1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes.  Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001).  Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "RegisterCoalescer.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include <algorithm>
32 using namespace llvm;
33 
34 namespace {
35 //===----------------------------------------------------------------------===//
36 // Implementation of various methods necessary for calculation of live ranges.
37 // The implementation of the methods abstracts from the concrete type of the
38 // segment collection.
39 //
40 // Implementation of the class follows the Template design pattern. The base
41 // class contains generic algorithms that call collection-specific methods,
42 // which are provided in concrete subclasses. In order to avoid virtual calls
43 // these methods are provided by means of C++ template instantiation.
44 // The base class calls the methods of the subclass through method impl(),
45 // which casts 'this' pointer to the type of the subclass.
46 //
47 //===----------------------------------------------------------------------===//
48 
49 template <typename ImplT, typename IteratorT, typename CollectionT>
50 class CalcLiveRangeUtilBase {
51 protected:
52   LiveRange *LR;
53 
54 protected:
55   CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
56 
57 public:
58   typedef LiveRange::Segment Segment;
59   typedef IteratorT iterator;
60 
61   VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) {
62     assert(!Def.isDead() && "Cannot define a value at the dead slot");
63 
64     iterator I = impl().find(Def);
65     if (I == segments().end()) {
66       VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
67       impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
68       return VNI;
69     }
70 
71     Segment *S = segmentAt(I);
72     if (SlotIndex::isSameInstr(Def, S->start)) {
73       assert(S->valno->def == S->start && "Inconsistent existing value def");
74 
75       // It is possible to have both normal and early-clobber defs of the same
76       // register on an instruction. It doesn't make a lot of sense, but it is
77       // possible to specify in inline assembly.
78       //
79       // Just convert everything to early-clobber.
80       Def = std::min(Def, S->start);
81       if (Def != S->start)
82         S->start = S->valno->def = Def;
83       return S->valno;
84     }
85     assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
86     VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator);
87     segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
88     return VNI;
89   }
90 
91   VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
92     if (segments().empty())
93       return nullptr;
94     iterator I =
95         impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
96     if (I == segments().begin())
97       return nullptr;
98     --I;
99     if (I->end <= StartIdx)
100       return nullptr;
101     if (I->end < Use)
102       extendSegmentEndTo(I, Use);
103     return I->valno;
104   }
105 
106   /// This method is used when we want to extend the segment specified
107   /// by I to end at the specified endpoint. To do this, we should
108   /// merge and eliminate all segments that this will overlap
109   /// with. The iterator is not invalidated.
110   void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
111     assert(I != segments().end() && "Not a valid segment!");
112     Segment *S = segmentAt(I);
113     VNInfo *ValNo = I->valno;
114 
115     // Search for the first segment that we can't merge with.
116     iterator MergeTo = std::next(I);
117     for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
118       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
119 
120     // If NewEnd was in the middle of a segment, make sure to get its endpoint.
121     S->end = std::max(NewEnd, std::prev(MergeTo)->end);
122 
123     // If the newly formed segment now touches the segment after it and if they
124     // have the same value number, merge the two segments into one segment.
125     if (MergeTo != segments().end() && MergeTo->start <= I->end &&
126         MergeTo->valno == ValNo) {
127       S->end = MergeTo->end;
128       ++MergeTo;
129     }
130 
131     // Erase any dead segments.
132     segments().erase(std::next(I), MergeTo);
133   }
134 
135   /// This method is used when we want to extend the segment specified
136   /// by I to start at the specified endpoint.  To do this, we should
137   /// merge and eliminate all segments that this will overlap with.
138   iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
139     assert(I != segments().end() && "Not a valid segment!");
140     Segment *S = segmentAt(I);
141     VNInfo *ValNo = I->valno;
142 
143     // Search for the first segment that we can't merge with.
144     iterator MergeTo = I;
145     do {
146       if (MergeTo == segments().begin()) {
147         S->start = NewStart;
148         segments().erase(MergeTo, I);
149         return I;
150       }
151       assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
152       --MergeTo;
153     } while (NewStart <= MergeTo->start);
154 
155     // If we start in the middle of another segment, just delete a range and
156     // extend that segment.
157     if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
158       segmentAt(MergeTo)->end = S->end;
159     } else {
160       // Otherwise, extend the segment right after.
161       ++MergeTo;
162       Segment *MergeToSeg = segmentAt(MergeTo);
163       MergeToSeg->start = NewStart;
164       MergeToSeg->end = S->end;
165     }
166 
167     segments().erase(std::next(MergeTo), std::next(I));
168     return MergeTo;
169   }
170 
171   iterator addSegment(Segment S) {
172     SlotIndex Start = S.start, End = S.end;
173     iterator I = impl().findInsertPos(S);
174 
175     // If the inserted segment starts in the middle or right at the end of
176     // another segment, just extend that segment to contain the segment of S.
177     if (I != segments().begin()) {
178       iterator B = std::prev(I);
179       if (S.valno == B->valno) {
180         if (B->start <= Start && B->end >= Start) {
181           extendSegmentEndTo(B, End);
182           return B;
183         }
184       } else {
185         // Check to make sure that we are not overlapping two live segments with
186         // different valno's.
187         assert(B->end <= Start &&
188                "Cannot overlap two segments with differing ValID's"
189                " (did you def the same reg twice in a MachineInstr?)");
190       }
191     }
192 
193     // Otherwise, if this segment ends in the middle of, or right next
194     // to, another segment, merge it into that segment.
195     if (I != segments().end()) {
196       if (S.valno == I->valno) {
197         if (I->start <= End) {
198           I = extendSegmentStartTo(I, Start);
199 
200           // If S is a complete superset of a segment, we may need to grow its
201           // endpoint as well.
202           if (End > I->end)
203             extendSegmentEndTo(I, End);
204           return I;
205         }
206       } else {
207         // Check to make sure that we are not overlapping two live segments with
208         // different valno's.
209         assert(I->start >= End &&
210                "Cannot overlap two segments with differing ValID's");
211       }
212     }
213 
214     // Otherwise, this is just a new segment that doesn't interact with
215     // anything.
216     // Insert it.
217     return segments().insert(I, S);
218   }
219 
220 private:
221   ImplT &impl() { return *static_cast<ImplT *>(this); }
222 
223   CollectionT &segments() { return impl().segmentsColl(); }
224 
225   Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
226 };
227 
228 //===----------------------------------------------------------------------===//
229 //   Instantiation of the methods for calculation of live ranges
230 //   based on a segment vector.
231 //===----------------------------------------------------------------------===//
232 
233 class CalcLiveRangeUtilVector;
234 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
235                               LiveRange::Segments> CalcLiveRangeUtilVectorBase;
236 
237 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
238 public:
239   CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
240 
241 private:
242   friend CalcLiveRangeUtilVectorBase;
243 
244   LiveRange::Segments &segmentsColl() { return LR->segments; }
245 
246   void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
247 
248   iterator find(SlotIndex Pos) { return LR->find(Pos); }
249 
250   iterator findInsertPos(Segment S) {
251     return std::upper_bound(LR->begin(), LR->end(), S.start);
252   }
253 };
254 
255 //===----------------------------------------------------------------------===//
256 //   Instantiation of the methods for calculation of live ranges
257 //   based on a segment set.
