1 //===-- LiveInterval.cpp - Live Interval Representation -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveRange and LiveInterval classes. Given some 11 // numbering of each the machine instructions an interval [i, j) is said to be a 12 // live range for register v if there is no instruction with number j' >= j 13 // such that v is live at j' and there is no instruction with number i' < i such 14 // that v is live at i'. In this implementation ranges can have holes, 15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each 16 // individual segment is represented as an instance of LiveRange::Segment, 17 // and the whole range is represented as an instance of LiveRange. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/CodeGen/LiveInterval.h" 22 #include "RegisterCoalescer.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetRegisterInfo.h" 31 #include <algorithm> 32 using namespace llvm; 33 34 namespace { 35 //===----------------------------------------------------------------------===// 36 // Implementation of various methods necessary for calculation of live ranges. 37 // The implementation of the methods abstracts from the concrete type of the 38 // segment collection. 39 // 40 // Implementation of the class follows the Template design pattern. The base 41 // class contains generic algorithms that call collection-specific methods, 42 // which are provided in concrete subclasses. In order to avoid virtual calls 43 // these methods are provided by means of C++ template instantiation. 44 // The base class calls the methods of the subclass through method impl(), 45 // which casts 'this' pointer to the type of the subclass. 46 // 47 //===----------------------------------------------------------------------===// 48 49 template <typename ImplT, typename IteratorT, typename CollectionT> 50 class CalcLiveRangeUtilBase { 51 protected: 52 LiveRange *LR; 53 54 protected: 55 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} 56 57 public: 58 typedef LiveRange::Segment Segment; 59 typedef IteratorT iterator; 60 61 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNInfoAllocator) { 62 assert(!Def.isDead() && "Cannot define a value at the dead slot"); 63 64 iterator I = impl().find(Def); 65 if (I == segments().end()) { 66 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); 67 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); 68 return VNI; 69 } 70 71 Segment *S = segmentAt(I); 72 if (SlotIndex::isSameInstr(Def, S->start)) { 73 assert(S->valno->def == S->start && "Inconsistent existing value def"); 74 75 // It is possible to have both normal and early-clobber defs of the same 76 // register on an instruction. It doesn't make a lot of sense, but it is 77 // possible to specify in inline assembly. 78 // 79 // Just convert everything to early-clobber. 80 Def = std::min(Def, S->start); 81 if (Def != S->start) 82 S->start = S->valno->def = Def; 83 return S->valno; 84 } 85 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def"); 86 VNInfo *VNI = LR->getNextValue(Def, VNInfoAllocator); 87 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); 88 return VNI; 89 } 90 91 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { 92 if (segments().empty()) 93 return nullptr; 94 iterator I = 95 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); 96 if (I == segments().begin()) 97 return nullptr; 98 --I; 99 if (I->end <= StartIdx) 100 return nullptr; 101 if (I->end < Use) 102 extendSegmentEndTo(I, Use); 103 return I->valno; 104 } 105 106 /// This method is used when we want to extend the segment specified 107 /// by I to end at the specified endpoint. To do this, we should 108 /// merge and eliminate all segments that this will overlap 109 /// with. The iterator is not invalidated. 110 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { 111 assert(I != segments().end() && "Not a valid segment!"); 112 Segment *S = segmentAt(I); 113 VNInfo *ValNo = I->valno; 114 115 // Search for the first segment that we can't merge with. 116 iterator MergeTo = std::next(I); 117 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) 118 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 119 120 // If NewEnd was in the middle of a segment, make sure to get its endpoint. 121 S->end = std::max(NewEnd, std::prev(MergeTo)->end); 122 123 // If the newly formed segment now touches the segment after it and if they 124 // have the same value number, merge the two segments into one segment. 125 if (MergeTo != segments().end() && MergeTo->start <= I->end && 126 MergeTo->valno == ValNo) { 127 S->end = MergeTo->end; 128 ++MergeTo; 129 } 130 131 // Erase any dead segments. 132 segments().erase(std::next(I), MergeTo); 133 } 134 135 /// This method is used when we want to extend the segment specified 136 /// by I to start at the specified endpoint. To do this, we should 137 /// merge and eliminate all segments that this will overlap with. 138 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { 139 assert(I != segments().end() && "Not a valid segment!"); 140 Segment *S = segmentAt(I); 141 VNInfo *ValNo = I->valno; 142 143 // Search for the first segment that we can't merge with. 144 iterator MergeTo = I; 145 do { 146 if (MergeTo == segments().begin()) { 147 S->start = NewStart; 148 segments().erase(MergeTo, I); 149 return I; 150 } 151 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!"); 152 --MergeTo; 153 } while (NewStart <= MergeTo->start); 154 155 // If we start in the middle of another segment, just delete a range and 156 // extend that segment. 157 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { 158 segmentAt(MergeTo)->end = S->end; 159 } else { 160 // Otherwise, extend the segment right after. 161 ++MergeTo; 162 Segment *MergeToSeg = segmentAt(MergeTo); 163 MergeToSeg->start = NewStart; 164 MergeToSeg->end = S->end; 165 } 166 167 segments().erase(std::next(MergeTo), std::next(I)); 168 return MergeTo; 169 } 170 171 iterator addSegment(Segment S) { 172 SlotIndex Start = S.start, End = S.end; 173 iterator I = impl().findInsertPos(S); 174 175 // If the inserted segment starts in the middle or right at the end of 176 // another segment, just extend that segment to contain the segment of S. 177 if (I != segments().begin()) { 178 iterator B = std::prev(I); 179 if (S.valno == B->valno) { 180 if (B->start <= Start && B->end >= Start) { 181 extendSegmentEndTo(B, End); 182 return B; 183 } 184 } else { 185 // Check to make sure that we are not overlapping two live segments with 186 // different valno's. 187 assert(B->end <= Start && 188 "Cannot overlap two segments with differing ValID's" 189 " (did you def the same reg twice in a MachineInstr?)"); 190 } 191 } 192 193 // Otherwise, if this segment ends in the middle of, or right next 194 // to, another segment, merge it into that segment. 