1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 36 // This algorithm is basically std::upper_bound. 37 // Unfortunately, std::upper_bound cannot be used with mixed types until we 38 // adopt C++0x. Many libraries can do it, but not all. 39 if (empty() || Pos >= endIndex()) 40 return end(); 41 iterator I = begin(); 42 size_t Len = size(); 43 do { 44 size_t Mid = Len >> 1; 45 if (Pos < I[Mid].end) 46 Len = Mid; 47 else 48 I += Mid + 1, Len -= Mid + 1; 49 } while (Len); 50 return I; 51 } 52 53 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 54 VNInfo::Allocator &VNInfoAllocator) { 55 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 56 iterator I = find(Def); 57 if (I == end()) { 58 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 59 segments.push_back(Segment(Def, Def.getDeadSlot(), VNI)); 60 return VNI; 61 } 62 if (SlotIndex::isSameInstr(Def, I->start)) { 63 assert(I->valno->def == I->start && "Inconsistent existing value def"); 64 65 // It is possible to have both normal and early-clobber defs of the same 66 // register on an instruction. It doesn't make a lot of sense, but it is 67 // possible to specify in inline assembly. 68 // 69 // Just convert everything to early-clobber. 70 Def = std::min(Def, I->start); 71 if (Def != I->start) 72 I->start = I->valno->def = Def; 73 return I->valno; 74 } 75 assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def"); 76 VNInfo *VNI = getNextValue(Def, VNInfoAllocator); 77 segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 78 return VNI; 79 } 80 81 // overlaps - Return true if the intersection of the two live ranges is 82 // not empty. 83 // 84 // An example for overlaps(): 85 // 86 // 0: A = ... 87 // 4: B = ... 88 // 8: C = A + B ;; last use of A 89 // 90 // The live ranges should look like: 91 // 92 // A = [3, 11) 93 // B = [7, x) 94 // C = [11, y) 95 // 96 // A->overlaps(C) should return false since we want to be able to join 97 // A and C. 98 // 99 bool LiveRange::overlapsFrom(const LiveRange& other, 100 const_iterator StartPos) const { 101 assert(!empty() && "empty range"); 102 const_iterator i = begin(); 103 const_iterator ie = end(); 104 const_iterator j = StartPos; 105 const_iterator je = other.end(); 106 107 assert((StartPos->start <= i->start || StartPos == other.begin()) && 108 StartPos != other.end() && "Bogus start position hint!"); 109 110 if (i->start < j->start) { 111 i = std::upper_bound(i, ie, j->start); 112 if (i != begin()) --i; 113 } else if (j->start < i->start) { 114 ++StartPos; 115 if (StartPos != other.end() && StartPos->start <= i->start) { 116 assert(StartPos < other.end() && i < end()); 117 j = std::upper_bound(j, je, i->start); 118 if (j != other.begin()) --j; 119 } 120 } else { 121 return true; 122 } 123 124 if (j == je) return false; 125 126 while (i != ie) { 127 if (i->start > j->start) { 128 std::swap(i, j); 129 std::swap(ie, je); 130 } 131 132 if (i->end > j->start) 133 return true; 134 ++i; 135 } 136 137 return false; 138 } 139 140 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 141 const SlotIndexes &Indexes) const { 142 assert(!empty() && "empty range"); 143 if (Other.empty()) 144 return false; 145 146 // Use binary searches to find initial positions. 147 const_iterator I = find(Other.beginIndex()); 148 const_iterator IE = end(); 149 if (I == IE) 150 return false; 151 const_iterator J = Other.find(I->start); 152 const_iterator JE = Other.end(); 153 if (J == JE) 154 return false; 155 156 for (;;) { 157 // J has just been advanced to satisfy: 158 assert(J->end >= I->start); 159 // Check for an overlap. 160 if (J->start < I->end) { 161 // I and J are overlapping. Find the later start. 162 SlotIndex Def = std::max(I->start, J->start); 163 // Allow the overlap if Def is a coalescable copy. 164 if (Def.isBlock() || 165 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 166 return true; 167 } 168 // Advance the iterator that ends first to check for more overlaps. 