1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveRange and LiveInterval classes.  Given some
10 // numbering of each the machine instructions an interval [i, j) is said to be a
11 // live range for register v if there is no instruction with number j' >= j
12 // such that v is live at j' and there is no instruction with number i' < i such
13 // that v is live at i'. In this implementation ranges can have holes,
14 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
15 // individual segment is represented as an instance of LiveRange::Segment,
16 // and the whole range is represented as an instance of LiveRange.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "LiveRangeUtils.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SlotIndexes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/Config/llvm-config.h"
36 #include "llvm/MC/LaneBitmask.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <iterator>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 namespace {
49 
50 //===----------------------------------------------------------------------===//
51 // Implementation of various methods necessary for calculation of live ranges.
52 // The implementation of the methods abstracts from the concrete type of the
53 // segment collection.
54 //
55 // Implementation of the class follows the Template design pattern. The base
56 // class contains generic algorithms that call collection-specific methods,
57 // which are provided in concrete subclasses. In order to avoid virtual calls
58 // these methods are provided by means of C++ template instantiation.
59 // The base class calls the methods of the subclass through method impl(),
60 // which casts 'this' pointer to the type of the subclass.
61 //
62 //===----------------------------------------------------------------------===//
63 
64 template <typename ImplT, typename IteratorT, typename CollectionT>
65 class CalcLiveRangeUtilBase {
66 protected:
67   LiveRange *LR;
68 
69 protected:
70   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
71 
72 public:
73   using Segment = LiveRange::Segment;
74   using iterator = IteratorT;
75 
76   /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
77   /// value defined at @p Def.
78   /// If @p ForVNI is null, and there is no value defined at @p Def, a new
79   /// value will be allocated using @p VNInfoAllocator.
80   /// If @p ForVNI is null, the return value is the value defined at @p Def,
81   /// either a pre-existing one, or the one newly created.
82   /// If @p ForVNI is not null, then @p Def should be the location where
83   /// @p ForVNI is defined. If the range does not have a value defined at
84   /// @p Def, the value @p ForVNI will be used instead of allocating a new
85   /// one. If the range already has a value defined at @p Def, it must be
86   /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
87   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
88                         VNInfo *ForVNI) {
89     assert(!Def.isDead() && "Cannot define a value at the dead slot");
90     assert((!ForVNI || ForVNI->def == Def) &&
91            "If ForVNI is specified, it must match Def");
92     iterator I = impl().find(Def);
93     if (I == segments().end()) {
94       VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
95       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
96       return VNI;
97     }
98 
99     Segment *S = segmentAt(I);
100     if (SlotIndex::isSameInstr(Def, S->start)) {
101       assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
102       assert(S->valno->def == S->start && "Inconsistent existing value def");
103 
104       // It is possible to have both normal and early-clobber defs of the same
105       // register on an instruction. It doesn't make a lot of sense, but it is
106       // possible to specify in inline assembly.
107       //
108       // Just convert everything to early-clobber.
109       Def = std::min(Def, S->start);
110       if (Def != S->start)
111         S->start = S->valno->def = Def;
112       return S->valno;
113     }
114     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
115     VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
116     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
117     return VNI;
118   }
119 
120   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
121     if (segments().empty())
122       return nullptr;
123     iterator I =
124       impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
125     if (I == segments().begin())
126       return nullptr;
127     --I;
128     if (I->end <= StartIdx)
129       return nullptr;
130     if (I->end < Use)
131       extendSegmentEndTo(I, Use);
132     return I->valno;
133   }
134 
135   std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
136       SlotIndex StartIdx, SlotIndex Use) {
137     if (segments().empty())
138       return std::make_pair(nullptr, false);
139     SlotIndex BeforeUse = Use.getPrevSlot();
140     iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
141     if (I == segments().begin())
142       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
143     --I;
144     if (I->end <= StartIdx)
145       return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
146     if (I->end < Use) {
147       if (LR->isUndefIn(Undefs, I->end, BeforeUse))
148         return std::make_pair(nullptr, true);
149       extendSegmentEndTo(I, Use);
150     }
151     return std::make_pair(I->valno, false);
152   }
153 
154   /// This method is used when we want to extend the segment specified
155   /// by I to end at the specified endpoint. To do this, we should
156   /// merge and eliminate all segments that this will overlap
157   /// with. The iterator is not invalidated.
158   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
159     assert(I != segments().end() && "Not a valid segment!");
160     Segment *S = segmentAt(I);
161     VNInfo *ValNo = I->valno;
162 
163     // Search for the first segment that we can't merge with.
164     iterator MergeTo = std::next(I);
165     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
166       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
167 
168     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
169     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
170 
171     // If the newly formed segment now touches the segment after it and if they
172     // have the same value number, merge the two segments into one segment.
173     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
174         MergeTo->valno == ValNo) {
175       S->end = MergeTo->end;
176       ++MergeTo;
177     }
178 
179     // Erase any dead segments.
180     segments().erase(std::next(I), MergeTo);
181   }
182 
183   /// This method is used when we want to extend the segment specified
184   /// by I to start at the specified endpoint.  To do this, we should
185   /// merge and eliminate all segments that this will overlap with.
186   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
187     assert(I != segments().end() && "Not a valid segment!");
188     Segment *S = segmentAt(I);
189     VNInfo *ValNo = I->valno;
190 
191     // Search for the first segment that we can't merge with.
192     iterator MergeTo = I;
193     do {
194       if (MergeTo == segments().begin()) {
195         S->start = NewStart;
196         segments().erase(MergeTo, I);
197         return I;
198       }
199       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
200       --MergeTo;
201     } while (NewStart <= MergeTo->start);
202 
203     // If we start in the middle of another segment, just delete a range and
204     // extend that segment.
