1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/Format.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include "llvm/Target/TargetRegisterInfo.h" 32 #include <algorithm> 33 using namespace llvm; 34 35 //===----------------------------------------------------------------------===// 36 // Implementation of various methods necessary for calculation of live ranges. 37 // The implementation of the methods abstracts from the concrete type of the 38 // segment collection. 39 // 40 // Implementation of the class follows the Template design pattern. The base 41 // class contains generic algorithms that call collection-specific methods, 42 // which are provided in concrete subclasses. In order to avoid virtual calls 43 // these methods are provided by means of C++ template instantiation. 44 // The base class calls the methods of the subclass through method impl(), 45 // which casts 'this' pointer to the type of the subclass. 46 // 47 //===----------------------------------------------------------------------===// 48 49 template <typename ImplT, typename IteratorT, typename CollectionT> 50 class CalcLiveRangeUtilBase { 51 protected: 52 LiveRange *LR; 53 54 protected: 55 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} 56 57 public: 58 typedef LiveRange::Segment Segment; 59 typedef IteratorT iterator; 60 61 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { 62 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 63 64 iterator I = impl().find(Def); 65 if (I == segments().end()) { 66 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); 67 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); 68 return VNI; 69 } 70 71 Segment *S = segmentAt(I); 72 if (SlotIndex::isSameInstr(Def, S->start)) { 73 assert(S->valno->def == S->start && "Inconsistent existing value def"); 74 75 // It is possible to have both normal and early-clobber defs of the same 76 // register on an instruction. It doesn't make a lot of sense, but it is 77 // possible to specify in inline assembly. 78 // 79 // Just convert everything to early-clobber. 80 Def = std::min(Def, S->start); 81 if (Def != S->start) 82 S->start = S->valno->def = Def; 83 return S->valno; 84 } 85 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); 86 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); 87 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 88 return VNI; 89 } 90 91 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 92 if (segments().empty()) 93 return nullptr; 94 iterator I = 95 impl().findInsertPos(Segment(Kill.getPrevSlot(), Kill, nullptr)); 96 if (I == segments().begin()) 97 return nullptr; 98 --I; 99 if (I->end <= StartIdx) 100 return nullptr; 101 if (I->end < Kill) 102 extendSegmentEndTo(I, Kill); 103 return I->valno; 104 } 105 106 /// This method is used when we want to extend the segment specified 107 /// by I to end at the specified endpoint. To do this, we should 108 /// merge and eliminate all segments that this will overlap 109 /// with. The iterator is not invalidated. 110 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 111 assert(I != segments().end() && "Not a valid segment!"); 112 Segment *S = segmentAt(I); 113 VNInfo *ValNo = I->valno; 114 115 // Search for the first segment that we can't merge with. 116 iterator MergeTo = std::next(I); 117 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) 118 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 119 120 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 121 S->end = std::max(NewEnd, std::prev(MergeTo)->end); 122 123 // If the newly formed segment now touches the segment after it and if they 124 // have the same value number, merge the two segments into one segment. 125 if (MergeTo != segments().end() && MergeTo->start <= I->end && 126 MergeTo->valno == ValNo) { 127 S->end = MergeTo->end; 128 ++MergeTo; 129 } 130 131 // Erase any dead segments. 132 segments().erase(std::next(I), MergeTo); 133 } 134 135 /// This method is used when we want to extend the segment specified 136 /// by I to start at the specified endpoint. To do this, we should 137 /// merge and eliminate all segments that this will overlap with. 138 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { 139 assert(I != segments().end() && "Not a valid segment!"); 140 Segment *S = segmentAt(I); 141 VNInfo *ValNo = I->valno; 142 143 // Search for the first segment that we can't merge with. 144 iterator MergeTo = I; 145 do { 146 if (MergeTo == segments().begin()) { 147 S->start = NewStart; 148 segments().erase(MergeTo, I); 149 return I; 150 } 151 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 152 --MergeTo; 153 } while (NewStart <= MergeTo->start); 154 155 // If we start in the middle of another segment, just delete a range and 156 // extend that segment. 157 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 158 segmentAt(MergeTo)->end = S->end; 159 } else { 160 // Otherwise, extend the segment right after. 161 ++MergeTo; 162 Segment *MergeToSeg = segmentAt(MergeTo); 163 MergeToSeg->start = NewStart; 164 MergeToSeg->end = S->end; 165 } 166 167 segments().erase(std::next(MergeTo), std::next(I)); 168 return MergeTo; 169 } 170 171 iterator addSegment(Segment S) { 172 SlotIndex Start = S.start, End = S.end; 173 iterator I = impl().findInsertPos(S); 174 175 // If the inserted segment starts in the middle or right at the end of 176 // another segment, just extend that segment to contain the segment of S. 177 if (I != segments().begin()) { 178 iterator B = std::prev(I); 179 if (S.valno == B->valno) { 180 if (B->start <= Start && B->end >= Start) { 181 extendSegmentEndTo(B, End); 182 return B; 183 } 184 } else { 185 // Check to make sure that we are not overlapping two live segments with 186 // different valno's. 187 assert(B->end <= Start && 188 "Cannot overlap two segments with differing ValID's" 189 " (did you def the same reg twice in a MachineInstr?)"); 190 } 191 } 192 193 // Otherwise, if this segment ends in the middle of, or right next 194 // to, another segment, merge it into that segment. 