169 if (J->end > I->end) { 170 std::swap(I, J); 171 std::swap(IE, JE); 172 } 173 // Advance J until J->end >= I->start. 174 do 175 if (++J == JE) 176 return false; 177 while (J->end < I->start); 178 } 179 } 180 181 /// overlaps - Return true if the live range overlaps an interval specified 182 /// by [Start, End). 183 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 184 assert(Start < End && "Invalid range"); 185 const_iterator I = std::lower_bound(begin(), end(), End); 186 return I != begin() && (--I)->end > Start; 187 } 188 189 bool LiveRange::covers(const LiveRange &Other) const { 190 if (empty()) 191 return Other.empty(); 192 193 const_iterator I = begin(); 194 for (const Segment &O : Other.segments) { 195 I = advanceTo(I, O.start); 196 if (I == end() || I->start > O.start) 197 return false; 198 199 // Check adjacent live segments and see if we can get behind O.end. 200 while (I->end < O.end) { 201 const_iterator Last = I; 202 // Get next segment and abort if it was not adjacent. 203 ++I; 204 if (I == end() || Last->end != I->start) 205 return false; 206 } 207 } 208 return true; 209 } 210 211 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 212 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 213 /// it can be nuked later. 214 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 215 if (ValNo->id == getNumValNums()-1) { 216 do { 217 valnos.pop_back(); 218 } while (!valnos.empty() && valnos.back()->isUnused()); 219 } else { 220 ValNo->markUnused(); 221 } 222 } 223 224 /// RenumberValues - Renumber all values in order of appearance and delete the 225 /// remaining unused values. 226 void LiveRange::RenumberValues() { 227 SmallPtrSet<VNInfo*, 8> Seen; 228 valnos.clear(); 229 for (const Segment &S : segments) { 230 VNInfo *VNI = S.valno; 231 if (!Seen.insert(VNI).second) 232 continue; 233 assert(!VNI->isUnused() && "Unused valno used by live segment"); 234 VNI->id = (unsigned)valnos.size(); 235 valnos.push_back(VNI); 236 } 237 } 238 239 /// This method is used when we want to extend the segment specified by I to end 240 /// at the specified endpoint. To do this, we should merge and eliminate all 241 /// segments that this will overlap with. The iterator is not invalidated. 242 void LiveRange::extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 243 assert(I != end() && "Not a valid segment!"); 244 VNInfo *ValNo = I->valno; 245 246 // Search for the first segment that we can't merge with. 247 iterator MergeTo = std::next(I); 248 for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) { 249 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 250 } 251 252 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 253 I->end = std::max(NewEnd, std::prev(MergeTo)->end); 254 255 // If the newly formed segment now touches the segment after it and if they 256 // have the same value number, merge the two segments into one segment. 257 if (MergeTo != end() && MergeTo->start <= I->end && 258 MergeTo->valno == ValNo) { 259 I->end = MergeTo->end; 260 ++MergeTo; 261 } 262 263 // Erase any dead segments. 264 segments.erase(std::next(I), MergeTo); 265 } 266 267 268 /// This method is used when we want to extend the segment specified by I to 269 /// start at the specified endpoint. To do this, we should merge and eliminate 270 /// all segments that this will overlap with. 271 LiveRange::iterator 272 LiveRange::extendSegmentStartTo(iterator I, SlotIndex NewStart) { 273 assert(I != end() && "Not a valid segment!"); 274 VNInfo *ValNo = I->valno; 275 276 // Search for the first segment that we can't merge with. 277 iterator MergeTo = I; 278 do { 279 if (MergeTo == begin()) { 280 I->start = NewStart; 281 segments.erase(MergeTo, I); 282 return I; 283 } 284 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 285 --MergeTo; 286 } while (NewStart <= MergeTo->start); 287 288 // If we start in the middle of another segment, just delete a range and 289 // extend that segment. 