1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/CodeGen/LiveInterval.h"
22 
23 #include "PHIEliminationUtils.h"
24 #include "RegisterCoalescer.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include <algorithm>
35 using namespace llvm;
36 
37 namespace {
38 //===----------------------------------------------------------------------===//
39 // Implementation of various methods necessary for calculation of live ranges.
40 // The implementation of the methods abstracts from the concrete type of the
41 // segment collection.
42 //
43 // Implementation of the class follows the Template design pattern. The base
44 // class contains generic algorithms that call collection-specific methods,
45 // which are provided in concrete subclasses. In order to avoid virtual calls
46 // these methods are provided by means of C++ template instantiation.
47 // The base class calls the methods of the subclass through method impl(),
48 // which casts 'this' pointer to the type of the subclass.
49 //
50 //===----------------------------------------------------------------------===//
51 
52 template <typename ImplT, typename IteratorT, typename CollectionT>
53 class CalcLiveRangeUtilBase {
54 protected:
55   LiveRange *LR;
56 
57 protected:
58   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
59 
60 public:
61   typedef LiveRange::Segment Segment;
62   typedef IteratorT iterator;
63 
64   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
65     assert(!Def.isDead() && "Cannot define a value at the dead slot");
66 
67     iterator I = impl().find(Def);
68     if (I == segments().end()) {
69       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
70       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
71       return VNI;
72     }
73 
74     Segment *S = segmentAt(I);
75     if (SlotIndex::isSameInstr(Def, S->start)) {
76       assert(S->valno->def == S->start && "Inconsistent existing value def");
77 
78       // It is possible to have both normal and early-clobber defs of the same
79       // register on an instruction. It doesn't make a lot of sense, but it is
80       // possible to specify in inline assembly.
81       //
82       // Just convert everything to early-clobber.
83       Def = std::min(Def, S->start);
84       if (Def != S->start)
85         S->start = S->valno->def = Def;
86       return S->valno;
87     }
88     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
89     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
90     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
91     return VNI;
92   }
93 
94   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
95     if (segments().empty())
96       return nullptr;
97     iterator I =
98         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
99     if (I == segments().begin())
100       return nullptr;
101     --I;
102     if (I->end <= StartIdx)
103       return nullptr;
104     if (I->end < Use)
105       extendSegmentEndTo(I, Use);
106     return I->valno;
107   }
108 
109   /// This method is used when we want to extend the segment specified
110   /// by I to end at the specified endpoint. To do this, we should
111   /// merge and eliminate all segments that this will overlap
112   /// with. The iterator is not invalidated.
113   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
114     assert(I != segments().end() && "Not a valid segment!");
115     Segment *S = segmentAt(I);
116     VNInfo *ValNo = I->valno;
117 
118     // Search for the first segment that we can't merge with.
119     iterator MergeTo = std::next(I);
120     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
121       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
122 
123     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
124     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
125 
126     // If the newly formed segment now touches the segment after it and if they
127     // have the same value number, merge the two segments into one segment.
128     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
129         MergeTo->valno == ValNo) {
130       S->end = MergeTo->end;
131       ++MergeTo;
132     }
133 
134     // Erase any dead segments.
135     segments().erase(std::next(I), MergeTo);
136   }
137 
138   /// This method is used when we want to extend the segment specified
139   /// by I to start at the specified endpoint.  To do this, we should
140   /// merge and eliminate all segments that this will overlap with.
141   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
142     assert(I != segments().end() && "Not a valid segment!");
143     Segment *S = segmentAt(I);
144     VNInfo *ValNo = I->valno;
145 
146     // Search for the first segment that we can't merge with.
147     iterator MergeTo = I;
148     do {
149       if (MergeTo == segments().begin()) {
150         S->start = NewStart;
151         segments().erase(MergeTo, I);
152         return I;
153       }
154       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
155       --MergeTo;
156     } while (NewStart <= MergeTo->start);
157 
158     // If we start in the middle of another segment, just delete a range and
159     // extend that segment.
160     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
161       segmentAt(MergeTo)->end = S->end;
162     } else {
163       // Otherwise, extend the segment right after.
164       ++MergeTo;
165       Segment *MergeToSeg = segmentAt(MergeTo);
166       MergeToSeg->start = NewStart;
167       MergeToSeg->end = S->end;
168     }
169 
170     segments().erase(std::next(MergeTo), std::next(I));
171     return MergeTo;
172   }
173 
174   iterator addSegment(Segment S) {
175     SlotIndex Start = S.start, End = S.end;
176     iterator I = impl().findInsertPos(S);
177 
178     // If the inserted segment starts in the middle or right at the end of
179     // another segment, just extend that segment to contain the segment of S.
180     if (I != segments().begin()) {
181       iterator B = std::prev(I);
182       if (S.valno == B->valno) {
183         if (B->start <= Start && B->end >= Start) {
184           extendSegmentEndTo(B, End);
185           return B;
186         }
187       } else {
188         // Check to make sure that we are not overlapping two live segments with
189         // different valno's.
190         assert(B->end <= Start &&
191                "Cannot overlap two segments with differing ValID's"
192                " (did you def the same reg twice in a MachineInstr?)");
193       }
194     }
195 
196     // Otherwise, if this segment ends in the middle of, or right next
197     // to, another segment, merge it into that segment.
198     if (I != segments().end()) {
199       if (S.valno == I->valno) {
200         if (I->start <= End) {
201           I = extendSegmentStartTo(I, Start);
202 
203           // If S is a complete superset of a segment, we may need to grow its
204           // endpoint as well.
205           if (End > I->end)
206             extendSegmentEndTo(I, End);
207           return I;
208         }
209       } else {
210         // Check to make sure that we are not overlapping two live segments with
211         // different valno's.
212         assert(I->start >= End &&
213                "Cannot overlap two segments with differing ValID's");
214       }
215     }
216 
217     // Otherwise, this is just a new segment that doesn't interact with
218     // anything.
219     // Insert it.
220     return segments().insert(I, S);
221   }
222 
223 private:
224   ImplT &impl() { return *static_cast<ImplT *>(this); }
225 
226   CollectionT &segments() { return impl().segmentsColl(); }
227 
228   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
229 };
230 
231 //===----------------------------------------------------------------------===//
232 //   Instantiation of the methods for calculation of live ranges
233 //   based on a segment vector.
