1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetRegisterInfo.h"
30 #include <algorithm>
31 using namespace llvm;
32 
33 namespace {
34 //===----------------------------------------------------------------------===//
35 // Implementation of various methods necessary for calculation of live ranges.
36 // The implementation of the methods abstracts from the concrete type of the
37 // segment collection.
38 //
39 // Implementation of the class follows the Template design pattern. The base
40 // class contains generic algorithms that call collection-specific methods,
41 // which are provided in concrete subclasses. In order to avoid virtual calls
42 // these methods are provided by means of C++ template instantiation.
43 // The base class calls the methods of the subclass through method impl(),
44 // which casts 'this' pointer to the type of the subclass.
45 //
46 //===----------------------------------------------------------------------===//
47 
48 template <typename ImplT, typename IteratorT, typename CollectionT>
49 class CalcLiveRangeUtilBase {
50 protected:
51   LiveRange *LR;
52 
53 protected:
54   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
55 
56 public:
57   typedef LiveRange::Segment Segment;
58   typedef IteratorT iterator;
59 
60   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
61     assert(!Def.isDead() && "Cannot define a value at the dead slot");
62 
63     iterator I = impl().find(Def);
64     if (I == segments().end()) {
65       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
66       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
67       return VNI;
68     }
69 
70     Segment *S = segmentAt(I);
71     if (SlotIndex::isSameInstr(Def, S->start)) {
72       assert(S->valno->def == S->start && "Inconsistent existing value def");
73 
74       // It is possible to have both normal and early-clobber defs of the same
75       // register on an instruction. It doesn't make a lot of sense, but it is
76       // possible to specify in inline assembly.
77       //
78       // Just convert everything to early-clobber.
79       Def = std::min(Def, S->start);
80       if (Def != S->start)
81         S->start = S->valno->def = Def;
82       return S->valno;
83     }
84     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
85     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
86     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
87     return VNI;
88   }
89 
90   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
91     if (segments().empty())
92       return nullptr;
93     iterator I =
94         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
95     if (I == segments().begin())
96       return nullptr;
97     --I;
98     if (I->end <= StartIdx)
99       return nullptr;
100     if (I->end < Use)
101       extendSegmentEndTo(I, Use);
102     return I->valno;
103   }
104 
105   /// This method is used when we want to extend the segment specified
106   /// by I to end at the specified endpoint. To do this, we should
107   /// merge and eliminate all segments that this will overlap
108   /// with. The iterator is not invalidated.
109   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
110     assert(I != segments().end() && "Not a valid segment!");
111     Segment *S = segmentAt(I);
112     VNInfo *ValNo = I->valno;
113 
114     // Search for the first segment that we can't merge with.
115     iterator MergeTo = std::next(I);
116     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
117       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
118 
119     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
120     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
121 
122     // If the newly formed segment now touches the segment after it and if they
123     // have the same value number, merge the two segments into one segment.
124     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
125         MergeTo->valno == ValNo) {
126       S->end = MergeTo->end;
127       ++MergeTo;
128     }
129 
130     // Erase any dead segments.
131     segments().erase(std::next(I), MergeTo);
132   }
133 
134   /// This method is used when we want to extend the segment specified
135   /// by I to start at the specified endpoint.  To do this, we should
136   /// merge and eliminate all segments that this will overlap with.
137   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
138     assert(I != segments().end() && "Not a valid segment!");
139     Segment *S = segmentAt(I);
140     VNInfo *ValNo = I->valno;
141 
142     // Search for the first segment that we can't merge with.
143     iterator MergeTo = I;
144     do {
145       if (MergeTo == segments().begin()) {
146         S->start = NewStart;
147         segments().erase(MergeTo, I);
148         return I;
149       }
150       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
151       --MergeTo;
152     } while (NewStart <= MergeTo->start);
153 
154     // If we start in the middle of another segment, just delete a range and
155     // extend that segment.
156     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
157       segmentAt(MergeTo)->end = S->end;
158     } else {
159       // Otherwise, extend the segment right after.
160       ++MergeTo;
161       Segment *MergeToSeg = segmentAt(MergeTo);
162       MergeToSeg->start = NewStart;
163       MergeToSeg->end = S->end;
164     }
165 
166     segments().erase(std::next(MergeTo), std::next(I));
167     return MergeTo;
168   }
169 
170   iterator addSegment(Segment S) {
171     SlotIndex Start = S.start, End = S.end;
172     iterator I = impl().findInsertPos(S);
173 
174     // If the inserted segment starts in the middle or right at the end of
175     // another segment, just extend that segment to contain the segment of S.
176     if (I != segments().begin()) {
177       iterator B = std::prev(I);
178       if (S.valno == B->valno) {
179         if (B->start <= Start && B->end >= Start) {
180           extendSegmentEndTo(B, End);
181           return B;
182         }
183       } else {
184         // Check to make sure that we are not overlapping two live segments with
185         // different valno's.
186         assert(B->end <= Start &&
187                "Cannot overlap two segments with differing ValID's"
188                " (did you def the same reg twice in a MachineInstr?)");
189       }
190     }
191 
192     // Otherwise, if this segment ends in the middle of, or right next
193     // to, another segment, merge it into that segment.
194     if (I != segments().end()) {
195       if (S.valno == I->valno) {
196         if (I->start <= End) {
197           I = extendSegmentStartTo(I, Start);
198 
199           // If S is a complete superset of a segment, we may need to grow its
200           // endpoint as well.
201           if (End > I->end)
202             extendSegmentEndTo(I, End);
203           return I;
204         }
205       } else {
206         // Check to make sure that we are not overlapping two live segments with
207         // different valno's.
208         assert(I->start >= End &&
209                "Cannot overlap two segments with differing ValID's");
210       }
211     }
212 
213     // Otherwise, this is just a new segment that doesn't interact with
214     // anything.
215     // Insert it.
216     return segments().insert(I, S);
217   }
218 
219 private:
220   ImplT &impl() { return *static_cast<ImplT *>(this); }
221 
222   CollectionT &segments() { return impl().segmentsColl(); }
223 
224   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
225 };
226 
227 //===----------------------------------------------------------------------===//
228 //   Instantiation of the methods for calculation of live ranges
229 //   based on a segment vector.
230 //===----------------------------------------------------------------------===//
231 
232 class CalcLiveRangeUtilVector;
233 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
234                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
235 
236 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
237 public:
238   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
239 
240 private:
241   friend CalcLiveRangeUtilVectorBase;
242 
243   LiveRange::Segments &segmentsColl() { return LR->segments; }
244 
245   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
246 
247   iterator find(SlotIndex Pos) { return LR->find(Pos); }
248 
249   iterator findInsertPos(Segment S) {
250     return std::upper_bound(LR->begin(), LR->end(), S.start);
251   }
252 };
253 
254 //===----------------------------------------------------------------------===//
255 //   Instantiation of the methods for calculation of live ranges
256 //   based on a segment set.