195 if (I != segments().end()) { 196 if (S.valno == I->valno) { 197 if (I->start <= End) { 198 I = extendSegmentStartTo(I, Start); 199 200 // If S is a complete superset of a segment, we may need to grow its 201 // endpoint as well. 202 if (End > I->end) 203 extendSegmentEndTo(I, End); 204 return I; 205 } 206 } else { 207 // Check to make sure that we are not overlapping two live segments with 208 // different valno's. 209 assert(I->start >= End && 210 "Cannot overlap two segments with differing ValID's"); 211 } 212 } 213 214 // Otherwise, this is just a new segment that doesn't interact with 215 // anything. 216 // Insert it. 217 return segments().insert(I, S); 218 } 219 220 private: 221 ImplT &impl() { return *static_cast<ImplT *>(this); } 222 223 CollectionT &segments() { return impl().segmentsColl(); } 224 225 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } 226 }; 227 228 //===----------------------------------------------------------------------===// 229 // Instantiation of the methods for calculation of live ranges 230 // based on a segment vector. 231 //===----------------------------------------------------------------------===// 232 233 class CalcLiveRangeUtilVector; 234 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, 235 LiveRange::Segments> CalcLiveRangeUtilVectorBase; 236 237 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { 238 public: 239 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} 240 241 private: 242 friend CalcLiveRangeUtilVectorBase; 243 244 LiveRange::Segments &segmentsColl() { return LR->segments; } 245 246 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } 247 248 iterator find(SlotIndex Pos) { return LR->find(Pos); } 249 250 iterator findInsertPos(Segment S) { 251 return std::upper_bound(LR->begin(), LR->end(), S.start); 252 } 253 }; 254 255 //===----------------------------------------------------------------------===// 256 // Instantiation of the methods for calculation of live ranges 257 // based on a segment set. 258 //===----------------------------------------------------------------------===// 259 260 class CalcLiveRangeUtilSet; 261 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, 262 LiveRange::SegmentSet::iterator, 263 LiveRange::SegmentSet> CalcLiveRangeUtilSetBase; 264 265 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { 266 public: 267 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} 268 269 private: 270 friend CalcLiveRangeUtilSetBase; 271 272 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } 273 274 void insertAtEnd(const Segment &S) { 275 LR->segmentSet->insert(LR->segmentSet->end(), S); 276 } 277 278 iterator find(SlotIndex Pos) { 279 iterator I = 280 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); 281 if (I == LR->segmentSet->begin()) 282 return I; 283 iterator PrevI = std::prev(I); 284 if (Pos < (*PrevI).end) 285 return PrevI; 286 return I; 287 } 288 289 iterator findInsertPos(Segment S) { 290 iterator I = LR->segmentSet->upper_bound(S); 291 if (I != LR->segmentSet->end() && !(S.start < *I)) 292 ++I; 293 return I; 294 } 295 }; 296 297 //===----------------------------------------------------------------------===// 298 // LiveRange methods 299 //===----------------------------------------------------------------------===// 300 301 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 302 // This algorithm is basically std::upper_bound. 303 // Unfortunately, std::upper_bound cannot be used with mixed types until we 304 // adopt C++0x. Many libraries can do it, but not all. 305 if (empty() || Pos >= endIndex()) 306 return end(); 307 iterator I = begin(); 308 size_t Len = size(); 309 do { 310 size_t Mid = Len >> 1; 311 if (Pos < I[Mid].end) 312 Len = Mid; 313 else 314 I += Mid + 1, Len -= Mid + 1; 315 } while (Len); 316 return I; 317 } 318 319 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 320 VNInfo::Allocator &VNInfoAllocator) { 321 // Use the segment set, if it is available. 322 if (segmentSet != nullptr) 323 return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator); 324 // Otherwise use the segment vector. 325 return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator); 326 } 327 328 // overlaps - Return true if the intersection of the two live ranges is 329 // not empty. 330 // 331 // An example for overlaps(): 332 // 333 // 0: A = ... 334 // 4: B = ... 335 // 8: C = A + B ;; last use of A 336 // 337 // The live ranges should look like: 338 // 339 // A = [3, 11) 340 // B = [7, x) 341 // C = [11, y) 342 // 343 // A->overlaps(C) should return false since we want to be able to join 344 // A and C. 345 // 346 bool LiveRange::overlapsFrom(const LiveRange& other, 347 const_iterator StartPos) const { 348 assert(!empty() && "empty range"); 349 const_iterator i = begin(); 350 const_iterator ie = end(); 351 const_iterator j = StartPos; 352 const_iterator je = other.end(); 353 354 assert((StartPos->start <= i->start || StartPos == other.begin()) && 355 StartPos != other.end() && "Bogus start position hint!"); 356 357 if (i->start < j->start) { 358 i = std::upper_bound(i, ie, j->start); 359 if (i != begin()) --i; 360 } else if (j->start < i->start) { 361 ++StartPos; 362 if (StartPos != other.end() && StartPos->start <= i->start) { 363 assert(StartPos < other.end() && i < end()); 364 j = std::upper_bound(j, je, i->start); 365 if (j != other.begin()) --j; 366 } 367 } else { 368 return true; 369 } 370 371 if (j == je) return false; 372 373 while (i != ie) { 374 if (i->start > j->start) { 375 std::swap(i, j); 376 std::swap(ie, je); 377 } 378 379 if (i->end > j->start) 380 return true; 381 ++i; 382 } 383 384 return false; 385 } 386 387 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 388 const SlotIndexes &Indexes) const { 389 assert(!empty() && "empty range"); 390 if (Other.empty()) 391 return false; 392 393 // Use binary searches to find initial positions. 