(); I < E; ++I) { 1663 LiveInterval *LI = Intervals[I]; 1664 LI->removeEmptySubRanges(); 1665 if (I == 0) 1666 LI->clear(); 1667 LI->constructMainRangeFromSubranges(*LIS.getSlotIndexes(), Allocator); 1668 1669 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 1670 if (!MO.isDef()) 1671 continue; 1672 unsigned SubRegIdx = MO.getSubReg(); 1673 if (SubRegIdx == 0) 1674 continue; 1675 // After assigning the new vreg we may not have any other sublanes living 1676 // in and out of the instruction anymore. We need to add new dead and kill 1677 // flags in these cases. 1678 if (!MO.isUndef()) { 1679 SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()); 1680 if (!LI->liveAt(Pos.getBaseIndex())) 1681 MO.setIsUndef(); 1682 } 1683 if (!MO.isDead()) { 1684 SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()); 1685 if (!LI->liveAt(Pos.getDeadSlot())) 1686 MO.setIsDead(); 1687 } 1688 } 1689 } 1690 } 1691