205     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
206       segmentAt(MergeTo)->end = S->end;
207     } else {
208       // Otherwise, extend the segment right after.
209       ++MergeTo;
210       Segment *MergeToSeg = segmentAt(MergeTo);
211       MergeToSeg->start = NewStart;
212       MergeToSeg->end = S->end;
213     }
214 
215     segments().erase(std::next(MergeTo), std::next(I));
216     return MergeTo;
217   }
218 
219   iterator addSegment(Segment S) {
220     SlotIndex Start = S.start, End = S.end;
221     iterator I = impl().findInsertPos(S);
222 
223     // If the inserted segment starts in the middle or right at the end of
224     // another segment, just extend that segment to contain the segment of S.
225     if (I != segments().begin()) {
226       iterator B = std::prev(I);
227       if (S.valno == B->valno) {
228         if (B->start <= Start && B->end >= Start) {
229           extendSegmentEndTo(B, End);
230           return B;
231         }
232       } else {
233         // Check to make sure that we are not overlapping two live segments with
234         // different valno's.
235         assert(B->end <= Start &&
236                "Cannot overlap two segments with differing ValID's"
237                " (did you def the same reg twice in a MachineInstr?)");
238       }
239     }
240 
241     // Otherwise, if this segment ends in the middle of, or right next
242     // to, another segment, merge it into that segment.
243     if (I != segments().end()) {
244       if (S.valno == I->valno) {
245         if (I->start <= End) {
246           I = extendSegmentStartTo(I, Start);
247 
248           // If S is a complete superset of a segment, we may need to grow its
249           // endpoint as well.
250           if (End > I->end)
251             extendSegmentEndTo(I, End);
252           return I;
253         }
254       } else {
255         // Check to make sure that we are not overlapping two live segments with
256         // different valno's.
257         assert(I->start >= End &&
258                "Cannot overlap two segments with differing ValID's");
259       }
260     }
261 
262     // Otherwise, this is just a new segment that doesn't interact with
263     // anything.
264     // Insert it.
265     return segments().insert(I, S);
266   }
267 
268 private:
269   ImplT &impl() { return *static_cast<ImplT *>(this); }
270 
271   CollectionT &segments() { return impl().segmentsColl(); }
272 
273   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
274 };
275 
276 //===----------------------------------------------------------------------===//
277 //   Instantiation of the methods for calculation of live ranges
278 //   based on a segment vector.
279 //===----------------------------------------------------------------------===//
280 
281 class CalcLiveRangeUtilVector;
282 using CalcLiveRangeUtilVectorBase =
283     CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
284                           LiveRange::Segments>;
285 
286 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
287 public:
288   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
289 
290 private:
291   friend CalcLiveRangeUtilVectorBase;
292 
293   LiveRange::Segments &segmentsColl() { return LR->segments; }
294 
295   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
296 
297   iterator find(SlotIndex Pos) { return LR->find(Pos); }
298 
299   iterator findInsertPos(Segment S) {
300     return std::upper_bound(LR->begin(), LR->end(), S.start);
301   }
302 };
303 
304 //===----------------------------------------------------------------------===//
305 //   Instantiation of the methods for calculation of live ranges
306 //   based on a segment set.
307 //===----------------------------------------------------------------------===//
308 
309 class CalcLiveRangeUtilSet;
310 using CalcLiveRangeUtilSetBase =
311     CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
312                           LiveRange::SegmentSet>;
313 
314 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
315 public:
316   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
317 
318 private:
319   friend CalcLiveRangeUtilSetBase;
320 
321   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
322 
323   void insertAtEnd(const Segment &S) {
324     LR->segmentSet->insert(LR->segmentSet->end(), S);
325   }
326 
327   iterator find(SlotIndex Pos) {
328     iterator I =
329         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
330     if (I == LR->segmentSet->begin())
331       return I;
332     iterator PrevI = std::prev(I);
333     if (Pos < (*PrevI).end)
334       return PrevI;
335     return I;
336   }
337 
338   iterator findInsertPos(Segment S) {
339     iterator I = LR->segmentSet->upper_bound(S);
340     if (I != LR->segmentSet->end() && !(S.start < *I))
341       ++I;
342     return I;
343   }
344 };
345 
346 } // end anonymous namespace
347 
348 //===----------------------------------------------------------------------===//
349 //   LiveRange methods
350 //===----------------------------------------------------------------------===//
351 
352 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
353   // This algorithm is basically std::upper_bound.
354   // Unfortunately, std::upper_bound cannot be used with mixed types until we
355   // adopt C++0x. Many libraries can do it, but not all.
356   if (empty() || Pos >= endIndex())
357     return end();
358   iterator I = begin();
359   size_t Len = size();
360   do {
361     size_t Mid = Len >> 1;
362     if (Pos < I[Mid].end) {
363       Len = Mid;
364     } else {
365       I += Mid + 1;
366       Len -= Mid + 1;
367     }
368   } while (Len);
369   return I;
370 }
371 
372 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
373   // Use the segment set, if it is available.
374   if (segmentSet != nullptr)
375     return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
376   // Otherwise use the segment vector.
377   return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
378 }
379 
380 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
381   // Use the segment set, if it is available.
382   if (segmentSet != nullptr)
383     return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
384   // Otherwise use the segment vector.
385   return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
386 }
387 
388 // overlaps - Return true if the intersection of the two live ranges is
389 // not empty.
390 //
391 // An example for overlaps():
392 //
393 // 0: A = ...
394 // 4: B = ...
395 // 8: C = A + B ;; last use of A
396 //
397 // The live ranges should look like:
398 //
399 // A = [3, 11)
400 // B = [7, x)
401 // C = [11, y)
402 //
403 // A->overlaps(C) should return false since we want to be able to join
404 // A and C.