290 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 291 MergeTo->end = I->end; 292 } else { 293 // Otherwise, extend the segment right after. 294 ++MergeTo; 295 MergeTo->start = NewStart; 296 MergeTo->end = I->end; 297 } 298 299 segments.erase(std::next(MergeTo), std::next(I)); 300 return MergeTo; 301 } 302 303 LiveRange::iterator LiveRange::addSegmentFrom(Segment S, iterator From) { 304 SlotIndex Start = S.start, End = S.end; 305 iterator it = std::upper_bound(From, end(), Start); 306 307 // If the inserted segment starts in the middle or right at the end of 308 // another segment, just extend that segment to contain the segment of S. 309 if (it != begin()) { 310 iterator B = std::prev(it); 311 if (S.valno == B->valno) { 312 if (B->start <= Start && B->end >= Start) { 313 extendSegmentEndTo(B, End); 314 return B; 315 } 316 } else { 317 // Check to make sure that we are not overlapping two live segments with 318 // different valno's. 319 assert(B->end <= Start && 320 "Cannot overlap two segments with differing ValID's" 321 " (did you def the same reg twice in a MachineInstr?)"); 322 } 323 } 324 325 // Otherwise, if this segment ends in the middle of, or right next to, another 326 // segment, merge it into that segment. 327 if (it != end()) { 328 if (S.valno == it->valno) { 329 if (it->start <= End) { 330 it = extendSegmentStartTo(it, Start); 331 332 // If S is a complete superset of a segment, we may need to grow its 333 // endpoint as well. 334 if (End > it->end) 335 extendSegmentEndTo(it, End); 336 return it; 337 } 338 } else { 339 // Check to make sure that we are not overlapping two live segments with 340 // different valno's. 341 assert(it->start >= End && 342 "Cannot overlap two segments with differing ValID's"); 343 } 344 } 345 346 // Otherwise, this is just a new segment that doesn't interact with anything. 347 // Insert it. 348 return segments.insert(it, S); 349 } 350 351 /// extendInBlock - If this range is live before Kill in the basic 352 /// block that starts at StartIdx, extend it to be live up to Kill and return 353 /// the value. If there is no live range before Kill, return NULL. 354 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 355 if (empty()) 356 return nullptr; 357 iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot()); 358 if (I == begin()) 359 return nullptr; 360 --I; 361 if (I->end <= StartIdx) 362 return nullptr; 363 if (I->end < Kill) 364 extendSegmentEndTo(I, Kill); 365 return I->valno; 366 } 367 368 /// Remove the specified segment from this range. Note that the segment must 369 /// be in a single Segment in its entirety. 370 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 371 bool RemoveDeadValNo) { 372 // Find the Segment containing this span. 373 iterator I = find(Start); 374 assert(I != end() && "Segment is not in range!"); 375 assert(I->containsInterval(Start, End) 376 && "Segment is not entirely in range!"); 377 378 // If the span we are removing is at the start of the Segment, adjust it. 379 VNInfo *ValNo = I->valno; 380 if (I->start == Start) { 381 if (I->end == End) { 382 if (RemoveDeadValNo) { 383 // Check if val# is dead. 384 bool isDead = true; 385 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 386 if (II != I && II->valno == ValNo) { 387 isDead = false; 388 break; 389 } 390 if (isDead) { 391 // Now that ValNo is dead, remove it. 392 markValNoForDeletion(ValNo); 393 } 394 } 395 396 segments.erase(I); // Removed the whole Segment. 397 } else 398 I->start = End; 399 return; 400 } 401 402 // Otherwise if the span we are removing is at the end of the Segment, 403 // adjust the other way. 404 if (I->end == End) { 405 I->end = Start; 406 return; 407 } 408 409 // Otherwise, we are splitting the Segment into two pieces. 