1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 36 // This algorithm is basically std::upper_bound. 37 // Unfortunately, std::upper_bound cannot be used with mixed types until we 38 // adopt C++0x. Many libraries can do it, but not all. 39 if (empty() || Pos >= endIndex()) 40 return end(); 41 iterator I = begin(); 42 size_t Len = size(); 43 do { 44 size_t Mid = Len >> 1; 45 if (Pos < I[Mid].end) 46 Len = Mid; 47 else 48 I += Mid + 1, Len -= Mid + 1; 49 } while (Len); 50 return I; 51 } 52 53 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 54 VNInfo::Allocator &VNInfoAllocator) { 55 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 56 iterator I = find(Def); 57 if (I == end()) { 58 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 59 segments.push_back(Segment(Def, Def.getDeadSlot(), VNI)); 60 return VNI; 61 } 62 if (SlotIndex::isSameInstr(Def, I->start)) { 63 assert(I->valno->def == I->start && "Inconsistent existing value def"); 64 65 // It is possible to have both normal and early-clobber defs of the same 66 // register on an instruction. It doesn't make a lot of sense, but it is 67 // possible to specify in inline assembly. 68 // 69 // Just convert everything to early-clobber. 70 Def = std::min(Def, I->start); 71 if (Def != I->start) 72 I->start = I->valno->def = Def; 73 return I->valno; 74 } 75 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 76 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 77 segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 78 return VNI; 79 } 80 81 // overlaps - Return true if the intersection of the two live ranges is 82 // not empty. 83 // 84 // An example for overlaps(): 85 // 86 // 0: A = ... 87 // 4: B = ... 88 // 8: C = A + B ;; last use of A 89 // 90 // The live ranges should look like: 91 // 92 // A = [3, 11) 93 // B = [7, x) 94 // C = [11, y) 95 // 96 // A->overlaps(C) should return false since we want to be able to join 97 // A and C. 98 // 99 bool LiveRange::overlapsFrom(const LiveRange& other, 100 const_iterator StartPos) const { 101 assert(!empty() && "empty range"); 102 const_iterator i = begin(); 103 const_iterator ie = end(); 104 const_iterator j = StartPos; 105 const_iterator je = other.end(); 106 107 assert((StartPos->start <= i->start || StartPos == other.begin()) && 108 StartPos != other.end() && "Bogus start position hint!"); 109 110 if (i->start < j->start) { 111 i = std::upper_bound(i, ie, j->start); 112 if (i != begin()) --i; 113 } else if (j->start < i->start) { 114 ++StartPos; 115 if (StartPos != other.end() && StartPos->start <= i->start) { 116 assert(StartPos < other.end() && i < end()); 117 j = std::upper_bound(j, je, i->start); 118 if (j != other.begin()) --j; 119 } 120 } else { 121 return true; 122 } 123 124 if (j == je) return false; 125 126 while (i != ie) { 127 if (i->start > j->start) { 128 std::swap(i, j); 129 std::swap(ie, je); 130 } 131 132 if (i->end > j->start) 133 return true; 134 ++i; 135 } 136 137 return false; 138 } 139 140 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 141 const SlotIndexes &Indexes) const { 142 assert(!empty() && "empty range"); 143 if (Other.empty()) 144 return false; 145 146 // Use binary searches to find initial positions. 147 const_iterator I = find(Other.beginIndex()); 148 const_iterator IE = end(); 149 if (I == IE) 150 return false; 151 const_iterator J = Other.find(I->start); 152 const_iterator JE = Other.end(); 153 if (J == JE) 154 return false; 155 156 for (;;) { 157 // J has just been advanced to satisfy: 158 assert(J->end >= I->start); 159 // Check for an overlap. 160 if (J->start < I->end) { 161 // I and J are overlapping. Find the later start. 162 SlotIndex Def = std::max(I->start, J->start); 163 // Allow the overlap if Def is a coalescable copy. 164 if (Def.isBlock() || 165 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 166 return true; 167 } 168 // Advance the iterator that ends first to check for more overlaps. 169 if (J->end > I->end) { 170 std::swap(I, J); 171 std::swap(IE, JE); 172 } 173 // Advance J until J->end >= I->start. 174 do 175 if (++J == JE) 176 return false; 177 while (J->end < I->start); 178 } 179 } 180 181 /// overlaps - Return true if the live range overlaps an interval specified 182 /// by [Start, End). 183 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 184 assert(Start < End && "Invalid range"); 185 const_iterator I = std::lower_bound(begin(), end(), End); 186 return I != begin() && (--I)->end > Start; 187 } 188 189 bool LiveRange::covers(const LiveRange &Other) const { 190 if (empty()) 191 return Other.empty(); 192 193 const_iterator I = begin(); 194 for (const Segment &O : Other.segments) { 195 I = advanceTo(I, O.start); 196 if (I == end() || I->start > O.start) 197 return false; 198 199 // Check adjacent live segments and see if we can get behind O.end. 200 while (I->end < O.end) { 201 const_iterator Last = I; 202 // Get next segment and abort if it was not adjacent. 