1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "LiveDebugVariables.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/IntervalMap.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/VirtRegMap.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/Metadata.h" 47 #include "llvm/MC/MCRegisterInfo.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetInstrInfo.h" 55 #include "llvm/Target/TargetOpcodes.h" 56 #include "llvm/Target/TargetRegisterInfo.h" 57 #include "llvm/Target/TargetSubtargetInfo.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <iterator> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "livedebugvars" 67 68 static cl::opt<bool> 69 EnableLDV("live-debug-variables", cl::init(true), 70 cl::desc("Enable the live debug variables pass"), cl::Hidden); 71 72 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 73 74 char LiveDebugVariables::ID = 0; 75 76 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 77 "Debug Variable Analysis", false, false) 78 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 79 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 80 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 81 "Debug Variable Analysis", false, false) 82 83 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 84 AU.addRequired<MachineDominatorTree>(); 85 AU.addRequiredTransitive<LiveIntervals>(); 86 AU.setPreservesAll(); 87 MachineFunctionPass::getAnalysisUsage(AU); 88 } 89 90 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 91 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 92 } 93 94 /// LocMap - Map of where a user value is live, and its location. 95 using LocMap = IntervalMap<SlotIndex, unsigned, 4>; 96 97 namespace { 98 99 class LDVImpl; 100 101 /// UserValue - A user value is a part of a debug info user variable. 102 /// 103 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 104 /// holds part of a user variable. The part is identified by a byte offset. 105 /// 106 /// UserValues are grouped into equivalence classes for easier searching. Two 107 /// user values are related if they refer to the same variable, or if they are 108 /// held by the same virtual register. The equivalence class is the transitive 109 /// closure of that relation. 110 class UserValue { 111 const MDNode *Variable; ///< The debug info variable we are part of. 112 const MDNode *Expression; ///< Any complex address expression. 113 bool IsIndirect; ///< true if this is a register-indirect+offset value. 114 DebugLoc dl; ///< The debug location for the variable. This is 115 ///< used by dwarf writer to find lexical scope. 116 UserValue *leader; ///< Equivalence class leader. 117 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 118 119 /// Numbered locations referenced by locmap. 120 SmallVector<MachineOperand, 4> locations; 121 122 /// Map of slot indices where this value is live. 123 LocMap locInts; 124 125 /// Set of interval start indexes that have been trimmed to the 126 /// lexical scope. 127 SmallSet<SlotIndex, 2> trimmedDefs; 128 129 /// coalesceLocation - After LocNo was changed, check if it has become 130 /// identical to another location, and coalesce them. This may cause LocNo or 131 /// a later location to be erased, but no earlier location will be erased. 132 void coalesceLocation(unsigned LocNo); 133 134 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 135 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, 136 LiveIntervals &LIS, const TargetInstrInfo &TII); 137 138 /// splitLocation - Replace OldLocNo ranges with NewRegs ranges where NewRegs 139 /// is live. Returns true if any changes were made. 140 bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 141 LiveIntervals &LIS); 142 143 public: 144 /// UserValue - Create a new UserValue. 145 UserValue(const MDNode *var, const MDNode *expr, bool i, DebugLoc L, 146 LocMap::Allocator &alloc) 147 : Variable(var), Expression(expr), IsIndirect(i), dl(std::move(L)), 148 leader(this), locInts(alloc) {} 149 150 /// getLeader - Get the leader of this value's equivalence class. 151 UserValue *getLeader() { 152 UserValue *l = leader; 153 while (l != l->leader) 154 l = l->leader; 155 return leader = l; 156 } 157 158 /// getNext - Return the next UserValue in the equivalence class. 159 UserValue *getNext() const { return next; } 160 161 /// match - Does this UserValue match the parameters? 162 bool match(const MDNode *Var, const MDNode *Expr, const DILocation *IA, 163 bool indirect) const { 164 return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA && 165 indirect == IsIndirect; 166 } 167 168 /// merge - Merge equivalence classes. 169 static UserValue *merge(UserValue *L1, UserValue *L2) { 170 L2 = L2->getLeader(); 171 if (!L1) 172 return L2; 173 L1 = L1->getLeader(); 174 if (L1 == L2) 175 return L1; 176 // Splice L2 before L1's members. 177 UserValue *End = L2; 178 while (End->next) { 179 End->leader = L1; 180 End = End->next; 181 } 182 End->leader = L1; 183 End->next = L1->next; 184 L1->next = L2; 185 return L1; 186 } 187 188 /// getLocationNo - Return the location number that matches Loc. 189 unsigned getLocationNo(const MachineOperand &LocMO) { 190 if (LocMO.isReg()) { 191 if (LocMO.getReg() == 0) 192 return ~0u; 193 // For register locations we dont care about use/def and other flags. 194 for (unsigned i = 0, e = locations.size(); i != e; ++i) 195 if (locations[i].isReg() && 196 locations[i].getReg() == LocMO.getReg() && 197 locations[i].getSubReg() == LocMO.getSubReg()) 198 return i; 199 } else 200 for (unsigned i = 0, e = locations.size(); i != e; ++i) 201 if (LocMO.isIdenticalTo(locations[i])) 202 return i; 203 locations.push_back(LocMO); 204 // We are storing a MachineOperand outside a MachineInstr. 205 locations.back().clearParent(); 206 // Don't store def operands. 207 if (locations.back().isReg()) 208 locations.back().setIsUse(); 209 return locations.size() - 1; 210 } 211 212 /// mapVirtRegs - Ensure that all virtual register locations are mapped. 