258 //===----------------------------------------------------------------------===//
259 
260 class CalcLiveRangeUtilSet;
261 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet,
262                               LiveRange::SegmentSet::iterator,
263                               LiveRange::SegmentSet> CalcLiveRangeUtilSetBase;
264 
265 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
266 public:
267   CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
268 
269 private:
270   friend CalcLiveRangeUtilSetBase;
271 
272   LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
273 
274   void insertAtEnd(const Segment &S) {
275     LR->segmentSet->insert(LR->segmentSet->end(), S);
276   }
277 
278   iterator find(SlotIndex Pos) {
279     iterator I =
280         LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
281     if (I == LR->segmentSet->begin())
282       return I;
283     iterator PrevI = std::prev(I);
284     if (Pos < (*PrevI).end)
285       return PrevI;
286     return I;
287   }
288 
289   iterator findInsertPos(Segment S) {
290     iterator I = LR->segmentSet->upper_bound(S);
291     if (I != LR->segmentSet->end() && !(S.start < *I))
292       ++I;
293     return I;
294   }
295 };
296 } // namespace
297 
298 //===----------------------------------------------------------------------===//
299 //   LiveRange methods
300 //===----------------------------------------------------------------------===//
301 
302 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
303   // This algorithm is basically std::upper_bound.
304   // Unfortunately, std::upper_bound cannot be used with mixed types until we
305   // adopt C++0x. Many libraries can do it, but not all.
306   if (empty() || Pos >= endIndex())
307     return end();
308   iterator I = begin();
309   size_t Len = size();
310   do {
311     size_t Mid = Len >> 1;
312     if (Pos < I[Mid].end) {
313       Len = Mid;
314     } else {
315       I += Mid + 1;
316       Len -= Mid + 1;
317     }
318   } while (Len);
319   return I;
320 }
321 
322 VNInfo *LiveRange::createDeadDef(SlotIndex Def,
323                                   VNInfo::Allocator &VNInfoAllocator) {
324   // Use the segment set, if it is available.
325   if (segmentSet != nullptr)
326     return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator);
327   // Otherwise use the segment vector.
328   return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator);
329 }
330 
331 // overlaps - Return true if the intersection of the two live ranges is
332 // not empty.
333 //
334 // An example for overlaps():
335 //
336 // 0: A = ...
337 // 4: B = ...
338 // 8: C = A + B ;; last use of A
339 //
340 // The live ranges should look like:
341 //
342 // A = [3, 11)
343 // B = [7, x)
344 // C = [11, y)
345 //
346 // A->overlaps(C) should return false since we want to be able to join
347 // A and C.
348 //
349 bool LiveRange::overlapsFrom(const LiveRange& other,
350                              const_iterator StartPos) const {
351   assert(!empty() && "empty range");
352   const_iterator i = begin();
353   const_iterator ie = end();
354   const_iterator j = StartPos;
355   const_iterator je = other.end();
356 
357   assert((StartPos->start <= i->start || StartPos == other.begin()) &&
358          StartPos != other.end() && "Bogus start position hint!");
359 
360   if (i->start < j->start) {
361     i = std::upper_bound(i, ie, j->start);
362     if (i != begin()) --i;
363   } else if (j->start < i->start) {
364     ++StartPos;
365     if (StartPos != other.end() && StartPos->start <= i->start) {
366       assert(StartPos < other.end() && i < end());
367       j = std::upper_bound(j, je, i->start);
368       if (j != other.begin()) --j;
369     }
370   } else {
371     return true;
372   }
373 
374   if (j == je) return false;
375 
376   while (i != ie) {
377     if (i->start > j->start) {
378       std::swap(i, j);
379       std::swap(ie, je);
380     }
381 
382     if (i->end > j->start)
383       return true;
384     ++i;
385   }
386 
387   return false;
388 }
389 
390 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
391                          const SlotIndexes &Indexes) const {
392   assert(!empty() && "empty range");
393   if (Other.empty())
394     return false;
395 
396   // Use binary searches to find initial positions.
397   const_iterator I = find(Other.beginIndex());
398   const_iterator IE = end();
399   if (I == IE)
400     return false;
401   const_iterator J = Other.find(I->start);
402   const_iterator JE = Other.end();
403   if (J == JE)
404     return false;
405 
406   for (;;) {
407     // J has just been advanced to satisfy:
408     assert(J->end >= I->start);
409     // Check for an overlap.
410     if (J->start < I->end) {
411       // I and J are overlapping. Find the later start.
412       SlotIndex Def = std::max(I->start, J->start);
413       // Allow the overlap if Def is a coalescable copy.
414       if (Def.isBlock() ||
415           !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
416         return true;
417     }
418     // Advance the iterator that ends first to check for more overlaps.
419     if (J->end > I->end) {
420       std::swap(I, J);
421       std::swap(IE, JE);
422     }
423     // Advance J until J->end >= I->start.
424     do
425       if (++J == JE)
426         return false;
427     while (J->end < I->start);
428   }
429 }
430 
431 /// overlaps - Return true if the live range overlaps an interval specified
432 /// by [Start, End).
433 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
434   assert(Start < End && "Invalid range");
435   const_iterator I = std::lower_bound(begin(), end(), End);
436   return I != begin() && (--I)->end > Start;
437 }
438 
439 bool LiveRange::covers(const LiveRange &Other) const {
440   if (empty())
441     return Other.empty();
442 
443   const_iterator I = begin();
444   for (const Segment &O : Other.segments) {
445     I = advanceTo(I, O.start);
446     if (I == end() || I->start > O.start)
447       return false;
448 
449     // Check adjacent live segments and see if we can get behind O.end.
450     while (I->end < O.end) {
451       const_iterator Last = I;
452       // Get next segment and abort if it was not adjacent.
453       ++I;
454       if (I == end() || Last->end != I->start)
455         return false;
456     }
457   }
458   return true;
459 }
460 
461 /// ValNo is dead, remove it.  If it is the largest value number, just nuke it
462 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
463 /// it can be nuked later.
464 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
465   if (ValNo->id == getNumValNums()-1) {
466     do {
467       valnos.pop_back();
468     } while (!valnos.empty() && valnos.back()->isUnused());
469   } else {
470     ValNo->markUnused();
471   }
472 }
473 
474 /// RenumberValues - Renumber all values in order of appearance and delete the
475 /// remaining unused values.
476 void LiveRange::RenumberValues() {
477   SmallPtrSet<VNInfo*, 8> Seen;
478   valnos.clear();
479   for (const Segment &S : segments) {
480     VNInfo *VNI = S.valno;
481     if (!Seen.insert(VNI).second)
482       continue;
483     assert(!VNI->isUnused() && "Unused valno used by live segment");
484     VNI->id = (unsigned)valnos.size();
485     valnos.push_back(VNI);
486   }
487 }
488 
489 void LiveRange::addSegmentToSet(Segment S) {
490   CalcLiveRangeUtilSet(this).addSegment(S);
491 }
492 
493 LiveRange::iterator LiveRange::addSegment(Segment S) {
494   // Use the segment set, if it is available.