195 if (I != segments().end()) { 196 if (S.valno == I->valno) { 197 if (I->start <= End) { 198 I = extendSegmentStartTo(I, Start); 199 200 // If S is a complete superset of a segment, we may need to grow its 201 // endpoint as well. 202 if (End > I->end) 203 extendSegmentEndTo(I, End); 204 return I; 205 } 206 } else { 207 // Check to make sure that we are not overlapping two live segments with 208 // different valno's. 209 assert(I->start >= End && 210 "Cannot overlap two segments with differing ValID's"); 211 } 212 } 213 214 // Otherwise, this is just a new segment that doesn't interact with 215 // anything. 216 // Insert it. 217 return segments().insert(I, S); 218 } 219 220 private: 221 ImplT &impl() { return *static_cast<ImplT *>(this); } 222 223 CollectionT &segments() { return impl().segmentsColl(); } 224 225 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } 226 }; 227 228 //===----------------------------------------------------------------------===// 229 // Instantiation of the methods for calculation of live ranges 230 // based on a segment vector. 231 //===----------------------------------------------------------------------===// 232 233 class CalcLiveRangeUtilVector; 234 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, 235 LiveRange::Segments> CalcLiveRangeUtilVectorBase; 236 237 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { 238 public: 239 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} 240 241 private: 242 friend CalcLiveRangeUtilVectorBase; 243 244 LiveRange::Segments &segmentsColl() { return LR->segments; } 245 246 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); } 247 248 iterator find(SlotIndex Pos) { return LR->find(Pos); } 249 250 iterator findInsertPos(Segment S) { 251 return std::upper_bound(LR->begin(), LR->end(), S.start); 252 } 253 }; 254 255 //===----------------------------------------------------------------------===// 256 // Instantiation of the methods for calculation of live ranges 257 // based on a segment set. 258 //===----------------------------------------------------------------------===// 259 260 class CalcLiveRangeUtilSet; 261 typedef CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, 262 LiveRange::SegmentSet::iterator, 263 LiveRange::SegmentSet> CalcLiveRangeUtilSetBase; 264 265 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { 266 public: 267 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} 268 269 private: 270 friend CalcLiveRangeUtilSetBase; 271 272 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } 273 274 void insertAtEnd(const Segment &S) { 275 LR->segmentSet->insert(LR->segmentSet->end(), S); 276 } 277 278 iterator find(SlotIndex Pos) { 279 iterator I = 280 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr)); 281 if (I == LR->segmentSet->begin()) 282 return I; 283 iterator PrevI = std::prev(I); 284 if (Pos < (*PrevI).end) 285 return PrevI; 286 return I; 287 } 288 289 iterator findInsertPos(Segment S) { 290 iterator I = LR->segmentSet->upper_bound(S); 291 if (I != LR->segmentSet->end() && !(S.start < *I)) 292 ++I; 293 return I; 294 } 295 }; 296 } // namespace 297 298 //===----------------------------------------------------------------------===// 299 // LiveRange methods 300 //===----------------------------------------------------------------------===// 301 302 LiveRange::iterator LiveRange::find(SlotIndex Pos) { 303 // This algorithm is basically std::upper_bound. 304 // Unfortunately, std::upper_bound cannot be used with mixed types until we 305 // adopt C++0x. Many libraries can do it, but not all. 306 if (empty() || Pos >= endIndex()) 307 return end(); 308 iterator I = begin(); 309 size_t Len = size(); 310 do { 311 size_t Mid = Len >> 1; 312 if (Pos < I[Mid].end) { 313 Len = Mid; 314 } else { 315 I += Mid + 1; 316 Len -= Mid + 1; 317 } 318 } while (Len); 319 return I; 320 } 321 322 VNInfo *LiveRange::createDeadDef(SlotIndex Def, 323 VNInfo::Allocator &VNInfoAllocator) { 324 // Use the segment set, if it is available. 325 if (segmentSet != nullptr) 326 return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator); 327 // Otherwise use the segment vector. 328 return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator); 329 } 330 331 // overlaps - Return true if the intersection of the two live ranges is 332 // not empty. 333 // 334 // An example for overlaps(): 335 // 336 // 0: A = ... 337 // 4: B = ... 338 // 8: C = A + B ;; last use of A 339 // 340 // The live ranges should look like: 341 // 342 // A = [3, 11) 343 // B = [7, x) 344 // C = [11, y) 345 // 346 // A->overlaps(C) should return false since we want to be able to join 347 // A and C. 348 // 349 bool LiveRange::overlapsFrom(const LiveRange& other, 350 const_iterator StartPos) const { 351 assert(!empty() && "empty range"); 352 const_iterator i = begin(); 353 const_iterator ie = end(); 354 const_iterator j = StartPos; 355 const_iterator je = other.end(); 356 357 assert((StartPos->start <= i->start || StartPos == other.begin()) && 358 StartPos != other.end() && "Bogus start position hint!"); 359 360 if (i->start < j->start) { 361 i = std::upper_bound(i, ie, j->start); 362 if (i != begin()) --i; 363 } else if (j->start < i->start) { 364 ++StartPos; 365 if (StartPos != other.end() && StartPos->start <= i->start) { 366 assert(StartPos < other.end() && i < end()); 367 j = std::upper_bound(j, je, i->start); 368 if (j != other.begin()) --j; 369 } 370 } else { 371 return true; 372 } 373 374 if (j == je) return false; 375 376 while (i != ie) { 377 if (i->start > j->start) { 378 std::swap(i, j); 379 std::swap(ie, je); 380 } 381 382 if (i->end > j->start) 383 return true; 384 ++i; 385 } 386 387 return false; 388 } 389 390 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, 391 const SlotIndexes &Indexes) const { 392 assert(!empty() && "empty range"); 393 if (Other.empty()) 394 return false; 395 396 // Use binary searches to find initial positions. 397 const_iterator I = find(Other.beginIndex()); 398 const_iterator IE = end(); 399 if (I == IE) 400 return false; 401 const_iterator J = Other.find(I->start); 402 const_iterator JE = Other.end(); 403 if (J == JE) 404 return false; 405 406 for (;;) { 407 // J has just been advanced to satisfy: 408 assert(J->end >= I->start); 409 // Check for an overlap. 410 if (J->start < I->end) { 411 // I and J are overlapping. Find the later start. 412 SlotIndex Def = std::max(I->start, J->start); 413 // Allow the overlap if Def is a coalescable copy. 414 if (Def.isBlock() || 415 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def))) 416 return true; 417 } 418 // Advance the iterator that ends first to check for more overlaps. 419 if (J->end > I->end) { 420 std::swap(I, J); 421 std::swap(IE, JE); 422 } 423 // Advance J until J->end >= I->start. 424 do 425 if (++J == JE) 426 return false; 427 while (J->end < I->start); 428 } 429 } 430 431 /// overlaps - Return true if the live range overlaps an interval specified 432 /// by [Start, End). 433 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { 434 assert(Start < End && "Invalid range"); 435 const_iterator I = std::lower_bound(begin(), end(), End); 436 return I != begin() && (--I)->end > Start; 437 } 438 439 bool LiveRange::covers(const LiveRange &Other) const { 440 if (empty()) 441 return Other.empty(); 442 443 const_iterator I = begin(); 444 for (const Segment &O : Other.segments) { 445 I = advanceTo(I, O.start); 446 if (I == end() || I->start > O.start) 447 return false; 448 449 // Check adjacent live segments and see if we can get behind O.end. 450 while (I->end < O.end) { 451 const_iterator Last = I; 452 // Get next segment and abort if it was not adjacent. 