405 //
406 bool LiveRange::overlapsFrom(const LiveRange& other,
407                              const_iterator StartPos) const {
408   assert(!empty() && "empty range");
409   const_iterator i = begin();
410   const_iterator ie = end();
411   const_iterator j = StartPos;
412   const_iterator je = other.end();
413 
414   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
415          StartPos != other.end() && "Bogus start position hint!");
416 
417   if (i->start < j->start) {
418     i = std::upper_bound(i, ie, j->start);
419     if (i != begin()) --i;
420   } else if (j->start < i->start) {
421     ++StartPos;
422     if (StartPos != other.end() && StartPos->start <= i->start) {
423       assert(StartPos < other.end() && i < end());
424       j = std::upper_bound(j, je, i->start);
425       if (j != other.begin()) --j;
426     }
427   } else {
428     return true;
429   }
430 
431   if (j == je) return false;
432 
433   while (i != ie) {
434     if (i->start > j->start) {
435       std::swap(i, j);
436       std::swap(ie, je);
437     }
438 
439     if (i->end > j->start)
440       return true;
441     ++i;
442   }
443 
444   return false;
445 }
446 
447 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
448                          const SlotIndexes &Indexes) const {
449   assert(!empty() && "empty range");
450   if (Other.empty())
451     return false;
452 
453   // Use binary searches to find initial positions.
454   const_iterator I = find(Other.beginIndex());
455   const_iterator IE = end();
456   if (I == IE)
457     return false;
458   const_iterator J = Other.find(I->start);
459   const_iterator JE = Other.end();
460   if (J == JE)
461     return false;
462 
463   while (true) {
464     // J has just been advanced to satisfy:
465     assert(J->end >= I->start);
466     // Check for an overlap.
467     if (J->start < I->end) {
468       // I and J are overlapping. Find the later start.
469       SlotIndex Def = std::max(I->start, J->start);
470       // Allow the overlap if Def is a coalescable copy.
471       if (Def.isBlock() ||
472           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
473         return true;
474     }
475     // Advance the iterator that ends first to check for more overlaps.
476     if (J->end > I->end) {
477       std::swap(I, J);
478       std::swap(IE, JE);
479     }
480     // Advance J until J->end >= I->start.
481     do
482       if (++J == JE)
483         return false;
484     while (J->end < I->start);
485   }
486 }
487 
488 /// overlaps - Return true if the live range overlaps an interval specified
489 /// by [Start, End).
490 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
491   assert(Start < End && "Invalid range");
492   const_iterator I = std::lower_bound(begin(), end(), End);
493   return I != begin() && (--I)->end > Start;
494 }
495 
496 bool LiveRange::covers(const LiveRange &Other) const {
497   if (empty())
498     return Other.empty();
499 
500   const_iterator I = begin();
501   for (const Segment &O : Other.segments) {
502     I = advanceTo(I, O.start);
503     if (I == end() || I->start > O.start)
504       return false;
505 
506     // Check adjacent live segments and see if we can get behind O.end.
507     while (I->end < O.end) {
508       const_iterator Last = I;
509       // Get next segment and abort if it was not adjacent.
510       ++I;
511       if (I == end() || Last->end != I->start)
512         return false;
513     }
514   }
515   return true;
516 }
517 
518 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
519 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
520 /// it can be nuked later.
521 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
522   if (ValNo->id == getNumValNums()-1) {
523     do {
524       valnos.pop_back();
525     } while (!valnos.empty() && valnos.back()->isUnused());
526   } else {
527     ValNo->markUnused();
528   }
529 }
530 
531 /// RenumberValues - Renumber all values in order of appearance and delete the
532 /// remaining unused values.
533 void LiveRange::RenumberValues() {
534   SmallPtrSet<VNInfo*, 8> Seen;
535   valnos.clear();
536   for (const Segment &S : segments) {
537     VNInfo *VNI = S.valno;
538     if (!Seen.insert(VNI).second)
539       continue;
540     assert(!VNI->isUnused() && "Unused valno used by live segment");
541     VNI->id = (unsigned)valnos.size();
542     valnos.push_back(VNI);
543   }
544 }
545 
546 void LiveRange::addSegmentToSet(Segment S) {
547   CalcLiveRangeUtilSet(this).addSegment(S);
548 }
549 
550 LiveRange::iterator LiveRange::addSegment(Segment S) {
551   // Use the segment set, if it is available.
552   if (segmentSet != nullptr) {
553     addSegmentToSet(S);
554     return end();
555   }
556   // Otherwise use the segment vector.
557   return CalcLiveRangeUtilVector(this).addSegment(S);
558 }
559 
560 void LiveRange::append(const Segment S) {
561   // Check that the segment belongs to the back of the list.
562   assert(segments.empty() || segments.back().end <= S.start);
563   segments.push_back(S);
564 }
565 
566 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
567     SlotIndex StartIdx, SlotIndex Kill) {
568   // Use the segment set, if it is available.
569   if (segmentSet != nullptr)
570     return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
571   // Otherwise use the segment vector.
572   return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
573 }
574 
575 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
576   // Use the segment set, if it is available.
577   if (segmentSet != nullptr)
578     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
579   // Otherwise use the segment vector.
580   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
581 }
582 
583 /// Remove the specified segment from this range.  Note that the segment must
584 /// be in a single Segment in its entirety.
585 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
586                               bool RemoveDeadValNo) {
587   // Find the Segment containing this span.
588   iterator I = find(Start);
589   assert(I != end() && "Segment is not in range!");
590   assert(I->containsInterval(Start, End)
591          && "Segment is not entirely in range!");
592 
593   // If the span we are removing is at the start of the Segment, adjust it.