495   if (segmentSet != nullptr) {
496     addSegmentToSet(S);
497     return end();
498   }
499   // Otherwise use the segment vector.
500   return CalcLiveRangeUtilVector(this).addSegment(S);
501 }
502 
503 void LiveRange::append(const Segment S) {
504   // Check that the segment belongs to the back of the list.
505   assert(segments.empty() || segments.back().end <= S.start);
506   segments.push_back(S);
507 }
508 
509 /// extendInBlock - If this range is live before Kill in the basic
510 /// block that starts at StartIdx, extend it to be live up to Kill and return
511 /// the value. If there is no live range before Kill, return NULL.
512 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
513   // Use the segment set, if it is available.
514   if (segmentSet != nullptr)
515     return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
516   // Otherwise use the segment vector.
517   return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
518 }
519 
520 /// Remove the specified segment from this range.  Note that the segment must
521 /// be in a single Segment in its entirety.
522 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
523                               bool RemoveDeadValNo) {
524   // Find the Segment containing this span.
525   iterator I = find(Start);
526   assert(I != end() && "Segment is not in range!");
527   assert(I->containsInterval(Start, End)
528          && "Segment is not entirely in range!");
529 
530   // If the span we are removing is at the start of the Segment, adjust it.
531   VNInfo *ValNo = I->valno;
532   if (I->start == Start) {
533     if (I->end == End) {
534       if (RemoveDeadValNo) {
535         // Check if val# is dead.
536         bool isDead = true;
537         for (const_iterator II = begin(), EE = end(); II != EE; ++II)
538           if (II != I && II->valno == ValNo) {
539             isDead = false;
540             break;
541           }
542         if (isDead) {
543           // Now that ValNo is dead, remove it.
544           markValNoForDeletion(ValNo);
545         }
546       }
547 
548       segments.erase(I);  // Removed the whole Segment.
549     } else
550       I->start = End;
551     return;
552   }
553 
554   // Otherwise if the span we are removing is at the end of the Segment,
555   // adjust the other way.
556   if (I->end == End) {
557     I->end = Start;
558     return;
559   }
560 
561   // Otherwise, we are splitting the Segment into two pieces.
562   SlotIndex OldEnd = I->end;
563   I->end = Start;   // Trim the old segment.
564 
565   // Insert the new one.
566   segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
567 }
568 
569 /// removeValNo - Remove all the segments defined by the specified value#.
570 /// Also remove the value# from value# list.
571 void LiveRange::removeValNo(VNInfo *ValNo) {
572   if (empty()) return;
573   segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) {
574     return S.valno == ValNo;
575   }), end());
576   // Now that ValNo is dead, remove it.
577   markValNoForDeletion(ValNo);
578 }
579 
580 void LiveRange::join(LiveRange &Other,
581                      const int *LHSValNoAssignments,
582                      const int *RHSValNoAssignments,
583                      SmallVectorImpl<VNInfo *> &NewVNInfo) {
584   verify();
585 
586   // Determine if any of our values are mapped.  This is uncommon, so we want
587   // to avoid the range scan if not.
588   bool MustMapCurValNos = false;
589   unsigned NumVals = getNumValNums();
590   unsigned NumNewVals = NewVNInfo.size();
591   for (unsigned i = 0; i != NumVals; ++i) {
592     unsigned LHSValID = LHSValNoAssignments[i];
593     if (i != LHSValID ||
594         (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
595       MustMapCurValNos = true;
596       break;
597     }
598   }
599 
600   // If we have to apply a mapping to our base range assignment, rewrite it now.
601   if (MustMapCurValNos && !empty()) {
602     // Map the first live range.
603 
604     iterator OutIt = begin();
605     OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
606     for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
607       VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
608       assert(nextValNo && "Huh?");
609 
610       // If this live range has the same value # as its immediate predecessor,
611       // and if they are neighbors, remove one Segment.  This happens when we
612       // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
613       if (OutIt->valno == nextValNo && OutIt->end == I->start) {
614         OutIt->end = I->end;
615       } else {
616         // Didn't merge. Move OutIt to the next segment,
617         ++OutIt;
618         OutIt->valno = nextValNo;
619         if (OutIt != I) {
620           OutIt->start = I->start;
621           OutIt->end = I->end;
622         }
623       }
624     }
625     // If we merge some segments, chop off the end.
626     ++OutIt;
627     segments.erase(OutIt, end());
628   }
629 
630   // Rewrite Other values before changing the VNInfo ids.
631   // This can leave Other in an invalid state because we're not coalescing
632   // touching segments that now have identical values. That's OK since Other is
633   // not supposed to be valid after calling join();
634   for (Segment &S : Other.segments)
635     S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
636 
637   // Update val# info. Renumber them and make sure they all belong to this
638   // LiveRange now. Also remove dead val#'s.
639   unsigned NumValNos = 0;
640   for (unsigned i = 0; i < NumNewVals; ++i) {
641     VNInfo *VNI = NewVNInfo[i];
642     if (VNI) {
643       if (NumValNos >= NumVals)
644         valnos.push_back(VNI);
645       else
646         valnos[NumValNos] = VNI;
647       VNI->id = NumValNos++;  // Renumber val#.
648     }
649   }
650   if (NumNewVals < NumVals)
651     valnos.resize(NumNewVals);  // shrinkify
652 
653   // Okay, now insert the RHS live segments into the LHS.
654   LiveRangeUpdater Updater(this);
655   for (Segment &S : Other.segments)
656     Updater.add(S);
657 }
658 
659 /// Merge all of the segments in RHS into this live range as the specified
660 /// value number.  The segments in RHS are allowed to overlap with segments in
661 /// the current range, but only if the overlapping segments have the
662 /// specified value number.
663 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
664                                        VNInfo *LHSValNo) {
665   LiveRangeUpdater Updater(this);
666   for (const Segment &S : RHS.segments)
667     Updater.add(S.start, S.end, LHSValNo);
668 }
669 
670 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
671 /// in RHS into this live range as the specified value number.
672 /// The segments in RHS are allowed to overlap with segments in the
673 /// current range, it will replace the value numbers of the overlaped
674 /// segments with the specified value number.
675 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
676                                     const VNInfo *RHSValNo,
677                                     VNInfo *LHSValNo) {
678   LiveRangeUpdater Updater(this);
679   for (const Segment &S : RHS.segments)
680     if (S.valno == RHSValNo)
681       Updater.add(S.start, S.end, LHSValNo);
682 }
683 
684 /// MergeValueNumberInto - This method is called when two value nubmers
685 /// are found to be equivalent.  This eliminates V1, replacing all
686 /// segments with the V1 value number with the V2 value number.  This can
687 /// cause merging of V1/V2 values numbers and compaction of the value space.
688 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
689   assert(V1 != V2 && "Identical value#'s are always equivalent!");
690 
691   // This code actually merges the (numerically) larger value number into the
692   // smaller value number, which is likely to allow us to compactify the value
693   // space.  The only thing we have to be careful of is to preserve the
694   // instruction that defines the result value.
695 
696   // Make sure V2 is smaller than V1.
697   if (V1->id < V2->id) {
698     V1->copyFrom(*V2);
699     std::swap(V1, V2);
700   }
701 
702   // Merge V1 segments into V2.