453 ++I; 454 if (I == end() || Last->end != I->start) 455 return false; 456 } 457 } 458 return true; 459 } 460 461 /// ValNo is dead, remove it. If it is the largest value number, just nuke it 462 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so 463 /// it can be nuked later. 464 void LiveRange::markValNoForDeletion(VNInfo *ValNo) { 465 if (ValNo->id == getNumValNums()-1) { 466 do { 467 valnos.pop_back(); 468 } while (!valnos.empty() && valnos.back()->isUnused()); 469 } else { 470 ValNo->markUnused(); 471 } 472 } 473 474 /// RenumberValues - Renumber all values in order of appearance and delete the 475 /// remaining unused values. 476 void LiveRange::RenumberValues() { 477 SmallPtrSet<VNInfo*, 8> Seen; 478 valnos.clear(); 479 for (const Segment &S : segments) { 480 VNInfo *VNI = S.valno; 481 if (!Seen.insert(VNI).second) 482 continue; 483 assert(!VNI->isUnused() && "Unused valno used by live segment"); 484 VNI->id = (unsigned)valnos.size(); 485 valnos.push_back(VNI); 486 } 487 } 488 489 void LiveRange::addSegmentToSet(Segment S) { 490 CalcLiveRangeUtilSet(this).addSegment(S); 491 } 492 493 LiveRange::iterator LiveRange::addSegment(Segment S) { 494 // Use the segment set, if it is available. 495 if (segmentSet != nullptr) { 496 addSegmentToSet(S); 497 return end(); 498 } 499 // Otherwise use the segment vector. 500 return CalcLiveRangeUtilVector(this).addSegment(S); 501 } 502 503 void LiveRange::append(const Segment S) { 504 // Check that the segment belongs to the back of the list. 505 assert(segments.empty() || segments.back().end <= S.start); 506 segments.push_back(S); 507 } 508 509 /// extendInBlock - If this range is live before Kill in the basic 510 /// block that starts at StartIdx, extend it to be live up to Kill and return 511 /// the value. If there is no live range before Kill, return NULL. 512 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { 513 // Use the segment set, if it is available. 514 if (segmentSet != nullptr) 515 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill); 516 // Otherwise use the segment vector. 517 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill); 518 } 519 520 /// Remove the specified segment from this range. Note that the segment must 521 /// be in a single Segment in its entirety. 522 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, 523 bool RemoveDeadValNo) { 524 // Find the Segment containing this span. 525 iterator I = find(Start); 526 assert(I != end() && "Segment is not in range!"); 527 assert(I->containsInterval(Start, End) 528 && "Segment is not entirely in range!"); 529 530 // If the span we are removing is at the start of the Segment, adjust it. 531 VNInfo *ValNo = I->valno; 532 if (I->start == Start) { 533 if (I->end == End) { 534 if (RemoveDeadValNo) { 535 // Check if val# is dead. 536 bool isDead = true; 537 for (const_iterator II = begin(), EE = end(); II != EE; ++II) 538 if (II != I && II->valno == ValNo) { 539 isDead = false; 540 break; 541 } 542 if (isDead) { 543 // Now that ValNo is dead, remove it. 544 markValNoForDeletion(ValNo); 545 } 546 } 547 548 segments.erase(I); // Removed the whole Segment. 549 } else 550 I->start = End; 551 return; 552 } 553 554 // Otherwise if the span we are removing is at the end of the Segment, 555 // adjust the other way. 556 if (I->end == End) { 557 I->end = Start; 558 return; 559 } 560 561 // Otherwise, we are splitting the Segment into two pieces. 562 SlotIndex OldEnd = I->end; 563 I->end = Start; // Trim the old segment. 564 565 // Insert the new one. 566 segments.insert(std::next(I), Segment(End, OldEnd, ValNo)); 567 } 568 569 /// removeValNo - Remove all the segments defined by the specified value#. 570 /// Also remove the value# from value# list. 571 void LiveRange::removeValNo(VNInfo *ValNo) { 572 if (empty()) return; 573 segments.erase(std::remove_if(begin(), end(), [ValNo](const Segment &S) { 574 return S.valno == ValNo; 575 }), end()); 576 // Now that ValNo is dead, remove it. 577 markValNoForDeletion(ValNo); 578 } 579 580 void LiveRange::join(LiveRange &Other, 581 const int *LHSValNoAssignments, 582 const int *RHSValNoAssignments, 583 SmallVectorImpl<VNInfo *> &NewVNInfo) { 584 verify(); 585 586 // Determine if any of our values are mapped. This is uncommon, so we want 587 // to avoid the range scan if not. 588 bool MustMapCurValNos = false; 589 unsigned NumVals = getNumValNums(); 590 unsigned NumNewVals = NewVNInfo.size(); 591 for (unsigned i = 0; i != NumVals; ++i) { 592 unsigned LHSValID = LHSValNoAssignments[i]; 593 if (i != LHSValID || 594 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) { 595 MustMapCurValNos = true; 596 break; 597 } 598 } 599 600 // If we have to apply a mapping to our base range assignment, rewrite it now. 601 if (MustMapCurValNos && !empty()) { 602 // Map the first live range. 603 604 iterator OutIt = begin(); 605 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; 606 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) { 607 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; 608 assert(nextValNo && "Huh?"); 609 610 // If this live range has the same value # as its immediate predecessor, 611 // and if they are neighbors, remove one Segment. This happens when we 612 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. 613 if (OutIt->valno == nextValNo && OutIt->end == I->start) { 614 OutIt->end = I->end; 615 } else { 616 // Didn't merge. Move OutIt to the next segment, 617 ++OutIt; 618 OutIt->valno = nextValNo; 619 if (OutIt != I) { 620 OutIt->start = I->start; 621 OutIt->end = I->end; 622 } 623 } 624 } 625 // If we merge some segments, chop off the end. 626 ++OutIt; 627 segments.erase(OutIt, end()); 628 } 629 630 // Rewrite Other values before changing the VNInfo ids. 631 // This can leave Other in an invalid state because we're not coalescing 632 // touching segments that now have identical values. That's OK since Other is 633 // not supposed to be valid after calling join(); 634 for (Segment &S : Other.segments) 635 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; 636 637 // Update val# info. Renumber them and make sure they all belong to this 638 // LiveRange now. Also remove dead val#'s. 639 unsigned NumValNos = 0; 640 for (unsigned i = 0; i < NumNewVals; ++i) { 641 VNInfo *VNI = NewVNInfo[i]; 642 if (VNI) { 643 if (NumValNos >= NumVals) 644 valnos.push_back(VNI); 645 else 646 valnos[NumValNos] = VNI; 647 VNI->id = NumValNos++; // Renumber val#. 648 } 649 } 650 if (NumNewVals < NumVals) 651 valnos.resize(NumNewVals); // shrinkify 652 653 // Okay, now insert the RHS live segments into the LHS. 654 LiveRangeUpdater Updater(this); 655 for (Segment &S : Other.segments) 656 Updater.add(S); 657 } 658 659 /// Merge all of the segments in RHS into this live range as the specified 660 /// value number. The segments in RHS are allowed to overlap with segments in 661 /// the current range, but only if the overlapping segments have the 662 /// specified value number. 