234 //===----------------------------------------------------------------------===//
235 
236 class CalcLiveRangeUtilVector;
237 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
238                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
239 
240 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
241 public:
242   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
243 
244 private:
245   friend CalcLiveRangeUtilVectorBase;
246 
247   LiveRange::Segments &segmentsColl() { return LR->segments; }
248 
249   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
250 
251   iterator find(SlotIndex Pos) { return LR->find(Pos); }
252 
253   iterator findInsertPos(Segment S) {
254     return std::upper_bound(LR->begin(), LR->end(), S.start);
255   }
256 };
257 
258 //===----------------------------------------------------------------------===//
259 //   Instantiation of the methods for calculation of live ranges
260 //   based on a segment set.
261 //===----------------------------------------------------------------------===//
262 
263 class CalcLiveRangeUtilSet;
264 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
265                               LiveRange::SegmentSet::iterator,
266                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
267 
268 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
269 public:
270   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
271 
272 private:
273   friend CalcLiveRangeUtilSetBase;
274 
275   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
276 
277   void insertAtEnd(const Segment &S) {
278     LR->segmentSet->insert(LR->segmentSet->end(), S);
279   }
280 
281   iterator find(SlotIndex Pos) {
282     iterator I =
283         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
284     if (I == LR->segmentSet->begin())
285       return I;
286     iterator PrevI = std::prev(I);
287     if (Pos < (*PrevI).end)
288       return PrevI;
289     return I;
290   }
291 
292   iterator findInsertPos(Segment S) {
293     iterator I = LR->segmentSet->upper_bound(S);
294     if (I != LR->segmentSet->end() && !(S.start < *I))
295       ++I;
296     return I;
297   }
298 };
299 } // namespace
300 
301 //===----------------------------------------------------------------------===//
302 //   LiveRange methods
303 //===----------------------------------------------------------------------===//
304 
305 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
306   // This algorithm is basically std::upper_bound.
307   // Unfortunately, std::upper_bound cannot be used with mixed types until we
308   // adopt C++0x. Many libraries can do it, but not all.
309   if (empty() || Pos >= endIndex())
310     return end();
311   iterator I = begin();
312   size_t Len = size();
313   do {
314     size_t Mid = Len >> 1;
315     if (Pos < I[Mid].end) {
316       Len = Mid;
317     } else {
318       I += Mid + 1;
319       Len -= Mid + 1;
320     }
321   } while (Len);
322   return I;
323 }
324 
325 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
326                                   VNInfo::Allocator &VNInfoAllocator) {
327   // Use the segment set, if it is available.
328   if (segmentSet != nullptr)
329     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
330   // Otherwise use the segment vector.
331   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
332 }
333 
334 // overlaps - Return true if the intersection of the two live ranges is
335 // not empty.
336 //
337 // An example for overlaps():
338 //
339 // 0: A = ...
340 // 4: B = ...
341 // 8: C = A + B ;; last use of A
342 //
343 // The live ranges should look like:
344 //
345 // A = [3, 11)
346 // B = [7, x)
347 // C = [11, y)
348 //
349 // A->overlaps(C) should return false since we want to be able to join
350 // A and C.
351 //
352 bool LiveRange::overlapsFrom(const LiveRange& other,
353                              const_iterator StartPos) const {
354   assert(!empty() && "empty range");
355   const_iterator i = begin();
356   const_iterator ie = end();
357   const_iterator j = StartPos;
358   const_iterator je = other.end();
359 
360   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
361          StartPos != other.end() && "Bogus start position hint!");
362 
363   if (i->start < j->start) {
364     i = std::upper_bound(i, ie, j->start);
365     if (i != begin()) --i;
366   } else if (j->start < i->start) {
367     ++StartPos;
368     if (StartPos != other.end() && StartPos->start <= i->start) {
369       assert(StartPos < other.end() && i < end());
370       j = std::upper_bound(j, je, i->start);
371       if (j != other.begin()) --j;
372     }
373   } else {
374     return true;
375   }
376 
377   if (j == je) return false;
378 
379   while (i != ie) {
380     if (i->start > j->start) {
381       std::swap(i, j);
382       std::swap(ie, je);
383     }
384 
385     if (i->end > j->start)
386       return true;
387     ++i;
388   }
389 
390   return false;
391 }
392 
393 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
394                          const SlotIndexes &Indexes) const {
395   assert(!empty() && "empty range");
396   if (Other.empty())
397     return false;
398 
399   // Use binary searches to find initial positions.
400   const_iterator I = find(Other.beginIndex());
401   const_iterator IE = end();
402   if (I == IE)
403     return false;
404   const_iterator J = Other.find(I->start);
405   const_iterator JE = Other.end();
406   if (J == JE)
407     return false;
408 
409   for (;;) {
410     // J has just been advanced to satisfy:
411     assert(J->end >= I->start);
412     // Check for an overlap.
413     if (J->start < I->end) {
414       // I and J are overlapping. Find the later start.
415       SlotIndex Def = std::max(I->start, J->start);
416       // Allow the overlap if Def is a coalescable copy.
417       if (Def.isBlock() ||
418           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
419         return true;
420     }
421     // Advance the iterator that ends first to check for more overlaps.
422     if (J->end > I->end) {
423       std::swap(I, J);
424       std::swap(IE, JE);
425     }
426     // Advance J until J->end >= I->start.
427     do
428       if (++J == JE)
429         return false;
430     while (J->end < I->start);
431   }
432 }
433 
434 /// overlaps - Return true if the live range overlaps an interval specified
435 /// by [Start, End).
436 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
437   assert(Start < End && "Invalid range");
438   const_iterator I = std::lower_bound(begin(), end(), End);
439   return I != begin() && (--I)->end > Start;
440 }
441 
442 bool LiveRange::covers(const LiveRange &Other) const {
443   if (empty())
444     return Other.empty();
445 
446   const_iterator I = begin();
447   for (const Segment &O : Other.segments) {
448     I = advanceTo(I, O.start);
449     if (I == end() || I->start > O.start)
450       return false;
451 
452     // Check adjacent live segments and see if we can get behind O.end.
453     while (I->end < O.end) {
454       const_iterator Last = I;
455       // Get next segment and abort if it was not adjacent.