703   for (iterator I = begin(); I != end(); ) {
704     iterator S = I++;
705     if (S->valno != V1) continue;  // Not a V1 Segment.
706 
707     // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
708     // range, extend it.
709     if (S != begin()) {
710       iterator Prev = S-1;
711       if (Prev->valno == V2 && Prev->end == S->start) {
712         Prev->end = S->end;
713 
714         // Erase this live-range.
715         segments.erase(S);
716         I = Prev+1;
717         S = Prev;
718       }
719     }
720 
721     // Okay, now we have a V1 or V2 live range that is maximally merged forward.
722     // Ensure that it is a V2 live-range.
723     S->valno = V2;
724 
725     // If we can merge it into later V2 segments, do so now.  We ignore any
726     // following V1 segments, as they will be merged in subsequent iterations
727     // of the loop.
728     if (I != end()) {
729       if (I->start == S->end && I->valno == V2) {
730         S->end = I->end;
731         segments.erase(I);
732         I = S+1;
733       }
734     }
735   }
736 
737   // Now that V1 is dead, remove it.
738   markValNoForDeletion(V1);
739 
740   return V2;
741 }
742 
743 void LiveRange::flushSegmentSet() {
744   assert(segmentSet != nullptr && "segment set must have been created");
745   assert(
746       segments.empty() &&
747       "segment set can be used only initially before switching to the array");
748   segments.append(segmentSet->begin(), segmentSet->end());
749   segmentSet = nullptr;
750   verify();
751 }
752 
753 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
754   ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
755   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
756 
757   // If there are no regmask slots, we have nothing to search.
758   if (SlotI == SlotE)
759     return false;
760 
761   // Start our search at the first segment that ends after the first slot.
762   const_iterator SegmentI = find(*SlotI);
763   const_iterator SegmentE = end();
764 
765   // If there are no segments that end after the first slot, we're done.
766   if (SegmentI == SegmentE)
767     return false;
768 
769   // Look for each slot in the live range.
770   for ( ; SlotI != SlotE; ++SlotI) {
771     // Go to the next segment that ends after the current slot.
772     // The slot may be within a hole in the range.
773     SegmentI = advanceTo(SegmentI, *SlotI);
774     if (SegmentI == SegmentE)
775       return false;
776 
777     // If this segment contains the slot, we're done.
778     if (SegmentI->contains(*SlotI))
779       return true;
780     // Otherwise, look for the next slot.
781   }
782 
783   // We didn't find a segment containing any of the slots.
784   return false;
785 }
786 
787 void LiveInterval::freeSubRange(SubRange *S) {
788   S->~SubRange();
789   // Memory was allocated with BumpPtr allocator and is not freed here.
790 }
791 
792 void LiveInterval::removeEmptySubRanges() {
793   SubRange **NextPtr = &SubRanges;
794   SubRange *I = *NextPtr;
795   while (I != nullptr) {
796     if (!I->empty()) {
797       NextPtr = &I->Next;
798       I = *NextPtr;
799       continue;
800     }
801     // Skip empty subranges until we find the first nonempty one.
802     do {
803       SubRange *Next = I->Next;
804       freeSubRange(I);
805       I = Next;
806     } while (I != nullptr && I->empty());
807     *NextPtr = I;
808   }
809 }
810 
811 void LiveInterval::clearSubRanges() {
812   for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
813     Next = I->Next;
814     freeSubRange(I);
815   }
816   SubRanges = nullptr;
817 }
818 
819 /// Helper function for constructMainRangeFromSubranges(): Search the CFG
820 /// backwards until we find a place covered by a LiveRange segment that actually
821 /// has a valno set.
822 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR,
823     const MachineBasicBlock *MBB,
824     SmallPtrSetImpl<const MachineBasicBlock*> &Visited) {
825   // We start the search at the end of MBB.
826   SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB);
827   // In our use case we can't live the area covered by the live segments without
828   // finding an actual VNI def.
829   LiveRange::iterator I = LR.find(EndIdx.getPrevSlot());
830   assert(I != LR.end());
831   LiveRange::Segment &S = *I;
832   if (S.valno != nullptr)
833     return S.valno;
834 
835   VNInfo *VNI = nullptr;
836   // Continue at predecessors (we could even go to idom with domtree available).
837   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
838     // Avoid going in circles.
839     if (!Visited.insert(Pred).second)
840       continue;
841 
842     VNI = searchForVNI(Indexes, LR, Pred, Visited);
843     if (VNI != nullptr) {
844       S.valno = VNI;
845       break;
846     }
847   }
848 
849   return VNI;
850 }
851 
852 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) {
853   SmallPtrSet<const MachineBasicBlock*, 5> Visited;
854 
855   LiveRange::iterator OutIt;
856   VNInfo *PrevValNo = nullptr;
857   for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
858     LiveRange::Segment &S = *I;
859     // Determine final VNI if necessary.
860     if (S.valno == nullptr) {
861       // This can only happen at the begin of a basic block.
862       assert(S.start.isBlock() && "valno should only be missing at block begin");
863 
864       Visited.clear();
865       const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start);
866       for (const MachineBasicBlock *Pred : MBB->predecessors()) {
867         VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited);
868         if (VNI != nullptr) {
869           S.valno = VNI;
870           break;
871         }
872       }
873       assert(S.valno != nullptr && "could not determine valno");
874     }
875     // Merge with previous segment if it has the same VNI.
876     if (PrevValNo == S.valno && OutIt->end == S.start) {
877       OutIt->end = S.end;
878     } else {
879       // Didn't merge. Move OutIt to next segment.
880       if (PrevValNo == nullptr)
881         OutIt = LI.begin();
882       else
883         ++OutIt;
884 
885       if (OutIt != I)
886         *OutIt = *I;
887       PrevValNo = S.valno;
888     }
889   }
890   // If we merged some segments chop off the end.
891   ++OutIt;
892   LI.segments.erase(OutIt, LI.end());
893 }
894 
895 void LiveInterval::constructMainRangeFromSubranges(
896     const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) {
897   // The basic observations on which this algorithm is based:
898   // - Each Def/ValNo in a subrange must have a corresponding def on the main
899   //   range, but not further defs/valnos are necessary.
900   // - If any of the subranges is live at a point the main liverange has to be
901   //   live too, conversily if no subrange is live the main range mustn't be
902   //   live either.
903   // We do this by scanning through all the subranges simultaneously creating new
904   // segments in the main range as segments start/ends come up in the subranges.
905   assert(hasSubRanges() && "expected subranges to be present");
906   assert(segments.empty() && valnos.empty() && "expected empty main range");
907 
908   // Collect subrange, iterator pairs for the walk and determine first and last
909   // SlotIndex involved.
910   SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs;
911   SlotIndex First;
912   SlotIndex Last;
913   for (const SubRange &SR : subranges()) {
914     if (SR.empty())
915       continue;
916     SRs.push_back(std::make_pair(&SR, SR.begin()));
917     if (!First.isValid() || SR.segments.front().start < First)
918       First = SR.segments.front().start;
919     if (!Last.isValid() || SR.segments.back().end > Last)
920       Last = SR.segments.back().end;
921   }
922 
923   // Walk over all subranges simultaneously.