663 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, 664 VNInfo *LHSValNo) { 665 LiveRangeUpdater Updater(this); 666 for (const Segment &S : RHS.segments) 667 Updater.add(S.start, S.end, LHSValNo); 668 } 669 670 /// MergeValueInAsValue - Merge all of the live segments of a specific val# 671 /// in RHS into this live range as the specified value number. 672 /// The segments in RHS are allowed to overlap with segments in the 673 /// current range, it will replace the value numbers of the overlaped 674 /// segments with the specified value number. 675 void LiveRange::MergeValueInAsValue(const LiveRange &RHS, 676 const VNInfo *RHSValNo, 677 VNInfo *LHSValNo) { 678 LiveRangeUpdater Updater(this); 679 for (const Segment &S : RHS.segments) 680 if (S.valno == RHSValNo) 681 Updater.add(S.start, S.end, LHSValNo); 682 } 683 684 /// MergeValueNumberInto - This method is called when two value nubmers 685 /// are found to be equivalent. This eliminates V1, replacing all 686 /// segments with the V1 value number with the V2 value number. This can 687 /// cause merging of V1/V2 values numbers and compaction of the value space. 688 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { 689 assert(V1 != V2 && "Identical value#'s are always equivalent!"); 690 691 // This code actually merges the (numerically) larger value number into the 692 // smaller value number, which is likely to allow us to compactify the value 693 // space. The only thing we have to be careful of is to preserve the 694 // instruction that defines the result value. 695 696 // Make sure V2 is smaller than V1. 697 if (V1->id < V2->id) { 698 V1->copyFrom(*V2); 699 std::swap(V1, V2); 700 } 701 702 // Merge V1 segments into V2. 703 for (iterator I = begin(); I != end(); ) { 704 iterator S = I++; 705 if (S->valno != V1) continue; // Not a V1 Segment. 706 707 // Okay, we found a V1 live range. If it had a previous, touching, V2 live 708 // range, extend it. 709 if (S != begin()) { 710 iterator Prev = S-1; 711 if (Prev->valno == V2 && Prev->end == S->start) { 712 Prev->end = S->end; 713 714 // Erase this live-range. 715 segments.erase(S); 716 I = Prev+1; 717 S = Prev; 718 } 719 } 720 721 // Okay, now we have a V1 or V2 live range that is maximally merged forward. 722 // Ensure that it is a V2 live-range. 723 S->valno = V2; 724 725 // If we can merge it into later V2 segments, do so now. We ignore any 726 // following V1 segments, as they will be merged in subsequent iterations 727 // of the loop. 728 if (I != end()) { 729 if (I->start == S->end && I->valno == V2) { 730 S->end = I->end; 731 segments.erase(I); 732 I = S+1; 733 } 734 } 735 } 736 737 // Now that V1 is dead, remove it. 738 markValNoForDeletion(V1); 739 740 return V2; 741 } 742 743 void LiveRange::flushSegmentSet() { 744 assert(segmentSet != nullptr && "segment set must have been created"); 745 assert( 746 segments.empty() && 747 "segment set can be used only initially before switching to the array"); 748 segments.append(segmentSet->begin(), segmentSet->end()); 749 segmentSet = nullptr; 750 verify(); 751 } 752 753 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { 754 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); 755 ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); 756 757 // If there are no regmask slots, we have nothing to search. 758 if (SlotI == SlotE) 759 return false; 760 761 // Start our search at the first segment that ends after the first slot. 762 const_iterator SegmentI = find(*SlotI); 763 const_iterator SegmentE = end(); 764 765 // If there are no segments that end after the first slot, we're done. 766 if (SegmentI == SegmentE) 767 return false; 768 769 // Look for each slot in the live range. 770 for ( ; SlotI != SlotE; ++SlotI) { 771 // Go to the next segment that ends after the current slot. 772 // The slot may be within a hole in the range. 773 SegmentI = advanceTo(SegmentI, *SlotI); 774 if (SegmentI == SegmentE) 775 return false; 776 777 // If this segment contains the slot, we're done. 778 if (SegmentI->contains(*SlotI)) 779 return true; 780 // Otherwise, look for the next slot. 781 } 782 783 // We didn't find a segment containing any of the slots. 784 return false; 785 } 786 787 void LiveInterval::freeSubRange(SubRange *S) { 788 S->~SubRange(); 789 // Memory was allocated with BumpPtr allocator and is not freed here. 790 } 791 792 void LiveInterval::removeEmptySubRanges() { 793 SubRange **NextPtr = &SubRanges; 794 SubRange *I = *NextPtr; 795 while (I != nullptr) { 796 if (!I->empty()) { 797 NextPtr = &I->Next; 798 I = *NextPtr; 799 continue; 800 } 801 // Skip empty subranges until we find the first nonempty one. 802 do { 803 SubRange *Next = I->Next; 804 freeSubRange(I); 805 I = Next; 806 } while (I != nullptr && I->empty()); 807 *NextPtr = I; 808 } 809 } 810 811 void LiveInterval::clearSubRanges() { 812 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { 813 Next = I->Next; 814 freeSubRange(I); 815 } 816 SubRanges = nullptr; 817 } 818 819 /// Helper function for constructMainRangeFromSubranges(): Search the CFG 820 /// backwards until we find a place covered by a LiveRange segment that actually 821 /// has a valno set. 822 static VNInfo *searchForVNI(const SlotIndexes &Indexes, LiveRange &LR, 823 const MachineBasicBlock *MBB, 824 SmallPtrSetImpl<const MachineBasicBlock*> &Visited) { 825 // We start the search at the end of MBB. 826 SlotIndex EndIdx = Indexes.getMBBEndIdx(MBB); 827 // In our use case we can't live the area covered by the live segments without 828 // finding an actual VNI def. 829 LiveRange::iterator I = LR.find(EndIdx.getPrevSlot()); 830 assert(I != LR.end()); 831 LiveRange::Segment &S = *I; 832 if (S.valno != nullptr) 833 return S.valno; 834 835 VNInfo *VNI = nullptr; 836 // Continue at predecessors (we could even go to idom with domtree available). 837 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 838 // Avoid going in circles. 839 if (!Visited.insert(Pred).second) 840 continue; 841 842 VNI = searchForVNI(Indexes, LR, Pred, Visited); 843 if (VNI != nullptr) { 844 S.valno = VNI; 845 break; 846 } 847 } 848 849 return VNI; 850 } 851 852 static void determineMissingVNIs(const SlotIndexes &Indexes, LiveInterval &LI) { 853 SmallPtrSet<const MachineBasicBlock*, 5> Visited; 854 855 LiveRange::iterator OutIt; 856 VNInfo *PrevValNo = nullptr; 857 for (LiveRange::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 858 LiveRange::Segment &S = *I; 859 // Determine final VNI if necessary. 860 if (S.valno == nullptr) { 861 // This can only happen at the begin of a basic block. 862 assert(S.start.isBlock() && "valno should only be missing at block begin"); 863 864 Visited.clear(); 865 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(S.start); 866 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 867 VNInfo *VNI = searchForVNI(Indexes, LI, Pred, Visited); 868 if (VNI != nullptr) { 869 S.valno = VNI; 870 break; 871 } 872 } 873 assert(S.valno != nullptr && "could not determine valno"); 874 } 875 // Merge with previous segment if it has the same VNI. 876 if (PrevValNo == S.valno && OutIt->end == S.start) { 877 OutIt->end = S.end; 878 } else { 879 // Didn't merge. Move OutIt to next segment. 