456       ++I;
457       if (I == end() || Last->end != I->start)
458         return false;
459     }
460   }
461   return true;
462 }
463 
464 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
465 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
466 /// it can be nuked later.
467 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
468   if (ValNo->id == getNumValNums()-1) {
469     do {
470       valnos.pop_back();
471     } while (!valnos.empty() && valnos.back()->isUnused());
472   } else {
473     ValNo->markUnused();
474   }
475 }
476 
477 /// RenumberValues - Renumber all values in order of appearance and delete the
478 /// remaining unused values.
479 void LiveRange::RenumberValues() {
480   SmallPtrSet<VNInfo*, 8> Seen;
481   valnos.clear();
482   for (const Segment &S : segments) {
483     VNInfo *VNI = S.valno;
484     if (!Seen.insert(VNI).second)
485       continue;
486     assert(!VNI->isUnused() && "Unused valno used by live segment");
487     VNI->id = (unsigned)valnos.size();
488     valnos.push_back(VNI);
489   }
490 }
491 
492 void LiveRange::addSegmentToSet(Segment S) {
493   CalcLiveRangeUtilSet(this).addSegment(S);
494 }
495 
496 LiveRange::iterator LiveRange::addSegment(Segment S) {
497   // Use the segment set, if it is available.
498   if (segmentSet != nullptr) {
499     addSegmentToSet(S);
500     return end();
501   }
502   // Otherwise use the segment vector.
503   return CalcLiveRangeUtilVector(this).addSegment(S);
504 }
505 
506 void LiveRange::append(const Segment S) {
507   // Check that the segment belongs to the back of the list.
508   assert(segments.empty() || segments.back().end <= S.start);
509   segments.push_back(S);
510 }
511 
512 /// extendInBlock - If this range is live before Kill in the basic
513 /// block that starts at StartIdx, extend it to be live up to Kill and return
514 /// the value. If there is no live range before Kill, return NULL.
515 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
516   // Use the segment set, if it is available.
517   if (segmentSet != nullptr)
518     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
519   // Otherwise use the segment vector.
520   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
521 }
522 
523 /// Remove the specified segment from this range.  Note that the segment must
524 /// be in a single Segment in its entirety.
525 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
526                               bool RemoveDeadValNo) {
527   // Find the Segment containing this span.
528   iterator I = find(Start);
529   assert(I != end() && "Segment is not in range!");
530   assert(I->containsInterval(Start, End)
531          && "Segment is not entirely in range!");
532 
533   // If the span we are removing is at the start of the Segment, adjust it.
534   VNInfo *ValNo = I->valno;
535   if (I->start == Start) {
536     if (I->end == End) {
537       if (RemoveDeadValNo) {
538         // Check if val# is dead.
539         bool isDead = true;
540         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
541           if (II != I && II->valno == ValNo) {
542             isDead = false;
543             break;
544           }
545         if (isDead) {
546           // Now that ValNo is dead, remove it.
547           markValNoForDeletion(ValNo);
548         }
549       }
550 
551       segments.erase(I);  // Removed the whole Segment.
552     } else
553       I->start = End;
554     return;
555   }
556 
557   // Otherwise if the span we are removing is at the end of the Segment,
558   // adjust the other way.
559   if (I->end == End) {
560     I->end = Start;
561     return;
562   }
563 
564   // Otherwise, we are splitting the Segment into two pieces.
565   SlotIndex OldEnd = I->end;
566   I->end = Start;   // Trim the old segment.
567 
568   // Insert the new one.
569   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
570 }
571 
572 /// removeValNo - Remove all the segments defined by the specified value#.
573 /// Also remove the value# from value# list.
574 void LiveRange::removeValNo(VNInfo *ValNo) {
575   if (empty()) return;
576   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
577     return S.valno == ValNo;
578   }), end());
579   // Now that ValNo is dead, remove it.
580   markValNoForDeletion(ValNo);
581 }
582 
583 void LiveRange::join(LiveRange &Other,
584                      const int *LHSValNoAssignments,
585                      const int *RHSValNoAssignments,
586                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
587   verify();
588 
589   // Determine if any of our values are mapped.  This is uncommon, so we want
590   // to avoid the range scan if not.
591   bool MustMapCurValNos = false;
592   unsigned NumVals = getNumValNums();
593   unsigned NumNewVals = NewVNInfo.size();
594   for (unsigned i = 0; i != NumVals; ++i) {
595     unsigned LHSValID = LHSValNoAssignments[i];
596     if (i != LHSValID ||
597         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
598       MustMapCurValNos = true;
599       break;
600     }
601   }
602 
603   // If we have to apply a mapping to our base range assignment, rewrite it now.
604   if (MustMapCurValNos && !empty()) {
605     // Map the first live range.
606 
607     iterator OutIt = begin();
608     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
609     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
610       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
611       assert(nextValNo && "Huh?");
612 
613       // If this live range has the same value # as its immediate predecessor,
614       // and if they are neighbors, remove one Segment.  This happens when we
615       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
616       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
617         OutIt->end = I->end;
618       } else {
619         // Didn't merge. Move OutIt to the next segment,
620         ++OutIt;
621         OutIt->valno = nextValNo;
622         if (OutIt != I) {
623           OutIt->start = I->start;
624           OutIt->end = I->end;
625         }
626       }
627     }
628     // If we merge some segments, chop off the end.
629     ++OutIt;
630     segments.erase(OutIt, end());
631   }
632 
633   // Rewrite Other values before changing the VNInfo ids.
634   // This can leave Other in an invalid state because we're not coalescing
635   // touching segments that now have identical values. That's OK since Other is
636   // not supposed to be valid after calling join();
637   for (Segment &S : Other.segments)
638     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
639 
640   // Update val# info. Renumber them and make sure they all belong to this
641   // LiveRange now. Also remove dead val#'s.
642   unsigned NumValNos = 0;
643   for (unsigned i = 0; i < NumNewVals; ++i) {
644     VNInfo *VNI = NewVNInfo[i];
645     if (VNI) {
646       if (NumValNos >= NumVals)
647         valnos.push_back(VNI);
648       else
649         valnos[NumValNos] = VNI;
650       VNI->id = NumValNos++;  // Renumber val#.
651     }
652   }
653   if (NumNewVals < NumVals)
654     valnos.resize(NumNewVals);  // shrinkify
655 
656   // Okay, now insert the RHS live segments into the LHS.