594   VNInfo *ValNo = I->valno;
595   if (I->start == Start) {
596     if (I->end == End) {
597       if (RemoveDeadValNo) {
598         // Check if val# is dead.
599         bool isDead = true;
600         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
601           if (II != I && II->valno == ValNo) {
602             isDead = false;
603             break;
604           }
605         if (isDead) {
606           // Now that ValNo is dead, remove it.
607           markValNoForDeletion(ValNo);
608         }
609       }
610 
611       segments.erase(I);  // Removed the whole Segment.
612     } else
613       I->start = End;
614     return;
615   }
616 
617   // Otherwise if the span we are removing is at the end of the Segment,
618   // adjust the other way.
619   if (I->end == End) {
620     I->end = Start;
621     return;
622   }
623 
624   // Otherwise, we are splitting the Segment into two pieces.
625   SlotIndex OldEnd = I->end;
626   I->end = Start;   // Trim the old segment.
627 
628   // Insert the new one.
629   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
630 }
631 
632 /// removeValNo - Remove all the segments defined by the specified value#.
633 /// Also remove the value# from value# list.
634 void LiveRange::removeValNo(VNInfo *ValNo) {
635   if (empty()) return;
636   segments.erase(remove_if(*this, [ValNo](const Segment &S) {
637     return S.valno == ValNo;
638   }), end());
639   // Now that ValNo is dead, remove it.
640   markValNoForDeletion(ValNo);
641 }
642 
643 void LiveRange::join(LiveRange &Other,
644                      const int *LHSValNoAssignments,
645                      const int *RHSValNoAssignments,
646                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
647   verify();
648 
649   // Determine if any of our values are mapped.  This is uncommon, so we want
650   // to avoid the range scan if not.
651   bool MustMapCurValNos = false;
652   unsigned NumVals = getNumValNums();
653   unsigned NumNewVals = NewVNInfo.size();
654   for (unsigned i = 0; i != NumVals; ++i) {
655     unsigned LHSValID = LHSValNoAssignments[i];
656     if (i != LHSValID ||
657         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
658       MustMapCurValNos = true;
659       break;
660     }
661   }
662 
663   // If we have to apply a mapping to our base range assignment, rewrite it now.
664   if (MustMapCurValNos && !empty()) {
665     // Map the first live range.
666 
667     iterator OutIt = begin();
668     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
669     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
670       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
671       assert(nextValNo && "Huh?");
672 
673       // If this live range has the same value # as its immediate predecessor,
674       // and if they are neighbors, remove one Segment.  This happens when we
675       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
676       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
677         OutIt->end = I->end;
678       } else {
679         // Didn't merge. Move OutIt to the next segment,
680         ++OutIt;
681         OutIt->valno = nextValNo;
682         if (OutIt != I) {
683           OutIt->start = I->start;
684           OutIt->end = I->end;
685         }
686       }
687     }
688     // If we merge some segments, chop off the end.
689     ++OutIt;
690     segments.erase(OutIt, end());
691   }
692 
693   // Rewrite Other values before changing the VNInfo ids.
694   // This can leave Other in an invalid state because we're not coalescing
695   // touching segments that now have identical values. That's OK since Other is
696   // not supposed to be valid after calling join();
697   for (Segment &S : Other.segments)
698     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
699 
700   // Update val# info. Renumber them and make sure they all belong to this
701   // LiveRange now. Also remove dead val#'s.
702   unsigned NumValNos = 0;
703   for (unsigned i = 0; i < NumNewVals; ++i) {
704     VNInfo *VNI = NewVNInfo[i];
705     if (VNI) {
706       if (NumValNos >= NumVals)
707         valnos.push_back(VNI);
708       else
709         valnos[NumValNos] = VNI;
710       VNI->id = NumValNos++;  // Renumber val#.
711     }
712   }
713   if (NumNewVals < NumVals)
714     valnos.resize(NumNewVals);  // shrinkify
715 
716   // Okay, now insert the RHS live segments into the LHS.
717   LiveRangeUpdater Updater(this);
718   for (Segment &S : Other.segments)
719     Updater.add(S);
720 }
721 
722 /// Merge all of the segments in RHS into this live range as the specified
723 /// value number.  The segments in RHS are allowed to overlap with segments in
724 /// the current range, but only if the overlapping segments have the
725 /// specified value number.
726 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
727                                        VNInfo *LHSValNo) {
728   LiveRangeUpdater Updater(this);
729   for (const Segment &S : RHS.segments)
730     Updater.add(S.start, S.end, LHSValNo);
731 }
732 
733 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
734 /// in RHS into this live range as the specified value number.
735 /// The segments in RHS are allowed to overlap with segments in the
736 /// current range, it will replace the value numbers of the overlaped
737 /// segments with the specified value number.
738 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
739                                     const VNInfo *RHSValNo,
740                                     VNInfo *LHSValNo) {
741   LiveRangeUpdater Updater(this);
742   for (const Segment &S : RHS.segments)
743     if (S.valno == RHSValNo)
744       Updater.add(S.start, S.end, LHSValNo);
745 }
746 
747 /// MergeValueNumberInto - This method is called when two value nubmers
748 /// are found to be equivalent.  This eliminates V1, replacing all
749 /// segments with the V1 value number with the V2 value number.  This can
750 /// cause merging of V1/V2 values numbers and compaction of the value space.
751 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
752   assert(V1 != V2 && "Identical value#'s are always equivalent!");
753 
754   // This code actually merges the (numerically) larger value number into the
755   // smaller value number, which is likely to allow us to compactify the value
756   // space.  The only thing we have to be careful of is to preserve the
757   // instruction that defines the result value.