880 if (PrevValNo == nullptr) 881 OutIt = LI.begin(); 882 else 883 ++OutIt; 884 885 if (OutIt != I) 886 *OutIt = *I; 887 PrevValNo = S.valno; 888 } 889 } 890 // If we merged some segments chop off the end. 891 ++OutIt; 892 LI.segments.erase(OutIt, LI.end()); 893 } 894 895 void LiveInterval::constructMainRangeFromSubranges( 896 const SlotIndexes &Indexes, VNInfo::Allocator &VNIAllocator) { 897 // The basic observations on which this algorithm is based: 898 // - Each Def/ValNo in a subrange must have a corresponding def on the main 899 // range, but not further defs/valnos are necessary. 900 // - If any of the subranges is live at a point the main liverange has to be 901 // live too, conversily if no subrange is live the main range mustn't be 902 // live either. 903 // We do this by scanning through all the subranges simultaneously creating new 904 // segments in the main range as segments start/ends come up in the subranges. 905 assert(hasSubRanges() && "expected subranges to be present"); 906 assert(segments.empty() && valnos.empty() && "expected empty main range"); 907 908 // Collect subrange, iterator pairs for the walk and determine first and last 909 // SlotIndex involved. 910 SmallVector<std::pair<const SubRange*, const_iterator>, 4> SRs; 911 SlotIndex First; 912 SlotIndex Last; 913 for (const SubRange &SR : subranges()) { 914 if (SR.empty()) 915 continue; 916 SRs.push_back(std::make_pair(&SR, SR.begin())); 917 if (!First.isValid() || SR.segments.front().start < First) 918 First = SR.segments.front().start; 919 if (!Last.isValid() || SR.segments.back().end > Last) 920 Last = SR.segments.back().end; 921 } 922 923 // Walk over all subranges simultaneously. 924 Segment CurrentSegment; 925 bool ConstructingSegment = false; 926 bool NeedVNIFixup = false; 927 LaneBitmask ActiveMask = 0; 928 SlotIndex Pos = First; 929 while (true) { 930 SlotIndex NextPos = Last; 931 enum { 932 NOTHING, 933 BEGIN_SEGMENT, 934 END_SEGMENT, 935 } Event = NOTHING; 936 // Which subregister lanes are affected by the current event. 937 LaneBitmask EventMask = 0; 938 // Whether a BEGIN_SEGMENT is also a valno definition point. 939 bool IsDef = false; 940 // Find the next begin or end of a subrange segment. Combine masks if we 941 // have multiple begins/ends at the same position. Ends take precedence over 942 // Begins. 943 for (auto &SRP : SRs) { 944 const SubRange &SR = *SRP.first; 945 const_iterator &I = SRP.second; 946 // Advance iterator of subrange to a segment involving Pos; the earlier 947 // segments are already merged at this point. 948 while (I != SR.end() && 949 (I->end < Pos || 950 (I->end == Pos && (ActiveMask & SR.LaneMask) == 0))) 951 ++I; 952 if (I == SR.end()) 953 continue; 954 if ((ActiveMask & SR.LaneMask) == 0 && 955 Pos <= I->start && I->start <= NextPos) { 956 // Merge multiple begins at the same position. 957 if (I->start == NextPos && Event == BEGIN_SEGMENT) { 958 EventMask |= SR.LaneMask; 959 IsDef |= I->valno->def == I->start; 960 } else if (I->start < NextPos || Event != END_SEGMENT) { 961 Event = BEGIN_SEGMENT; 962 NextPos = I->start; 963 EventMask = SR.LaneMask; 964 IsDef = I->valno->def == I->start; 965 } 966 } 967 if ((ActiveMask & SR.LaneMask) != 0 && 968 Pos <= I->end && I->end <= NextPos) { 969 // Merge multiple ends at the same position. 970 if (I->end == NextPos && Event == END_SEGMENT) 971 EventMask |= SR.LaneMask; 972 else { 973 Event = END_SEGMENT; 974 NextPos = I->end; 975 EventMask = SR.LaneMask; 976 } 977 } 978 } 979 980 // Advance scan position. 981 Pos = NextPos; 982 if (Event == BEGIN_SEGMENT) { 983 if (ConstructingSegment && IsDef) { 984 // Finish previous segment because we have to start a new one. 985 CurrentSegment.end = Pos; 986 append(CurrentSegment); 987 ConstructingSegment = false; 988 } 989 990 // Start a new segment if necessary. 991 if (!ConstructingSegment) { 992 // Determine value number for the segment. 993 VNInfo *VNI; 994 if (IsDef) { 995 VNI = getNextValue(Pos, VNIAllocator); 996 } else { 997 // We have to reuse an existing value number, if we are lucky 998 // then we already passed one of the predecessor blocks and determined 999 // its value number (with blocks in reverse postorder this would be 1000 // always true but we have no such guarantee). 1001 assert(Pos.isBlock()); 1002 const MachineBasicBlock *MBB = Indexes.getMBBFromIndex(Pos); 1003 // See if any of the predecessor blocks has a lower number and a VNI 1004 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 1005 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1006 VNI = getVNInfoBefore(PredEnd); 1007 if (VNI != nullptr) 1008 break; 1009 } 1010 // Def will come later: We have to do an extra fixup pass. 1011 if (VNI == nullptr) 1012 NeedVNIFixup = true; 1013 } 1014 1015 // In rare cases we can produce adjacent segments with the same value 1016 // number (if they come from different subranges, but happen to have 1017 // the same defining instruction). VNIFixup will fix those cases. 1018 if (!empty() && segments.back().end == Pos && 1019 segments.back().valno == VNI) 1020 NeedVNIFixup = true; 1021 CurrentSegment.start = Pos; 1022 CurrentSegment.valno = VNI; 1023 ConstructingSegment = true; 1024 } 1025 ActiveMask |= EventMask; 1026 } else if (Event == END_SEGMENT) { 1027 assert(ConstructingSegment); 1028 // Finish segment if no lane is active anymore. 1029 ActiveMask &= ~EventMask; 1030 if (ActiveMask == 0) { 1031 CurrentSegment.end = Pos; 1032 append(CurrentSegment); 1033 ConstructingSegment = false; 1034 } 1035 } else { 1036 // We reached the end of the last subranges and can stop. 1037 assert(Event == NOTHING); 1038 break; 1039 } 1040 } 1041 1042 // We might not be able to assign new valnos for all segments if the basic 1043 // block containing the definition comes after a segment using the valno. 