394 const_iterator I = find(Other.beginIndex()); 395 const_iterator IE = end(); 396 if (I == IE) 397 return false; 398 const_iterator J = Other.find(I->start); 399 const_iterator JE = Other.end(); 400 if (J == JE) 401 return false; 402 403 for (;;) { 404 // J has just been advanced to satisfy: 405 assert(J->end >= I->start); 406 // Check for an overlap. 407 if (J->start < I->end) { 408 // I and J are overlapping. Find the later start. 409 SlotIndex Def = std::max(I->start, J->start); 410 // Allow the overlap if Def is a coalescable copy. 411 if (Def.isBlock() || 412 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 413 return true; 414 } 415 // Advance the iterator that ends first to check for more overlaps. 416 if (J->end > I->end) { 417 std::swap(I, J); 418 std::swap(IE, JE); 419 } 420 // Advance J until J->end >= I->start. 421 do 422 if (++J == JE) 423 return false; 424 while (J->end < I->start); 425 } 426 } 427 428 /// overlaps - Return true if the live range overlaps an interval specified 429 /// by [Start, End). 430 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 431 assert(Start < End && "Invalid range"); 432 const_iterator I = std::lower_bound(begin(), end(), End); 433 return I != begin() && (--I)->end > Start; 434 } 435 436 bool LiveRange::covers(const LiveRange &Other) const { 437 if (empty()) 438 return Other.empty(); 439 440 const_iterator I = begin(); 441 for (const Segment &O : Other.segments) { 442 I = advanceTo(I, O.start); 443 if (I == end() || I->start > O.start) 444 return false; 445 446 // Check adjacent live segments and see if we can get behind O.end. 447 while (I->end < O.end) { 448 const_iterator Last = I; 449 // Get next segment and abort if it was not adjacent. 450 ++I; 451 if (I == end() || Last->end != I->start) 452 return false; 453 } 454 } 455 return true; 456 } 457 458 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 459 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 460 /// it can be nuked later. 461 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 462 if (ValNo->id == getNumValNums()-1) { 463 do { 464 valnos.pop_back(); 465 } while (!valnos.empty() && valnos.back()->isUnused()); 466 } else { 467 ValNo->markUnused(); 468 } 469 } 470 471 /// RenumberValues - Renumber all values in order of appearance and delete the 472 /// remaining unused values. 473 void LiveRange::RenumberValues() { 474 SmallPtrSet<VNInfo*, 8> Seen; 475 valnos.clear(); 476 for (const Segment &S : segments) { 477 VNInfo *VNI = S.valno; 478 if (!Seen.insert(VNI).second) 479 continue; 480 assert(!VNI->isUnused() && "Unused valno used by live segment"); 481 VNI->id = (unsigned)valnos.size(); 482 valnos.push_back(VNI); 483 } 484 } 485 486 void LiveRange::addSegmentToSet(Segment S) { 487 CalcLiveRangeUtilSet(this).addSegment(S); 488 } 489 490 LiveRange::iterator LiveRange::addSegment(Segment S) { 491 // Use the segment set, if it is available. 492 if (segmentSet != nullptr) { 493 addSegmentToSet(S); 494 return end(); 495 } 496 // Otherwise use the segment vector. 497 return CalcLiveRangeUtilVector(this).addSegment(S); 498 } 499 500 void LiveRange::append(const Segment S) { 501 // Check that the segment belongs to the back of the list. 502 assert(segments.empty() || segments.back().end <= S.start); 503 segments.push_back(S); 504 } 505 506 /// extendInBlock - If this range is live before Kill in the basic 507 /// block that starts at StartIdx, extend it to be live up to Kill and return 508 /// the value. If there is no live range before Kill, return NULL. 509 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 510 // Use the segment set, if it is available. 511 if (segmentSet != nullptr) 512 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); 513 // Otherwise use the segment vector. 514 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); 515 } 516 517 /// Remove the specified segment from this range. Note that the segment must 518 /// be in a single Segment in its entirety. 519 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 520 bool RemoveDeadValNo) { 521 // Find the Segment containing this span. 522 iterator I = find(Start); 523 assert(I != end() && "Segment is not in range!"); 524 assert(I->containsInterval(Start, End) 525 && "Segment is not entirely in range!"); 526 527 // If the span we are removing is at the start of the Segment, adjust it. 528 VNInfo *ValNo = I->valno; 529 if (I->start == Start) { 530 if (I->end == End) { 531 if (RemoveDeadValNo) { 532 // Check if val# is dead. 533 bool isDead = true; 534 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 535 if (II != I && II->valno == ValNo) { 536 isDead = false; 537 break; 538 } 539 if (isDead) { 540 // Now that ValNo is dead, remove it. 541 markValNoForDeletion(ValNo); 542 } 543 } 544 545 segments.erase(I); // Removed the whole Segment. 