924   Segment CurrentSegment;
925   bool ConstructingSegment = false;
926   bool NeedVNIFixup = false;
927   LaneBitmask ActiveMask = 0;
928   SlotIndex Pos = First;
929   while (true) {
930     SlotIndex NextPos = Last;
931     enum {
932       NOTHING,
933       BEGIN_SEGMENT,
934       END_SEGMENT,
935     } Event = NOTHING;
936     // Which subregister lanes are affected by the current event.
937     LaneBitmask EventMask = 0;
938     // Whether a BEGIN_SEGMENT is also a valno definition point.
939     bool IsDef = false;
940     // Find the next begin or end of a subrange segment. Combine masks if we
941     // have multiple begins/ends at the same position. Ends take precedence over
942     // Begins.
943     for (auto &SRP : SRs) {
944       const SubRange &SR = *SRP.first;
945       const_iterator &I = SRP.second;
946       // Advance iterator of subrange to a segment involving Pos; the earlier
947       // segments are already merged at this point.
948       while (I != SR.end() &&
949              (I->end < Pos ||
950               (I->end == Pos && (ActiveMask & SR.LaneMask) == 0)))
951         ++I;
952       if (I == SR.end())
953         continue;
954       if ((ActiveMask & SR.LaneMask) == 0 &&
955           Pos <= I->start && I->start <= NextPos) {
956         // Merge multiple begins at the same position.
957         if (I->start == NextPos && Event == BEGIN_SEGMENT) {
958           EventMask |= SR.LaneMask;
959           IsDef |= I->valno->def == I->start;
960         } else if (I->start < NextPos || Event != END_SEGMENT) {
961           Event = BEGIN_SEGMENT;
962           NextPos = I->start;
963           EventMask = SR.LaneMask;
964           IsDef = I->valno->def == I->start;
965         }
966       }
967       if ((ActiveMask & SR.LaneMask) != 0 &&
968           Pos <= I->end && I->end <= NextPos) {
969         // Merge multiple ends at the same position.
970         if (I->end == NextPos && Event == END_SEGMENT)
971           EventMask |= SR.LaneMask;
972         else {
973           Event = END_SEGMENT;
974           NextPos = I->end;
975           EventMask = SR.LaneMask;
976         }
977       }
978     }
979 
980     // Advance scan position.
981     Pos = NextPos;
982     if (Event == BEGIN_SEGMENT) {
983       if (ConstructingSegment && IsDef) {
984         // Finish previous segment because we have to start a new one.
985         CurrentSegment.end = Pos;
986         append(CurrentSegment);
987         ConstructingSegment = false;
988       }
989 
990       // Start a new segment if necessary.
991       if (!ConstructingSegment) {
992         // Determine value number for the segment.
993         VNInfo *VNI;
994         if (IsDef) {
995           VNI = getNextValue(Pos, VNIAllocator);
996         } else {
997           // We have to reuse an existing value number, if we are lucky
998           // then we already passed one of the predecessor blocks and determined
999           // its value number (with blocks in reverse postorder this would be
1000           // always true but we have no such guarantee).
1001           assert(Pos.isBlock());
1002           const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos);
1003           // See if any of the predecessor blocks has a lower number and a VNI
1004           for (const MachineBasicBlock *Pred : MBB->predecessors()) {
1005             SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1006             VNI = getVNInfoBefore(PredEnd);
1007             if (VNI != nullptr)
1008               break;
1009           }
1010           // Def will come later: We have to do an extra fixup pass.
1011           if (VNI == nullptr)
1012             NeedVNIFixup = true;
1013         }
1014 
1015         // In rare cases we can produce adjacent segments with the same value
1016         // number (if they come from different subranges, but happen to have
1017         // the same defining instruction). VNIFixup will fix those cases.
1018         if (!empty() && segments.back().end == Pos &&
1019             segments.back().valno == VNI)
1020           NeedVNIFixup = true;
1021         CurrentSegment.start = Pos;
1022         CurrentSegment.valno = VNI;
1023         ConstructingSegment = true;
1024       }
1025       ActiveMask |= EventMask;
1026     } else if (Event == END_SEGMENT) {
1027       assert(ConstructingSegment);
1028       // Finish segment if no lane is active anymore.
1029       ActiveMask &= ~EventMask;
1030       if (ActiveMask == 0) {
1031         CurrentSegment.end = Pos;
1032         append(CurrentSegment);
1033         ConstructingSegment = false;
1034       }
1035     } else {
1036       // We reached the end of the last subranges and can stop.
1037       assert(Event == NOTHING);
1038       break;
1039     }
1040   }
1041 
1042   // We might not be able to assign new valnos for all segments if the basic
1043   // block containing the definition comes after a segment using the valno.
1044   // Do a fixup pass for this uncommon case.
1045   if (NeedVNIFixup)
1046     determineMissingVNIs(Indexes, *this);
1047 
1048   assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended");
1049   verify();
1050 }
1051 
1052 unsigned LiveInterval::getSize() const {
1053   unsigned Sum = 0;
1054   for (const Segment &S : segments)
1055     Sum += S.start.distance(S.end);
1056   return Sum;
1057 }
1058 
1059 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) {
1060   return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
1061 }
1062 
1063 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1064 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
1065   dbgs() << *this << "\n";
1066 }
1067 #endif
1068 
1069 void LiveRange::print(raw_ostream &OS) const {
1070   if (empty())
1071     OS << "EMPTY";
1072   else {
1073     for (const Segment &S : segments) {
1074       OS << S;
1075       assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
1076     }
1077   }
1078 
1079   // Print value number info.
1080   if (getNumValNums()) {
1081     OS << "  ";
1082     unsigned vnum = 0;
1083     for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
1084          ++i, ++vnum) {
1085       const VNInfo *vni = *i;
1086       if (vnum) OS << " ";
1087       OS << vnum << "@";
1088       if (vni->isUnused()) {
1089         OS << "x";
1090       } else {
1091         OS << vni->def;
1092         if (vni->isPHIDef())
1093           OS << "-phi";
1094       }
1095     }
1096   }
1097 }
1098 
1099 void LiveInterval::print(raw_ostream &OS) const {
1100   OS << PrintReg(reg) << ' ';
1101   super::print(OS);
1102   // Print subranges
1103   for (const SubRange &SR : subranges()) {
1104     OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR;
1105   }
1106 }
1107 
1108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1109 LLVM_DUMP_METHOD void LiveRange::dump() const {
1110   dbgs() << *this << "\n";
1111 }
1112 
1113 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1114   dbgs() << *this << "\n";
1115 }
1116 #endif
1117 
1118 #ifndef NDEBUG
1119 void LiveRange::verify() const {
1120   for (const_iterator I = begin(), E = end(); I != E; ++I) {
1121     assert(I->start.isValid());
1122     assert(I->end.isValid());
1123     assert(I->start < I->end);
1124     assert(I->valno != nullptr);
1125     assert(I->valno->id < valnos.size());
1126     assert(I->valno == valnos[I->valno->id]);
1127     if (std::next(I) != E) {
1128       assert(I->end <= std::next(I)->start);
1129       if (I->end == std::next(I)->start)
1130         assert(I->valno != std::next(I)->valno);
1131     }
1132   }
1133 }
1134 
1135 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1136   super::verify();
1137 
1138   // Make sure SubRanges are fine and LaneMasks are disjunct.