257 //===----------------------------------------------------------------------===//
258 
259 class CalcLiveRangeUtilSet;
260 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
261                               LiveRange::SegmentSet::iterator,
262                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
263 
264 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
265 public:
266   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
267 
268 private:
269   friend CalcLiveRangeUtilSetBase;
270 
271   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
272 
273   void insertAtEnd(const Segment &S) {
274     LR->segmentSet->insert(LR->segmentSet->end(), S);
275   }
276 
277   iterator find(SlotIndex Pos) {
278     iterator I =
279         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
280     if (I == LR->segmentSet->begin())
281       return I;
282     iterator PrevI = std::prev(I);
283     if (Pos < (*PrevI).end)
284       return PrevI;
285     return I;
286   }
287 
288   iterator findInsertPos(Segment S) {
289     iterator I = LR->segmentSet->upper_bound(S);
290     if (I != LR->segmentSet->end() && !(S.start < *I))
291       ++I;
292     return I;
293   }
294 };
295 } // namespace
296 
297 //===----------------------------------------------------------------------===//
298 //   LiveRange methods
299 //===----------------------------------------------------------------------===//
300 
301 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
302   // This algorithm is basically std::upper_bound.
303   // Unfortunately, std::upper_bound cannot be used with mixed types until we
304   // adopt C++0x. Many libraries can do it, but not all.
305   if (empty() || Pos >= endIndex())
306     return end();
307   iterator I = begin();
308   size_t Len = size();
309   do {
310     size_t Mid = Len >> 1;
311     if (Pos < I[Mid].end) {
312       Len = Mid;
313     } else {
314       I += Mid + 1;
315       Len -= Mid + 1;
316     }
317   } while (Len);
318   return I;
319 }
320 
321 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
322                                   VNInfo::Allocator &VNInfoAllocator) {
323   // Use the segment set, if it is available.
324   if (segmentSet != nullptr)
325     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
326   // Otherwise use the segment vector.
327   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
328 }
329 
330 // overlaps - Return true if the intersection of the two live ranges is
331 // not empty.
332 //
333 // An example for overlaps():
334 //
335 // 0: A = ...
336 // 4: B = ...
337 // 8: C = A + B ;; last use of A
338 //
339 // The live ranges should look like:
340 //
341 // A = [3, 11)
342 // B = [7, x)
343 // C = [11, y)
344 //
345 // A->overlaps(C) should return false since we want to be able to join
346 // A and C.
347 //
348 bool LiveRange::overlapsFrom(const LiveRange& other,
349                              const_iterator StartPos) const {
350   assert(!empty() && "empty range");
351   const_iterator i = begin();
352   const_iterator ie = end();
353   const_iterator j = StartPos;
354   const_iterator je = other.end();
355 
356   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
357          StartPos != other.end() && "Bogus start position hint!");
358 
359   if (i->start < j->start) {
360     i = std::upper_bound(i, ie, j->start);
361     if (i != begin()) --i;
362   } else if (j->start < i->start) {
363     ++StartPos;
364     if (StartPos != other.end() && StartPos->start <= i->start) {
365       assert(StartPos < other.end() && i < end());
366       j = std::upper_bound(j, je, i->start);
367       if (j != other.begin()) --j;
368     }
369   } else {
370     return true;
371   }
372 
373   if (j == je) return false;
374 
375   while (i != ie) {
376     if (i->start > j->start) {
377       std::swap(i, j);
378       std::swap(ie, je);
379     }
380 
381     if (i->end > j->start)
382       return true;
383     ++i;
384   }
385 
386   return false;
387 }
388 
389 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
390                          const SlotIndexes &Indexes) const {
391   assert(!empty() && "empty range");
392   if (Other.empty())
393     return false;
394 
395   // Use binary searches to find initial positions.
396   const_iterator I = find(Other.beginIndex());
397   const_iterator IE = end();
398   if (I == IE)
399     return false;
400   const_iterator J = Other.find(I->start);
401   const_iterator JE = Other.end();
402   if (J == JE)
403     return false;
404 
405   for (;;) {
406     // J has just been advanced to satisfy:
407     assert(J->end >= I->start);
408     // Check for an overlap.
409     if (J->start < I->end) {
410       // I and J are overlapping. Find the later start.
411       SlotIndex Def = std::max(I->start, J->start);
412       // Allow the overlap if Def is a coalescable copy.
413       if (Def.isBlock() ||
414           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
415         return true;
416     }
417     // Advance the iterator that ends first to check for more overlaps.
418     if (J->end > I->end) {
419       std::swap(I, J);
420       std::swap(IE, JE);
421     }
422     // Advance J until J->end >= I->start.
423     do
424       if (++J == JE)
425         return false;
426     while (J->end < I->start);
427   }
428 }
429 
430 /// overlaps - Return true if the live range overlaps an interval specified
431 /// by [Start, End).
432 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
433   assert(Start < End && "Invalid range");
434   const_iterator I = std::lower_bound(begin(), end(), End);
435   return I != begin() && (--I)->end > Start;
436 }
437 
438 bool LiveRange::covers(const LiveRange &Other) const {
439   if (empty())
440     return Other.empty();
441 
442   const_iterator I = begin();
443   for (const Segment &O : Other.segments) {
444     I = advanceTo(I, O.start);
445     if (I == end() || I->start > O.start)
446       return false;
447 
448     // Check adjacent live segments and see if we can get behind O.end.
449     while (I->end < O.end) {
450       const_iterator Last = I;
451       // Get next segment and abort if it was not adjacent.
452       ++I;
453       if (I == end() || Last->end != I->start)
454         return false;
455     }
456   }
457   return true;
458 }
459 
460 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
461 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
462 /// it can be nuked later.
463 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
464   if (ValNo->id == getNumValNums()-1) {
465     do {
466       valnos.pop_back();
467     } while (!valnos.empty() && valnos.back()->isUnused());
468   } else {
469     ValNo->markUnused();
470   }
471 }
472 
473 /// RenumberValues - Renumber all values in order of appearance and delete the
474 /// remaining unused values.
475 void LiveRange::RenumberValues() {
476   SmallPtrSet<VNInfo*, 8> Seen;
477   valnos.clear();
478   for (const Segment &S : segments) {
479     VNInfo *VNI = S.valno;
480     if (!Seen.insert(VNI).second)
481       continue;
482     assert(!VNI->isUnused() && "Unused valno used by live segment");
483     VNI->id = (unsigned)valnos.size();
484     valnos.push_back(VNI);
485   }
486 }
487 
488 void LiveRange::addSegmentToSet(Segment S) {
489   CalcLiveRangeUtilSet(this).addSegment(S);
490 }
491 
492 LiveRange::iterator LiveRange::addSegment(Segment S) {
493   // Use the segment set, if it is available.
494   if (segmentSet != nullptr) {
495     addSegmentToSet(S);
496     return end();
497   }
498   // Otherwise use the segment vector.
499   return CalcLiveRangeUtilVector(this).addSegment(S);
500 }
501 
502 void LiveRange::append(const Segment S) {
503   // Check that the segment belongs to the back of the list.