546 } else 547 I->start = End; 548 return; 549 } 550 551 // Otherwise if the span we are removing is at the end of the Segment, 552 // adjust the other way. 553 if (I->end == End) { 554 I->end = Start; 555 return; 556 } 557 558 // Otherwise, we are splitting the Segment into two pieces. 559 SlotIndex OldEnd = I->end; 560 I->end = Start; // Trim the old segment. 561 562 // Insert the new one. 563 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 564 } 565 566 /// removeValNo - Remove all the segments defined by the specified value#. 567 /// Also remove the value# from value# list. 568 void LiveRange::removeValNo(VNInfo *ValNo) { 569 if (empty()) return; 570 iterator I = end(); 571 iterator E = begin(); 572 do { 573 --I; 574 if (I->valno == ValNo) 575 segments.erase(I); 576 } while (I != E); 577 // Now that ValNo is dead, remove it. 578 markValNoForDeletion(ValNo); 579 } 580 581 void LiveRange::join(LiveRange &Other, 582 const int *LHSValNoAssignments, 583 const int *RHSValNoAssignments, 584 SmallVectorImpl<VNInfo *> &NewVNInfo) { 585 verify(); 586 587 // Determine if any of our values are mapped. This is uncommon, so we want 588 // to avoid the range scan if not. 589 bool MustMapCurValNos = false; 590 unsigned NumVals = getNumValNums(); 591 unsigned NumNewVals = NewVNInfo.size(); 592 for (unsigned i = 0; i != NumVals; ++i) { 593 unsigned LHSValID = LHSValNoAssignments[i]; 594 if (i != LHSValID || 595 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 596 MustMapCurValNos = true; 597 break; 598 } 599 } 600 601 // If we have to apply a mapping to our base range assignment, rewrite it now. 602 if (MustMapCurValNos && !empty()) { 603 // Map the first live range. 604 605 iterator OutIt = begin(); 606 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 607 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 608 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 609 assert(nextValNo && "Huh?"); 610 611 // If this live range has the same value # as its immediate predecessor, 612 // and if they are neighbors, remove one Segment. This happens when we 613 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 614 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 615 OutIt->end = I->end; 616 } else { 617 // Didn't merge. Move OutIt to the next segment, 618 ++OutIt; 619 OutIt->valno = nextValNo; 620 if (OutIt != I) { 621 OutIt->start = I->start; 622 OutIt->end = I->end; 623 } 624 } 625 } 626 // If we merge some segments, chop off the end. 627 ++OutIt; 628 segments.erase(OutIt, end()); 629 } 630 631 // Rewrite Other values before changing the VNInfo ids. 632 // This can leave Other in an invalid state because we're not coalescing 633 // touching segments that now have identical values. That's OK since Other is 634 // not supposed to be valid after calling join(); 635 for (Segment &S : Other.segments) 636 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 637 638 // Update val# info. Renumber them and make sure they all belong to this 639 // LiveRange now. Also remove dead val#'s. 640 unsigned NumValNos = 0; 641 for (unsigned i = 0; i < NumNewVals; ++i) { 642 VNInfo *VNI = NewVNInfo[i]; 643 if (VNI) { 644 if (NumValNos >= NumVals) 645 valnos.push_back(VNI); 646 else 647 valnos[NumValNos] = VNI; 648 VNI->id = NumValNos++; // Renumber val#. 649 } 650 } 651 if (NumNewVals < NumVals) 652 valnos.resize(NumNewVals); // shrinkify 653 654 // Okay, now insert the RHS live segments into the LHS. 655 LiveRangeUpdater Updater(this); 656 for (Segment &S : Other.segments) 657 Updater.add(S); 658 } 659 660 /// Merge all of the segments in RHS into this live range as the specified 661 /// value number. The segments in RHS are allowed to overlap with segments in 662 /// the current range, but only if the overlapping segments have the 663 /// specified value number. 664 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 665 VNInfo *LHSValNo) { 666 LiveRangeUpdater Updater(this); 667 for (const Segment &S : RHS.segments) 668 Updater.add(S.start, S.end, LHSValNo); 669 } 670 671 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 672 /// in RHS into this live range as the specified value number. 673 /// The segments in RHS are allowed to overlap with segments in the 674 /// current range, it will replace the value numbers of the overlaped 675 /// segments with the specified value number. 676 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 677 const VNInfo *RHSValNo, 678 VNInfo *LHSValNo) { 679 LiveRangeUpdater Updater(this); 680 for (const Segment &S : RHS.segments) 681 if (S.valno == RHSValNo) 682 Updater.add(S.start, S.end, LHSValNo); 683 } 684 685 /// MergeValueNumberInto - This method is called when two value nubmers 686 /// are found to be equivalent. This eliminates V1, replacing all 687 /// segments with the V1 value number with the V2 value number. This can 688 /// cause merging of V1/V2 values numbers and compaction of the value space. 689 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 690 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 691 692 // This code actually merges the (numerically) larger value number into the 693 // smaller value number, which is likely to allow us to compactify the value 694 // space. The only thing we have to be careful of is to preserve the 695 // instruction that defines the result value. 696 697 // Make sure V2 is smaller than V1. 698 if (V1->id < V2->id) { 699 V1->copyFrom(*V2); 700 std::swap(V1, V2); 701 } 702 703 // Merge V1 segments into V2. 704 for (iterator I = begin(); I != end(); ) { 705 iterator S = I++; 706 if (S->valno != V1) continue; // Not a V1 Segment. 