203 ++I; 204 if (I == end() || Last->end != I->start) 205 return false; 206 } 207 } 208 return true; 209 } 210 211 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 212 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 213 /// it can be nuked later. 214 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 215 if (ValNo->id == getNumValNums()-1) { 216 do { 217 valnos.pop_back(); 218 } while (!valnos.empty() && valnos.back()->isUnused()); 219 } else { 220 ValNo->markUnused(); 221 } 222 } 223 224 /// RenumberValues - Renumber all values in order of appearance and delete the 225 /// remaining unused values. 226 void LiveRange::RenumberValues() { 227 SmallPtrSet<VNInfo*, 8> Seen; 228 valnos.clear(); 229 for (const Segment &S : segments) { 230 VNInfo *VNI = S.valno; 231 if (!Seen.insert(VNI).second) 232 continue; 233 assert(!VNI->isUnused() && "Unused valno used by live segment"); 234 VNI->id = (unsigned)valnos.size(); 235 valnos.push_back(VNI); 236 } 237 } 238 239 /// This method is used when we want to extend the segment specified by I to end 240 /// at the specified endpoint. To do this, we should merge and eliminate all 241 /// segments that this will overlap with. The iterator is not invalidated. 242 void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 243 assert(I != end() && "Not a valid segment!"); 244 VNInfo *ValNo = I->valno; 245 246 // Search for the first segment that we can't merge with. 247 iterator MergeTo = std::next(I); 248 for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) { 249 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 250 } 251 252 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 253 I->end = std::max(NewEnd, std::prev(MergeTo)->end); 254 255 // If the newly formed segment now touches the segment after it and if they 256 // have the same value number, merge the two segments into one segment. 257 if (MergeTo != end() && MergeTo->start <= I->end && 258 MergeTo->valno == ValNo) { 259 I->end = MergeTo->end; 260 ++MergeTo; 261 } 262 263 // Erase any dead segments. 264 segments.erase(std::next(I), MergeTo); 265 } 266 267 268 /// This method is used when we want to extend the segment specified by I to 269 /// start at the specified endpoint. To do this, we should merge and eliminate 270 /// all segments that this will overlap with. 271 LiveRange::iterator 272 LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) { 273 assert(I != end() && "Not a valid segment!"); 274 VNInfo *ValNo = I->valno; 275 276 // Search for the first segment that we can't merge with. 277 iterator MergeTo = I; 278 do { 279 if (MergeTo == begin()) { 280 I->start = NewStart; 281 segments.erase(MergeTo, I); 282 return I; 283 } 284 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 285 --MergeTo; 286 } while (NewStart <= MergeTo->start); 287 288 // If we start in the middle of another segment, just delete a range and 289 // extend that segment. 290 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 291 MergeTo->end = I->end; 292 } else { 293 // Otherwise, extend the segment right after. 294 ++MergeTo; 295 MergeTo->start = NewStart; 296 MergeTo->end = I->end; 297 } 298 299 segments.erase(std::next(MergeTo), std::next(I)); 300 return MergeTo; 301 } 302 303 void LiveRange::append(const Segment S) { 304 // Check that the segment belongs to the back of the list. 305 assert(segments.empty() || segments.back().end <= S.start); 306 segments.push_back(S); 307 } 308 309 LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) { 310 SlotIndex Start = S.start, End = S.end; 311 iterator it = std::upper_bound(From, end(), Start); 312 313 // If the inserted segment starts in the middle or right at the end of 314 // another segment, just extend that segment to contain the segment of S. 315 if (it != begin()) { 316 iterator B = std::prev(it); 317 if (S.valno == B->valno) { 318 if (B->start <= Start && B->end >= Start) { 319 extendSegmentEndTo(B, End); 320 return B; 321 } 322 } else { 323 // Check to make sure that we are not overlapping two live segments with 324 // different valno's. 325 assert(B->end <= Start && 326 "Cannot overlap two segments with differing ValID's" 327 " (did you def the same reg twice in a MachineInstr?)"); 328 } 329 } 330 331 // Otherwise, if this segment ends in the middle of, or right next to, another 332 // segment, merge it into that segment. 