1139   LaneBitmask Mask = 0;
1140   LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u;
1141   for (const SubRange &SR : subranges()) {
1142     // Subrange lanemask should be disjunct to any previous subrange masks.
1143     assert((Mask & SR.LaneMask) == 0);
1144     Mask |= SR.LaneMask;
1145 
1146     // subrange mask should not contained in maximum lane mask for the vreg.
1147     assert((Mask & ~MaxMask) == 0);
1148     // empty subranges must be removed.
1149     assert(!SR.empty());
1150 
1151     SR.verify();
1152     // Main liverange should cover subrange.
1153     assert(covers(SR));
1154   }
1155 }
1156 #endif
1157 
1158 
1159 //===----------------------------------------------------------------------===//
1160 //                           LiveRangeUpdater class
1161 //===----------------------------------------------------------------------===//
1162 //
1163 // The LiveRangeUpdater class always maintains these invariants:
1164 //
1165 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1166 //   This is the initial state, and the state created by flush().
1167 //   In this state, isDirty() returns false.
1168 //
1169 // Otherwise, segments are kept in three separate areas:
1170 //
1171 // 1. [begin; WriteI) at the front of LR.
1172 // 2. [ReadI; end) at the back of LR.
1173 // 3. Spills.
1174 //
1175 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1176 // - Segments in all three areas are fully ordered and coalesced.
1177 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1178 // - Segments in Spills precede and can't coalesce with segments in area 2.
1179 // - No coalescing is possible between segments in Spills and segments in area
1180 //   1, and there are no overlapping segments.
1181 //
1182 // The segments in Spills are not ordered with respect to the segments in area
1183 // 1. They need to be merged.
1184 //
1185 // When they exist, Spills.back().start <= LastStart,
1186 //                 and WriteI[-1].start <= LastStart.
1187 
1188 void LiveRangeUpdater::print(raw_ostream &OS) const {
1189   if (!isDirty()) {
1190     if (LR)
1191       OS << "Clean updater: " << *LR << '\n';
1192     else
1193       OS << "Null updater.\n";
1194     return;
1195   }
1196   assert(LR && "Can't have null LR in dirty updater.");
1197   OS << " updater with gap = " << (ReadI - WriteI)
1198      << ", last start = " << LastStart
1199      << ":\n  Area 1:";
1200   for (const auto &S : make_range(LR->begin(), WriteI))
1201     OS << ' ' << S;
1202   OS << "\n  Spills:";
1203   for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1204     OS << ' ' << Spills[I];
1205   OS << "\n  Area 2:";
1206   for (const auto &S : make_range(ReadI, LR->end()))
1207     OS << ' ' << S;
1208   OS << '\n';
1209 }
1210 
1211 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1212   print(errs());
1213 }
1214 
1215 // Determine if A and B should be coalesced.
1216 static inline bool coalescable(const LiveRange::Segment &A,
1217                                const LiveRange::Segment &B) {
1218   assert(A.start <= B.start && "Unordered live segments.");
1219   if (A.end == B.start)
1220     return A.valno == B.valno;
1221   if (A.end < B.start)
1222     return false;
1223   assert(A.valno == B.valno && "Cannot overlap different values");
1224   return true;
1225 }
1226 
1227 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1228   assert(LR && "Cannot add to a null destination");
1229 
1230   // Fall back to the regular add method if the live range
1231   // is using the segment set instead of the segment vector.
1232   if (LR->segmentSet != nullptr) {
1233     LR->addSegmentToSet(Seg);
1234     return;
1235   }
1236 
1237   // Flush the state if Start moves backwards.
1238   if (!LastStart.isValid() || LastStart > Seg.start) {
1239     if (isDirty())
1240       flush();
1241     // This brings us to an uninitialized state. Reinitialize.
1242     assert(Spills.empty() && "Leftover spilled segments");
1243     WriteI = ReadI = LR->begin();
1244   }
1245 
1246   // Remember start for next time.
1247   LastStart = Seg.start;
1248 
1249   // Advance ReadI until it ends after Seg.start.
1250   LiveRange::iterator E = LR->end();
1251   if (ReadI != E && ReadI->end <= Seg.start) {
1252     // First try to close the gap between WriteI and ReadI with spills.
1253     if (ReadI != WriteI)
1254       mergeSpills();
1255     // Then advance ReadI.
1256     if (ReadI == WriteI)
1257       ReadI = WriteI = LR->find(Seg.start);
1258     else
1259       while (ReadI != E && ReadI->end <= Seg.start)
1260         *WriteI++ = *ReadI++;
1261   }
1262 
1263   assert(ReadI == E || ReadI->end > Seg.start);
1264 
1265   // Check if the ReadI segment begins early.
1266   if (ReadI != E && ReadI->start <= Seg.start) {
1267     assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1268     // Bail if Seg is completely contained in ReadI.
1269     if (ReadI->end >= Seg.end)
1270       return;
1271     // Coalesce into Seg.
1272     Seg.start = ReadI->start;
1273     ++ReadI;
1274   }
1275 
1276   // Coalesce as much as possible from ReadI into Seg.
1277   while (ReadI != E && coalescable(Seg, *ReadI)) {
1278     Seg.end = std::max(Seg.end, ReadI->end);
1279     ++ReadI;
1280   }
1281 
1282   // Try coalescing Spills.back() into Seg.
1283   if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1284     Seg.start = Spills.back().start;
1285     Seg.end = std::max(Spills.back().end, Seg.end);
1286     Spills.pop_back();
1287   }
1288 
1289   // Try coalescing Seg into WriteI[-1].
1290   if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1291     WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1292     return;
1293   }
1294 
1295   // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1296   if (WriteI != ReadI) {
1297     *WriteI++ = Seg;
1298     return;
1299   }
1300 
1301   // Finally, append to LR or Spills.
1302   if (WriteI == E) {
1303     LR->segments.push_back(Seg);
1304     WriteI = ReadI = LR->end();
1305   } else
1306     Spills.push_back(Seg);
1307 }
1308 
1309 // Merge as many spilled segments as possible into the gap between WriteI
1310 // and ReadI. Advance WriteI to reflect the inserted instructions.
1311 void LiveRangeUpdater::mergeSpills() {
1312   // Perform a backwards merge of Spills and [SpillI;WriteI).
1313   size_t GapSize = ReadI - WriteI;
1314   size_t NumMoved = std::min(Spills.size(), GapSize);
1315   LiveRange::iterator Src = WriteI;
1316   LiveRange::iterator Dst = Src + NumMoved;
1317   LiveRange::iterator SpillSrc = Spills.end();
1318   LiveRange::iterator B = LR->begin();
1319 
1320   // This is the new WriteI position after merging spills.
1321   WriteI = Dst;
1322 
1323   // Now merge Src and Spills backwards.
1324   while (Src != Dst) {
1325     if (Src != B && Src[-1].start > SpillSrc[-1].start)
1326       *--Dst = *--Src;
1327     else
1328       *--Dst = *--SpillSrc;
1329   }
1330   assert(NumMoved == size_t(Spills.end() - SpillSrc));
1331   Spills.erase(SpillSrc, Spills.end());
1332 }
1333 
1334 void LiveRangeUpdater::flush() {
1335   if (!isDirty())
1336     return;
1337   // Clear the dirty state.