707 708 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 709 // range, extend it. 710 if (S != begin()) { 711 iterator Prev = S-1; 712 if (Prev->valno == V2 && Prev->end == S->start) { 713 Prev->end = S->end; 714 715 // Erase this live-range. 716 segments.erase(S); 717 I = Prev+1; 718 S = Prev; 719 } 720 } 721 722 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 723 // Ensure that it is a V2 live-range. 724 S->valno = V2; 725 726 // If we can merge it into later V2 segments, do so now. We ignore any 727 // following V1 segments, as they will be merged in subsequent iterations 728 // of the loop. 729 if (I != end()) { 730 if (I->start == S->end && I->valno == V2) { 731 S->end = I->end; 732 segments.erase(I); 733 I = S+1; 734 } 735 } 736 } 737 738 // Now that V1 is dead, remove it. 739 markValNoForDeletion(V1); 740 741 return V2; 742 } 743 744 void LiveRange::flushSegmentSet() { 745 assert(segmentSet != nullptr && "segment set must have been created"); 746 assert( 747 segments.empty() && 748 "segment set can be used only initially before switching to the array"); 749 segments.append(segmentSet->begin(), segmentSet->end()); 750 delete segmentSet; 751 segmentSet = nullptr; 752 verify(); 753 } 754 755 void LiveInterval::freeSubRange(SubRange *S) { 756 S->~SubRange(); 757 // Memory was allocated with BumpPtr allocator and is not freed here. 758 } 759 760 void LiveInterval::removeEmptySubRanges() { 761 SubRange **NextPtr = &SubRanges; 762 SubRange *I = *NextPtr; 763 while (I != nullptr) { 764 if (!I->empty()) { 765 NextPtr = &I->Next; 766 I = *NextPtr; 767 continue; 768 } 769 // Skip empty subranges until we find the first nonempty one. 770 do { 771 SubRange *Next = I->Next; 772 freeSubRange(I); 773 I = Next; 774 } while (I != nullptr && I->empty()); 775 *NextPtr = I; 776 } 777 } 778 779 void LiveInterval::clearSubRanges() { 780 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { 781 Next = I->Next; 782 freeSubRange(I); 783 } 784 SubRanges = nullptr; 785 } 786 787 /// Helper function for constructMainRangeFromSubranges(): Search the CFG 788 /// backwards until we find a place covered by a LiveRange segment that actually 789 /// has a valno set. 790 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR, 791 const MachineBasicBlock *MBB, 792 SmallPtrSetImpl<const MachineBasicBlock*> &Visited) { 793 // We start the search at the end of MBB. 794 SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB); 795 // In our use case we can't live the area covered by the live segments without 796 // finding an actual VNI def. 797 LiveRange::iterator I = LR.find(EndIdx.getPrevSlot()); 798 assert(I != LR.end()); 799 LiveRange::Segment &S = *I; 800 if (S.valno != nullptr) 801 return S.valno; 802 803 VNInfo *VNI = nullptr; 804 // Continue at predecessors (we could even go to idom with domtree available). 805 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 806 // Avoid going in circles. 807 if (!Visited.insert(Pred).second) 808 continue; 809 810 VNI = searchForVNI(Indexes, LR, Pred, Visited); 811 if (VNI != nullptr) { 812 S.valno = VNI; 813 break; 814 } 815 } 816 817 return VNI; 818 } 819 820 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) { 821 SmallPtrSet<const MachineBasicBlock*, 5> Visited; 822 for (LiveRange::Segment &S : LI.segments) { 823 if (S.valno != nullptr) 824 continue; 825 // This can only happen at the begin of a basic block. 826 assert(S.start.isBlock() && "valno should only be missing at block begin"); 827 828 Visited.clear(); 829 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start); 830 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 831 VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited); 832 if (VNI != nullptr) { 833 S.valno = VNI; 834 break; 835 } 836 } 837 assert(S.valno != nullptr && "could not determine valno"); 838 } 839 } 840 841 void LiveInterval::constructMainRangeFromSubranges( 842 const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) { 843 // The basic observations on which this algorithm is based: 844 // - Each Def/ValNo in a subrange must have a corresponding def on the main 845 // range, but not further defs/valnos are necessary. 846 // - If any of the subranges is live at a point the main liverange has to be 847 // live too, conversily if no subrange is live the main range mustn't be 848 // live either. 849 // We do this by scannig through all the subranges simultaneously creating new 850 // segments in the main range as segments start/ends come up in the subranges. 851 assert(hasSubRanges() && "expected subranges to be present"); 852 assert(segments.empty() && valnos.empty() && "expected empty main range"); 853 854 // Collect subrange, iterator pairs for the walk and determine first and last 855 // SlotIndex involved. 856 SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs; 857 SlotIndex First; 858 SlotIndex Last; 859 for (const SubRange &SR : subranges()) { 860 if (SR.empty()) 861 continue; 862 SRs.push_back(std::make_pair(&SR, SR.begin())); 863 if (!First.isValid() || SR.segments.front().start < First) 864 First = SR.segments.front().start; 865 if (!Last.isValid() || SR.segments.back().end > Last) 866 Last = SR.segments.back().end; 867 } 868 869 // Walk over all subranges simultaneously. 870 Segment CurrentSegment; 871 bool ConstructingSegment = false; 872 bool NeedVNIFixup = false; 873 unsigned ActiveMask = 0; 874 SlotIndex Pos = First; 875 while (true) { 876 SlotIndex NextPos = Last; 877 enum { 878 NOTHING, 879 BEGIN_SEGMENT, 880 END_SEGMENT, 881 } Event = NOTHING; 882 // Which subregister lanes are affected by the current event. 883 unsigned EventMask = 0; 884 // Whether a BEGIN_SEGMENT is also a valno definition point. 