1044 // Do a fixup pass for this uncommon case. 1045 if (NeedVNIFixup) 1046 determineMissingVNIs(Indexes, *this); 1047 1048 assert(ActiveMask == 0 && !ConstructingSegment && "all segments ended"); 1049 verify(); 1050 } 1051 1052 unsigned LiveInterval::getSize() const { 1053 unsigned Sum = 0; 1054 for (const Segment &S : segments) 1055 Sum += S.start.distance(S.end); 1056 return Sum; 1057 } 1058 1059 raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange::Segment &S) { 1060 return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")"; 1061 } 1062 1063 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1064 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { 1065 dbgs() << *this << "\n"; 1066 } 1067 #endif 1068 1069 void LiveRange::print(raw_ostream &OS) const { 1070 if (empty()) 1071 OS << "EMPTY"; 1072 else { 1073 for (const Segment &S : segments) { 1074 OS << S; 1075 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo"); 1076 } 1077 } 1078 1079 // Print value number info. 1080 if (getNumValNums()) { 1081 OS << " "; 1082 unsigned vnum = 0; 1083 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; 1084 ++i, ++vnum) { 1085 const VNInfo *vni = *i; 1086 if (vnum) OS << " "; 1087 OS << vnum << "@"; 1088 if (vni->isUnused()) { 1089 OS << "x"; 1090 } else { 1091 OS << vni->def; 1092 if (vni->isPHIDef()) 1093 OS << "-phi"; 1094 } 1095 } 1096 } 1097 } 1098 1099 void LiveInterval::print(raw_ostream &OS) const { 1100 OS << PrintReg(reg) << ' '; 1101 super::print(OS); 1102 // Print subranges 1103 for (const SubRange &SR : subranges()) { 1104 OS << " L" << PrintLaneMask(SR.LaneMask) << ' ' << SR; 1105 } 1106 } 1107 1108 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1109 LLVM_DUMP_METHOD void LiveRange::dump() const { 1110 dbgs() << *this << "\n"; 1111 } 1112 1113 LLVM_DUMP_METHOD void LiveInterval::dump() const { 1114 dbgs() << *this << "\n"; 1115 } 1116 #endif 1117 1118 #ifndef NDEBUG 1119 void LiveRange::verify() const { 1120 for (const_iterator I = begin(), E = end(); I != E; ++I) { 1121 assert(I->start.isValid()); 1122 assert(I->end.isValid()); 1123 assert(I->start < I->end); 1124 assert(I->valno != nullptr); 1125 assert(I->valno->id < valnos.size()); 1126 assert(I->valno == valnos[I->valno->id]); 1127 if (std::next(I) != E) { 1128 assert(I->end <= std::next(I)->start); 1129 if (I->end == std::next(I)->start) 1130 assert(I->valno != std::next(I)->valno); 1131 } 1132 } 1133 } 1134 1135 void LiveInterval::verify(const MachineRegisterInfo *MRI) const { 1136 super::verify(); 1137 1138 // Make sure SubRanges are fine and LaneMasks are disjunct. 1139 LaneBitmask Mask = 0; 1140 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg) : ~0u; 1141 for (const SubRange &SR : subranges()) { 1142 // Subrange lanemask should be disjunct to any previous subrange masks. 1143 assert((Mask & SR.LaneMask) == 0); 1144 Mask |= SR.LaneMask; 1145 1146 // subrange mask should not contained in maximum lane mask for the vreg. 1147 assert((Mask & ~MaxMask) == 0); 1148 // empty subranges must be removed. 1149 assert(!SR.empty()); 1150 1151 SR.verify(); 1152 // Main liverange should cover subrange. 1153 assert(covers(SR)); 1154 } 1155 } 1156 #endif 1157 1158 1159 //===----------------------------------------------------------------------===// 1160 // LiveRangeUpdater class 1161 //===----------------------------------------------------------------------===// 1162 // 1163 // The LiveRangeUpdater class always maintains these invariants: 1164 // 1165 // - When LastStart is invalid, Spills is empty and the iterators are invalid. 1166 // This is the initial state, and the state created by flush(). 1167 // In this state, isDirty() returns false. 1168 // 1169 // Otherwise, segments are kept in three separate areas: 1170 // 1171 // 1. [begin; WriteI) at the front of LR. 1172 // 2. [ReadI; end) at the back of LR. 1173 // 3. Spills. 1174 // 1175 // - LR.begin() <= WriteI <= ReadI <= LR.end(). 1176 // - Segments in all three areas are fully ordered and coalesced. 1177 // - Segments in area 1 precede and can't coalesce with segments in area 2. 1178 // - Segments in Spills precede and can't coalesce with segments in area 2. 1179 // - No coalescing is possible between segments in Spills and segments in area 1180 // 1, and there are no overlapping segments. 1181 // 1182 // The segments in Spills are not ordered with respect to the segments in area 1183 // 1. They need to be merged. 1184 // 1185 // When they exist, Spills.back().start <= LastStart, 1186 // and WriteI[-1].start <= LastStart. 1187 1188 void LiveRangeUpdater::print(raw_ostream &OS) const { 1189 if (!isDirty()) { 1190 if (LR) 1191 OS << "Clean updater: " << *LR << '\n'; 1192 else 1193 OS << "Null updater.\n"; 1194 return; 1195 } 1196 assert(LR && "Can't have null LR in dirty updater."); 1197 OS << " updater with gap = " << (ReadI - WriteI) 1198 << ", last start = " << LastStart 1199 << ":\n Area 1:"; 1200 for (const auto &S : make_range(LR->begin(), WriteI)) 1201 OS << ' ' << S; 1202 OS << "\n Spills:"; 1203 for (unsigned I = 0, E = Spills.size(); I != E; ++I) 1204 OS << ' ' << Spills[I]; 1205 OS << "\n Area 2:"; 1206 for (const auto &S : make_range(ReadI, LR->end())) 1207 OS << ' ' << S; 1208 OS << '\n'; 1209 } 1210 1211 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { 1212 print(errs()); 1213 } 1214 1215 // Determine if A and B should be coalesced. 1216 static inline bool coalescable(const LiveRange::Segment &A, 1217 const LiveRange::Segment &B) { 1218 assert(A.start <= B.start && "Unordered live segments."); 1219 if (A.end == B.start) 1220 return A.valno == B.valno; 1221 if (A.end < B.start) 1222 return false; 1223 assert(A.valno == B.valno && "Cannot overlap different values"); 1224 return true; 1225 } 1226 1227 void LiveRangeUpdater::add(LiveRange::Segment Seg) { 1228 assert(LR && "Cannot add to a null destination"); 1229 1230 // Fall back to the regular add method if the live range 1231 // is using the segment set instead of the segment vector. 1232 if (LR->segmentSet != nullptr) { 1233 LR->addSegmentToSet(Seg); 1234 return; 1235 } 1236 1237 // Flush the state if Start moves backwards. 1238 if (!LastStart.isValid() || LastStart > Seg.start) { 1239 if (isDirty()) 1240 flush(); 1241 // This brings us to an uninitialized state. Reinitialize. 1242 assert(Spills.empty() && "Leftover spilled segments"); 1243 WriteI = ReadI = LR->begin(); 1244 } 1245 1246 // Remember start for next time. 1247 LastStart = Seg.start; 1248 1249 // Advance ReadI until it ends after Seg.start. 1250 LiveRange::iterator E = LR->end(); 1251 if (ReadI != E && ReadI->end <= Seg.start) { 1252 // First try to close the gap between WriteI and ReadI with spills. 1253 if (ReadI != WriteI) 1254 mergeSpills(); 1255 // Then advance ReadI. 1256 if (ReadI == WriteI) 1257 ReadI = WriteI = LR->find(Seg.start); 1258 else 1259 while (ReadI != E && ReadI->end <= Seg.start) 1260 *WriteI++ = *ReadI++; 1261 } 1262 1263 assert(ReadI == E || ReadI->end > Seg.start); 1264 1265 // Check if the ReadI segment begins early. 1266 if (ReadI != E && ReadI->start <= Seg.start) { 1267 assert(ReadI->valno == Seg.valno && "Cannot overlap different values"); 1268 // Bail if Seg is completely contained in ReadI. 1269 if (ReadI->end >= Seg.end) 1270 return; 1271 // Coalesce into Seg. 1272 Seg.start = ReadI->start; 1273 ++ReadI; 1274 } 1275 1276 // Coalesce as much as possible from ReadI into Seg. 1277 while (ReadI != E && coalescable(Seg, *ReadI)) { 1278 Seg.end = std::max(Seg.end, ReadI->end); 1279 ++ReadI; 1280 } 1281 1282 // Try coalescing Spills.back() into Seg. 1283 if (!Spills.empty() && coalescable(Spills.back(), Seg)) { 1284 Seg.start = Spills.back().start; 1285 Seg.end = std::max(Spills.back().end, Seg.end); 1286 Spills.pop_back(); 1287 } 1288 1289 // Try coalescing Seg into WriteI[-1]. 1290 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) { 1291 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end); 1292 return; 1293 } 1294 1295 // Seg doesn't coalesce with anything, and needs to be inserted somewhere. 