758 
759   // Make sure V2 is smaller than V1.
760   if (V1->id < V2->id) {
761     V1->copyFrom(*V2);
762     std::swap(V1, V2);
763   }
764 
765   // Merge V1 segments into V2.
766   for (iterator I = begin(); I != end(); ) {
767     iterator S = I++;
768     if (S->valno != V1) continue;  // Not a V1 Segment.
769 
770     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
771     // range, extend it.
772     if (S != begin()) {
773       iterator Prev = S-1;
774       if (Prev->valno == V2 && Prev->end == S->start) {
775         Prev->end = S->end;
776 
777         // Erase this live-range.
778         segments.erase(S);
779         I = Prev+1;
780         S = Prev;
781       }
782     }
783 
784     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
785     // Ensure that it is a V2 live-range.
786     S->valno = V2;
787 
788     // If we can merge it into later V2 segments, do so now.  We ignore any
789     // following V1 segments, as they will be merged in subsequent iterations
790     // of the loop.
791     if (I != end()) {
792       if (I->start == S->end && I->valno == V2) {
793         S->end = I->end;
794         segments.erase(I);
795         I = S+1;
796       }
797     }
798   }
799 
800   // Now that V1 is dead, remove it.
801   markValNoForDeletion(V1);
802 
803   return V2;
804 }
805 
806 void LiveRange::flushSegmentSet() {
807   assert(segmentSet != nullptr && "segment set must have been created");
808   assert(
809       segments.empty() &&
810       "segment set can be used only initially before switching to the array");
811   segments.append(segmentSet->begin(), segmentSet->end());
812   segmentSet = nullptr;
813   verify();
814 }
815 
816 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
817   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
818   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
819 
820   // If there are no regmask slots, we have nothing to search.
821   if (SlotI == SlotE)
822     return false;
823 
824   // Start our search at the first segment that ends after the first slot.
825   const_iterator SegmentI = find(*SlotI);
826   const_iterator SegmentE = end();
827 
828   // If there are no segments that end after the first slot, we're done.
829   if (SegmentI == SegmentE)
830     return false;
831 
832   // Look for each slot in the live range.
833   for ( ; SlotI != SlotE; ++SlotI) {
834     // Go to the next segment that ends after the current slot.
835     // The slot may be within a hole in the range.
836     SegmentI = advanceTo(SegmentI, *SlotI);
837     if (SegmentI == SegmentE)
838       return false;
839 
840     // If this segment contains the slot, we're done.
841     if (SegmentI->contains(*SlotI))
842       return true;
843     // Otherwise, look for the next slot.
844   }
845 
846   // We didn't find a segment containing any of the slots.
847   return false;
848 }
849 
850 void LiveInterval::freeSubRange(SubRange *S) {
851   S->~SubRange();
852   // Memory was allocated with BumpPtr allocator and is not freed here.
853 }
854 
855 void LiveInterval::removeEmptySubRanges() {
856   SubRange **NextPtr = &SubRanges;
857   SubRange *I = *NextPtr;
858   while (I != nullptr) {
859     if (!I->empty()) {
860       NextPtr = &I->Next;
861       I = *NextPtr;
862       continue;
863     }
864     // Skip empty subranges until we find the first nonempty one.
865     do {
866       SubRange *Next = I->Next;
867       freeSubRange(I);
868       I = Next;
869     } while (I != nullptr && I->empty());
870     *NextPtr = I;
871   }
872 }
873 
874 void LiveInterval::clearSubRanges() {
875   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
876     Next = I->Next;
877     freeSubRange(I);
878   }
879   SubRanges = nullptr;
880 }
881 
882 /// For each VNI in \p SR, check whether or not that value defines part
883 /// of the mask describe by \p LaneMask and if not, remove that value
884 /// from \p SR.
885 static void stripValuesNotDefiningMask(unsigned Reg, LiveInterval::SubRange &SR,
886                                        LaneBitmask LaneMask,
887                                        const SlotIndexes &Indexes,
888                                        const TargetRegisterInfo &TRI) {
889   // Phys reg should not be tracked at subreg level.
890   // Same for noreg (Reg == 0).
891   if (!TargetRegisterInfo::isVirtualRegister(Reg) || !Reg)
892     return;
893   // Remove the values that don't define those lanes.
894   SmallVector<VNInfo *, 8> ToBeRemoved;
895   for (VNInfo *VNI : SR.valnos) {
896     if (VNI->isUnused())
897       continue;
898     // PHI definitions don't have MI attached, so there is nothing
899     // we can use to strip the VNI.
900     if (VNI->isPHIDef())
901       continue;
902     const MachineInstr *MI = Indexes.getInstructionFromIndex(VNI->def);
903     assert(MI && "Cannot find the definition of a value");
904     bool hasDef = false;
905     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
906       if (!MOI->isReg() || !MOI->isDef())
907         continue;
908       if (MOI->getReg() != Reg)
909         continue;
910       if ((TRI.getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
911         continue;
912       hasDef = true;
913       break;
914     }
915 
916     if (!hasDef)
917       ToBeRemoved.push_back(VNI);
918   }
919   for (VNInfo *VNI : ToBeRemoved)
920     SR.removeValNo(VNI);
921 
922   assert(!SR.empty() && "At least one value should be defined by this mask");
923 }
924 
925 void LiveInterval::refineSubRanges(
926     BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
927     std::function<void(LiveInterval::SubRange &)> Apply,
928     const SlotIndexes &Indexes, const TargetRegisterInfo &TRI) {
929   LaneBitmask ToApply = LaneMask;
930   for (SubRange &SR : subranges()) {
931     LaneBitmask SRMask = SR.LaneMask;
932     LaneBitmask Matching = SRMask & LaneMask;
933     if (Matching.none())
934       continue;
935 
936     SubRange *MatchingRange;
937     if (SRMask == Matching) {
938       // The subrange fits (it does not cover bits outside \p LaneMask).