410 SlotIndex OldEnd = I->end; 411 I->end = Start; // Trim the old segment. 412 413 // Insert the new one. 414 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 415 } 416 417 /// removeValNo - Remove all the segments defined by the specified value#. 418 /// Also remove the value# from value# list. 419 void LiveRange::removeValNo(VNInfo *ValNo) { 420 if (empty()) return; 421 iterator I = end(); 422 iterator E = begin(); 423 do { 424 --I; 425 if (I->valno == ValNo) 426 segments.erase(I); 427 } while (I != E); 428 // Now that ValNo is dead, remove it. 429 markValNoForDeletion(ValNo); 430 } 431 432 void LiveRange::join(LiveRange &Other, 433 const int *LHSValNoAssignments, 434 const int *RHSValNoAssignments, 435 SmallVectorImpl<VNInfo *> &NewVNInfo) { 436 verify(); 437 438 // Determine if any of our values are mapped. This is uncommon, so we want 439 // to avoid the range scan if not. 440 bool MustMapCurValNos = false; 441 unsigned NumVals = getNumValNums(); 442 unsigned NumNewVals = NewVNInfo.size(); 443 for (unsigned i = 0; i != NumVals; ++i) { 444 unsigned LHSValID = LHSValNoAssignments[i]; 445 if (i != LHSValID || 446 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 447 MustMapCurValNos = true; 448 break; 449 } 450 } 451 452 // If we have to apply a mapping to our base range assignment, rewrite it now. 453 if (MustMapCurValNos && !empty()) { 454 // Map the first live range. 455 456 iterator OutIt = begin(); 457 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 458 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 459 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 460 assert(nextValNo && "Huh?"); 461 462 // If this live range has the same value # as its immediate predecessor, 463 // and if they are neighbors, remove one Segment. This happens when we 464 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 465 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 466 OutIt->end = I->end; 467 } else { 468 // Didn't merge. Move OutIt to the next segment, 469 ++OutIt; 470 OutIt->valno = nextValNo; 471 if (OutIt != I) { 472 OutIt->start = I->start; 473 OutIt->end = I->end; 474 } 475 } 476 } 477 // If we merge some segments, chop off the end. 478 ++OutIt; 479 segments.erase(OutIt, end()); 480 } 481 482 // Rewrite Other values before changing the VNInfo ids. 483 // This can leave Other in an invalid state because we're not coalescing 484 // touching segments that now have identical values. That's OK since Other is 485 // not supposed to be valid after calling join(); 486 for (Segment &S : Other.segments) 487 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 488 489 // Update val# info. Renumber them and make sure they all belong to this 490 // LiveRange now. Also remove dead val#'s. 491 unsigned NumValNos = 0; 492 for (unsigned i = 0; i < NumNewVals; ++i) { 493 VNInfo *VNI = NewVNInfo[i]; 494 if (VNI) { 495 if (NumValNos >= NumVals) 496 valnos.push_back(VNI); 497 else 498 valnos[NumValNos] = VNI; 499 VNI->id = NumValNos++; // Renumber val#. 500 } 501 } 502 if (NumNewVals < NumVals) 503 valnos.resize(NumNewVals); // shrinkify 504 505 // Okay, now insert the RHS live segments into the LHS. 506 LiveRangeUpdater Updater(this); 507 for (Segment &S : Other.segments) 508 Updater.add(S); 509 } 510 511 /// Merge all of the segments in RHS into this live range as the specified 512 /// value number. The segments in RHS are allowed to overlap with segments in 513 /// the current range, but only if the overlapping segments have the 514 /// specified value number. 515 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 516 VNInfo *LHSValNo) { 517 LiveRangeUpdater Updater(this); 518 for (const Segment &S : RHS.segments) 519 Updater.add(S.start, S.end, LHSValNo); 520 } 521 522 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 523 /// in RHS into this live range as the specified value number. 