657   LiveRangeUpdater Updater(this);
658   for (Segment &S : Other.segments)
659     Updater.add(S);
660 }
661 
662 /// Merge all of the segments in RHS into this live range as the specified
663 /// value number.  The segments in RHS are allowed to overlap with segments in
664 /// the current range, but only if the overlapping segments have the
665 /// specified value number.
666 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
667                                        VNInfo *LHSValNo) {
668   LiveRangeUpdater Updater(this);
669   for (const Segment &S : RHS.segments)
670     Updater.add(S.start, S.end, LHSValNo);
671 }
672 
673 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
674 /// in RHS into this live range as the specified value number.
675 /// The segments in RHS are allowed to overlap with segments in the
676 /// current range, it will replace the value numbers of the overlaped
677 /// segments with the specified value number.
678 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
679                                     const VNInfo *RHSValNo,
680                                     VNInfo *LHSValNo) {
681   LiveRangeUpdater Updater(this);
682   for (const Segment &S : RHS.segments)
683     if (S.valno == RHSValNo)
684       Updater.add(S.start, S.end, LHSValNo);
685 }
686 
687 /// MergeValueNumberInto - This method is called when two value nubmers
688 /// are found to be equivalent.  This eliminates V1, replacing all
689 /// segments with the V1 value number with the V2 value number.  This can
690 /// cause merging of V1/V2 values numbers and compaction of the value space.
691 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
692   assert(V1 != V2 && "Identical value#'s are always equivalent!");
693 
694   // This code actually merges the (numerically) larger value number into the
695   // smaller value number, which is likely to allow us to compactify the value
696   // space.  The only thing we have to be careful of is to preserve the
697   // instruction that defines the result value.
698 
699   // Make sure V2 is smaller than V1.
700   if (V1->id < V2->id) {
701     V1->copyFrom(*V2);
702     std::swap(V1, V2);
703   }
704 
705   // Merge V1 segments into V2.
706   for (iterator I = begin(); I != end(); ) {
707     iterator S = I++;
708     if (S->valno != V1) continue;  // Not a V1 Segment.
709 
710     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
711     // range, extend it.
712     if (S != begin()) {
713       iterator Prev = S-1;
714       if (Prev->valno == V2 && Prev->end == S->start) {
715         Prev->end = S->end;
716 
717         // Erase this live-range.
718         segments.erase(S);
719         I = Prev+1;
720         S = Prev;
721       }
722     }
723 
724     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
725     // Ensure that it is a V2 live-range.
726     S->valno = V2;
727 
728     // If we can merge it into later V2 segments, do so now.  We ignore any
729     // following V1 segments, as they will be merged in subsequent iterations
730     // of the loop.
731     if (I != end()) {
732       if (I->start == S->end && I->valno == V2) {
733         S->end = I->end;
734         segments.erase(I);
735         I = S+1;
736       }
737     }
738   }
739 
740   // Now that V1 is dead, remove it.
741   markValNoForDeletion(V1);
742 
743   return V2;
744 }
745 
746 void LiveRange::flushSegmentSet() {
747   assert(segmentSet != nullptr && "segment set must have been created");
748   assert(
749       segments.empty() &&
750       "segment set can be used only initially before switching to the array");
751   segments.append(segmentSet->begin(), segmentSet->end());
752   segmentSet = nullptr;
753   verify();
754 }
755 
756 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
757   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
758   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
759 
760   // If there are no regmask slots, we have nothing to search.
761   if (SlotI == SlotE)
762     return false;
763 
764   // Start our search at the first segment that ends after the first slot.
765   const_iterator SegmentI = find(*SlotI);
766   const_iterator SegmentE = end();
767 
768   // If there are no segments that end after the first slot, we're done.
769   if (SegmentI == SegmentE)
770     return false;
771 
772   // Look for each slot in the live range.
773   for ( ; SlotI != SlotE; ++SlotI) {
774     // Go to the next segment that ends after the current slot.
775     // The slot may be within a hole in the range.
776     SegmentI = advanceTo(SegmentI, *SlotI);
777     if (SegmentI == SegmentE)
778       return false;
779 
780     // If this segment contains the slot, we're done.
781     if (SegmentI->contains(*SlotI))
782       return true;
783     // Otherwise, look for the next slot.
784   }
785 
786   // We didn't find a segment containing any of the slots.
787   return false;
788 }
789 
790 void LiveInterval::freeSubRange(SubRange *S) {
791   S->~SubRange();
792   // Memory was allocated with BumpPtr allocator and is not freed here.
793 }
794 
795 void LiveInterval::removeEmptySubRanges() {
796   SubRange **NextPtr = &SubRanges;
797   SubRange *I = *NextPtr;
798   while (I != nullptr) {
799     if (!I->empty()) {
800       NextPtr = &I->Next;
801       I = *NextPtr;
802       continue;
803     }
804     // Skip empty subranges until we find the first nonempty one.
805     do {
806       SubRange *Next = I->Next;
807       freeSubRange(I);
808       I = Next;
809     } while (I != nullptr && I->empty());
810     *NextPtr = I;
811   }
812 }
813 
814 void LiveInterval::clearSubRanges() {
815   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
816     Next = I->Next;
817     freeSubRange(I);
818   }
819   SubRanges = nullptr;
820 }
821 
822 unsigned LiveInterval::getSize() const {
823   unsigned Sum = 0;
824   for (const Segment &S : segments)
825     Sum += S.start.distance(S.end);
826   return Sum;
827 }
828 
829 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
830   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
831 }
832 
833 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
834 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
835   dbgs() << *this << "\n";
836 }
837 #endif
838 
839 void LiveRange::print(raw_ostream &OS) const {
840   if (empty())
841     OS << "EMPTY";
842   else {
843     for (const Segment &S : segments) {
844       OS << S;
845       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
846     }
847   }
848 
849   // Print value number info.