939       MatchingRange = &SR;
940     } else {
941       // We have to split the subrange into a matching and non-matching part.
942       // Reduce lanemask of existing lane to non-matching part.
943       SR.LaneMask = SRMask & ~Matching;
944       // Create a new subrange for the matching part
945       MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
946       // Now that the subrange is split in half, make sure we
947       // only keep in the subranges the VNIs that touch the related half.
948       stripValuesNotDefiningMask(reg, *MatchingRange, Matching, Indexes, TRI);
949       stripValuesNotDefiningMask(reg, SR, SR.LaneMask, Indexes, TRI);
950     }
951     Apply(*MatchingRange);
952     ToApply &= ~Matching;
953   }
954   // Create a new subrange if there are uncovered bits left.
955   if (ToApply.any()) {
956     SubRange *NewRange = createSubRange(Allocator, ToApply);
957     Apply(*NewRange);
958   }
959 }
960 
961 unsigned LiveInterval::getSize() const {
962   unsigned Sum = 0;
963   for (const Segment &S : segments)
964     Sum += S.start.distance(S.end);
965   return Sum;
966 }
967 
968 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
969                                          LaneBitmask LaneMask,
970                                          const MachineRegisterInfo &MRI,
971                                          const SlotIndexes &Indexes) const {
972   assert(TargetRegisterInfo::isVirtualRegister(reg));
973   LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
974   assert((VRegMask & LaneMask).any());
975   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
976   for (const MachineOperand &MO : MRI.def_operands(reg)) {
977     if (!MO.isUndef())
978       continue;
979     unsigned SubReg = MO.getSubReg();
980     assert(SubReg != 0 && "Undef should only be set on subreg defs");
981     LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
982     LaneBitmask UndefMask = VRegMask & ~DefMask;
983     if ((UndefMask & LaneMask).any()) {
984       const MachineInstr &MI = *MO.getParent();
985       bool EarlyClobber = MO.isEarlyClobber();
986       SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
987       Undefs.push_back(Pos);
988     }
989   }
990 }
991 
992 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
993   return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
994 }
995 
996 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
997 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
998   dbgs() << *this << '\n';
999 }
1000 #endif
1001 
1002 void LiveRange::print(raw_ostream &OS) const {
1003   if (empty())
1004     OS << "EMPTY";
1005   else {
1006     for (const Segment &S : segments) {
1007       OS << S;
1008       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1009     }
1010   }
1011 
1012   // Print value number info.
1013   if (getNumValNums()) {
1014     OS << "  ";
1015     unsigned vnum = 0;
1016     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1017          ++i, ++vnum) {
1018       const VNInfo *vni = *i;
1019       if (vnum) OS << ' ';
1020       OS << vnum << '@';
1021       if (vni->isUnused()) {
1022         OS << 'x';
1023       } else {
1024         OS << vni->def;
1025         if (vni->isPHIDef())
1026           OS << "-phi";
1027       }
1028     }
1029   }
1030 }
1031 
1032 void LiveInterval::SubRange::print(raw_ostream &OS) const {
1033   OS << " L" << PrintLaneMask(LaneMask) << ' '
1034      << static_cast<const LiveRange&>(*this);
1035 }
1036 
1037 void LiveInterval::print(raw_ostream &OS) const {
1038   OS << printReg(reg) << ' ';
1039   super::print(OS);
1040   // Print subranges
1041   for (const SubRange &SR : subranges())
1042     OS << SR;
1043   OS << " weight:" << weight;
1044 }
1045 
1046 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1047 LLVM_DUMP_METHOD void LiveRange::dump() const {
1048   dbgs() << *this << '\n';
1049 }
1050 
1051 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1052   dbgs() << *this << '\n';
1053 }
1054 
1055 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1056   dbgs() << *this << '\n';
1057 }
1058 #endif
1059 
1060 #ifndef NDEBUG
1061 void LiveRange::verify() const {
1062   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1063     assert(I->start.isValid());
1064     assert(I->end.isValid());
1065     assert(I->start < I->end);
1066     assert(I->valno != nullptr);
1067     assert(I->valno->id < valnos.size());
1068     assert(I->valno == valnos[I->valno->id]);
1069     if (std::next(I) != E) {
1070       assert(I->end <= std::next(I)->start);
1071       if (I->end == std::next(I)->start)
1072         assert(I->valno != std::next(I)->valno);
1073     }
1074   }
1075 }
1076 
1077 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1078   super::verify();
1079 
1080   // Make sure SubRanges are fine and LaneMasks are disjunct.
1081   LaneBitmask Mask;
1082   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
1083                                        : LaneBitmask::getAll();
1084   for (const SubRange &SR : subranges()) {
1085     // Subrange lanemask should be disjunct to any previous subrange masks.
1086     assert((Mask & SR.LaneMask).none());
1087     Mask |= SR.LaneMask;
1088 
1089     // subrange mask should not contained in maximum lane mask for the vreg.
1090     assert((Mask & ~MaxMask).none());
1091     // empty subranges must be removed.
1092     assert(!SR.empty());
1093 
1094     SR.verify();
1095     // Main liverange should cover subrange.
1096     assert(covers(SR));
1097   }
1098 }
1099 #endif
1100 
1101 //===----------------------------------------------------------------------===//
1102 //                           LiveRangeUpdater class
1103 //===----------------------------------------------------------------------===//
1104 //
1105 // The LiveRangeUpdater class always maintains these invariants:
1106 //
1107 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1108 //   This is the initial state, and the state created by flush().