524 /// The segments in RHS are allowed to overlap with segments in the 525 /// current range, it will replace the value numbers of the overlaped 526 /// segments with the specified value number. 527 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 528 const VNInfo *RHSValNo, 529 VNInfo *LHSValNo) { 530 LiveRangeUpdater Updater(this); 531 for (const Segment &S : RHS.segments) 532 if (S.valno == RHSValNo) 533 Updater.add(S.start, S.end, LHSValNo); 534 } 535 536 /// MergeValueNumberInto - This method is called when two value nubmers 537 /// are found to be equivalent. This eliminates V1, replacing all 538 /// segments with the V1 value number with the V2 value number. This can 539 /// cause merging of V1/V2 values numbers and compaction of the value space. 540 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 541 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 542 543 // This code actually merges the (numerically) larger value number into the 544 // smaller value number, which is likely to allow us to compactify the value 545 // space. The only thing we have to be careful of is to preserve the 546 // instruction that defines the result value. 547 548 // Make sure V2 is smaller than V1. 549 if (V1->id < V2->id) { 550 V1->copyFrom(*V2); 551 std::swap(V1, V2); 552 } 553 554 // Merge V1 segments into V2. 555 for (iterator I = begin(); I != end(); ) { 556 iterator S = I++; 557 if (S->valno != V1) continue; // Not a V1 Segment. 558 559 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 560 // range, extend it. 561 if (S != begin()) { 562 iterator Prev = S-1; 563 if (Prev->valno == V2 && Prev->end == S->start) { 564 Prev->end = S->end; 565 566 // Erase this live-range. 567 segments.erase(S); 568 I = Prev+1; 569 S = Prev; 570 } 571 } 572 573 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 574 // Ensure that it is a V2 live-range. 575 S->valno = V2; 576 577 // If we can merge it into later V2 segments, do so now. We ignore any 578 // following V1 segments, as they will be merged in subsequent iterations 579 // of the loop. 580 if (I != end()) { 581 if (I->start == S->end && I->valno == V2) { 582 S->end = I->end; 583 segments.erase(I); 584 I = S+1; 585 } 586 } 587 } 588 589 // Now that V1 is dead, remove it. 590 markValNoForDeletion(V1); 591 592 return V2; 593 } 594 595 void LiveInterval::removeEmptySubRanges() { 596 SubRange **NextPtr = &SubRanges; 597 SubRange *I = *NextPtr; 598 while (I != nullptr) { 599 if (!I->empty()) { 600 NextPtr = &I->Next; 601 I = *NextPtr; 602 continue; 603 } 604 // Skip empty subranges until we find the first nonempty one. 605 do { 606 I = I->Next; 607 } while (I != nullptr && I->empty()); 608 *NextPtr = I; 609 } 610 } 611 612 unsigned LiveInterval::getSize() const { 613 unsigned Sum = 0; 614 for (const Segment &S : segments) 615 Sum += S.start.distance(S.end); 616 return Sum; 617 } 618 619 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 620 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 621 } 622 623 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 624 void LiveRange::Segment::dump() const { 625 dbgs() << *this << "\n"; 626 } 627 #endif 628 629 void LiveRange::print(raw_ostream &OS) const { 630 if (empty()) 631 OS << "EMPTY"; 632 else { 633 for (const Segment &S : segments) { 634 OS << S; 635 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 636 } 637 } 638 639 // Print value number info. 640 if (getNumValNums()) { 641 OS << " "; 642 unsigned vnum = 0; 643 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 644 ++i, ++vnum) { 645 const VNInfo *vni = *i; 646 if (vnum) OS << " "; 647 OS << vnum << "@"; 648 if (vni->isUnused()) { 649 OS << "x"; 650 } else { 651 OS << vni->def; 652 if (vni->isPHIDef()) 653 OS << "-phi"; 654 } 655 } 656 } 657 } 658 659 void