1338   LastStart = SlotIndex();
1339 
1340   assert(LR && "Cannot add to a null destination");
1341 
1342   // Nothing to merge?
1343   if (Spills.empty()) {
1344     LR->segments.erase(WriteI, ReadI);
1345     LR->verify();
1346     return;
1347   }
1348 
1349   // Resize the WriteI - ReadI gap to match Spills.
1350   size_t GapSize = ReadI - WriteI;
1351   if (GapSize < Spills.size()) {
1352     // The gap is too small. Make some room.
1353     size_t WritePos = WriteI - LR->begin();
1354     LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1355     // This also invalidated ReadI, but it is recomputed below.
1356     WriteI = LR->begin() + WritePos;
1357   } else {
1358     // Shrink the gap if necessary.
1359     LR->segments.erase(WriteI + Spills.size(), ReadI);
1360   }
1361   ReadI = WriteI + Spills.size();
1362   mergeSpills();
1363   LR->verify();
1364 }
1365 
1366 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1367   // Create initial equivalence classes.
1368   EqClass.clear();
1369   EqClass.grow(LR.getNumValNums());
1370 
1371   const VNInfo *used = nullptr, *unused = nullptr;
1372 
1373   // Determine connections.
1374   for (const VNInfo *VNI : LR.valnos) {
1375     // Group all unused values into one class.
1376     if (VNI->isUnused()) {
1377       if (unused)
1378         EqClass.join(unused->id, VNI->id);
1379       unused = VNI;
1380       continue;
1381     }
1382     used = VNI;
1383     if (VNI->isPHIDef()) {
1384       const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1385       assert(MBB && "Phi-def has no defining MBB");
1386       // Connect to values live out of predecessors.
1387       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1388            PE = MBB->pred_end(); PI != PE; ++PI)
1389         if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1390           EqClass.join(VNI->id, PVNI->id);
1391     } else {
1392       // Normal value defined by an instruction. Check for two-addr redef.
1393       // FIXME: This could be coincidental. Should we really check for a tied
1394       // operand constraint?
1395       // Note that VNI->def may be a use slot for an early clobber def.
1396       if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1397         EqClass.join(VNI->id, UVNI->id);
1398     }
1399   }
1400 
1401   // Lump all the unused values in with the last used value.
1402   if (used && unused)
1403     EqClass.join(used->id, unused->id);
1404 
1405   EqClass.compress();
1406   return EqClass.getNumClasses();
1407 }
1408 
1409 template<typename LiveRangeT, typename EqClassesT>
1410 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[],
1411                             EqClassesT VNIClasses) {
1412   // Move segments to new intervals.
1413   LiveRange::iterator J = LR.begin(), E = LR.end();
1414   while (J != E && VNIClasses[J->valno->id] == 0)
1415     ++J;
1416   for (LiveRange::iterator I = J; I != E; ++I) {
1417     if (unsigned eq = VNIClasses[I->valno->id]) {
1418       assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) &&
1419              "New intervals should be empty");
1420       SplitLRs[eq-1]->segments.push_back(*I);
1421     } else
1422       *J++ = *I;
1423   }
1424   LR.segments.erase(J, E);
1425 
1426   // Transfer VNInfos to their new owners and renumber them.
1427   unsigned j = 0, e = LR.getNumValNums();
1428   while (j != e && VNIClasses[j] == 0)
1429     ++j;
1430   for (unsigned i = j; i != e; ++i) {
1431     VNInfo *VNI = LR.getValNumInfo(i);
1432     if (unsigned eq = VNIClasses[i]) {
1433       VNI->id = SplitLRs[eq-1]->getNumValNums();
1434       SplitLRs[eq-1]->valnos.push_back(VNI);
1435     } else {
1436       VNI->id = j;
1437       LR.valnos[j++] = VNI;
1438     }
1439   }
1440   LR.valnos.resize(j);
1441 }
1442 
1443 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1444                                           MachineRegisterInfo &MRI) {
1445   // Rewrite instructions.
1446   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1447        RE = MRI.reg_end(); RI != RE;) {
1448     MachineOperand &MO = *RI;
1449     MachineInstr *MI = RI->getParent();
1450     ++RI;
1451     // DBG_VALUE instructions don't have slot indexes, so get the index of the
1452     // instruction before them.
1453     // Normally, DBG_VALUE instructions are removed before this function is
1454     // called, but it is not a requirement.
1455     SlotIndex Idx;
1456     if (MI->isDebugValue())
1457       Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1458     else
1459       Idx = LIS.getInstructionIndex(*MI);
1460     LiveQueryResult LRQ = LI.Query(Idx);
1461     const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1462     // In the case of an <undef> use that isn't tied to any def, VNI will be
1463     // NULL. If the use is tied to a def, VNI will be the defined value.
1464     if (!VNI)
1465       continue;
1466     if (unsigned EqClass = getEqClass(VNI))
1467       MO.setReg(LIV[EqClass-1]->reg);
1468   }
1469 
1470   // Distribute subregister liveranges.
1471   if (LI.hasSubRanges()) {
1472     unsigned NumComponents = EqClass.getNumClasses();
1473     SmallVector<unsigned, 8> VNIMapping;
1474     SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1475     BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1476     for (LiveInterval::SubRange &SR : LI.subranges()) {
1477       // Create new subranges in the split intervals and construct a mapping
1478       // for the VNInfos in the subrange.
1479       unsigned NumValNos = SR.valnos.size();
1480       VNIMapping.clear();
1481       VNIMapping.reserve(NumValNos);
1482       SubRanges.clear();
1483       SubRanges.resize(NumComponents-1, nullptr);
1484       for (unsigned I = 0; I < NumValNos; ++I) {
1485         const VNInfo &VNI = *SR.valnos[I];
1486         unsigned ComponentNum;
1487         if (VNI.isUnused()) {
1488           ComponentNum = 0;
1489         } else {
1490           const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1491           assert(MainRangeVNI != nullptr
1492                  && "SubRange def must have corresponding main range def");
1493           ComponentNum = getEqClass(MainRangeVNI);
1494           if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1495             SubRanges[ComponentNum-1]
1496               = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1497           }
1498         }
1499         VNIMapping.push_back(ComponentNum);
1500       }
1501       DistributeRange(SR, SubRanges.data(), VNIMapping);
1502     }
1503     LI.removeEmptySubRanges();
1504   }
1505 
1506   // Distribute main liverange.
1507   DistributeRange(LI, LIV, EqClass);
1508 }
1509 
1510 void ConnectedSubRegClasses::renameComponents(LiveInterval &LI) const {
1511   // Shortcut: We cannot have split components with a single definition.
1512   if (LI.valnos.size() < 2)
1513     return;
1514 
1515   SmallVector<SubRangeInfo, 4> SubRangeInfos;
1516   IntEqClasses Classes;
1517   if (!findComponents(Classes, SubRangeInfos, LI))
1518     return;
1519 
1520   // Create a new VReg for each class.