504   assert(segments.empty() || segments.back().end <= S.start);
505   segments.push_back(S);
506 }
507 
508 /// extendInBlock - If this range is live before Kill in the basic
509 /// block that starts at StartIdx, extend it to be live up to Kill and return
510 /// the value. If there is no live range before Kill, return NULL.
511 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
512   // Use the segment set, if it is available.
513   if (segmentSet != nullptr)
514     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
515   // Otherwise use the segment vector.
516   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
517 }
518 
519 /// Remove the specified segment from this range.  Note that the segment must
520 /// be in a single Segment in its entirety.
521 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
522                               bool RemoveDeadValNo) {
523   // Find the Segment containing this span.
524   iterator I = find(Start);
525   assert(I != end() && "Segment is not in range!");
526   assert(I->containsInterval(Start, End)
527          && "Segment is not entirely in range!");
528 
529   // If the span we are removing is at the start of the Segment, adjust it.
530   VNInfo *ValNo = I->valno;
531   if (I->start == Start) {
532     if (I->end == End) {
533       if (RemoveDeadValNo) {
534         // Check if val# is dead.
535         bool isDead = true;
536         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
537           if (II != I && II->valno == ValNo) {
538             isDead = false;
539             break;
540           }
541         if (isDead) {
542           // Now that ValNo is dead, remove it.
543           markValNoForDeletion(ValNo);
544         }
545       }
546 
547       segments.erase(I);  // Removed the whole Segment.
548     } else
549       I->start = End;
550     return;
551   }
552 
553   // Otherwise if the span we are removing is at the end of the Segment,
554   // adjust the other way.
555   if (I->end == End) {
556     I->end = Start;
557     return;
558   }
559 
560   // Otherwise, we are splitting the Segment into two pieces.
561   SlotIndex OldEnd = I->end;
562   I->end = Start;   // Trim the old segment.
563 
564   // Insert the new one.
565   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
566 }
567 
568 /// removeValNo - Remove all the segments defined by the specified value#.
569 /// Also remove the value# from value# list.
570 void LiveRange::removeValNo(VNInfo *ValNo) {
571   if (empty()) return;
572   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
573     return S.valno == ValNo;
574   }), end());
575   // Now that ValNo is dead, remove it.
576   markValNoForDeletion(ValNo);
577 }
578 
579 void LiveRange::join(LiveRange &Other,
580                      const int *LHSValNoAssignments,
581                      const int *RHSValNoAssignments,
582                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
583   verify();
584 
585   // Determine if any of our values are mapped.  This is uncommon, so we want
586   // to avoid the range scan if not.
587   bool MustMapCurValNos = false;
588   unsigned NumVals = getNumValNums();
589   unsigned NumNewVals = NewVNInfo.size();
590   for (unsigned i = 0; i != NumVals; ++i) {
591     unsigned LHSValID = LHSValNoAssignments[i];
592     if (i != LHSValID ||
593         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
594       MustMapCurValNos = true;
595       break;
596     }
597   }
598 
599   // If we have to apply a mapping to our base range assignment, rewrite it now.
600   if (MustMapCurValNos && !empty()) {
601     // Map the first live range.
602 
603     iterator OutIt = begin();
604     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
605     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
606       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
607       assert(nextValNo && "Huh?");
608 
609       // If this live range has the same value # as its immediate predecessor,
610       // and if they are neighbors, remove one Segment.  This happens when we
611       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
612       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
613         OutIt->end = I->end;
614       } else {
615         // Didn't merge. Move OutIt to the next segment,
616         ++OutIt;
617         OutIt->valno = nextValNo;
618         if (OutIt != I) {
619           OutIt->start = I->start;
620           OutIt->end = I->end;
621         }
622       }
623     }
624     // If we merge some segments, chop off the end.
625     ++OutIt;
626     segments.erase(OutIt, end());
627   }
628 
629   // Rewrite Other values before changing the VNInfo ids.
630   // This can leave Other in an invalid state because we're not coalescing
631   // touching segments that now have identical values. That's OK since Other is
632   // not supposed to be valid after calling join();
633   for (Segment &S : Other.segments)
634     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
635 
636   // Update val# info. Renumber them and make sure they all belong to this
637   // LiveRange now. Also remove dead val#'s.
638   unsigned NumValNos = 0;
639   for (unsigned i = 0; i < NumNewVals; ++i) {
640     VNInfo *VNI = NewVNInfo[i];
641     if (VNI) {
642       if (NumValNos >= NumVals)
643         valnos.push_back(VNI);
644       else
645         valnos[NumValNos] = VNI;
646       VNI->id = NumValNos++;  // Renumber val#.
647     }
648   }
649   if (NumNewVals < NumVals)
650     valnos.resize(NumNewVals);  // shrinkify
651 
652   // Okay, now insert the RHS live segments into the LHS.
653   LiveRangeUpdater Updater(this);
654   for (Segment &S : Other.segments)
655     Updater.add(S);
656 }
657 
658 /// Merge all of the segments in RHS into this live range as the specified
659 /// value number.  The segments in RHS are allowed to overlap with segments in
660 /// the current range, but only if the overlapping segments have the
661 /// specified value number.
662 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
663                                        VNInfo *LHSValNo) {
664   LiveRangeUpdater Updater(this);
665   for (const Segment &S : RHS.segments)
666     Updater.add(S.start, S.end, LHSValNo);
667 }
668 
669 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
670 /// in RHS into this live range as the specified value number.
671 /// The segments in RHS are allowed to overlap with segments in the
672 /// current range, it will replace the value numbers of the overlaped
673 /// segments with the specified value number.
674 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
675                                     const VNInfo *RHSValNo,
676                                     VNInfo *LHSValNo) {
677   LiveRangeUpdater Updater(this);
678   for (const Segment &S : RHS.segments)
679     if (S.valno == RHSValNo)
680       Updater.add(S.start, S.end, LHSValNo);
681 }
682 
683 /// MergeValueNumberInto - This method is called when two value nubmers
684 /// are found to be equivalent.  This eliminates V1, replacing all
685 /// segments with the V1 value number with the V2 value number.  This can
686 /// cause merging of V1/V2 values numbers and compaction of the value space.
687 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
688   assert(V1 != V2 && "Identical value#'s are always equivalent!");
689 
690   // This code actually merges the (numerically) larger value number into the
691   // smaller value number, which is likely to allow us to compactify the value
692   // space.  The only thing we have to be careful of is to preserve the
693   // instruction that defines the result value.
694 
695   // Make sure V2 is smaller than V1.
696   if (V1->id < V2->id) {
697     V1->copyFrom(*V2);
698     std::swap(V1, V2);
699   }
700 
701   // Merge V1 segments into V2.
702   for (iterator I = begin(); I != end(); ) {
703     iterator S = I++;
704     if (S->valno != V1) continue;  // Not a V1 Segment.
705 
706     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
707     // range, extend it.