333 if (it != end()) { 334 if (S.valno == it->valno) { 335 if (it->start <= End) { 336 it = extendSegmentStartTo(it, Start); 337 338 // If S is a complete superset of a segment, we may need to grow its 339 // endpoint as well. 340 if (End > it->end) 341 extendSegmentEndTo(it, End); 342 return it; 343 } 344 } else { 345 // Check to make sure that we are not overlapping two live segments with 346 // different valno's. 347 assert(it->start >= End && 348 "Cannot overlap two segments with differing ValID's"); 349 } 350 } 351 352 // Otherwise, this is just a new segment that doesn't interact with anything. 353 // Insert it. 354 return segments.insert(it, S); 355 } 356 357 /// extendInBlock - If this range is live before Kill in the basic 358 /// block that starts at StartIdx, extend it to be live up to Kill and return 359 /// the value. If there is no live range before Kill, return NULL. 360 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 361 if (empty()) 362 return nullptr; 363 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 364 if (I == begin()) 365 return nullptr; 366 --I; 367 if (I->end <= StartIdx) 368 return nullptr; 369 if (I->end < Kill) 370 extendSegmentEndTo(I, Kill); 371 return I->valno; 372 } 373 374 /// Remove the specified segment from this range. Note that the segment must 375 /// be in a single Segment in its entirety. 376 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 377 bool RemoveDeadValNo) { 378 // Find the Segment containing this span. 379 iterator I = find(Start); 380 assert(I != end() && "Segment is not in range!"); 381 assert(I->containsInterval(Start, End) 382 && "Segment is not entirely in range!"); 383 384 // If the span we are removing is at the start of the Segment, adjust it. 385 VNInfo *ValNo = I->valno; 386 if (I->start == Start) { 387 if (I->end == End) { 388 if (RemoveDeadValNo) { 389 // Check if val# is dead. 390 bool isDead = true; 391 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 392 if (II != I && II->valno == ValNo) { 393 isDead = false; 394 break; 395 } 396 if (isDead) { 397 // Now that ValNo is dead, remove it. 398 markValNoForDeletion(ValNo); 399 } 400 } 401 402 segments.erase(I); // Removed the whole Segment. 403 } else 404 I->start = End; 405 return; 406 } 407 408 // Otherwise if the span we are removing is at the end of the Segment, 409 // adjust the other way. 410 if (I->end == End) { 411 I->end = Start; 412 return; 413 } 414 415 // Otherwise, we are splitting the Segment into two pieces. 416 SlotIndex OldEnd = I->end; 417 I->end = Start; // Trim the old segment. 418 419 // Insert the new one. 420 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 421 } 422 423 /// removeValNo - Remove all the segments defined by the specified value#. 424 /// Also remove the value# from value# list. 425 void LiveRange::removeValNo(VNInfo *ValNo) { 426 if (empty()) return; 427 iterator I = end(); 428 iterator E = begin(); 429 do { 430 --I; 431 if (I->valno == ValNo) 432 segments.erase(I); 433 } while (I != E); 434 // Now that ValNo is dead, remove it. 435 markValNoForDeletion(ValNo); 436 } 437 438 void LiveRange::join(LiveRange &Other, 439 const int *LHSValNoAssignments, 440 const int *RHSValNoAssignments, 441 SmallVectorImpl<VNInfo *> &NewVNInfo) { 442 verify(); 443 444 // Determine if any of our values are mapped. This is uncommon, so we want 445 // to avoid the range scan if not. 446 bool MustMapCurValNos = false; 447 unsigned NumVals = getNumValNums(); 448 unsigned NumNewVals = NewVNInfo.size(); 449 for (unsigned i = 0; i != NumVals; ++i) { 450 unsigned LHSValID = LHSValNoAssignments[i]; 451 if (i != LHSValID || 452 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 453 MustMapCurValNos = true; 454 break; 455 } 456 } 457 458 // If we have to apply a mapping to our base range assignment, rewrite it now. 459 if (MustMapCurValNos && !empty()) { 460 // Map the first live range. 461 462 iterator OutIt = begin(); 463 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 464 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 465 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 466 assert(nextValNo && "Huh?"); 467 468 // If this live range has the same value # as its immediate predecessor, 469 // and if they are neighbors, remove one Segment. This happens when we 470 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 471 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 472 OutIt->end = I->end; 473 } else { 474 // Didn't merge. Move OutIt to the next segment, 475 ++OutIt; 476 OutIt->valno = nextValNo; 477 if (OutIt != I) { 478 OutIt->start = I->start; 479 OutIt->end = I->end; 480 } 481 } 482 } 483 // If we merge some segments, chop off the end. 484 ++OutIt; 485 segments.erase(OutIt, end()); 486 } 487 488 // Rewrite Other values before changing the VNInfo ids. 489 // This can leave Other in an invalid state because we're not coalescing 490 // touching segments that now have identical values. That's OK since Other is 491 // not supposed to be valid after calling join(); 492 for (Segment &S : Other.segments) 493 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 494 495 // Update val# info. Renumber them and make sure they all belong to this 496 // LiveRange now. Also remove dead val#'s. 497 unsigned NumValNos = 0; 498 for (unsigned i = 0; i < NumNewVals; ++i) { 499 VNInfo *VNI = NewVNInfo[i]; 500 if (VNI) { 501 if (NumValNos >= NumVals) 502 valnos.push_back(VNI); 503 else 504 valnos[NumValNos] = VNI; 505 VNI->id = NumValNos++; // Renumber val#. 