LiveInterval::print(raw_ostream &OS) const { 660 OS << PrintReg(reg) << ' '; 661 super::print(OS); 662 // Print subranges 663 for (const SubRange &SR : subranges()) { 664 OS << format(" L%04X ", SR.LaneMask) << SR; 665 } 666 } 667 668 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 669 void LiveRange::dump() const { 670 dbgs() << *this << "\n"; 671 } 672 673 void LiveInterval::dump() const { 674 dbgs() << *this << "\n"; 675 } 676 #endif 677 678 #ifndef NDEBUG 679 void LiveRange::verify() const { 680 for (const_iterator I = begin(), E = end(); I != E; ++I) { 681 assert(I->start.isValid()); 682 assert(I->end.isValid()); 683 assert(I->start < I->end); 684 assert(I->valno != nullptr); 685 assert(I->valno->id < valnos.size()); 686 assert(I->valno == valnos[I->valno->id]); 687 if (std::next(I) != E) { 688 assert(I->end <= std::next(I)->start); 689 if (I->end == std::next(I)->start) 690 assert(I->valno != std::next(I)->valno); 691 } 692 } 693 } 694 695 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 696 super::verify(); 697 698 // Make sure SubRanges are fine and LaneMasks are disjunct. 699 unsigned Mask = 0; 700 unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; 701 for (const SubRange &SR : subranges()) { 702 // Subrange lanemask should be disjunct to any previous subrange masks. 703 assert((Mask & SR.LaneMask) == 0); 704 Mask |= SR.LaneMask; 705 706 // subrange mask should not contained in maximum lane mask for the vreg. 707 assert((Mask & ~MaxMask) == 0); 708 709 SR.verify(); 710 // Main liverange should cover subrange. 711 assert(covers(SR)); 712 } 713 } 714 #endif 715 716 717 //===----------------------------------------------------------------------===// 718 // LiveRangeUpdater class 719 //===----------------------------------------------------------------------===// 720 // 721 // The LiveRangeUpdater class always maintains these invariants: 722 // 723 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 724 // This is the initial state, and the state created by flush(). 725 // In this state, isDirty() returns false. 726 // 727 // Otherwise, segments are kept in three separate areas: 728 // 729 // 1. [begin; WriteI) at the front of LR. 730 // 2. [ReadI; end) at the back of LR. 731 // 3. Spills. 732 // 733 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 734 // - Segments in all three areas are fully ordered and coalesced. 735 // - Segments in area 1 precede and can't coalesce with segments in area 2. 736 // - Segments in Spills precede and can't coalesce with segments in area 2. 737 // - No coalescing is possible between segments in Spills and segments in area 738 // 1, and there are no overlapping segments. 739 // 740 // The segments in Spills are not ordered with respect to the segments in area 741 // 1. They need to be merged. 742 // 743 // When they exist, Spills.back().start <= LastStart, 744 // and WriteI[-1].start <= LastStart. 745 746 void LiveRangeUpdater::print(raw_ostream &OS) const { 747 if (!isDirty()) { 748 if (LR) 749 OS << "Clean updater: " << *LR << '\n'; 750 else 751 OS << "Null updater.\n"; 752 return; 753 } 754 assert(LR && "Can't have null LR in dirty updater."); 755 OS << " updater with gap = " << (ReadI - WriteI) 756 << ", last start = " << LastStart 757 << ":\n Area 1:"; 758 for (const auto &S : make_range(LR->begin(), WriteI)) 759 OS << ' ' << S; 760 OS << "\n Spills:"; 761 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 762 OS << ' ' << Spills[I]; 763 OS << "\n Area 2:"; 764 for (const auto &S : make_range(ReadI, LR->end())) 765 OS << ' ' << S; 766 OS << '\n'; 767 } 768 769 void LiveRangeUpdater::dump() const 770 { 771 print(errs()); 772 } 773 774 // Determine if A and B should be coalesced. 