708     if (S != begin()) {
709       iterator Prev = S-1;
710       if (Prev->valno == V2 && Prev->end == S->start) {
711         Prev->end = S->end;
712 
713         // Erase this live-range.
714         segments.erase(S);
715         I = Prev+1;
716         S = Prev;
717       }
718     }
719 
720     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
721     // Ensure that it is a V2 live-range.
722     S->valno = V2;
723 
724     // If we can merge it into later V2 segments, do so now.  We ignore any
725     // following V1 segments, as they will be merged in subsequent iterations
726     // of the loop.
727     if (I != end()) {
728       if (I->start == S->end && I->valno == V2) {
729         S->end = I->end;
730         segments.erase(I);
731         I = S+1;
732       }
733     }
734   }
735 
736   // Now that V1 is dead, remove it.
737   markValNoForDeletion(V1);
738 
739   return V2;
740 }
741 
742 void LiveRange::flushSegmentSet() {
743   assert(segmentSet != nullptr && "segment set must have been created");
744   assert(
745       segments.empty() &&
746       "segment set can be used only initially before switching to the array");
747   segments.append(segmentSet->begin(), segmentSet->end());
748   segmentSet = nullptr;
749   verify();
750 }
751 
752 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
753   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
754   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
755 
756   // If there are no regmask slots, we have nothing to search.
757   if (SlotI == SlotE)
758     return false;
759 
760   // Start our search at the first segment that ends after the first slot.
761   const_iterator SegmentI = find(*SlotI);
762   const_iterator SegmentE = end();
763 
764   // If there are no segments that end after the first slot, we're done.
765   if (SegmentI == SegmentE)
766     return false;
767 
768   // Look for each slot in the live range.
769   for ( ; SlotI != SlotE; ++SlotI) {
770     // Go to the next segment that ends after the current slot.
771     // The slot may be within a hole in the range.
772     SegmentI = advanceTo(SegmentI, *SlotI);
773     if (SegmentI == SegmentE)
774       return false;
775 
776     // If this segment contains the slot, we're done.
777     if (SegmentI->contains(*SlotI))
778       return true;
779     // Otherwise, look for the next slot.
780   }
781 
782   // We didn't find a segment containing any of the slots.
783   return false;
784 }
785 
786 void LiveInterval::freeSubRange(SubRange *S) {
787   S->~SubRange();
788   // Memory was allocated with BumpPtr allocator and is not freed here.
789 }
790 
791 void LiveInterval::removeEmptySubRanges() {
792   SubRange **NextPtr = &SubRanges;
793   SubRange *I = *NextPtr;
794   while (I != nullptr) {
795     if (!I->empty()) {
796       NextPtr = &I->Next;
797       I = *NextPtr;
798       continue;
799     }
800     // Skip empty subranges until we find the first nonempty one.
801     do {
802       SubRange *Next = I->Next;
803       freeSubRange(I);
804       I = Next;
805     } while (I != nullptr && I->empty());
806     *NextPtr = I;
807   }
808 }
809 
810 void LiveInterval::clearSubRanges() {
811   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
812     Next = I->Next;
813     freeSubRange(I);
814   }
815   SubRanges = nullptr;
816 }
817 
818 /// Helper function for constructMainRangeFromSubranges(): Search the CFG
819 /// backwards until we find a place covered by a LiveRange segment that actually
820 /// has a valno set.
821 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
822     const MachineBasicBlock *MBB,
823     SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
824   // We start the search at the end of MBB.
825   SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
826   // In our use case we can't live the area covered by the live segments without
827   // finding an actual VNI def.
828   LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
829   assert(I != LR.end());
830   LiveRange::Segment &S = *I;
831   if (S.valno != nullptr)
832     return S.valno;
833 
834   VNInfo *VNI = nullptr;
835   // Continue at predecessors (we could even go to idom with domtree available).
836   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
837     // Avoid going in circles.
838     if (!Visited.insert(Pred).second)
839       continue;
840 
841     VNI = searchForVNI(Indexes, LR, Pred, Visited);
842     if (VNI != nullptr) {
843       S.valno = VNI;
844       break;
845     }
846   }
847 
848   return VNI;
849 }
850 
851 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
852   SmallPtrSet<const MachineBasicBlock*, 5> Visited;
853 
854   LiveRange::iterator OutIt;
855   VNInfo *PrevValNo = nullptr;
856   for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
857     LiveRange::Segment &S = *I;
858     // Determine final VNI if necessary.
859     if (S.valno == nullptr) {
860       // This can only happen at the begin of a basic block.
861       assert(S.start.isBlock() && "valno should only be missing at block begin");
862 
863       Visited.clear();
864       const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
865       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
866         VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
867         if (VNI != nullptr) {
868           S.valno = VNI;
869           break;
870         }
871       }
872       assert(S.valno != nullptr && "could not determine valno");
873     }
874     // Merge with previous segment if it has the same VNI.
875     if (PrevValNo == S.valno && OutIt->end == S.start) {
876       OutIt->end = S.end;
877     } else {
878       // Didn't merge. Move OutIt to next segment.
879       if (PrevValNo == nullptr)
880         OutIt = LI.begin();
881       else
882         ++OutIt;
883 
884       if (OutIt != I)
885         *OutIt = *I;
886       PrevValNo = S.valno;
887     }
888   }
889   // If we merged some segments chop off the end.
890   ++OutIt;
891   LI.segments.erase(OutIt, LI.end());
892 }
893 
894 void LiveInterval::constructMainRangeFromSubranges(
895     const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
896   // The basic observations on which this algorithm is based:
897   // - Each Def/ValNo in a subrange must have a corresponding def on the main
898   //   range, but not further defs/valnos are necessary.
899   // - If any of the subranges is live at a point the main liverange has to be
900   //   live too, conversily if no subrange is live the main range mustn't be
901   //   live either.
902   // We do this by scanning through all the subranges simultaneously creating new
903   // segments in the main range as segments start/ends come up in the subranges.
904   assert(hasSubRanges() && "expected subranges to be present");
905   assert(segments.empty() && valnos.empty() && "expected empty main range");
906 
907   // Collect subrange, iterator pairs for the walk and determine first and last
908   // SlotIndex involved.
909   SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
910   SlotIndex First;
911   SlotIndex Last;
912   for (const SubRange &SR : subranges()) {
913     if (SR.empty())
914       continue;
915     SRs.push_back(std::make_pair(&SR, SR.begin()));
916     if (!First.isValid() || SR.segments.front().start < First)
917       First = SR.segments.front().start;
918     if (!Last.isValid() || SR.segments.back().end > Last)
919       Last = SR.segments.back().end;
920   }
921 
922   // Walk over all subranges simultaneously.
923   Segment CurrentSegment;
924   bool ConstructingSegment = false;
925   bool NeedVNIFixup = false;
926   LaneBitmask ActiveMask = 0;
927   SlotIndex Pos = First;
928   while (true) {
929     SlotIndex NextPos = Last;
930     enum {
931       NOTHING,
932       BEGIN_SEGMENT,
933       END_SEGMENT,
934     } Event = NOTHING;
935     // Which subregister lanes are affected by the current event.