850   if (getNumValNums()) {
851     OS << "  ";
852     unsigned vnum = 0;
853     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
854          ++i, ++vnum) {
855       const VNInfo *vni = *i;
856       if (vnum) OS << " ";
857       OS << vnum << "@";
858       if (vni->isUnused()) {
859         OS << "x";
860       } else {
861         OS << vni->def;
862         if (vni->isPHIDef())
863           OS << "-phi";
864       }
865     }
866   }
867 }
868 
869 void LiveInterval::print(raw_ostream &OS) const {
870   OS << PrintReg(reg) << ' ';
871   super::print(OS);
872   // Print subranges
873   for (const SubRange &SR : subranges()) {
874     OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR;
875   }
876 }
877 
878 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
879 LLVM_DUMP_METHOD void LiveRange::dump() const {
880   dbgs() << *this << "\n";
881 }
882 
883 LLVM_DUMP_METHOD void LiveInterval::dump() const {
884   dbgs() << *this << "\n";
885 }
886 #endif
887 
888 #ifndef NDEBUG
889 void LiveRange::verify() const {
890   for (const_iterator I = begin(), E = end(); I != E; ++I) {
891     assert(I->start.isValid());
892     assert(I->end.isValid());
893     assert(I->start < I->end);
894     assert(I->valno != nullptr);
895     assert(I->valno->id < valnos.size());
896     assert(I->valno == valnos[I->valno->id]);
897     if (std::next(I) != E) {
898       assert(I->end <= std::next(I)->start);
899       if (I->end == std::next(I)->start)
900         assert(I->valno != std::next(I)->valno);
901     }
902   }
903 }
904 
905 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
906   super::verify();
907 
908   // Make sure SubRanges are fine and LaneMasks are disjunct.
909   LaneBitmask Mask = 0;
910   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
911   for (const SubRange &SR : subranges()) {
912     // Subrange lanemask should be disjunct to any previous subrange masks.
913     assert((Mask & SR.LaneMask) == 0);
914     Mask |= SR.LaneMask;
915 
916     // subrange mask should not contained in maximum lane mask for the vreg.
917     assert((Mask & ~MaxMask) == 0);
918     // empty subranges must be removed.
919     assert(!SR.empty());
920 
921     SR.verify();
922     // Main liverange should cover subrange.
923     assert(covers(SR));
924   }
925 }
926 #endif
927 
928 
929 //===----------------------------------------------------------------------===//
930 //                           LiveRangeUpdater class
931 //===----------------------------------------------------------------------===//
932 //
933 // The LiveRangeUpdater class always maintains these invariants:
934 //
935 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
936 //   This is the initial state, and the state created by flush().
937 //   In this state, isDirty() returns false.
938 //
939 // Otherwise, segments are kept in three separate areas:
940 //
941 // 1. [begin; WriteI) at the front of LR.
942 // 2. [ReadI; end) at the back of LR.
943 // 3. Spills.
944 //
945 // - LR.begin() <= WriteI <= ReadI <= LR.end().
946 // - Segments in all three areas are fully ordered and coalesced.
947 // - Segments in area 1 precede and can't coalesce with segments in area 2.
948 // - Segments in Spills precede and can't coalesce with segments in area 2.
949 // - No coalescing is possible between segments in Spills and segments in area
950 //   1, and there are no overlapping segments.
951 //
952 // The segments in Spills are not ordered with respect to the segments in area
953 // 1. They need to be merged.
954 //
955 // When they exist, Spills.back().start <= LastStart,
956 //                 and WriteI[-1].start <= LastStart.
957 
958 void LiveRangeUpdater::print(raw_ostream &OS) const {
959   if (!isDirty()) {
960     if (LR)
961       OS << "Clean updater: " << *LR << '\n';
962     else
963       OS << "Null updater.\n";
964     return;
965   }
966   assert(LR && "Can't have null LR in dirty updater.");
967   OS << " updater with gap = " << (ReadI - WriteI)
968      << ", last start = " << LastStart
969      << ":\n  Area 1:";
970   for (const auto &S : make_range(LR->begin(), WriteI))
971     OS << ' ' << S;
972   OS << "\n  Spills:";
973   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
974     OS << ' ' << Spills[I];
975   OS << "\n  Area 2:";
976   for (const auto &S : make_range(ReadI, LR->end()))
977     OS << ' ' << S;
978   OS << '\n';
979 }
980 
981 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
982   print(errs());
983 }
984 
985 // Determine if A and B should be coalesced.
986 static inline bool coalescable(const LiveRange::Segment &A,
987                                const LiveRange::Segment &B) {
988   assert(A.start <= B.start && "Unordered live segments.");
989   if (A.end == B.start)
990     return A.valno == B.valno;
991   if (A.end < B.start)
992     return false;
993   assert(A.valno == B.valno && "Cannot overlap different values");
994   return true;
995 }
996 
997 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
998   assert(LR && "Cannot add to a null destination");
999 
1000   // Fall back to the regular add method if the live range
1001   // is using the segment set instead of the segment vector.
1002   if (LR->segmentSet != nullptr) {
1003     LR->addSegmentToSet(Seg);
1004     return;
1005   }
1006 
1007   // Flush the state if Start moves backwards.
1008   if (!LastStart.isValid() || LastStart > Seg.start) {
1009     if (isDirty())
1010       flush();
1011     // This brings us to an uninitialized state. Reinitialize.
1012     assert(Spills.empty() && "Leftover spilled segments");
1013     WriteI = ReadI = LR->begin();
1014   }
1015 
1016   // Remember start for next time.
1017   LastStart = Seg.start;
1018 
1019   // Advance ReadI until it ends after Seg.start.
1020   LiveRange::iterator E = LR->end();
1021   if (ReadI != E && ReadI->end <= Seg.start) {
1022     // First try to close the gap between WriteI and ReadI with spills.
1023     if (ReadI != WriteI)
1024       mergeSpills();
1025     // Then advance ReadI.
1026     if (ReadI == WriteI)
1027       ReadI = WriteI = LR->find(Seg.start);
1028     else
1029       while (ReadI != E && ReadI->end <= Seg.start)
1030         *WriteI++ = *ReadI++;
1031   }
1032 
1033   assert(ReadI == E || ReadI->end > Seg.start);
1034 
1035   // Check if the ReadI segment begins early.
1036   if (ReadI != E && ReadI->start <= Seg.start) {
1037     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1038     // Bail if Seg is completely contained in ReadI.