506 } 507 } 508 if (NumNewVals < NumVals) 509 valnos.resize(NumNewVals); // shrinkify 510 511 // Okay, now insert the RHS live segments into the LHS. 512 LiveRangeUpdater Updater(this); 513 for (Segment &S : Other.segments) 514 Updater.add(S); 515 } 516 517 /// Merge all of the segments in RHS into this live range as the specified 518 /// value number. The segments in RHS are allowed to overlap with segments in 519 /// the current range, but only if the overlapping segments have the 520 /// specified value number. 521 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 522 VNInfo *LHSValNo) { 523 LiveRangeUpdater Updater(this); 524 for (const Segment &S : RHS.segments) 525 Updater.add(S.start, S.end, LHSValNo); 526 } 527 528 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 529 /// in RHS into this live range as the specified value number. 530 /// The segments in RHS are allowed to overlap with segments in the 531 /// current range, it will replace the value numbers of the overlaped 532 /// segments with the specified value number. 533 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 534 const VNInfo *RHSValNo, 535 VNInfo *LHSValNo) { 536 LiveRangeUpdater Updater(this); 537 for (const Segment &S : RHS.segments) 538 if (S.valno == RHSValNo) 539 Updater.add(S.start, S.end, LHSValNo); 540 } 541 542 /// MergeValueNumberInto - This method is called when two value nubmers 543 /// are found to be equivalent. This eliminates V1, replacing all 544 /// segments with the V1 value number with the V2 value number. This can 545 /// cause merging of V1/V2 values numbers and compaction of the value space. 546 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 547 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 548 549 // This code actually merges the (numerically) larger value number into the 550 // smaller value number, which is likely to allow us to compactify the value 551 // space. The only thing we have to be careful of is to preserve the 552 // instruction that defines the result value. 553 554 // Make sure V2 is smaller than V1. 555 if (V1->id < V2->id) { 556 V1->copyFrom(*V2); 557 std::swap(V1, V2); 558 } 559 560 // Merge V1 segments into V2. 561 for (iterator I = begin(); I != end(); ) { 562 iterator S = I++; 563 if (S->valno != V1) continue; // Not a V1 Segment. 564 565 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 566 // range, extend it. 567 if (S != begin()) { 568 iterator Prev = S-1; 569 if (Prev->valno == V2 && Prev->end == S->start) { 570 Prev->end = S->end; 571 572 // Erase this live-range. 573 segments.erase(S); 574 I = Prev+1; 575 S = Prev; 576 } 577 } 578 579 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 580 // Ensure that it is a V2 live-range. 581 S->valno = V2; 582 583 // If we can merge it into later V2 segments, do so now. We ignore any 584 // following V1 segments, as they will be merged in subsequent iterations 585 // of the loop. 586 if (I != end()) { 587 if (I->start == S->end && I->valno == V2) { 588 S->end = I->end; 589 segments.erase(I); 590 I = S+1; 591 } 592 } 593 } 594 595 // Now that V1 is dead, remove it. 596 markValNoForDeletion(V1); 597 598 return V2; 599 } 600 601 void LiveInterval::removeEmptySubRanges() { 602 SubRange **NextPtr = &SubRanges; 603 SubRange *I = *NextPtr; 604 while (I != nullptr) { 605 if (!I->empty()) { 606 NextPtr = &I->Next; 607 I = *NextPtr; 608 continue; 609 } 610 // Skip empty subranges until we find the first nonempty one. 611 do { 612 I = I->Next; 613 } while (I != nullptr && I->empty()); 614 *NextPtr = I; 615 } 616 } 617 618 /// Helper function for constructMainRangeFromSubranges(): Search the CFG 619 /// backwards until we find a place covered by a LiveRange segment that actually 620 /// has a valno set. 621 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR, 622 const MachineBasicBlock *MBB, 623 SmallPtrSetImpl<const MachineBasicBlock*> &Visited) { 624 // We start the search at the end of MBB. 625 SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB); 626 // In our use case we can't live the area covered by the live segments without 627 // finding an actual VNI def. 628 LiveRange::iterator I = LR.find(EndIdx.getPrevSlot()); 629 assert(I != LR.end()); 630 LiveRange::Segment &S = *I; 631 if (S.valno != nullptr) 632 return S.valno; 633 634 VNInfo *VNI = nullptr; 635 // Continue at predecessors (we could even go to idom with domtree available). 