936     LaneBitmask EventMask = 0;
937     // Whether a BEGIN_SEGMENT is also a valno definition point.
938     bool IsDef = false;
939     // Find the next begin or end of a subrange segment. Combine masks if we
940     // have multiple begins/ends at the same position. Ends take precedence over
941     // Begins.
942     for (auto &SRP : SRs) {
943       const SubRange &SR = *SRP.first;
944       const_iterator &I = SRP.second;
945       // Advance iterator of subrange to a segment involving Pos; the earlier
946       // segments are already merged at this point.
947       while (I != SR.end() &&
948              (I->end < Pos ||
949               (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
950         ++I;
951       if (I == SR.end())
952         continue;
953       if ((ActiveMask & SR.LaneMask) == 0 &&
954           Pos <= I->start && I->start <= NextPos) {
955         // Merge multiple begins at the same position.
956         if (I->start == NextPos && Event == BEGIN_SEGMENT) {
957           EventMask |= SR.LaneMask;
958           IsDef |= I->valno->def == I->start;
959         } else if (I->start < NextPos || Event != END_SEGMENT) {
960           Event = BEGIN_SEGMENT;
961           NextPos = I->start;
962           EventMask = SR.LaneMask;
963           IsDef = I->valno->def == I->start;
964         }
965       }
966       if ((ActiveMask & SR.LaneMask) != 0 &&
967           Pos <= I->end && I->end <= NextPos) {
968         // Merge multiple ends at the same position.
969         if (I->end == NextPos && Event == END_SEGMENT)
970           EventMask |= SR.LaneMask;
971         else {
972           Event = END_SEGMENT;
973           NextPos = I->end;
974           EventMask = SR.LaneMask;
975         }
976       }
977     }
978 
979     // Advance scan position.
980     Pos = NextPos;
981     if (Event == BEGIN_SEGMENT) {
982       if (ConstructingSegment && IsDef) {
983         // Finish previous segment because we have to start a new one.
984         CurrentSegment.end = Pos;
985         append(CurrentSegment);
986         ConstructingSegment = false;
987       }
988 
989       // Start a new segment if necessary.
990       if (!ConstructingSegment) {
991         // Determine value number for the segment.
992         VNInfo *VNI;
993         if (IsDef) {
994           VNI = getNextValue(Pos, VNIAllocator);
995         } else {
996           // We have to reuse an existing value number, if we are lucky
997           // then we already passed one of the predecessor blocks and determined
998           // its value number (with blocks in reverse postorder this would be
999           // always true but we have no such guarantee).
1000           assert(Pos.isBlock());
1001           const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
1002           // See if any of the predecessor blocks has a lower number and a VNI
1003           for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1004             SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1005             VNI = getVNInfoBefore(PredEnd);
1006             if (VNI != nullptr)
1007               break;
1008           }
1009           // Def will come later: We have to do an extra fixup pass.
1010           if (VNI == nullptr)
1011             NeedVNIFixup = true;
1012         }
1013 
1014         // In rare cases we can produce adjacent segments with the same value
1015         // number (if they come from different subranges, but happen to have
1016         // the same defining instruction). VNIFixup will fix those cases.
1017         if (!empty() && segments.back().end == Pos &&
1018             segments.back().valno == VNI)
1019           NeedVNIFixup = true;
1020         CurrentSegment.start = Pos;
1021         CurrentSegment.valno = VNI;
1022         ConstructingSegment = true;
1023       }
1024       ActiveMask |= EventMask;
1025     } else if (Event == END_SEGMENT) {
1026       assert(ConstructingSegment);
1027       // Finish segment if no lane is active anymore.
1028       ActiveMask &= ~EventMask;
1029       if (ActiveMask == 0) {
1030         CurrentSegment.end = Pos;
1031         append(CurrentSegment);
1032         ConstructingSegment = false;
1033       }
1034     } else {
1035       // We reached the end of the last subranges and can stop.
1036       assert(Event == NOTHING);
1037       break;
1038     }
1039   }
1040 
1041   // We might not be able to assign new valnos for all segments if the basic
1042   // block containing the definition comes after a segment using the valno.
1043   // Do a fixup pass for this uncommon case.
1044   if (NeedVNIFixup)
1045     determineMissingVNIs(Indexes, *this);
1046 
1047   assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
1048   verify();
1049 }
1050 
1051 unsigned LiveInterval::getSize() const {
1052   unsigned Sum = 0;
1053   for (const Segment &S : segments)
1054     Sum += S.start.distance(S.end);
1055   return Sum;
1056 }
1057 
1058 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
1059   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
1060 }
1061 
1062 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1063 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
1064   dbgs() << *this << "\n";
1065 }
1066 #endif
1067 
1068 void LiveRange::print(raw_ostream &OS) const {
1069   if (empty())
1070     OS << "EMPTY";
1071   else {
1072     for (const Segment &S : segments) {
1073       OS << S;
1074       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1075     }
1076   }
1077 
1078   // Print value number info.
1079   if (getNumValNums()) {
1080     OS << "  ";
1081     unsigned vnum = 0;
1082     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1083          ++i, ++vnum) {
1084       const VNInfo *vni = *i;
1085       if (vnum) OS << " ";
1086       OS << vnum << "@";
1087       if (vni->isUnused()) {
1088         OS << "x";
1089       } else {
1090         OS << vni->def;
1091         if (vni->isPHIDef())
1092           OS << "-phi";
1093       }
1094     }
1095   }
1096 }
1097 
1098 void LiveInterval::print(raw_ostream &OS) const {
1099   OS << PrintReg(reg) << ' ';
1100   super::print(OS);
1101   // Print subranges
1102   for (const SubRange &SR : subranges()) {
1103     OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR;
1104   }
1105 }
1106 
1107 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1108 LLVM_DUMP_METHOD void LiveRange::dump() const {
1109   dbgs() << *this << "\n";
1110 }
1111 
1112 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1113   dbgs() << *this << "\n";
1114 }
1115 #endif
1116 
1117 #ifndef NDEBUG
1118 void LiveRange::verify() const {
1119   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1120     assert(I->start.isValid());
1121     assert(I->end.isValid());
1122     assert(I->start < I->end);
1123     assert(I->valno != nullptr);
1124     assert(I->valno->id < valnos.size());
1125     assert(I->valno == valnos[I->valno->id]);
1126     if (std::next(I) != E) {
1127       assert(I->end <= std::next(I)->start);
1128       if (I->end == std::next(I)->start)
1129         assert(I->valno != std::next(I)->valno);
1130     }
1131   }
1132 }
1133 
1134 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1135   super::verify();
1136 
1137   // Make sure SubRanges are fine and LaneMasks are disjunct.
1138   LaneBitmask Mask = 0;
1139   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
1140   for (const SubRange &SR : subranges()) {
1141     // Subrange lanemask should be disjunct to any previous subrange masks.