1039     if (ReadI->end >= Seg.end)
1040       return;
1041     // Coalesce into Seg.
1042     Seg.start = ReadI->start;
1043     ++ReadI;
1044   }
1045 
1046   // Coalesce as much as possible from ReadI into Seg.
1047   while (ReadI != E && coalescable(Seg, *ReadI)) {
1048     Seg.end = std::max(Seg.end, ReadI->end);
1049     ++ReadI;
1050   }
1051 
1052   // Try coalescing Spills.back() into Seg.
1053   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1054     Seg.start = Spills.back().start;
1055     Seg.end = std::max(Spills.back().end, Seg.end);
1056     Spills.pop_back();
1057   }
1058 
1059   // Try coalescing Seg into WriteI[-1].
1060   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1061     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1062     return;
1063   }
1064 
1065   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1066   if (WriteI != ReadI) {
1067     *WriteI++ = Seg;
1068     return;
1069   }
1070 
1071   // Finally, append to LR or Spills.
1072   if (WriteI == E) {
1073     LR->segments.push_back(Seg);
1074     WriteI = ReadI = LR->end();
1075   } else
1076     Spills.push_back(Seg);
1077 }
1078 
1079 // Merge as many spilled segments as possible into the gap between WriteI
1080 // and ReadI. Advance WriteI to reflect the inserted instructions.
1081 void LiveRangeUpdater::mergeSpills() {
1082   // Perform a backwards merge of Spills and [SpillI;WriteI).
1083   size_t GapSize = ReadI - WriteI;
1084   size_t NumMoved = std::min(Spills.size(), GapSize);
1085   LiveRange::iterator Src = WriteI;
1086   LiveRange::iterator Dst = Src + NumMoved;
1087   LiveRange::iterator SpillSrc = Spills.end();
1088   LiveRange::iterator B = LR->begin();
1089 
1090   // This is the new WriteI position after merging spills.
1091   WriteI = Dst;
1092 
1093   // Now merge Src and Spills backwards.
1094   while (Src != Dst) {
1095     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1096       *--Dst = *--Src;
1097     else
1098       *--Dst = *--SpillSrc;
1099   }
1100   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1101   Spills.erase(SpillSrc, Spills.end());
1102 }
1103 
1104 void LiveRangeUpdater::flush() {
1105   if (!isDirty())
1106     return;
1107   // Clear the dirty state.
1108   LastStart = SlotIndex();
1109 
1110   assert(LR && "Cannot add to a null destination");
1111 
1112   // Nothing to merge?
1113   if (Spills.empty()) {
1114     LR->segments.erase(WriteI, ReadI);
1115     LR->verify();
1116     return;
1117   }
1118 
1119   // Resize the WriteI - ReadI gap to match Spills.
1120   size_t GapSize = ReadI - WriteI;
1121   if (GapSize < Spills.size()) {
1122     // The gap is too small. Make some room.
1123     size_t WritePos = WriteI - LR->begin();
1124     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1125     // This also invalidated ReadI, but it is recomputed below.
1126     WriteI = LR->begin() + WritePos;
1127   } else {
1128     // Shrink the gap if necessary.
1129     LR->segments.erase(WriteI + Spills.size(), ReadI);
1130   }
1131   ReadI = WriteI + Spills.size();
1132   mergeSpills();
1133   LR->verify();
1134 }
1135 
1136 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1137   // Create initial equivalence classes.
1138   EqClass.clear();
1139   EqClass.grow(LR.getNumValNums());
1140 
1141   const VNInfo *used = nullptr, *unused = nullptr;
1142 
1143   // Determine connections.
1144   for (const VNInfo *VNI : LR.valnos) {
1145     // Group all unused values into one class.
1146     if (VNI->isUnused()) {
1147       if (unused)
1148         EqClass.join(unused->id, VNI->id);
1149       unused = VNI;
1150       continue;
1151     }
1152     used = VNI;
1153     if (VNI->isPHIDef()) {
1154       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1155       assert(MBB && "Phi-def has no defining MBB");
1156       // Connect to values live out of predecessors.
1157       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1158            PE = MBB->pred_end(); PI != PE; ++PI)
1159         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1160           EqClass.join(VNI->id, PVNI->id);
1161     } else {
1162       // Normal value defined by an instruction. Check for two-addr redef.
1163       // FIXME: This could be coincidental. Should we really check for a tied
1164       // operand constraint?
1165       // Note that VNI->def may be a use slot for an early clobber def.
1166       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1167         EqClass.join(VNI->id, UVNI->id);
1168     }
1169   }
1170 
1171   // Lump all the unused values in with the last used value.
1172   if (used && unused)
1173     EqClass.join(used->id, unused->id);
1174 
1175   EqClass.compress();
1176   return EqClass.getNumClasses();
1177 }
1178 
1179 template<typename LiveRangeT, typename EqClassesT>
1180 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[],
1181                             EqClassesT VNIClasses) {
1182   // Move segments to new intervals.
1183   LiveRange::iterator J = LR.begin(), E = LR.end();
1184   while (J != E && VNIClasses[J->valno->id] == 0)
1185     ++J;
1186   for (LiveRange::iterator I = J; I != E; ++I) {
1187     if (unsigned eq = VNIClasses[I->valno->id]) {
1188       assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) &&
1189              "New intervals should be empty");
1190       SplitLRs[eq-1]->segments.push_back(*I);
1191     } else
1192       *J++ = *I;
1193   }
1194   LR.segments.erase(J, E);
1195 
1196   // Transfer VNInfos to their new owners and renumber them.
1197   unsigned j = 0, e = LR.getNumValNums();
1198   while (j != e && VNIClasses[j] == 0)
1199     ++j;
1200   for (unsigned i = j; i != e; ++i) {
1201     VNInfo *VNI = LR.getValNumInfo(i);
1202     if (unsigned eq = VNIClasses[i]) {
1203       VNI->id = SplitLRs[eq-1]->getNumValNums();
1204       SplitLRs[eq-1]->valnos.push_back(VNI);
1205     } else {
1206       VNI->id = j;
1207       LR.valnos[j++] = VNI;
1208     }
1209   }
1210   LR.valnos.resize(j);
1211 }
1212 
1213 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1214                                           MachineRegisterInfo &MRI) {
1215   // Rewrite instructions.