1521   unsigned Reg = LI.reg;
1522   const TargetRegisterClass *RegClass = MRI.getRegClass(Reg);
1523   SmallVector<LiveInterval*, 4> Intervals;
1524   Intervals.push_back(&LI);
1525   for (unsigned I = 1, NumClasses = Classes.getNumClasses(); I < NumClasses;
1526        ++I) {
1527     unsigned NewVReg = MRI.createVirtualRegister(RegClass);
1528     LiveInterval &NewLI = LIS.createEmptyInterval(NewVReg);
1529     Intervals.push_back(&NewLI);
1530   }
1531 
1532   rewriteOperands(Classes, SubRangeInfos, Intervals);
1533   distribute(Classes, SubRangeInfos, Intervals);
1534   computeMainRangesFixFlags(Classes, SubRangeInfos, Intervals);
1535 }
1536 
1537 bool ConnectedSubRegClasses::findComponents(IntEqClasses &Classes,
1538     SmallVectorImpl<ConnectedSubRegClasses::SubRangeInfo> &SubRangeInfos,
1539     LiveInterval &LI) const {
1540   // First step: Create connected components for the VNInfos inside the
1541   // subranges and count the global number of such components.
1542   unsigned NumComponents = 0;
1543   for (LiveInterval::SubRange &SR : LI.subranges()) {
1544     SubRangeInfos.push_back(SubRangeInfo(LIS, SR, NumComponents));
1545     ConnectedVNInfoEqClasses &ConEQ = SubRangeInfos.back().ConEQ;
1546 
1547     unsigned NumSubComponents = ConEQ.Classify(SR);
1548     NumComponents += NumSubComponents;
1549   }
1550   // Shortcut: With only 1 subrange, the normal separate component tests are
1551   // enough and we do not need to perform the union-find on the subregister
1552   // segments.
1553   if (SubRangeInfos.size() < 2)
1554     return false;
1555 
1556   // Next step: Build union-find structure over all subranges and merge classes
1557   // across subranges when they are affected by the same MachineOperand.
1558   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1559   Classes.grow(NumComponents);
1560   unsigned Reg = LI.reg;
1561   for (const MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) {
1562     if (!MO.isDef() && !MO.readsReg())
1563       continue;
1564     unsigned SubRegIdx = MO.getSubReg();
1565     LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
1566     unsigned MergedID = ~0u;
1567     for (auto &SRInfo : SubRangeInfos) {
1568       const LiveInterval::SubRange &SR = *SRInfo.SR;
1569       if ((SR.LaneMask & LaneMask) == 0)
1570         continue;
1571       SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1572       Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber())
1573                        : Pos.getBaseIndex();
1574       const VNInfo *VNI = SR.getVNInfoAt(Pos);
1575       if (VNI == nullptr)
1576         continue;
1577 
1578       // Map to local representant ID.
1579       unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI);
1580       // Global ID
1581       unsigned ID = LocalID + SRInfo.Index;
1582       // Merge other sets
1583       MergedID = MergedID == ~0u ? ID : Classes.join(MergedID, ID);
1584     }
1585   }
1586 
1587   // Early exit if we ended up with a single equivalence class.
1588   Classes.compress();
1589   unsigned NumClasses = Classes.getNumClasses();
1590   return NumClasses > 1;
1591 }
1592 
1593 void ConnectedSubRegClasses::rewriteOperands(const IntEqClasses &Classes,
1594     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1595     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1596   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1597   unsigned Reg = Intervals[0]->reg;;
1598   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(Reg),
1599        E = MRI.reg_nodbg_end(); I != E; ) {
1600     MachineOperand &MO = *I++;
1601     if (!MO.isDef() && !MO.readsReg())
1602       continue;
1603 
1604     MachineInstr &MI = *MO.getParent();
1605 
1606     SlotIndex Pos = LIS.getInstructionIndex(MI);
1607     unsigned SubRegIdx = MO.getSubReg();
1608     LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx);
1609 
1610     unsigned ID = ~0u;
1611     for (auto &SRInfo : SubRangeInfos) {
1612       const LiveInterval::SubRange &SR = *SRInfo.SR;
1613       if ((SR.LaneMask & LaneMask) == 0)
1614         continue;
1615       LiveRange::const_iterator I = SR.find(Pos);
1616       if (I == SR.end())
1617         continue;
1618 
1619       const VNInfo &VNI = *I->valno;
1620       // Map to local representant ID.
1621       unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
1622       // Global ID
1623       ID = Classes[LocalID + SRInfo.Index];
1624       break;
1625     }
1626 
1627     unsigned VReg = Intervals[ID]->reg;
1628     MO.setReg(VReg);
1629   }
1630 }
1631 
1632 void ConnectedSubRegClasses::distribute(const IntEqClasses &Classes,
1633     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1634     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1635   unsigned NumClasses = Classes.getNumClasses();
1636   SmallVector<unsigned, 8> VNIMapping;
1637   SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1638   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1639   for (auto &SRInfo : SubRangeInfos) {
1640     LiveInterval::SubRange &SR = *SRInfo.SR;
1641     unsigned NumValNos = SR.valnos.size();
1642     VNIMapping.clear();
1643     VNIMapping.reserve(NumValNos);
1644     SubRanges.clear();
1645     SubRanges.resize(NumClasses-1, nullptr);
1646     for (unsigned I = 0; I < NumValNos; ++I) {
1647       const VNInfo &VNI = *SR.valnos[I];
1648       unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI);
1649       unsigned ID = Classes[LocalID + SRInfo.Index];
1650       VNIMapping.push_back(ID);
1651       if (ID > 0 && SubRanges[ID-1] == nullptr)
1652         SubRanges[ID-1] = Intervals[ID]->createSubRange(Allocator, SR.LaneMask);
1653     }
1654     DistributeRange(SR, SubRanges.data(), VNIMapping);
1655   }
1656 }
1657 
1658 void ConnectedSubRegClasses::computeMainRangesFixFlags(
1659     const IntEqClasses &Classes,
1660     const SmallVectorImpl<SubRangeInfo> &SubRangeInfos,
1661     const SmallVectorImpl<LiveInterval*> &Intervals) const {
1662   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1663   for (size_t I = 0, E = Intervals.size(); I < E; ++I) {
1664     LiveInterval *LI = Intervals[I];
1665     LI->removeEmptySubRanges();
1666     if (I == 0)
1667       LI->clear();
1668     LI->constructMainRangeFromSubranges(*LIS.getSlotIndexes(), Allocator);
1669 
1670     for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
1671       if (!MO.isDef())
1672         continue;
1673       unsigned SubRegIdx = MO.getSubReg();
1674       if (SubRegIdx == 0)
1675         continue;
1676       // After assigning the new vreg we may not have any other sublanes living
1677       // in and out of the instruction anymore. We need to add new dead and kill
1678       // flags in these cases.
1679       if (!MO.isUndef()) {
1680         SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1681         if (!LI->liveAt(Pos.getBaseIndex()))
1682           MO.setIsUndef();
1683       }
1684       if (!MO.isDead()) {
1685         SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent());
1686         if (!LI->liveAt(Pos.getDeadSlot()))
1687           MO.setIsDead();
1688       }
1689     }
1690   }
1691 }
1692