885 bool IsDef = false; 886 // Find the next begin or end of a subrange segment. Combine masks if we 887 // have multiple begins/ends at the same position. Ends take precedence over 888 // Begins. 889 for (auto &SRP : SRs) { 890 const SubRange &SR = *SRP.first; 891 const_iterator &I = SRP.second; 892 // Advance iterator of subrange to a segment involving Pos; the earlier 893 // segments are already merged at this point. 894 while (I != SR.end() && 895 (I->end < Pos || 896 (I->end == Pos && (ActiveMask & SR.LaneMask) == 0))) 897 ++I; 898 if (I == SR.end()) 899 continue; 900 if ((ActiveMask & SR.LaneMask) == 0 && 901 Pos <= I->start && I->start <= NextPos) { 902 // Merge multiple begins at the same position. 903 if (I->start == NextPos && Event == BEGIN_SEGMENT) { 904 EventMask |= SR.LaneMask; 905 IsDef |= I->valno->def == I->start; 906 } else if (I->start < NextPos || Event != END_SEGMENT) { 907 Event = BEGIN_SEGMENT; 908 NextPos = I->start; 909 EventMask = SR.LaneMask; 910 IsDef = I->valno->def == I->start; 911 } 912 } 913 if ((ActiveMask & SR.LaneMask) != 0 && 914 Pos <= I->end && I->end <= NextPos) { 915 // Merge multiple ends at the same position. 916 if (I->end == NextPos && Event == END_SEGMENT) 917 EventMask |= SR.LaneMask; 918 else { 919 Event = END_SEGMENT; 920 NextPos = I->end; 921 EventMask = SR.LaneMask; 922 } 923 } 924 } 925 926 // Advance scan position. 927 Pos = NextPos; 928 if (Event == BEGIN_SEGMENT) { 929 if (ConstructingSegment && IsDef) { 930 // Finish previous segment because we have to start a new one. 931 CurrentSegment.end = Pos; 932 append(CurrentSegment); 933 ConstructingSegment = false; 934 } 935 936 // Start a new segment if necessary. 937 if (!ConstructingSegment) { 938 // Determine value number for the segment. 939 VNInfo *VNI; 940 if (IsDef) { 941 VNI = getNextValue(Pos, VNIAllocator); 942 } else { 943 // We have to reuse an existing value number, if we are lucky 944 // then we already passed one of the predecessor blocks and determined 945 // its value number (with blocks in reverse postorder this would be 946 // always true but we have no such guarantee). 947 assert(Pos.isBlock()); 948 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos); 949 // See if any of the predecessor blocks has a lower number and a VNI 950 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 951 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 952 VNI = getVNInfoBefore(PredEnd); 953 if (VNI != nullptr) 954 break; 955 } 956 // Def will come later: We have to do an extra fixup pass. 957 if (VNI == nullptr) 958 NeedVNIFixup = true; 959 } 960 961 CurrentSegment.start = Pos; 962 CurrentSegment.valno = VNI; 963 ConstructingSegment = true; 964 } 965 ActiveMask |= EventMask; 966 } else if (Event == END_SEGMENT) { 967 assert(ConstructingSegment); 968 // Finish segment if no lane is active anymore. 969 ActiveMask &= ~EventMask; 970 if (ActiveMask == 0) { 971 CurrentSegment.end = Pos; 972 append(CurrentSegment); 973 ConstructingSegment = false; 974 } 975 } else { 976 // We reached the end of the last subranges and can stop. 977 assert(Event == NOTHING); 978 break; 979 } 980 } 981 982 // We might not be able to assign new valnos for all segments if the basic 983 // block containing the definition comes after a segment using the valno. 984 // Do a fixup pass for this uncommon case. 985 if (NeedVNIFixup) 986 determineMissingVNIs(Indexes, *this); 987 988 assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended"); 989 verify(); 990 } 991 992 unsigned LiveInterval::getSize() const { 993 unsigned Sum = 0; 994 for (const Segment &S : segments) 995 Sum += S.start.distance(S.end); 996 return Sum; 997 } 998 999 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 1000 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 1001 } 1002 1003 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1004 void LiveRange::Segment::dump() const { 1005 dbgs() << *this << "\n"; 1006 } 1007 #endif 1008 1009 void LiveRange::print(raw_ostream &OS) const { 1010 if (empty()) 1011 OS << "EMPTY"; 1012 else { 1013 for (const Segment &S : segments) { 1014 OS << S; 1015 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 1016 } 1017 } 1018 1019 // Print value number info. 1020 if (getNumValNums()) { 1021 OS << " "; 1022 unsigned vnum = 0; 1023 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 1024 ++i, ++vnum) { 1025 const VNInfo *vni = *i; 1026 if (vnum) OS << " "; 1027 OS << vnum << "@"; 1028 if (vni->isUnused()) { 1029 OS << "x"; 1030 } else { 1031 OS << vni->def; 1032 if (vni->isPHIDef()) 1033 OS << "-phi"; 1034 } 1035 } 1036 } 1037 } 1038 1039 void LiveInterval::print(raw_ostream &OS) const { 1040 OS << PrintReg(reg) << ' '; 1041 super::print(OS); 1042 // Print subranges 1043 for (const SubRange &SR : subranges()) { 1044 OS << format(" L%04X ", SR.LaneMask) << SR; 1045 } 1046 } 1047 1048 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1049 void LiveRange::dump() const { 1050 dbgs() << *this << "\n"; 1051 } 1052 1053 void LiveInterval::dump() const { 1054 dbgs() << *this << "\n"; 1055 } 1056 #endif 1057 1058 #ifndef NDEBUG 1059 void LiveRange::verify() const { 1060 for (const_iterator I = begin(), E = end(); I != E; ++I) { 1061 assert(I->start.isValid()); 1062 assert(I->end.isValid()); 1063 assert(I->start < I->end); 1064 assert(I->valno != nullptr); 1065 assert(I->valno->id < valnos.size()); 1066 assert(I->valno == valnos[I->valno->id]); 1067 if (std::next(I) != E) { 1068 assert(I->end <= std::next(I)->start); 1069 if (I->end == std::next(I)->start) 1070 assert(I->valno != std::next(I)->valno); 1071 } 1072 } 1073 } 1074 1075 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 1076 super::verify(); 1077 1078 // Make sure SubRanges are fine and LaneMasks are disjunct. 