1216   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1217        RE = MRI.reg_end(); RI != RE;) {
1218     MachineOperand &MO = *RI;
1219     MachineInstr *MI = RI->getParent();
1220     ++RI;
1221     // DBG_VALUE instructions don't have slot indexes, so get the index of the
1222     // instruction before them.
1223     // Normally, DBG_VALUE instructions are removed before this function is
1224     // called, but it is not a requirement.
1225     SlotIndex Idx;
1226     if (MI->isDebugValue())
1227       Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1228     else
1229       Idx = LIS.getInstructionIndex(*MI);
1230     LiveQueryResult LRQ = LI.Query(Idx);
1231     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1232     // In the case of an <undef> use that isn't tied to any def, VNI will be
1233     // NULL. If the use is tied to a def, VNI will be the defined value.
1234     if (!VNI)
1235       continue;
1236     if (unsigned EqClass = getEqClass(VNI))
1237       MO.setReg(LIV[EqClass-1]->reg);
1238   }
1239 
1240   // Distribute subregister liveranges.
1241   if (LI.hasSubRanges()) {
1242     unsigned NumComponents = EqClass.getNumClasses();
1243     SmallVector<unsigned, 8> VNIMapping;
1244     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1245     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1246     for (LiveInterval::SubRange &SR : LI.subranges()) {
1247       // Create new subranges in the split intervals and construct a mapping
1248       // for the VNInfos in the subrange.
1249       unsigned NumValNos = SR.valnos.size();
1250       VNIMapping.clear();
1251       VNIMapping.reserve(NumValNos);
1252       SubRanges.clear();
1253       SubRanges.resize(NumComponents-1, nullptr);
1254       for (unsigned I = 0; I < NumValNos; ++I) {
1255         const VNInfo &VNI = *SR.valnos[I];
1256         unsigned ComponentNum;
1257         if (VNI.isUnused()) {
1258           ComponentNum = 0;
1259         } else {
1260           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1261           assert(MainRangeVNI != nullptr
1262                  && "SubRange def must have corresponding main range def");
1263           ComponentNum = getEqClass(MainRangeVNI);
1264           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1265             SubRanges[ComponentNum-1]
1266               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1267           }
1268         }
1269         VNIMapping.push_back(ComponentNum);
1270       }
1271       DistributeRange(SR, SubRanges.data(), VNIMapping);
1272     }
1273     LI.removeEmptySubRanges();
1274   }
1275 
1276   // Distribute main liverange.
1277   DistributeRange(LI, LIV, EqClass);
1278 }
1279 
1280 void ConnectedSubRegClasses::renameComponents(LiveInterval &LI) const {
1281   // Shortcut: We cannot have split components with a single definition.
1282   if (LI.valnos.size() < 2)
1283     return;
1284 
1285   SmallVector<SubRangeInfo, 4> SubRangeInfos;
1286   IntEqClasses Classes;
1287   if (!findComponents(Classes, SubRangeInfos, LI))
1288     return;
1289 
1290   // Create a new VReg for each class.
1291   unsigned Reg = LI.reg;
1292   const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
1293   SmallVector<LiveInterval*, 4> Intervals;
1294   Intervals.push_back(&LI);
1295   for (unsigned I = 1, NumClasses = Classes.getNumClasses(); I < NumClasses;
1296        ++I) {
1297     unsigned NewVReg = MRI.createVirtualRegister(RegClass);
1298     LiveInterval &NewLI = LIS.createEmptyInterval(NewVReg);
1299     Intervals.push_back(&NewLI);
1300   }
1301 
1302   rewriteOperands(Classes, SubRangeInfos, Intervals);
1303   distribute(Classes, SubRangeInfos, Intervals);
1304   computeMainRangesFixFlags(Classes, SubRangeInfos, Intervals);
1305 }
1306 
1307 bool ConnectedSubRegClasses::findComponents(IntEqClasses &Classes,
1308     SmallVectorImpl<ConnectedSubRegClasses::SubRangeInfo> &SubRangeInfos,
1309     LiveInterval &LI) const {
1310   // First step: Create connected components for the VNInfos inside the
1311   // subranges and count the global number of such components.
1312   unsigned NumComponents = 0;
1313   for (LiveInterval::SubRange &SR : LI.subranges()) {
1314     SubRangeInfos.push_back(SubRangeInfo(LIS, SR, NumComponents));
1315     ConnectedVNInfoEqClasses &ConEQ = SubRangeInfos.back().ConEQ;
1316 
1317     unsigned NumSubComponents = ConEQ.Classify(SR);
1318     NumComponents += NumSubComponents;
1319   }
1320   // Shortcut: With only 1 subrange, the normal separate component tests are
1321   // enough and we do not need to perform the union-find on the subregister
1322   // segments.
1323   if (SubRangeInfos.size() < 2)
1324     return false;
1325 
1326   // Next step: Build union-find structure over all subranges and merge classes
1327   // across subranges when they are affected by the same MachineOperand.
1328   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1329   Classes.grow(NumComponents);
1330   unsigned Reg = LI.reg;
1331   for (const MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) {
1332     if (!MO.isDef() && !MO.readsReg())
1333       continue;
1334     unsigned SubRegIdx = MO.getSubReg();
1335     LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
1336     unsigned MergedID = ~0u;
1337     for (ConnectedSubRegClasses::SubRangeInfo &SRInfo : SubRangeInfos) {
1338       const LiveInterval::SubRange &SR = *SRInfo.SR;
1339       if ((SR.LaneMask & LaneMask) == 0)
1340         continue;
1341       SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1342       Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber())
1343                        : Pos.getBaseIndex();
1344       const VNInfo *VNI = SR.getVNInfoAt(Pos);
1345       if (VNI == nullptr)
1346         continue;
1347 
1348       // Map to local representant ID.
1349       unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI);
1350       // Global ID
1351       unsigned ID = LocalID + SRInfo.Index;
1352       // Merge other sets
1353       MergedID = MergedID == ~0u ? ID : Classes.join(MergedID, ID);
1354     }
1355   }
1356 
1357   // Early exit if we ended up with a single equivalence class.