1109 //   In this state, isDirty() returns false.
1110 //
1111 // Otherwise, segments are kept in three separate areas:
1112 //
1113 // 1. [begin; WriteI) at the front of LR.
1114 // 2. [ReadI; end) at the back of LR.
1115 // 3. Spills.
1116 //
1117 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1118 // - Segments in all three areas are fully ordered and coalesced.
1119 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1120 // - Segments in Spills precede and can't coalesce with segments in area 2.
1121 // - No coalescing is possible between segments in Spills and segments in area
1122 //   1, and there are no overlapping segments.
1123 //
1124 // The segments in Spills are not ordered with respect to the segments in area
1125 // 1. They need to be merged.
1126 //
1127 // When they exist, Spills.back().start <= LastStart,
1128 //                 and WriteI[-1].start <= LastStart.
1129 
1130 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1131 void LiveRangeUpdater::print(raw_ostream &OS) const {
1132   if (!isDirty()) {
1133     if (LR)
1134       OS << "Clean updater: " << *LR << '\n';
1135     else
1136       OS << "Null updater.\n";
1137     return;
1138   }
1139   assert(LR && "Can't have null LR in dirty updater.");
1140   OS << " updater with gap = " << (ReadI - WriteI)
1141      << ", last start = " << LastStart
1142      << ":\n  Area 1:";
1143   for (const auto &S : make_range(LR->begin(), WriteI))
1144     OS << ' ' << S;
1145   OS << "\n  Spills:";
1146   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1147     OS << ' ' << Spills[I];
1148   OS << "\n  Area 2:";
1149   for (const auto &S : make_range(ReadI, LR->end()))
1150     OS << ' ' << S;
1151   OS << '\n';
1152 }
1153 
1154 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1155   print(errs());
1156 }
1157 #endif
1158 
1159 // Determine if A and B should be coalesced.
1160 static inline bool coalescable(const LiveRange::Segment &A,
1161                                const LiveRange::Segment &B) {
1162   assert(A.start <= B.start && "Unordered live segments.");
1163   if (A.end == B.start)
1164     return A.valno == B.valno;
1165   if (A.end < B.start)
1166     return false;
1167   assert(A.valno == B.valno && "Cannot overlap different values");
1168   return true;
1169 }
1170 
1171 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1172   assert(LR && "Cannot add to a null destination");
1173 
1174   // Fall back to the regular add method if the live range
1175   // is using the segment set instead of the segment vector.
1176   if (LR->segmentSet != nullptr) {
1177     LR->addSegmentToSet(Seg);
1178     return;
1179   }
1180 
1181   // Flush the state if Start moves backwards.
1182   if (!LastStart.isValid() || LastStart > Seg.start) {
1183     if (isDirty())
1184       flush();
1185     // This brings us to an uninitialized state. Reinitialize.
1186     assert(Spills.empty() && "Leftover spilled segments");
1187     WriteI = ReadI = LR->begin();
1188   }
1189 
1190   // Remember start for next time.
1191   LastStart = Seg.start;
1192 
1193   // Advance ReadI until it ends after Seg.start.
1194   LiveRange::iterator E = LR->end();
1195   if (ReadI != E && ReadI->end <= Seg.start) {
1196     // First try to close the gap between WriteI and ReadI with spills.
1197     if (ReadI != WriteI)
1198       mergeSpills();
1199     // Then advance ReadI.
1200     if (ReadI == WriteI)
1201       ReadI = WriteI = LR->find(Seg.start);
1202     else
1203       while (ReadI != E && ReadI->end <= Seg.start)
1204         *WriteI++ = *ReadI++;
1205   }
1206 
1207   assert(ReadI == E || ReadI->end > Seg.start);
1208 
1209   // Check if the ReadI segment begins early.
1210   if (ReadI != E && ReadI->start <= Seg.start) {
1211     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1212     // Bail if Seg is completely contained in ReadI.
1213     if (ReadI->end >= Seg.end)
1214       return;
1215     // Coalesce into Seg.
1216     Seg.start = ReadI->start;
1217     ++ReadI;
1218   }
1219 
1220   // Coalesce as much as possible from ReadI into Seg.
1221   while (ReadI != E && coalescable(Seg, *ReadI)) {
1222     Seg.end = std::max(Seg.end, ReadI->end);
1223     ++ReadI;
1224   }
1225 
1226   // Try coalescing Spills.back() into Seg.
1227   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1228     Seg.start = Spills.back().start;
1229     Seg.end = std::max(Spills.back().end, Seg.end);
1230     Spills.pop_back();
1231   }
1232 
1233   // Try coalescing Seg into WriteI[-1].
1234   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1235     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1236     return;
1237   }
1238 
1239   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1240   if (WriteI != ReadI) {
1241     *WriteI++ = Seg;
1242     return;
1243   }
1244 
1245   // Finally, append to LR or Spills.
1246   if (WriteI == E) {
1247     LR->segments.push_back(Seg);
1248     WriteI = ReadI = LR->end();
1249   } else
1250     Spills.push_back(Seg);
1251 }
1252 
1253 // Merge as many spilled segments as possible into the gap between WriteI
1254 // and ReadI. Advance WriteI to reflect the inserted instructions.
1255 void LiveRangeUpdater::mergeSpills() {
1256   // Perform a backwards merge of Spills and [SpillI;WriteI).
1257   size_t GapSize = ReadI - WriteI;
1258   size_t NumMoved = std::min(Spills.size(), GapSize);
1259   LiveRange::iterator Src = WriteI;
1260   LiveRange::iterator Dst = Src + NumMoved;
1261   LiveRange::iterator SpillSrc = Spills.end();
1262   LiveRange::iterator B = LR->begin();
1263 
1264   // This is the new WriteI position after merging spills.