636 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 637 // Avoid going in circles. 638 if (Visited.count(Pred)) 639 continue; 640 Visited.insert(Pred); 641 642 VNI = searchForVNI(Indexes, LR, Pred, Visited); 643 if (VNI != nullptr) { 644 S.valno = VNI; 645 break; 646 } 647 } 648 649 return VNI; 650 } 651 652 void LiveInterval::constructMainRangeFromSubranges( 653 const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) { 654 // The basic observations on which this algorithm is based: 655 // - Each Def/ValNo in a subrange must have a corresponding def on the main 656 // range, but not further defs/valnos are necessary. 657 // - If any of the subranges is live at a point the main liverange has to be 658 // live too, conversily if no subrange is live the main range mustn't be 659 // live either. 660 // We do this by scannig through all the subranges simultaneously creating new 661 // segments in the main range as segments start/ends come up in the subranges. 662 assert(hasSubRanges()); 663 assert(segments.empty() && valnos.empty() && "expected empty main range"); 664 665 // Collect subrange, iterator pairs for the walk and determine first and last 666 // SlotIndex involved. 667 SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs; 668 SlotIndex First; 669 SlotIndex Last; 670 for (const SubRange &SR : subranges()) { 671 if (SR.empty()) 672 continue; 673 SRs.push_back(std::make_pair(&SR, SR.begin())); 674 if (!First.isValid() || SR.segments.front().start < First) 675 First = SR.segments.front().start; 676 if (!Last.isValid() || SR.segments.back().end > Last) 677 Last = SR.segments.back().end; 678 } 679 680 // Walk over all subranges simultaneously. 681 Segment CurrentSegment; 682 bool ConstructingSegment = false; 683 bool NeedVNIFixup = false; 684 unsigned ActiveMask = 0; 685 SlotIndex Pos = First; 686 while (true) { 687 SlotIndex NextPos = Last; 688 enum { 689 NOTHING, 690 BEGIN_SEGMENT, 691 END_SEGMENT, 692 } Event = NOTHING; 693 unsigned EventMask = 0; 694 bool IsDef = false; 695 // Find the next begin or end of a subrange segment. Combine masks if we 696 // have multiple begins/ends at the same position. Ends take precedence over 697 // Begins. 698 for (auto &SRP : SRs) { 699 const SubRange &SR = *SRP.first; 700 const_iterator &I = SRP.second; 701 while (I != SR.end() && 702 (I->end < Pos || 703 (I->end == Pos && (ActiveMask & SR.LaneMask) == 0))) 704 ++I; 705 if (I == SR.end()) 706 continue; 707 if ((ActiveMask & SR.LaneMask) == 0 && 708 Pos <= I->start && I->start <= NextPos) { 709 // Merge multiple begins at the same position 710 if (I->start == NextPos && Event == BEGIN_SEGMENT) { 711 EventMask |= SR.LaneMask; 712 IsDef |= I->valno->def == I->start; 713 } else if (I->start < NextPos || Event != END_SEGMENT) { 714 Event = BEGIN_SEGMENT; 715 NextPos = I->start; 716 EventMask = SR.LaneMask; 717 IsDef = I->valno->def == I->start; 718 } 719 } 720 if ((ActiveMask & SR.LaneMask) != 0 && 721 Pos <= I->end && I->end <= NextPos) { 722 // Merge multiple ends at the same position. 723 if (I->end == NextPos && Event == END_SEGMENT) 724 EventMask |= SR.LaneMask; 725 else { 726 Event = END_SEGMENT; 727 NextPos = I->end; 728 EventMask = SR.LaneMask; 729 } 730 } 731 } 732 733 // Advance scan position. 734 Pos = NextPos; 735 if (Event == BEGIN_SEGMENT) { 736 if (ConstructingSegment && IsDef) { 737 // Finish previous segment because we have to start a new one. 738 CurrentSegment.end = Pos; 739 append(CurrentSegment); 740 ConstructingSegment = false; 741 } 742 743 // Start a new segment if necessary. 744 if (!ConstructingSegment) { 745 // Determine value number for the segment. 746 VNInfo *VNI; 747 if (IsDef) { 748 VNI = getNextValue(Pos, VNIAllocator); 749 } else { 750 // We have to reuse an existing value number, if we are lucky 751 // then we already passed one of the predecessor blocks and determined 752 // its value number (with blocks in reverse postorder this would be 753 // always true but we have no such guarantee). 754 assert(Pos.isBlock()); 755 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos); 756 // See if any of the predecessor blocks has a lower number and a VNI 757 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 758 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 759 VNI = getVNInfoBefore(PredEnd); 760 if (VNI != nullptr) 761 break; 762 } 763 // Def will come later: We have to do an extra fixup pass. 764 if (VNI == nullptr) 765 NeedVNIFixup = true; 766 } 767 768 CurrentSegment.start = Pos; 769 CurrentSegment.valno = VNI; 770 ConstructingSegment = true; 771 } 772 ActiveMask |= EventMask; 773 } else if (Event == END_SEGMENT) { 774 assert(ConstructingSegment); 775 // Finish segment if no lane is active anymore. 