1358   Classes.compress();
1359   unsigned NumClasses = Classes.getNumClasses();
1360   return NumClasses > 1;
1361 }
1362 
1363 void ConnectedSubRegClasses::rewriteOperands(const IntEqClasses &Classes,
1364     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1365     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1366   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1367   unsigned Reg = Intervals[0]->reg;;
1368   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(Reg),
1369        E = MRI.reg_nodbg_end(); I != E; ) {
1370     MachineOperand &MO = *I++;
1371     if (!MO.isDef() && !MO.readsReg())
1372       continue;
1373 
1374     MachineInstr &MI = *MO.getParent();
1375 
1376     SlotIndex Pos = LIS.getInstructionIndex(MI);
1377     unsigned SubRegIdx = MO.getSubReg();
1378     LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
1379 
1380     unsigned ID = ~0u;
1381     for (const SubRangeInfo &SRInfo : SubRangeInfos) {
1382       const LiveInterval::SubRange &SR = *SRInfo.SR;
1383       if ((SR.LaneMask & LaneMask) == 0)
1384         continue;
1385       LiveRange::const_iterator I = SR.find(Pos);
1386       if (I == SR.end())
1387         continue;
1388 
1389       const VNInfo &VNI = *I->valno;
1390       // Map to local representant ID.
1391       unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
1392       // Global ID
1393       ID = Classes[LocalID + SRInfo.Index];
1394       break;
1395     }
1396 
1397     unsigned VReg = Intervals[ID]->reg;
1398     MO.setReg(VReg);
1399   }
1400 }
1401 
1402 void ConnectedSubRegClasses::distribute(const IntEqClasses &Classes,
1403     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1404     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1405   unsigned NumClasses = Classes.getNumClasses();
1406   SmallVector<unsigned, 8> VNIMapping;
1407   SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1408   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1409   for (const SubRangeInfo &SRInfo : SubRangeInfos) {
1410     LiveInterval::SubRange &SR = *SRInfo.SR;
1411     unsigned NumValNos = SR.valnos.size();
1412     VNIMapping.clear();
1413     VNIMapping.reserve(NumValNos);
1414     SubRanges.clear();
1415     SubRanges.resize(NumClasses-1, nullptr);
1416     for (unsigned I = 0; I < NumValNos; ++I) {
1417       const VNInfo &VNI = *SR.valnos[I];
1418       unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
1419       unsigned ID = Classes[LocalID + SRInfo.Index];
1420       VNIMapping.push_back(ID);
1421       if (ID > 0 && SubRanges[ID-1] == nullptr)
1422         SubRanges[ID-1] = Intervals[ID]->createSubRange(Allocator, SR.LaneMask);
1423     }
1424     DistributeRange(SR, SubRanges.data(), VNIMapping);
1425   }
1426 }
1427 
1428 static bool subRangeLiveAt(const LiveInterval &LI, SlotIndex Pos) {
1429   for (const LiveInterval::SubRange &SR : LI.subranges()) {
1430     if (SR.liveAt(Pos))
1431       return true;
1432   }
1433   return false;
1434 }
1435 
1436 void ConnectedSubRegClasses::computeMainRangesFixFlags(
1437     const IntEqClasses &Classes,
1438     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1439     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1440   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1441   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1442   for (size_t I = 0, E = Intervals.size(); I < E; ++I) {
1443     LiveInterval &LI = *Intervals[I];
1444     unsigned Reg = LI.reg;
1445 
1446     LI.removeEmptySubRanges();
1447 
1448     // There must be a def (or live-in) before every use. Splitting vregs may
1449     // violate this principle as the splitted vreg may not have a definition on
1450     // every path. Fix this by creating IMPLICIT_DEF instruction as necessary.
1451     for (const LiveInterval::SubRange &SR : LI.subranges()) {
1452       // Search for "PHI" value numbers in the subranges. We must find a live
1453       // value in each predecessor block, add an IMPLICIT_DEF where it is
1454       // missing.
1455       for (unsigned I = 0; I < SR.valnos.size(); ++I) {
1456         const VNInfo &VNI = *SR.valnos[I];
1457         if (VNI.isUnused() || !VNI.isPHIDef())
1458           continue;
1459 
1460         SlotIndex Def = VNI.def;
1461         MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(Def);
1462         for (MachineBasicBlock *PredMBB : MBB.predecessors()) {
1463           SlotIndex PredEnd = Indexes.getMBBEndIdx(PredMBB);
1464           if (subRangeLiveAt(LI, PredEnd.getPrevSlot()))
1465             continue;
1466 
1467           MachineBasicBlock::iterator InsertPos =
1468             llvm::findPHICopyInsertPoint(PredMBB, &MBB, Reg);
1469           const MCInstrDesc &MCDesc = TII.get(TargetOpcode::IMPLICIT_DEF);
1470           MachineInstrBuilder ImpDef = BuildMI(*PredMBB, InsertPos,
1471                                                DebugLoc(), MCDesc, Reg);
1472           SlotIndex DefIdx = LIS.InsertMachineInstrInMaps(*ImpDef);
1473           SlotIndex RegDefIdx = DefIdx.getRegSlot();
1474           for (LiveInterval::SubRange &SR : LI.subranges()) {
1475             VNInfo *SRVNI = SR.getNextValue(RegDefIdx, Allocator);
1476             SR.addSegment(LiveRange::Segment(RegDefIdx, PredEnd, SRVNI));
1477           }
1478         }
1479       }
1480     }
1481 
1482     for (MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) {
1483       if (!MO.isDef())
1484         continue;
1485       unsigned SubRegIdx = MO.getSubReg();
1486       if (SubRegIdx == 0)
1487         continue;
1488       // After assigning the new vreg we may not have any other sublanes living
1489       // in and out of the instruction anymore. We need to add new dead and
1490       // undef flags in these cases.
1491       if (!MO.isUndef()) {
1492         SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1493         if (!subRangeLiveAt(LI, Pos))
1494           MO.setIsUndef();
1495       }
1496       if (!MO.isDead()) {
1497         SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()).getDeadSlot();
1498         if (!subRangeLiveAt(LI, Pos))
1499           MO.setIsDead();
1500       }
1501     }
1502 
1503     if (I == 0)
1504       LI.clear();
1505     LIS.constructMainRangeFromSubranges(LI);
1506   }
1507 }
1508