1296 if (WriteI != ReadI) { 1297 *WriteI++ = Seg; 1298 return; 1299 } 1300 1301 // Finally, append to LR or Spills. 1302 if (WriteI == E) { 1303 LR->segments.push_back(Seg); 1304 WriteI = ReadI = LR->end(); 1305 } else 1306 Spills.push_back(Seg); 1307 } 1308 1309 // Merge as many spilled segments as possible into the gap between WriteI 1310 // and ReadI. Advance WriteI to reflect the inserted instructions. 1311 void LiveRangeUpdater::mergeSpills() { 1312 // Perform a backwards merge of Spills and [SpillI;WriteI). 1313 size_t GapSize = ReadI - WriteI; 1314 size_t NumMoved = std::min(Spills.size(), GapSize); 1315 LiveRange::iterator Src = WriteI; 1316 LiveRange::iterator Dst = Src + NumMoved; 1317 LiveRange::iterator SpillSrc = Spills.end(); 1318 LiveRange::iterator B = LR->begin(); 1319 1320 // This is the new WriteI position after merging spills. 1321 WriteI = Dst; 1322 1323 // Now merge Src and Spills backwards. 1324 while (Src != Dst) { 1325 if (Src != B && Src[-1].start > SpillSrc[-1].start) 1326 *--Dst = *--Src; 1327 else 1328 *--Dst = *--SpillSrc; 1329 } 1330 assert(NumMoved == size_t(Spills.end() - SpillSrc)); 1331 Spills.erase(SpillSrc, Spills.end()); 1332 } 1333 1334 void LiveRangeUpdater::flush() { 1335 if (!isDirty()) 1336 return; 1337 // Clear the dirty state. 1338 LastStart = SlotIndex(); 1339 1340 assert(LR && "Cannot add to a null destination"); 1341 1342 // Nothing to merge? 1343 if (Spills.empty()) { 1344 LR->segments.erase(WriteI, ReadI); 1345 LR->verify(); 1346 return; 1347 } 1348 1349 // Resize the WriteI - ReadI gap to match Spills. 1350 size_t GapSize = ReadI - WriteI; 1351 if (GapSize < Spills.size()) { 1352 // The gap is too small. Make some room. 1353 size_t WritePos = WriteI - LR->begin(); 1354 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment()); 1355 // This also invalidated ReadI, but it is recomputed below. 1356 WriteI = LR->begin() + WritePos; 1357 } else { 1358 // Shrink the gap if necessary. 1359 LR->segments.erase(WriteI + Spills.size(), ReadI); 1360 } 1361 ReadI = WriteI + Spills.size(); 1362 mergeSpills(); 1363 LR->verify(); 1364 } 1365 1366 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { 1367 // Create initial equivalence classes. 1368 EqClass.clear(); 1369 EqClass.grow(LR.getNumValNums()); 1370 1371 const VNInfo *used = nullptr, *unused = nullptr; 1372 1373 // Determine connections. 1374 for (const VNInfo *VNI : LR.valnos) { 1375 // Group all unused values into one class. 1376 if (VNI->isUnused()) { 1377 if (unused) 1378 EqClass.join(unused->id, VNI->id); 1379 unused = VNI; 1380 continue; 1381 } 1382 used = VNI; 1383 if (VNI->isPHIDef()) { 1384 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def); 1385 assert(MBB && "Phi-def has no defining MBB"); 1386 // Connect to values live out of predecessors. 1387 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), 1388 PE = MBB->pred_end(); PI != PE; ++PI) 1389 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI))) 1390 EqClass.join(VNI->id, PVNI->id); 1391 } else { 1392 // Normal value defined by an instruction. Check for two-addr redef. 1393 // FIXME: This could be coincidental. Should we really check for a tied 1394 // operand constraint? 1395 // Note that VNI->def may be a use slot for an early clobber def. 1396 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def)) 1397 EqClass.join(VNI->id, UVNI->id); 1398 } 1399 } 1400 1401 // Lump all the unused values in with the last used value. 1402 if (used && unused) 1403 EqClass.join(used->id, unused->id); 1404 1405 EqClass.compress(); 1406 return EqClass.getNumClasses(); 1407 } 1408 1409 template<typename LiveRangeT, typename EqClassesT> 1410 static void DistributeRange(LiveRangeT &LR, LiveRangeT *SplitLRs[], 1411 EqClassesT VNIClasses) { 1412 // Move segments to new intervals. 1413 LiveRange::iterator J = LR.begin(), E = LR.end(); 1414 while (J != E && VNIClasses[J->valno->id] == 0) 1415 ++J; 1416 for (LiveRange::iterator I = J; I != E; ++I) { 1417 if (unsigned eq = VNIClasses[I->valno->id]) { 1418 assert((SplitLRs[eq-1]->empty() || SplitLRs[eq-1]->expiredAt(I->start)) && 1419 "New intervals should be empty"); 1420 SplitLRs[eq-1]->segments.push_back(*I); 1421 } else 1422 *J++ = *I; 1423 } 1424 LR.segments.erase(J, E); 1425 1426 // Transfer VNInfos to their new owners and renumber them. 1427 unsigned j = 0, e = LR.getNumValNums(); 1428 while (j != e && VNIClasses[j] == 0) 1429 ++j; 1430 for (unsigned i = j; i != e; ++i) { 1431 VNInfo *VNI = LR.getValNumInfo(i); 1432 if (unsigned eq = VNIClasses[i]) { 1433 VNI->id = SplitLRs[eq-1]->getNumValNums(); 1434 SplitLRs[eq-1]->valnos.push_back(VNI); 1435 } else { 1436 VNI->id = j; 1437 LR.valnos[j++] = VNI; 1438 } 1439 } 1440 LR.valnos.resize(j); 1441 } 1442 1443 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], 1444 MachineRegisterInfo &MRI) { 1445 // Rewrite instructions. 1446 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg), 1447 RE = MRI.reg_end(); RI != RE;) { 1448 MachineOperand &MO = *RI; 1449 MachineInstr *MI = RI->getParent(); 1450 ++RI; 1451 // DBG_VALUE instructions don't have slot indexes, so get the index of the 1452 // instruction before them. 1453 // Normally, DBG_VALUE instructions are removed before this function is 1454 // called, but it is not a requirement. 1455 SlotIndex Idx; 1456 if (MI->isDebugValue()) 1457 Idx = LIS.getSlotIndexes()->getIndexBefore(*MI); 1458 else 1459 Idx = LIS.getInstructionIndex(*MI); 1460 LiveQueryResult LRQ = LI.Query(Idx); 1461 const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); 1462 // In the case of an <undef> use that isn't tied to any def, VNI will be 1463 // NULL. If the use is tied to a def, VNI will be the defined value. 1464 if (!VNI) 1465 continue; 1466 if (unsigned EqClass = getEqClass(VNI)) 1467 MO.setReg(LIV[EqClass-1]->reg); 1468 } 1469 1470 // Distribute subregister liveranges. 1471 if (LI.hasSubRanges()) { 1472 unsigned NumComponents = EqClass.getNumClasses(); 1473 SmallVector<unsigned, 8> VNIMapping; 1474 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1475 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1476 for (LiveInterval::SubRange &SR : LI.subranges()) { 1477 // Create new subranges in the split intervals and construct a mapping 1478 // for the VNInfos in the subrange. 1479 unsigned NumValNos = SR.valnos.size(); 1480 VNIMapping.clear(); 1481 VNIMapping.reserve(NumValNos); 1482 SubRanges.clear(); 1483 SubRanges.resize(NumComponents-1, nullptr); 1484 for (unsigned I = 0; I < NumValNos; ++I) { 1485 const VNInfo &VNI = *SR.valnos[I]; 1486 unsigned ComponentNum; 1487 if (VNI.isUnused()) { 1488 ComponentNum = 0; 1489 } else { 1490 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def); 1491 assert(MainRangeVNI != nullptr 1492 && "SubRange def must have corresponding main range def"); 1493 ComponentNum = getEqClass(MainRangeVNI); 1494 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { 1495 SubRanges[ComponentNum-1] 1496 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask); 1497 } 1498 } 1499 VNIMapping.push_back(ComponentNum); 1500 } 1501 DistributeRange(SR, SubRanges.data(), VNIMapping); 1502 } 1503 LI.removeEmptySubRanges(); 1504 } 1505 1506 // Distribute main liverange. 