776 ActiveMask &= ~EventMask; 777 if (ActiveMask == 0) { 778 CurrentSegment.end = Pos; 779 append(CurrentSegment); 780 ConstructingSegment = false; 781 } 782 } else { 783 // We reached the end of the last subranges and can stop. 784 assert(Event == NOTHING); 785 break; 786 } 787 } 788 789 // We might not be able to assign new valnos for all segments if the basic 790 // block containing the definition comes after a segment using the valno. 791 // Do a fixup pass for this uncommon case. 792 if (NeedVNIFixup) { 793 SmallPtrSet<const MachineBasicBlock*, 5> Visited; 794 for (Segment &S : segments) { 795 if (S.valno != nullptr) 796 continue; 797 // This can only happen at the begin of a basic block. 798 assert(S.start.isBlock()); 799 800 Visited.clear(); 801 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start); 802 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 803 VNInfo *VNI = searchForVNI(Indexes, *this, Pred, Visited); 804 if (VNI != nullptr) { 805 S.valno = VNI; 806 break; 807 } 808 } 809 assert(S.valno != nullptr); 810 } 811 } 812 assert(ActiveMask == 0 && !ConstructingSegment); 813 verify(); 814 } 815 816 unsigned LiveInterval::getSize() const { 817 unsigned Sum = 0; 818 for (const Segment &S : segments) 819 Sum += S.start.distance(S.end); 820 return Sum; 821 } 822 823 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 824 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 825 } 826 827 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 828 void LiveRange::Segment::dump() const { 829 dbgs() << *this << "\n"; 830 } 831 #endif 832 833 void LiveRange::print(raw_ostream &OS) const { 834 if (empty()) 835 OS << "EMPTY"; 836 else { 837 for (const Segment &S : segments) { 838 OS << S; 839 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 840 } 841 } 842 843 // Print value number info. 844 if (getNumValNums()) { 845 OS << " "; 846 unsigned vnum = 0; 847 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 848 ++i, ++vnum) { 849 const VNInfo *vni = *i; 850 if (vnum) OS << " "; 851 OS << vnum << "@"; 852 if (vni->isUnused()) { 853 OS << "x"; 854 } else { 855 OS << vni->def; 856 if (vni->isPHIDef()) 857 OS << "-phi"; 858 } 859 } 860 } 861 } 862 863 void LiveInterval::print(raw_ostream &OS) const { 864 OS << PrintReg(reg) << ' '; 865 super::print(OS); 866 // Print subranges 867 for (const SubRange &SR : subranges()) { 868 OS << format(" L%04X ", SR.LaneMask) << SR; 869 } 870 } 871 872 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 873 void LiveRange::dump() const { 874 dbgs() << *this << "\n"; 875 } 876 877 void LiveInterval::dump() const { 878 dbgs() << *this << "\n"; 879 } 880 #endif 881 882 #ifndef NDEBUG 883 void LiveRange::verify() const { 884 for (const_iterator I = begin(), E = end(); I != E; ++I) { 885 assert(I->start.isValid()); 886 assert(I->end.isValid()); 887 assert(I->start < I->end); 888 assert(I->valno != nullptr); 889 assert(I->valno->id < valnos.size()); 890 assert(I->valno == valnos[I->valno->id]); 891 if (std::next(I) != E) { 892 assert(I->end <= std::next(I)->start); 893 if (I->end == std::next(I)->start) 894 assert(I->valno != std::next(I)->valno); 895 } 896 } 897 } 898 899 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 900 super::verify(); 901 902 // Make sure SubRanges are fine and LaneMasks are disjunct. 903 unsigned Mask = 0; 904 unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; 905 for (const SubRange &SR : subranges()) { 906 // Subrange lanemask should be disjunct to any previous subrange masks. 907 assert((Mask & SR.LaneMask) == 0); 908 Mask |= SR.LaneMask; 909 910 // subrange mask should not contained in maximum lane mask for the vreg. 911 assert((Mask & ~MaxMask) == 0); 912 913 SR.verify(); 914 // Main liverange should cover subrange. 915 assert(covers(SR)); 916 } 917 } 918 #endif 919 920 921 //===----------------------------------------------------------------------===// 922 // LiveRangeUpdater class 923 //===----------------------------------------------------------------------===// 924 // 925 // The LiveRangeUpdater class always maintains these invariants: 926 // 927 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 928 // This is the initial state, and the state created by flush(). 929 // In this state, isDirty() returns false. 930 // 931 // Otherwise, segments are kept in three separate areas: 932 // 933 // 1. [begin; WriteI) at the front of LR. 934 // 2. [ReadI; end) at the back of LR. 935 // 3. Spills. 