1079 unsigned Mask = 0; 1080 unsigned MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; 1081 for (const SubRange &SR : subranges()) { 1082 // Subrange lanemask should be disjunct to any previous subrange masks. 1083 assert((Mask & SR.LaneMask) == 0); 1084 Mask |= SR.LaneMask; 1085 1086 // subrange mask should not contained in maximum lane mask for the vreg. 1087 assert((Mask & ~MaxMask) == 0); 1088 1089 SR.verify(); 1090 // Main liverange should cover subrange. 1091 assert(covers(SR)); 1092 } 1093 } 1094 #endif 1095 1096 1097 //===----------------------------------------------------------------------===// 1098 // LiveRangeUpdater class 1099 //===----------------------------------------------------------------------===// 1100 // 1101 // The LiveRangeUpdater class always maintains these invariants: 1102 // 1103 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 1104 // This is the initial state, and the state created by flush(). 1105 // In this state, isDirty() returns false. 1106 // 1107 // Otherwise, segments are kept in three separate areas: 1108 // 1109 // 1. [begin; WriteI) at the front of LR. 1110 // 2. [ReadI; end) at the back of LR. 1111 // 3. Spills. 1112 // 1113 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 1114 // - Segments in all three areas are fully ordered and coalesced. 1115 // - Segments in area 1 precede and can't coalesce with segments in area 2. 1116 // - Segments in Spills precede and can't coalesce with segments in area 2. 1117 // - No coalescing is possible between segments in Spills and segments in area 1118 // 1, and there are no overlapping segments. 1119 // 1120 // The segments in Spills are not ordered with respect to the segments in area 1121 // 1. They need to be merged. 1122 // 1123 // When they exist, Spills.back().start <= LastStart, 1124 // and WriteI[-1].start <= LastStart. 1125 1126 void LiveRangeUpdater::print(raw_ostream &OS) const { 1127 if (!isDirty()) { 1128 if (LR) 1129 OS << "Clean updater: " << *LR << '\n'; 1130 else 1131 OS << "Null updater.\n"; 1132 return; 1133 } 1134 assert(LR && "Can't have null LR in dirty updater."); 1135 OS << " updater with gap = " << (ReadI - WriteI) 1136 << ", last start = " << LastStart 1137 << ":\n Area 1:"; 1138 for (const auto &S : make_range(LR->begin(), WriteI)) 1139 OS << ' ' << S; 1140 OS << "\n Spills:"; 1141 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 1142 OS << ' ' << Spills[I]; 1143 OS << "\n Area 2:"; 1144 for (const auto &S : make_range(ReadI, LR->end())) 1145 OS << ' ' << S; 1146 OS << '\n'; 1147 } 1148 1149 void LiveRangeUpdater::dump() const 1150 { 1151 print(errs()); 1152 } 1153 1154 // Determine if A and B should be coalesced. 1155 static inline bool coalescable(const LiveRange::Segment &A, 1156 const LiveRange::Segment &B) { 1157 assert(A.start <= B.start && "Unordered live segments."); 1158 if (A.end == B.start) 1159 return A.valno == B.valno; 1160 if (A.end < B.start) 1161 return false; 1162 assert(A.valno == B.valno && "Cannot overlap different values"); 1163 return true; 1164 } 1165 1166 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 1167 assert(LR && "Cannot add to a null destination"); 1168 1169 // Fall back to the regular add method if the live range 1170 // is using the segment set instead of the segment vector. 1171 if (LR->segmentSet != nullptr) { 1172 LR->addSegmentToSet(Seg); 1173 return; 1174 } 1175 1176 // Flush the state if Start moves backwards. 1177 if (!LastStart.isValid() || LastStart > Seg.start) { 1178 if (isDirty()) 1179 flush(); 1180 // This brings us to an uninitialized state. Reinitialize. 1181 assert(Spills.empty() && "Leftover spilled segments"); 1182 WriteI = ReadI = LR->begin(); 1183 } 1184 1185 // Remember start for next time. 1186 LastStart = Seg.start; 1187 1188 // Advance ReadI until it ends after Seg.start. 1189 LiveRange::iterator E = LR->end(); 1190 if (ReadI != E && ReadI->end <= Seg.start) { 1191 // First try to close the gap between WriteI and ReadI with spills. 1192 if (ReadI != WriteI) 1193 mergeSpills(); 1194 // Then advance ReadI. 1195 if (ReadI == WriteI) 1196 ReadI = WriteI = LR->find(Seg.start); 1197 else 1198 while (ReadI != E && ReadI->end <= Seg.start) 1199 *WriteI++ = *ReadI++; 1200 } 1201 1202 assert(ReadI == E || ReadI->end > Seg.start); 1203 1204 // Check if the ReadI segment begins early. 1205 if (ReadI != E && ReadI->start <= Seg.start) { 1206 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1207 // Bail if Seg is completely contained in ReadI. 1208 if (ReadI->end >= Seg.end) 1209 return; 1210 // Coalesce into Seg. 1211 Seg.start = ReadI->start; 1212 ++ReadI; 1213 } 1214 1215 // Coalesce as much as possible from ReadI into Seg. 1216 while (ReadI != E && coalescable(Seg, *ReadI)) { 1217 Seg.end = std::max(Seg.end, ReadI->end); 1218 ++ReadI; 1219 } 1220 1221 // Try coalescing Spills.back() into Seg. 1222 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1223 Seg.start = Spills.back().start; 1224 Seg.end = std::max(Spills.back().end, Seg.end); 1225 Spills.pop_back(); 1226 } 1227 1228 // Try coalescing Seg into WriteI[-1]. 1229 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1230 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1231 return; 1232 } 1233 1234 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1235 if (WriteI != ReadI) { 1236 *WriteI++ = Seg; 1237 return; 1238 } 1239 1240 // Finally, append to LR or Spills. 