1507 DistributeRange(LI, LIV, EqClass); 1508 } 1509 1510 void ConnectedSubRegClasses::renameComponents(LiveInterval &LI) const { 1511 // Shortcut: We cannot have split components with a single definition. 1512 if (LI.valnos.size() < 2) 1513 return; 1514 1515 SmallVector<SubRangeInfo, 4> SubRangeInfos; 1516 IntEqClasses Classes; 1517 if (!findComponents(Classes, SubRangeInfos, LI)) 1518 return; 1519 1520 // Create a new VReg for each class. 1521 unsigned Reg = LI.reg; 1522 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg); 1523 SmallVector<LiveInterval*, 4> Intervals; 1524 Intervals.push_back(&LI); 1525 for (unsigned I = 1, NumClasses = Classes.getNumClasses(); I < NumClasses; 1526 ++I) { 1527 unsigned NewVReg = MRI.createVirtualRegister(RegClass); 1528 LiveInterval &NewLI = LIS.createEmptyInterval(NewVReg); 1529 Intervals.push_back(&NewLI); 1530 } 1531 1532 rewriteOperands(Classes, SubRangeInfos, Intervals); 1533 distribute(Classes, SubRangeInfos, Intervals); 1534 computeMainRangesFixFlags(Classes, SubRangeInfos, Intervals); 1535 } 1536 1537 bool ConnectedSubRegClasses::findComponents(IntEqClasses &Classes, 1538 SmallVectorImpl<ConnectedSubRegClasses::SubRangeInfo> &SubRangeInfos, 1539 LiveInterval &LI) const { 1540 // First step: Create connected components for the VNInfos inside the 1541 // subranges and count the global number of such components. 1542 unsigned NumComponents = 0; 1543 for (LiveInterval::SubRange &SR : LI.subranges()) { 1544 SubRangeInfos.push_back(SubRangeInfo(LIS, SR, NumComponents)); 1545 ConnectedVNInfoEqClasses &ConEQ = SubRangeInfos.back().ConEQ; 1546 1547 unsigned NumSubComponents = ConEQ.Classify(SR); 1548 NumComponents += NumSubComponents; 1549 } 1550 // Shortcut: With only 1 subrange, the normal separate component tests are 1551 // enough and we do not need to perform the union-find on the subregister 1552 // segments. 1553 if (SubRangeInfos.size() < 2) 1554 return false; 1555 1556 // Next step: Build union-find structure over all subranges and merge classes 1557 // across subranges when they are affected by the same MachineOperand. 1558 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1559 Classes.grow(NumComponents); 1560 unsigned Reg = LI.reg; 1561 for (const MachineOperand &MO : MRI.reg_nodbg_operands(Reg)) { 1562 if (!MO.isDef() && !MO.readsReg()) 1563 continue; 1564 unsigned SubRegIdx = MO.getSubReg(); 1565 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx); 1566 unsigned MergedID = ~0u; 1567 for (auto &SRInfo : SubRangeInfos) { 1568 const LiveInterval::SubRange &SR = *SRInfo.SR; 1569 if ((SR.LaneMask & LaneMask) == 0) 1570 continue; 1571 SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()); 1572 Pos = MO.isDef() ? Pos.getRegSlot(MO.isEarlyClobber()) 1573 : Pos.getBaseIndex(); 1574 const VNInfo *VNI = SR.getVNInfoAt(Pos); 1575 if (VNI == nullptr) 1576 continue; 1577 1578 // Map to local representant ID. 1579 unsigned LocalID = SRInfo.ConEQ.getEqClass(VNI); 1580 // Global ID 1581 unsigned ID = LocalID + SRInfo.Index; 1582 // Merge other sets 1583 MergedID = MergedID == ~0u ? ID : Classes.join(MergedID, ID); 1584 } 1585 } 1586 1587 // Early exit if we ended up with a single equivalence class. 1588 Classes.compress(); 1589 unsigned NumClasses = Classes.getNumClasses(); 1590 return NumClasses > 1; 1591 } 1592 1593 void ConnectedSubRegClasses::rewriteOperands(const IntEqClasses &Classes, 1594 const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, 1595 const SmallVectorImpl<LiveInterval*> &Intervals) const { 1596 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); 1597 unsigned Reg = Intervals[0]->reg;; 1598 for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(Reg), 1599 E = MRI.reg_nodbg_end(); I != E; ) { 1600 MachineOperand &MO = *I++; 1601 if (!MO.isDef() && !MO.readsReg()) 1602 continue; 1603 1604 MachineInstr &MI = *MO.getParent(); 1605 1606 SlotIndex Pos = LIS.getInstructionIndex(MI); 1607 unsigned SubRegIdx = MO.getSubReg(); 1608 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubRegIdx); 1609 1610 unsigned ID = ~0u; 1611 for (auto &SRInfo : SubRangeInfos) { 1612 const LiveInterval::SubRange &SR = *SRInfo.SR; 1613 if ((SR.LaneMask & LaneMask) == 0) 1614 continue; 1615 LiveRange::const_iterator I = SR.find(Pos); 1616 if (I == SR.end()) 1617 continue; 1618 1619 const VNInfo &VNI = *I->valno; 1620 // Map to local representant ID. 1621 unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI); 1622 // Global ID 1623 ID = Classes[LocalID + SRInfo.Index]; 1624 break; 1625 } 1626 1627 unsigned VReg = Intervals[ID]->reg; 1628 MO.setReg(VReg); 1629 } 1630 } 1631 1632 void ConnectedSubRegClasses::distribute(const IntEqClasses &Classes, 1633 const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, 1634 const SmallVectorImpl<LiveInterval*> &Intervals) const { 1635 unsigned NumClasses = Classes.getNumClasses(); 1636 SmallVector<unsigned, 8> VNIMapping; 1637 SmallVector<LiveInterval::SubRange*, 8> SubRanges; 1638 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1639 for (auto &SRInfo : SubRangeInfos) { 1640 LiveInterval::SubRange &SR = *SRInfo.SR; 1641 unsigned NumValNos = SR.valnos.size(); 1642 VNIMapping.clear(); 1643 VNIMapping.reserve(NumValNos); 1644 SubRanges.clear(); 1645 SubRanges.resize(NumClasses-1, nullptr); 1646 for (unsigned I = 0; I < NumValNos; ++I) { 1647 const VNInfo &VNI = *SR.valnos[I]; 1648 unsigned LocalID = SRInfo.ConEQ.getEqClass(&VNI); 1649 unsigned ID = Classes[LocalID + SRInfo.Index]; 1650 VNIMapping.push_back(ID); 1651 if (ID > 0 && SubRanges[ID-1] == nullptr) 1652 SubRanges[ID-1] = Intervals[ID]->createSubRange(Allocator, SR.LaneMask); 1653 } 1654 DistributeRange(SR, SubRanges.data(), VNIMapping); 1655 } 1656 } 1657 1658 void ConnectedSubRegClasses::computeMainRangesFixFlags( 1659 const IntEqClasses &Classes, 1660 const SmallVectorImpl<SubRangeInfo> &SubRangeInfos, 1661 const SmallVectorImpl<LiveInterval*> &Intervals) const { 1662 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 1663 for (size_t I = 0, E = Intervals.size(); I < E; ++I) { 1664 LiveInterval *LI = Intervals[I]; 1665 LI->removeEmptySubRanges(); 1666 if (I == 0) 1667 LI->clear(); 1668 LI->constructMainRangeFromSubranges(*LIS.getSlotIndexes(), Allocator); 1669 1670 for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) { 1671 if (!MO.isDef()) 1672 continue; 1673 unsigned SubRegIdx = MO.getSubReg(); 1674 if (SubRegIdx == 0) 1675 continue; 1676 // After assigning the new vreg we may not have any other sublanes living 1677 // in and out of the instruction anymore. We need to add new dead and kill 1678 // flags in these cases. 1679 if (!MO.isUndef()) { 1680 SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()); 1681 if (!LI->liveAt(Pos.getBaseIndex())) 1682 MO.setIsUndef(); 1683 } 1684 if (!MO.isDead()) { 1685 SlotIndex Pos = LIS.getInstructionIndex(*MO.getParent()); 1686 if (!LI->liveAt(Pos.getDeadSlot())) 1687 MO.setIsDead(); 1688 } 1689 } 1690 } 1691 } 1692