1142     assert((Mask & SR.LaneMask) == 0);
1143     Mask |= SR.LaneMask;
1144 
1145     // subrange mask should not contained in maximum lane mask for the vreg.
1146     assert((Mask & ~MaxMask) == 0);
1147     // empty subranges must be removed.
1148     assert(!SR.empty());
1149 
1150     SR.verify();
1151     // Main liverange should cover subrange.
1152     assert(covers(SR));
1153   }
1154 }
1155 #endif
1156 
1157 
1158 //===----------------------------------------------------------------------===//
1159 //                           LiveRangeUpdater class
1160 //===----------------------------------------------------------------------===//
1161 //
1162 // The LiveRangeUpdater class always maintains these invariants:
1163 //
1164 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1165 //   This is the initial state, and the state created by flush().
1166 //   In this state, isDirty() returns false.
1167 //
1168 // Otherwise, segments are kept in three separate areas:
1169 //
1170 // 1. [begin; WriteI) at the front of LR.
1171 // 2. [ReadI; end) at the back of LR.
1172 // 3. Spills.
1173 //
1174 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1175 // - Segments in all three areas are fully ordered and coalesced.
1176 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1177 // - Segments in Spills precede and can't coalesce with segments in area 2.
1178 // - No coalescing is possible between segments in Spills and segments in area
1179 //   1, and there are no overlapping segments.
1180 //
1181 // The segments in Spills are not ordered with respect to the segments in area
1182 // 1. They need to be merged.
1183 //
1184 // When they exist, Spills.back().start <= LastStart,
1185 //                 and WriteI[-1].start <= LastStart.
1186 
1187 void LiveRangeUpdater::print(raw_ostream &OS) const {
1188   if (!isDirty()) {
1189     if (LR)
1190       OS << "Clean updater: " << *LR << '\n';
1191     else
1192       OS << "Null updater.\n";
1193     return;
1194   }
1195   assert(LR && "Can't have null LR in dirty updater.");
1196   OS << " updater with gap = " << (ReadI - WriteI)
1197      << ", last start = " << LastStart
1198      << ":\n  Area 1:";
1199   for (const auto &S : make_range(LR->begin(), WriteI))
1200     OS << ' ' << S;
1201   OS << "\n  Spills:";
1202   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1203     OS << ' ' << Spills[I];
1204   OS << "\n  Area 2:";
1205   for (const auto &S : make_range(ReadI, LR->end()))
1206     OS << ' ' << S;
1207   OS << '\n';
1208 }
1209 
1210 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1211   print(errs());
1212 }
1213 
1214 // Determine if A and B should be coalesced.
1215 static inline bool coalescable(const LiveRange::Segment &A,
1216                                const LiveRange::Segment &B) {
1217   assert(A.start <= B.start && "Unordered live segments.");
1218   if (A.end == B.start)
1219     return A.valno == B.valno;
1220   if (A.end < B.start)
1221     return false;
1222   assert(A.valno == B.valno && "Cannot overlap different values");
1223   return true;
1224 }
1225 
1226 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1227   assert(LR && "Cannot add to a null destination");
1228 
1229   // Fall back to the regular add method if the live range
1230   // is using the segment set instead of the segment vector.
1231   if (LR->segmentSet != nullptr) {
1232     LR->addSegmentToSet(Seg);
1233     return;
1234   }
1235 
1236   // Flush the state if Start moves backwards.
1237   if (!LastStart.isValid() || LastStart > Seg.start) {
1238     if (isDirty())
1239       flush();
1240     // This brings us to an uninitialized state. Reinitialize.
1241     assert(Spills.empty() && "Leftover spilled segments");
1242     WriteI = ReadI = LR->begin();
1243   }
1244 
1245   // Remember start for next time.
1246   LastStart = Seg.start;
1247 
1248   // Advance ReadI until it ends after Seg.start.
1249   LiveRange::iterator E = LR->end();
1250   if (ReadI != E && ReadI->end <= Seg.start) {
1251     // First try to close the gap between WriteI and ReadI with spills.
1252     if (ReadI != WriteI)
1253       mergeSpills();
1254     // Then advance ReadI.
1255     if (ReadI == WriteI)
1256       ReadI = WriteI = LR->find(Seg.start);
1257     else
1258       while (ReadI != E && ReadI->end <= Seg.start)
1259         *WriteI++ = *ReadI++;
1260   }
1261 
1262   assert(ReadI == E || ReadI->end > Seg.start);
1263 
1264   // Check if the ReadI segment begins early.
1265   if (ReadI != E && ReadI->start <= Seg.start) {
1266     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1267     // Bail if Seg is completely contained in ReadI.
1268     if (ReadI->end >= Seg.end)
1269       return;
1270     // Coalesce into Seg.
1271     Seg.start = ReadI->start;
1272     ++ReadI;
1273   }
1274 
1275   // Coalesce as much as possible from ReadI into Seg.
1276   while (ReadI != E && coalescable(Seg, *ReadI)) {
1277     Seg.end = std::max(Seg.end, ReadI->end);
1278     ++ReadI;
1279   }
1280 
1281   // Try coalescing Spills.back() into Seg.
1282   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1283     Seg.start = Spills.back().start;
1284     Seg.end = std::max(Spills.back().end, Seg.end);
1285     Spills.pop_back();
1286   }
1287 
1288   // Try coalescing Seg into WriteI[-1].
1289   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1290     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1291     return;
1292   }
1293 
1294   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1295   if (WriteI != ReadI) {
1296     *WriteI++ = Seg;
1297     return;
1298   }
1299 
1300   // Finally, append to LR or Spills.
1301   if (WriteI == E) {
1302     LR->segments.push_back(Seg);
1303     WriteI = ReadI = LR->end();
1304   } else
1305     Spills.push_back(Seg);
1306 }
1307 
1308 // Merge as many spilled segments as possible into the gap between WriteI
1309 // and ReadI. Advance WriteI to reflect the inserted instructions.
1310 void LiveRangeUpdater::mergeSpills() {
1311   // Perform a backwards merge of Spills and [SpillI;WriteI).
1312   size_t GapSize = ReadI - WriteI;
1313   size_t NumMoved = std::min(Spills.size(), GapSize);
1314   LiveRange::iterator Src = WriteI;
1315   LiveRange::iterator Dst = Src + NumMoved;
1316   LiveRange::iterator SpillSrc = Spills.end();
1317   LiveRange::iterator B = LR->begin();
1318 
1319   // This is the new WriteI position after merging spills.
1320   WriteI = Dst;
1321 
1322   // Now merge Src and Spills backwards.
1323   while (Src != Dst) {
1324     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1325       *--Dst = *--Src;
1326     else
1327       *--Dst = *--SpillSrc;
1328   }
1329   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1330   Spills.erase(SpillSrc, Spills.end());
1331 }
1332 
1333 void LiveRangeUpdater::flush() {
1334   if (!isDirty())
1335     return;
1336   // Clear the dirty state.