936 // 937 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 938 // - Segments in all three areas are fully ordered and coalesced. 939 // - Segments in area 1 precede and can't coalesce with segments in area 2. 940 // - Segments in Spills precede and can't coalesce with segments in area 2. 941 // - No coalescing is possible between segments in Spills and segments in area 942 // 1, and there are no overlapping segments. 943 // 944 // The segments in Spills are not ordered with respect to the segments in area 945 // 1. They need to be merged. 946 // 947 // When they exist, Spills.back().start <= LastStart, 948 // and WriteI[-1].start <= LastStart. 949 950 void LiveRangeUpdater::print(raw_ostream &OS) const { 951 if (!isDirty()) { 952 if (LR) 953 OS << "Clean updater: " << *LR << '\n'; 954 else 955 OS << "Null updater.\n"; 956 return; 957 } 958 assert(LR && "Can't have null LR in dirty updater."); 959 OS << " updater with gap = " << (ReadI - WriteI) 960 << ", last start = " << LastStart 961 << ":\n Area 1:"; 962 for (const auto &S : make_range(LR->begin(), WriteI)) 963 OS << ' ' << S; 964 OS << "\n Spills:"; 965 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 966 OS << ' ' << Spills[I]; 967 OS << "\n Area 2:"; 968 for (const auto &S : make_range(ReadI, LR->end())) 969 OS << ' ' << S; 970 OS << '\n'; 971 } 972 973 void LiveRangeUpdater::dump() const 974 { 975 print(errs()); 976 } 977 978 // Determine if A and B should be coalesced. 979 static inline bool coalescable(const LiveRange::Segment &A, 980 const LiveRange::Segment &B) { 981 assert(A.start <= B.start && "Unordered live segments."); 982 if (A.end == B.start) 983 return A.valno == B.valno; 984 if (A.end < B.start) 985 return false; 986 assert(A.valno == B.valno && "Cannot overlap different values"); 987 return true; 988 } 989 990 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 991 assert(LR && "Cannot add to a null destination"); 992 993 // Flush the state if Start moves backwards. 994 if (!LastStart.isValid() || LastStart > Seg.start) { 995 if (isDirty()) 996 flush(); 997 // This brings us to an uninitialized state. Reinitialize. 998 assert(Spills.empty() && "Leftover spilled segments"); 999 WriteI = ReadI = LR->begin(); 1000 } 1001 1002 // Remember start for next time. 1003 LastStart = Seg.start; 1004 1005 // Advance ReadI until it ends after Seg.start. 1006 LiveRange::iterator E = LR->end(); 1007 if (ReadI != E && ReadI->end <= Seg.start) { 1008 // First try to close the gap between WriteI and ReadI with spills. 1009 if (ReadI != WriteI) 1010 mergeSpills(); 1011 // Then advance ReadI. 1012 if (ReadI == WriteI) 1013 ReadI = WriteI = LR->find(Seg.start); 1014 else 1015 while (ReadI != E && ReadI->end <= Seg.start) 1016 *WriteI++ = *ReadI++; 1017 } 1018 1019 assert(ReadI == E || ReadI->end > Seg.start); 1020 1021 // Check if the ReadI segment begins early. 1022 if (ReadI != E && ReadI->start <= Seg.start) { 1023 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1024 // Bail if Seg is completely contained in ReadI. 1025 if (ReadI->end >= Seg.end) 1026 return; 1027 // Coalesce into Seg. 1028 Seg.start = ReadI->start; 1029 ++ReadI; 1030 } 1031 1032 // Coalesce as much as possible from ReadI into Seg. 1033 while (ReadI != E && coalescable(Seg, *ReadI)) { 1034 Seg.end = std::max(Seg.end, ReadI->end); 1035 ++ReadI; 1036 } 1037 1038 // Try coalescing Spills.back() into Seg. 1039 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1040 Seg.start = Spills.back().start; 1041 Seg.end = std::max(Spills.back().end, Seg.end); 1042 Spills.pop_back(); 1043 } 1044 1045 // Try coalescing Seg into WriteI[-1]. 1046 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1047 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1048 return; 1049 } 1050 1051 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1052 if (WriteI != ReadI) { 1053 *WriteI++ = Seg; 1054 return; 1055 } 1056 1057 // Finally, append to LR or Spills. 1058 if (WriteI == E) { 1059 LR->segments.push_back(Seg); 1060 WriteI = ReadI = LR->end(); 1061 } else 1062 Spills.push_back(Seg); 1063 } 1064 1065 // Merge as many spilled segments as possible into the gap between WriteI 1066 // and ReadI. Advance WriteI to reflect the inserted instructions. 1067 void LiveRangeUpdater::mergeSpills() { 1068 // Perform a backwards merge of Spills and [SpillI;WriteI). 1069 size_t GapSize = ReadI - WriteI; 1070 size_t NumMoved = std::min(Spills.size(), GapSize); 1071 LiveRange::iterator Src = WriteI; 1072 LiveRange::iterator Dst = Src + NumMoved; 1073 LiveRange::iterator SpillSrc = Spills.end(); 1074 LiveRange::iterator B = LR->begin(); 1075 1076 // This is the new WriteI position after merging spills. 1077 WriteI = Dst; 1078 1079 // Now merge Src and Spills backwards. 