775 static inline bool coalescable(const LiveRange::Segment &A, 776 const LiveRange::Segment &B) { 777 assert(A.start <= B.start && "Unordered live segments."); 778 if (A.end == B.start) 779 return A.valno == B.valno; 780 if (A.end < B.start) 781 return false; 782 assert(A.valno == B.valno && "Cannot overlap different values"); 783 return true; 784 } 785 786 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 787 assert(LR && "Cannot add to a null destination"); 788 789 // Flush the state if Start moves backwards. 790 if (!LastStart.isValid() || LastStart > Seg.start) { 791 if (isDirty()) 792 flush(); 793 // This brings us to an uninitialized state. Reinitialize. 794 assert(Spills.empty() && "Leftover spilled segments"); 795 WriteI = ReadI = LR->begin(); 796 } 797 798 // Remember start for next time. 799 LastStart = Seg.start; 800 801 // Advance ReadI until it ends after Seg.start. 802 LiveRange::iterator E = LR->end(); 803 if (ReadI != E && ReadI->end <= Seg.start) { 804 // First try to close the gap between WriteI and ReadI with spills. 805 if (ReadI != WriteI) 806 mergeSpills(); 807 // Then advance ReadI. 808 if (ReadI == WriteI) 809 ReadI = WriteI = LR->find(Seg.start); 810 else 811 while (ReadI != E && ReadI->end <= Seg.start) 812 *WriteI++ = *ReadI++; 813 } 814 815 assert(ReadI == E || ReadI->end > Seg.start); 816 817 // Check if the ReadI segment begins early. 818 if (ReadI != E && ReadI->start <= Seg.start) { 819 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 820 // Bail if Seg is completely contained in ReadI. 821 if (ReadI->end >= Seg.end) 822 return; 823 // Coalesce into Seg. 824 Seg.start = ReadI->start; 825 ++ReadI; 826 } 827 828 // Coalesce as much as possible from ReadI into Seg. 829 while (ReadI != E && coalescable(Seg, *ReadI)) { 830 Seg.end = std::max(Seg.end, ReadI->end); 831 ++ReadI; 832 } 833 834 // Try coalescing Spills.back() into Seg. 835 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 836 Seg.start = Spills.back().start; 837 Seg.end = std::max(Spills.back().end, Seg.end); 838 Spills.pop_back(); 839 } 840 841 // Try coalescing Seg into WriteI[-1]. 842 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 843 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 844 return; 845 } 846 847 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 848 if (WriteI != ReadI) { 849 *WriteI++ = Seg; 850 return; 851 } 852 853 // Finally, append to LR or Spills. 854 if (WriteI == E) { 855 LR->segments.push_back(Seg); 856 WriteI = ReadI = LR->end(); 857 } else 858 Spills.push_back(Seg); 859 } 860 861 // Merge as many spilled segments as possible into the gap between WriteI 862 // and ReadI. Advance WriteI to reflect the inserted instructions. 863 void LiveRangeUpdater::mergeSpills() { 864 // Perform a backwards merge of Spills and [SpillI;WriteI). 865 size_t GapSize = ReadI - WriteI; 866 size_t NumMoved = std::min(Spills.size(), GapSize); 867 LiveRange::iterator Src = WriteI; 868 LiveRange::iterator Dst = Src + NumMoved; 869 LiveRange::iterator SpillSrc = Spills.end(); 870 LiveRange::iterator B = LR->begin(); 871 872 // This is the new WriteI position after merging spills. 873 WriteI = Dst; 874 875 // Now merge Src and Spills backwards. 876 while (Src != Dst) { 877 if (Src != B && Src[-1].start > SpillSrc[-1].start) 878 *--Dst = *--Src; 879 else 880 *--Dst = *--SpillSrc; 881 } 882 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 883 Spills.erase(SpillSrc, Spills.end()); 884 } 885 886 void LiveRangeUpdater::flush() { 887 if (!isDirty()) 888 return; 889 // Clear the dirty state. 890 LastStart = SlotIndex(); 891 892 assert(LR && "Cannot add to a null destination"); 893 894 // Nothing to merge? 895 if (Spills.empty()) { 896 LR->segments.erase(WriteI, ReadI); 897 LR->verify(); 898 return; 899 } 900 901 // Resize the WriteI - ReadI gap to match Spills. 902 size_t GapSize = ReadI - WriteI; 903 if (GapSize < Spills.size()) { 904 // The gap is too small. Make some room. 905 size_t WritePos = WriteI - LR->begin(); 906 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 907 // This also invalidated ReadI, but it is recomputed below. 