1337   LastStart = SlotIndex();
1338 
1339   assert(LR && "Cannot add to a null destination");
1340 
1341   // Nothing to merge?
1342   if (Spills.empty()) {
1343     LR->segments.erase(WriteI, ReadI);
1344     LR->verify();
1345     return;
1346   }
1347 
1348   // Resize the WriteI - ReadI gap to match Spills.
1349   size_t GapSize = ReadI - WriteI;
1350   if (GapSize < Spills.size()) {
1351     // The gap is too small. Make some room.
1352     size_t WritePos = WriteI - LR->begin();
1353     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1354     // This also invalidated ReadI, but it is recomputed below.
1355     WriteI = LR->begin() + WritePos;
1356   } else {
1357     // Shrink the gap if necessary.
1358     LR->segments.erase(WriteI + Spills.size(), ReadI);
1359   }
1360   ReadI = WriteI + Spills.size();
1361   mergeSpills();
1362   LR->verify();
1363 }
1364 
1365 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1366   // Create initial equivalence classes.
1367   EqClass.clear();
1368   EqClass.grow(LR.getNumValNums());
1369 
1370   const VNInfo *used = nullptr, *unused = nullptr;
1371 
1372   // Determine connections.
1373   for (const VNInfo *VNI : LR.valnos) {
1374     // Group all unused values into one class.
1375     if (VNI->isUnused()) {
1376       if (unused)
1377         EqClass.join(unused->id, VNI->id);
1378       unused = VNI;
1379       continue;
1380     }
1381     used = VNI;
1382     if (VNI->isPHIDef()) {
1383       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1384       assert(MBB && "Phi-def has no defining MBB");
1385       // Connect to values live out of predecessors.
1386       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1387            PE = MBB->pred_end(); PI != PE; ++PI)
1388         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1389           EqClass.join(VNI->id, PVNI->id);
1390     } else {
1391       // Normal value defined by an instruction. Check for two-addr redef.
1392       // FIXME: This could be coincidental. Should we really check for a tied
1393       // operand constraint?
1394       // Note that VNI->def may be a use slot for an early clobber def.
1395       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1396         EqClass.join(VNI->id, UVNI->id);
1397     }
1398   }
1399 
1400   // Lump all the unused values in with the last used value.
1401   if (used && unused)
1402     EqClass.join(used->id, unused->id);
1403 
1404   EqClass.compress();
1405   return EqClass.getNumClasses();
1406 }
1407 
1408 template<typename LiveRangeT, typename EqClassesT>
1409 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[],
1410                             EqClassesT VNIClasses) {
1411   // Move segments to new intervals.
1412   LiveRange::iterator J = LR.begin(), E = LR.end();
1413   while (J != E && VNIClasses[J->valno->id] == 0)
1414     ++J;
1415   for (LiveRange::iterator I = J; I != E; ++I) {
1416     if (unsigned eq = VNIClasses[I->valno->id]) {
1417       assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) &&
1418              "New intervals should be empty");
1419       SplitLRs[eq-1]->segments.push_back(*I);
1420     } else
1421       *J++ = *I;
1422   }
1423   LR.segments.erase(J, E);
1424 
1425   // Transfer VNInfos to their new owners and renumber them.
1426   unsigned j = 0, e = LR.getNumValNums();
1427   while (j != e && VNIClasses[j] == 0)
1428     ++j;
1429   for (unsigned i = j; i != e; ++i) {
1430     VNInfo *VNI = LR.getValNumInfo(i);
1431     if (unsigned eq = VNIClasses[i]) {
1432       VNI->id = SplitLRs[eq-1]->getNumValNums();
1433       SplitLRs[eq-1]->valnos.push_back(VNI);
1434     } else {
1435       VNI->id = j;
1436       LR.valnos[j++] = VNI;
1437     }
1438   }
1439   LR.valnos.resize(j);
1440 }
1441 
1442 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1443                                           MachineRegisterInfo &MRI) {
1444   // Rewrite instructions.
1445   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1446        RE = MRI.reg_end(); RI != RE;) {
1447     MachineOperand &MO = *RI;
1448     MachineInstr *MI = RI->getParent();
1449     ++RI;
1450     // DBG_VALUE instructions don't have slot indexes, so get the index of the
1451     // instruction before them.
1452     // Normally, DBG_VALUE instructions are removed before this function is
1453     // called, but it is not a requirement.
1454     SlotIndex Idx;
1455     if (MI->isDebugValue())
1456       Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1457     else
1458       Idx = LIS.getInstructionIndex(*MI);
1459     LiveQueryResult LRQ = LI.Query(Idx);
1460     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1461     // In the case of an <undef> use that isn't tied to any def, VNI will be
1462     // NULL. If the use is tied to a def, VNI will be the defined value.
1463     if (!VNI)
1464       continue;
1465     if (unsigned EqClass = getEqClass(VNI))
1466       MO.setReg(LIV[EqClass-1]->reg);
1467   }
1468 
1469   // Distribute subregister liveranges.
1470   if (LI.hasSubRanges()) {
1471     unsigned NumComponents = EqClass.getNumClasses();
1472     SmallVector<unsigned, 8> VNIMapping;
1473     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1474     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1475     for (LiveInterval::SubRange &SR : LI.subranges()) {
1476       // Create new subranges in the split intervals and construct a mapping
1477       // for the VNInfos in the subrange.
1478       unsigned NumValNos = SR.valnos.size();
1479       VNIMapping.clear();
1480       VNIMapping.reserve(NumValNos);
1481       SubRanges.clear();
1482       SubRanges.resize(NumComponents-1, nullptr);
1483       for (unsigned I = 0; I < NumValNos; ++I) {
1484         const VNInfo &VNI = *SR.valnos[I];
1485         unsigned ComponentNum;
1486         if (VNI.isUnused()) {
1487           ComponentNum = 0;
1488         } else {
1489           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1490           assert(MainRangeVNI != nullptr
1491                  && "SubRange def must have corresponding main range def");
1492           ComponentNum = getEqClass(MainRangeVNI);
1493           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1494             SubRanges[ComponentNum-1]
1495               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1496           }
1497         }
1498         VNIMapping.push_back(ComponentNum);
1499       }
1500       DistributeRange(SR, SubRanges.data(), VNIMapping);
1501     }
1502     LI.removeEmptySubRanges();
1503   }
1504 
1505   // Distribute main liverange.
1506   DistributeRange(LI, LIV, EqClass);
1507 }
1508 
1509 void ConnectedSubRegClasses::renameComponents(LiveInterval &LI) const {
1510   // Shortcut: We cannot have split components with a single definition.
1511   if (LI.valnos.size() < 2)
1512     return;
1513 
1514   SmallVector<SubRangeInfo, 4> SubRangeInfos;
1515   IntEqClasses Classes;
1516   if (!findComponents(Classes, SubRangeInfos, LI))
1517     return;
1518 
1519   // Create a new VReg for each class.