1241 if (WriteI == E) { 1242 LR->segments.push_back(Seg); 1243 WriteI = ReadI = LR->end(); 1244 } else 1245 Spills.push_back(Seg); 1246 } 1247 1248 // Merge as many spilled segments as possible into the gap between WriteI 1249 // and ReadI. Advance WriteI to reflect the inserted instructions. 1250 void LiveRangeUpdater::mergeSpills() { 1251 // Perform a backwards merge of Spills and [SpillI;WriteI). 1252 size_t GapSize = ReadI - WriteI; 1253 size_t NumMoved = std::min(Spills.size(), GapSize); 1254 LiveRange::iterator Src = WriteI; 1255 LiveRange::iterator Dst = Src + NumMoved; 1256 LiveRange::iterator SpillSrc = Spills.end(); 1257 LiveRange::iterator B = LR->begin(); 1258 1259 // This is the new WriteI position after merging spills. 1260 WriteI = Dst; 1261 1262 // Now merge Src and Spills backwards. 1263 while (Src != Dst) { 1264 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1265 *--Dst = *--Src; 1266 else 1267 *--Dst = *--SpillSrc; 1268 } 1269 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1270 Spills.erase(SpillSrc, Spills.end()); 1271 } 1272 1273 void LiveRangeUpdater::flush() { 1274 if (!isDirty()) 1275 return; 1276 // Clear the dirty state. 1277 LastStart = SlotIndex(); 1278 1279 assert(LR && "Cannot add to a null destination"); 1280 1281 // Nothing to merge? 1282 if (Spills.empty()) { 1283 LR->segments.erase(WriteI, ReadI); 1284 LR->verify(); 1285 return; 1286 } 1287 1288 // Resize the WriteI - ReadI gap to match Spills. 1289 size_t GapSize = ReadI - WriteI; 1290 if (GapSize < Spills.size()) { 1291 // The gap is too small. Make some room. 1292 size_t WritePos = WriteI - LR->begin(); 1293 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1294 // This also invalidated ReadI, but it is recomputed below. 1295 WriteI = LR->begin() + WritePos; 1296 } else { 1297 // Shrink the gap if necessary. 1298 LR->segments.erase(WriteI + Spills.size(), ReadI); 1299 } 1300 ReadI = WriteI + Spills.size(); 1301 mergeSpills(); 1302 LR->verify(); 1303 } 1304 1305 unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) { 1306 // Create initial equivalence classes. 1307 EqClass.clear(); 1308 EqClass.grow(LI->getNumValNums()); 1309 1310 const VNInfo *used = nullptr, *unused = nullptr; 1311 1312 // Determine connections. 1313 for (const VNInfo *VNI : LI->valnos) { 1314 // Group all unused values into one class. 1315 if (VNI->isUnused()) { 1316 if (unused) 1317 EqClass.join(unused->id, VNI->id); 1318 unused = VNI; 1319 continue; 1320 } 1321 used = VNI; 1322 if (VNI->isPHIDef()) { 1323 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1324 assert(MBB && "Phi-def has no defining MBB"); 1325 // Connect to values live out of predecessors. 1326 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 1327 PE = MBB->pred_end(); PI != PE; ++PI) 1328 if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 1329 EqClass.join(VNI->id, PVNI->id); 1330 } else { 1331 // Normal value defined by an instruction. Check for two-addr redef. 1332 // FIXME: This could be coincidental. Should we really check for a tied 1333 // operand constraint? 1334 // Note that VNI->def may be a use slot for an early clobber def. 1335 if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def)) 1336 EqClass.join(VNI->id, UVNI->id); 1337 } 1338 } 1339 1340 // Lump all the unused values in with the last used value. 1341 if (used && unused) 1342 EqClass.join(used->id, unused->id); 1343 1344 EqClass.compress(); 1345 return EqClass.getNumClasses(); 1346 } 1347 1348 void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[], 1349 MachineRegisterInfo &MRI) { 1350 assert(LIV[0] && "LIV[0] must be set"); 1351 LiveInterval &LI = *LIV[0]; 1352 1353 // Rewrite instructions. 1354 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 1355 RE = MRI.reg_end(); RI != RE;) { 1356 MachineOperand &MO = *RI; 1357 MachineInstr *MI = RI->getParent(); 1358 ++RI; 1359 // DBG_VALUE instructions don't have slot indexes, so get the index of the 1360 // instruction before them. 1361 // Normally, DBG_VALUE instructions are removed before this function is 1362 // called, but it is not a requirement. 1363 SlotIndex Idx; 1364 if (MI->isDebugValue()) 1365 Idx = LIS.getSlotIndexes()->getIndexBefore(MI); 1366 else 1367 Idx = LIS.getInstructionIndex(MI); 1368 LiveQueryResult LRQ = LI.Query(Idx); 1369 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1370 // In the case of an <undef> use that isn't tied to any def, VNI will be 1371 // NULL. If the use is tied to a def, VNI will be the defined value. 1372 if (!VNI) 1373 continue; 1374 MO.setReg(LIV[getEqClass(VNI)]->reg); 1375 } 1376 1377 // Move runs to new intervals. 1378 LiveInterval::iterator J = LI.begin(), E = LI.end(); 1379 while (J != E && EqClass[J->valno->id] == 0) 1380 ++J; 1381 for (LiveInterval::iterator I = J; I != E; ++I) { 1382 if (unsigned eq = EqClass[I->valno->id]) { 1383 assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) && 1384 "New intervals should be empty"); 1385 LIV[eq]->segments.push_back(*I); 1386 } else 1387 *J++ = *I; 1388 } 1389 // TODO: do not cheat anymore by simply cleaning all subranges 1390 LI.clearSubRanges(); 1391 LI.segments.erase(J, E); 1392 1393 // Transfer VNInfos to their new owners and renumber them. 1394 unsigned j = 0, e = LI.getNumValNums(); 1395 while (j != e && EqClass[j] == 0) 1396 ++j; 1397 for (unsigned i = j; i != e; ++i) { 1398 VNInfo *VNI = LI.getValNumInfo(i); 1399 if (unsigned eq = EqClass[i]) { 1400 VNI->id = LIV[eq]->getNumValNums(); 1401 LIV[eq]->valnos.push_back(VNI); 1402 } else { 1403 VNI->id = j; 1404 LI.valnos[j++] = VNI; 1405 } 1406 } 1407 LI.valnos.resize(j); 1408 } 1409