908 WriteI = LR->begin() + WritePos; 909 } else { 910 // Shrink the gap if necessary. 911 LR->segments.erase(WriteI + Spills.size(), ReadI); 912 } 913 ReadI = WriteI + Spills.size(); 914 mergeSpills(); 915 LR->verify(); 916 } 917 918 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 919 // Create initial equivalence classes. 920 EqClass.clear(); 921 EqClass.grow(LI->getNumValNums()); 922 923 const VNInfo *used = nullptr, *unused = nullptr; 924 925 // Determine connections. 926 for (const VNInfo *VNI : LI->valnos) { 927 // Group all unused values into one class. 928 if (VNI->isUnused()) { 929 if (unused) 930 EqClass.join(unused->id, VNI->id); 931 unused = VNI; 932 continue; 933 } 934 used = VNI; 935 if (VNI->isPHIDef()) { 936 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 937 assert(MBB && "Phi-def has no defining MBB"); 938 // Connect to values live out of predecessors. 939 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 940 PE = MBB->pred_end(); PI != PE; ++PI) 941 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 942 EqClass.join(VNI->id, PVNI->id); 943 } else { 944 // Normal value defined by an instruction. Check for two-addr redef. 945 // FIXME: This could be coincidental. Should we really check for a tied 946 // operand constraint? 947 // Note that VNI->def may be a use slot for an early clobber def. 948 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 949 EqClass.join(VNI->id, UVNI->id); 950 } 951 } 952 953 // Lump all the unused values in with the last used value. 954 if (used && unused) 955 EqClass.join(used->id, unused->id); 956 957 EqClass.compress(); 958 return EqClass.getNumClasses(); 959 } 960 961 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 962 MachineRegisterInfo &MRI) { 963 assert(LIV[0] && "LIV[0] must be set"); 964 LiveInterval &LI = *LIV[0]; 965 966 // Rewrite instructions. 967 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 968 RE = MRI.reg_end(); RI != RE;) { 969 MachineOperand &MO = *RI; 970 MachineInstr *MI = RI->getParent(); 971 ++RI; 972 // DBG_VALUE instructions don't have slot indexes, so get the index of the 973 // instruction before them. 974 // Normally, DBG_VALUE instructions are removed before this function is 975 // called, but it is not a requirement. 976 SlotIndex Idx; 977 if (MI->isDebugValue()) 978 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 979 else 980 Idx = LIS.getInstructionIndex(MI); 981 LiveQueryResult LRQ = LI.Query(Idx); 982 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 983 // In the case of an <undef> use that isn't tied to any def, VNI will be 984 // NULL. If the use is tied to a def, VNI will be the defined value. 985 if (!VNI) 986 continue; 987 MO.setReg(LIV[getEqClass(VNI)]->reg); 988 } 989 990 // Move runs to new intervals. 991 LiveInterval::iterator J = LI.begin(), E = LI.end(); 992 while (J != E && EqClass[J->valno->id] == 0) 993 ++J; 994 for (LiveInterval::iterator I = J; I != E; ++I) { 995 if (unsigned eq = EqClass[I->valno->id]) { 996 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 997 "New intervals should be empty"); 998 LIV[eq]->segments.push_back(*I); 999 } else 1000 *J++ = *I; 1001 } 1002 // TODO: do not cheat anymore by simply cleaning all subranges 1003 LI.clearSubRanges(); 1004 LI.segments.erase(J, E); 1005 1006 // Transfer VNInfos to their new owners and renumber them. 1007 unsigned j = 0, e = LI.getNumValNums(); 1008 while (j != e && EqClass[j] == 0) 1009 ++j; 1010 for (unsigned i = j; i != e; ++i) { 1011 VNInfo *VNI = LI.getValNumInfo(i); 1012 if (unsigned eq = EqClass[i]) { 1013 VNI->id = LIV[eq]->getNumValNums(); 1014 LIV[eq]->valnos.push_back(VNI); 1015 } else { 1016 VNI->id = j; 1017 LI.valnos[j++] = VNI; 1018 } 1019 } 1020 LI.valnos.resize(j); 1021 } 1022