1265   WriteI = Dst;
1266 
1267   // Now merge Src and Spills backwards.
1268   while (Src != Dst) {
1269     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1270       *--Dst = *--Src;
1271     else
1272       *--Dst = *--SpillSrc;
1273   }
1274   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1275   Spills.erase(SpillSrc, Spills.end());
1276 }
1277 
1278 void LiveRangeUpdater::flush() {
1279   if (!isDirty())
1280     return;
1281   // Clear the dirty state.
1282   LastStart = SlotIndex();
1283 
1284   assert(LR && "Cannot add to a null destination");
1285 
1286   // Nothing to merge?
1287   if (Spills.empty()) {
1288     LR->segments.erase(WriteI, ReadI);
1289     LR->verify();
1290     return;
1291   }
1292 
1293   // Resize the WriteI - ReadI gap to match Spills.
1294   size_t GapSize = ReadI - WriteI;
1295   if (GapSize < Spills.size()) {
1296     // The gap is too small. Make some room.
1297     size_t WritePos = WriteI - LR->begin();
1298     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1299     // This also invalidated ReadI, but it is recomputed below.
1300     WriteI = LR->begin() + WritePos;
1301   } else {
1302     // Shrink the gap if necessary.
1303     LR->segments.erase(WriteI + Spills.size(), ReadI);
1304   }
1305   ReadI = WriteI + Spills.size();
1306   mergeSpills();
1307   LR->verify();
1308 }
1309 
1310 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1311   // Create initial equivalence classes.
1312   EqClass.clear();
1313   EqClass.grow(LR.getNumValNums());
1314 
1315   const VNInfo *used = nullptr, *unused = nullptr;
1316 
1317   // Determine connections.
1318   for (const VNInfo *VNI : LR.valnos) {
1319     // Group all unused values into one class.
1320     if (VNI->isUnused()) {
1321       if (unused)
1322         EqClass.join(unused->id, VNI->id);
1323       unused = VNI;
1324       continue;
1325     }
1326     used = VNI;
1327     if (VNI->isPHIDef()) {
1328       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1329       assert(MBB && "Phi-def has no defining MBB");
1330       // Connect to values live out of predecessors.
1331       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1332            PE = MBB->pred_end(); PI != PE; ++PI)
1333         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1334           EqClass.join(VNI->id, PVNI->id);
1335     } else {
1336       // Normal value defined by an instruction. Check for two-addr redef.
1337       // FIXME: This could be coincidental. Should we really check for a tied
1338       // operand constraint?
1339       // Note that VNI->def may be a use slot for an early clobber def.
1340       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1341         EqClass.join(VNI->id, UVNI->id);
1342     }
1343   }
1344 
1345   // Lump all the unused values in with the last used value.
1346   if (used && unused)
1347     EqClass.join(used->id, unused->id);
1348 
1349   EqClass.compress();
1350   return EqClass.getNumClasses();
1351 }
1352 
1353 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1354                                           MachineRegisterInfo &MRI) {
1355   // Rewrite instructions.
1356   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1357        RE = MRI.reg_end(); RI != RE;) {
1358     MachineOperand &MO = *RI;
1359     MachineInstr *MI = RI->getParent();
1360     ++RI;
1361     const VNInfo *VNI;
1362     if (MI->isDebugValue()) {
1363       // DBG_VALUE instructions don't have slot indexes, so get the index of
1364       // the instruction before them. The value is defined there too.
1365       SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1366       VNI = LI.Query(Idx).valueOut();
1367     } else {
1368       SlotIndex Idx = LIS.getInstructionIndex(*MI);
1369       LiveQueryResult LRQ = LI.Query(Idx);
1370       VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1371     }
1372     // In the case of an <undef> use that isn't tied to any def, VNI will be
1373     // NULL. If the use is tied to a def, VNI will be the defined value.
1374     if (!VNI)
1375       continue;
1376     if (unsigned EqClass = getEqClass(VNI))
1377       MO.setReg(LIV[EqClass-1]->reg);
1378   }
1379 
1380   // Distribute subregister liveranges.
1381   if (LI.hasSubRanges()) {
1382     unsigned NumComponents = EqClass.getNumClasses();
1383     SmallVector<unsigned, 8> VNIMapping;
1384     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1385     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1386     for (LiveInterval::SubRange &SR : LI.subranges()) {
1387       // Create new subranges in the split intervals and construct a mapping
1388       // for the VNInfos in the subrange.
1389       unsigned NumValNos = SR.valnos.size();
1390       VNIMapping.clear();
1391       VNIMapping.reserve(NumValNos);
1392       SubRanges.clear();
1393       SubRanges.resize(NumComponents-1, nullptr);
1394       for (unsigned I = 0; I < NumValNos; ++I) {
1395         const VNInfo &VNI = *SR.valnos[I];
1396         unsigned ComponentNum;
1397         if (VNI.isUnused()) {
1398           ComponentNum = 0;
1399         } else {
1400           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1401           assert(MainRangeVNI != nullptr
1402                  && "SubRange def must have corresponding main range def");
1403           ComponentNum = getEqClass(MainRangeVNI);
1404           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1405             SubRanges[ComponentNum-1]
1406               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1407           }
1408         }
1409         VNIMapping.push_back(ComponentNum);
1410       }
1411       DistributeRange(SR, SubRanges.data(), VNIMapping);
1412     }
1413     LI.removeEmptySubRanges();
1414   }
1415 
1416   // Distribute main liverange.
1417   DistributeRange(LI, LIV, EqClass);
1418 }
1419