1080 while (Src != Dst) { 1081 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1082 *--Dst = *--Src; 1083 else 1084 *--Dst = *--SpillSrc; 1085 } 1086 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1087 Spills.erase(SpillSrc, Spills.end()); 1088 } 1089 1090 void LiveRangeUpdater::flush() { 1091 if (!isDirty()) 1092 return; 1093 // Clear the dirty state. 1094 LastStart = SlotIndex(); 1095 1096 assert(LR && "Cannot add to a null destination"); 1097 1098 // Nothing to merge? 1099 if (Spills.empty()) { 1100 LR->segments.erase(WriteI, ReadI); 1101 LR->verify(); 1102 return; 1103 } 1104 1105 // Resize the WriteI - ReadI gap to match Spills. 1106 size_t GapSize = ReadI - WriteI; 1107 if (GapSize < Spills.size()) { 1108 // The gap is too small. Make some room. 1109 size_t WritePos = WriteI - LR->begin(); 1110 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1111 // This also invalidated ReadI, but it is recomputed below. 1112 WriteI = LR->begin() + WritePos; 1113 } else { 1114 // Shrink the gap if necessary. 1115 LR->segments.erase(WriteI + Spills.size(), ReadI); 1116 } 1117 ReadI = WriteI + Spills.size(); 1118 mergeSpills(); 1119 LR->verify(); 1120 } 1121 1122 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 1123 // Create initial equivalence classes. 1124 EqClass.clear(); 1125 EqClass.grow(LI->getNumValNums()); 1126 1127 const VNInfo *used = nullptr, *unused = nullptr; 1128 1129 // Determine connections. 1130 for (const VNInfo *VNI : LI->valnos) { 1131 // Group all unused values into one class. 1132 if (VNI->isUnused()) { 1133 if (unused) 1134 EqClass.join(unused->id, VNI->id); 1135 unused = VNI; 1136 continue; 1137 } 1138 used = VNI; 1139 if (VNI->isPHIDef()) { 1140 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1141 assert(MBB && "Phi-def has no defining MBB"); 1142 // Connect to values live out of predecessors. 1143 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 1144 PE = MBB->pred_end(); PI != PE; ++PI) 1145 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 1146 EqClass.join(VNI->id, PVNI->id); 1147 } else { 1148 // Normal value defined by an instruction. Check for two-addr redef. 1149 // FIXME: This could be coincidental. Should we really check for a tied 1150 // operand constraint? 1151 // Note that VNI->def may be a use slot for an early clobber def. 1152 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 1153 EqClass.join(VNI->id, UVNI->id); 1154 } 1155 } 1156 1157 // Lump all the unused values in with the last used value. 1158 if (used && unused) 1159 EqClass.join(used->id, unused->id); 1160 1161 EqClass.compress(); 1162 return EqClass.getNumClasses(); 1163 } 1164 1165 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 1166 MachineRegisterInfo &MRI) { 1167 assert(LIV[0] && "LIV[0] must be set"); 1168 LiveInterval &LI = *LIV[0]; 1169 1170 // Rewrite instructions. 1171 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 1172 RE = MRI.reg_end(); RI != RE;) { 1173 MachineOperand &MO = *RI; 1174 MachineInstr *MI = RI->getParent(); 1175 ++RI; 1176 // DBG_VALUE instructions don't have slot indexes, so get the index of the 1177 // instruction before them. 1178 // Normally, DBG_VALUE instructions are removed before this function is 1179 // called, but it is not a requirement. 1180 SlotIndex Idx; 1181 if (MI->isDebugValue()) 1182 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 1183 else 1184 Idx = LIS.getInstructionIndex(MI); 1185 LiveQueryResult LRQ = LI.Query(Idx); 1186 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1187 // In the case of an <undef> use that isn't tied to any def, VNI will be 1188 // NULL. If the use is tied to a def, VNI will be the defined value. 1189 if (!VNI) 1190 continue; 1191 MO.setReg(LIV[getEqClass(VNI)]->reg); 1192 } 1193 1194 // Move runs to new intervals. 1195 LiveInterval::iterator J = LI.begin(), E = LI.end(); 1196 while (J != E && EqClass[J->valno->id] == 0) 1197 ++J; 1198 for (LiveInterval::iterator I = J; I != E; ++I) { 1199 if (unsigned eq = EqClass[I->valno->id]) { 1200 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 1201 "New intervals should be empty"); 1202 LIV[eq]->segments.push_back(*I); 1203 } else 1204 *J++ = *I; 1205 } 1206 // TODO: do not cheat anymore by simply cleaning all subranges 1207 LI.clearSubRanges(); 1208 LI.segments.erase(J, E); 1209 1210 // Transfer VNInfos to their new owners and renumber them. 1211 unsigned j = 0, e = LI.getNumValNums(); 1212 while (j != e && EqClass[j] == 0) 1213 ++j; 1214 for (unsigned i = j; i != e; ++i) { 1215 VNInfo *VNI = LI.getValNumInfo(i); 1216 if (unsigned eq = EqClass[i]) { 1217 VNI->id = LIV[eq]->getNumValNums(); 1218 LIV[eq]->valnos.push_back(VNI); 1219 } else { 1220 VNI->id = j; 1221 LI.valnos[j++] = VNI; 1222 } 1223 } 1224 LI.valnos.resize(j); 1225 } 1226