1520   unsigned Reg = LI.reg;
1521   const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
1522   SmallVector<LiveInterval*, 4> Intervals;
1523   Intervals.push_back(&LI);
1524   for (unsigned I = 1, NumClasses = Classes.getNumClasses(); I < NumClasses;
1525        ++I) {
1526     unsigned NewVReg = MRI.createVirtualRegister(RegClass);
1527     LiveInterval &NewLI = LIS.createEmptyInterval(NewVReg);
1528     Intervals.push_back(&NewLI);
1529   }
1530 
1531   rewriteOperands(Classes, SubRangeInfos, Intervals);
1532   distribute(Classes, SubRangeInfos, Intervals);
1533   computeMainRangesFixFlags(Classes, SubRangeInfos, Intervals);
1534 }
1535 
1536 bool ConnectedSubRegClasses::findComponents(IntEqClasses &Classes,
1537     SmallVectorImpl<ConnectedSubRegClasses::SubRangeInfo> &SubRangeInfos,
1538     LiveInterval &LI) const {
1539   // First step: Create connected components for the VNInfos inside the
1540   // subranges and count the global number of such components.
1541   unsigned NumComponents = 0;
1542   for (LiveInterval::SubRange &SR : LI.subranges()) {
1543     SubRangeInfos.push_back(SubRangeInfo(LIS, SR, NumComponents));
1544     ConnectedVNInfoEqClasses &ConEQ = SubRangeInfos.back().ConEQ;
1545 
1546     unsigned NumSubComponents = ConEQ.Classify(SR);
1547     NumComponents += NumSubComponents;
1548   }
1549   // Shortcut: With only 1 subrange, the normal separate component tests are
1550   // enough and we do not need to perform the union-find on the subregister
1551   // segments.
1552   if (SubRangeInfos.size() < 2)
1553     return false;
1554 
1555   // Next step: Build union-find structure over all subranges and merge classes
1556   // across subranges when they are affected by the same MachineOperand.
1557   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1558   Classes.grow(NumComponents);
1559   unsigned Reg = LI.reg;
1560   for (const MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) {
1561     if (!MO.isDef() && !MO.readsReg())
1562       continue;
1563     unsigned SubRegIdx = MO.getSubReg();
1564     LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
1565     unsigned MergedID = ~0u;
1566     for (auto &SRInfo : SubRangeInfos) {
1567       const LiveInterval::SubRange &SR = *SRInfo.SR;
1568       if ((SR.LaneMask & LaneMask) == 0)
1569         continue;
1570       SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1571       Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber())
1572                        : Pos.getBaseIndex();
1573       const VNInfo *VNI = SR.getVNInfoAt(Pos);
1574       if (VNI == nullptr)
1575         continue;
1576 
1577       // Map to local representant ID.
1578       unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI);
1579       // Global ID
1580       unsigned ID = LocalID + SRInfo.Index;
1581       // Merge other sets
1582       MergedID = MergedID == ~0u ? ID : Classes.join(MergedID, ID);
1583     }
1584   }
1585 
1586   // Early exit if we ended up with a single equivalence class.
1587   Classes.compress();
1588   unsigned NumClasses = Classes.getNumClasses();
1589   return NumClasses > 1;
1590 }
1591 
1592 void ConnectedSubRegClasses::rewriteOperands(const IntEqClasses &Classes,
1593     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1594     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1595   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1596   unsigned Reg = Intervals[0]->reg;;
1597   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(Reg),
1598        E = MRI.reg_nodbg_end(); I != E; ) {
1599     MachineOperand &MO = *I++;
1600     if (!MO.isDef() && !MO.readsReg())
1601       continue;
1602 
1603     MachineInstr &MI = *MO.getParent();
1604 
1605     SlotIndex Pos = LIS.getInstructionIndex(MI);
1606     unsigned SubRegIdx = MO.getSubReg();
1607     LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
1608 
1609     unsigned ID = ~0u;
1610     for (auto &SRInfo : SubRangeInfos) {
1611       const LiveInterval::SubRange &SR = *SRInfo.SR;
1612       if ((SR.LaneMask & LaneMask) == 0)
1613         continue;
1614       LiveRange::const_iterator I = SR.find(Pos);
1615       if (I == SR.end())
1616         continue;
1617 
1618       const VNInfo &VNI = *I->valno;
1619       // Map to local representant ID.
1620       unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
1621       // Global ID
1622       ID = Classes[LocalID + SRInfo.Index];
1623       break;
1624     }
1625 
1626     unsigned VReg = Intervals[ID]->reg;
1627     MO.setReg(VReg);
1628   }
1629 }
1630 
1631 void ConnectedSubRegClasses::distribute(const IntEqClasses &Classes,
1632     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1633     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1634   unsigned NumClasses = Classes.getNumClasses();
1635   SmallVector<unsigned, 8> VNIMapping;
1636   SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1637   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1638   for (auto &SRInfo : SubRangeInfos) {
1639     LiveInterval::SubRange &SR = *SRInfo.SR;
1640     unsigned NumValNos = SR.valnos.size();
1641     VNIMapping.clear();
1642     VNIMapping.reserve(NumValNos);
1643     SubRanges.clear();
1644     SubRanges.resize(NumClasses-1, nullptr);
1645     for (unsigned I = 0; I < NumValNos; ++I) {
1646       const VNInfo &VNI = *SR.valnos[I];
1647       unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
1648       unsigned ID = Classes[LocalID + SRInfo.Index];
1649       VNIMapping.push_back(ID);
1650       if (ID > 0 && SubRanges[ID-1] == nullptr)
1651         SubRanges[ID-1] = Intervals[ID]->createSubRange(Allocator, SR.LaneMask);
1652     }
1653     DistributeRange(SR, SubRanges.data(), VNIMapping);
1654   }
1655 }
1656 
1657 void ConnectedSubRegClasses::computeMainRangesFixFlags(
1658     const IntEqClasses &Classes,
1659     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1660     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1661   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1662   for (size_t I = 0, E = Intervals.size(); I < E; ++I) {
1663     LiveInterval *LI = Intervals[I];
1664     LI->removeEmptySubRanges();
1665     if (I == 0)
1666       LI->clear();
1667     LI->constructMainRangeFromSubranges(*LIS.getSlotIndexes(), Allocator);
1668 
1669     for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
1670       if (!MO.isDef())
1671         continue;
1672       unsigned SubRegIdx = MO.getSubReg();
1673       if (SubRegIdx == 0)
1674         continue;
1675       // After assigning the new vreg we may not have any other sublanes living
1676       // in and out of the instruction anymore. We need to add new dead and kill
1677       // flags in these cases.
1678       if (!MO.isUndef()) {
1679         SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1680         if (!LI->liveAt(Pos.getBaseIndex()))
1681           MO.setIsUndef();
1682       }
1683       if (!MO.isDead()) {
1684         SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1685         if (!LI->liveAt(Pos.getDeadSlot()))
1686           MO.setIsDead();
1687       }
1688     }
1689   }
1690 }
1691