213 void mapVirtRegs(LDVImpl *LDV); 214 215 /// addDef - Add a definition point to this value. 216 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 217 // Add a singular (Idx,Idx) -> Loc mapping. 218 LocMap::iterator I = locInts.find(Idx); 219 if (!I.valid() || I.start() != Idx) 220 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 221 else 222 // A later DBG_VALUE at the same SlotIndex overrides the old location. 223 I.setValue(getLocationNo(LocMO)); 224 } 225 226 /// extendDef - Extend the current definition as far as possible down. 227 /// Stop when meeting an existing def or when leaving the live 228 /// range of VNI. 229 /// End points where VNI is no longer live are added to Kills. 230 /// @param Idx Starting point for the definition. 231 /// @param LocNo Location number to propagate. 232 /// @param LR Restrict liveness to where LR has the value VNI. May be null. 233 /// @param VNI When LR is not null, this is the value to restrict to. 234 /// @param Kills Append end points of VNI's live range to Kills. 235 /// @param LIS Live intervals analysis. 236 void extendDef(SlotIndex Idx, unsigned LocNo, 237 LiveRange *LR, const VNInfo *VNI, 238 SmallVectorImpl<SlotIndex> *Kills, 239 LiveIntervals &LIS); 240 241 /// addDefsFromCopies - The value in LI/LocNo may be copies to other 242 /// registers. Determine if any of the copies are available at the kill 243 /// points, and add defs if possible. 244 /// @param LI Scan for copies of the value in LI->reg. 245 /// @param LocNo Location number of LI->reg. 246 /// @param Kills Points where the range of LocNo could be extended. 247 /// @param NewDefs Append (Idx, LocNo) of inserted defs here. 248 void addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 249 const SmallVectorImpl<SlotIndex> &Kills, 250 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 251 MachineRegisterInfo &MRI, 252 LiveIntervals &LIS); 253 254 /// computeIntervals - Compute the live intervals of all locations after 255 /// collecting all their def points. 256 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 257 LiveIntervals &LIS, LexicalScopes &LS); 258 259 /// splitRegister - Replace OldReg ranges with NewRegs ranges where NewRegs is 260 /// live. Returns true if any changes were made. 261 bool splitRegister(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 262 LiveIntervals &LIS); 263 264 /// rewriteLocations - Rewrite virtual register locations according to the 265 /// provided virtual register map. 266 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI); 267 268 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 269 void emitDebugValues(VirtRegMap *VRM, 270 LiveIntervals &LIS, const TargetInstrInfo &TRI); 271 272 /// getDebugLoc - Return DebugLoc of this UserValue. 273 DebugLoc getDebugLoc() { return dl;} 274 275 void print(raw_ostream &, const TargetRegisterInfo *); 276 }; 277 278 /// LDVImpl - Implementation of the LiveDebugVariables pass. 279 class LDVImpl { 280 LiveDebugVariables &pass; 281 LocMap::Allocator allocator; 282 MachineFunction *MF = nullptr; 283 LiveIntervals *LIS; 284 const TargetRegisterInfo *TRI; 285 286 /// Whether emitDebugValues is called. 287 bool EmitDone = false; 288 289 /// Whether the machine function is modified during the pass. 290 bool ModifiedMF = false; 291 292 /// userValues - All allocated UserValue instances. 293 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 294 295 /// Map virtual register to eq class leader. 296 using VRMap = DenseMap<unsigned, UserValue *>; 297 VRMap virtRegToEqClass; 298 299 /// Map user variable to eq class leader. 300 using UVMap = DenseMap<const MDNode *, UserValue *>; 301 UVMap userVarMap; 302 303 /// getUserValue - Find or create a UserValue. 304 UserValue *getUserValue(const MDNode *Var, const MDNode *Expr, 305 bool IsIndirect, const DebugLoc &DL); 306 307 /// lookupVirtReg - Find the EC leader for VirtReg or null. 308 UserValue *lookupVirtReg(unsigned VirtReg); 309 310 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 311 /// @param MI DBG_VALUE instruction 312 /// @param Idx Last valid SLotIndex before instruction. 313 /// @return True if the DBG_VALUE instruction should be deleted. 314 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 315 316 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 317 /// a UserValue def for each instruction. 318 /// @param mf MachineFunction to be scanned. 319 /// @return True if any debug values were found. 320 bool collectDebugValues(MachineFunction &mf); 321 322 /// computeIntervals - Compute the live intervals of all user values after 323 /// collecting all their def points. 324 void computeIntervals(); 325 326 public: 327 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 328 329 bool runOnMachineFunction(MachineFunction &mf); 330 331 /// clear - Release all memory. 332 void clear() { 333 MF = nullptr; 334 userValues.clear(); 335 virtRegToEqClass.clear(); 336 userVarMap.clear(); 337 // Make sure we call emitDebugValues if the machine function was modified. 338 assert((!ModifiedMF || EmitDone) && 339 "Dbg values are not emitted in LDV"); 340 EmitDone = false; 341 ModifiedMF = false; 342 } 343 344 /// mapVirtReg - Map virtual register to an equivalence class. 345 void mapVirtReg(unsigned VirtReg, UserValue *EC); 346 347 /// splitRegister - Replace all references to OldReg with NewRegs. 348 void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs); 349 350 /// emitDebugValues - Recreate DBG_VALUE instruction from data structures. 351 void emitDebugValues(VirtRegMap *VRM); 352 353 void print(raw_ostream&); 354 }; 355 356 } // end anonymous namespace 357 358 #ifndef NDEBUG 359 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 360 const LLVMContext &Ctx) { 361 if (!DL) 362 return; 363 364 auto *Scope = cast<DIScope>(DL.getScope()); 365 // Omit the directory, because it's likely to be long and uninteresting. 366 CommentOS << Scope->getFilename(); 367 CommentOS << ':' << DL.getLine(); 368 if (DL.getCol() != 0) 369 CommentOS << ':' << DL.getCol(); 370 371 DebugLoc InlinedAtDL = DL.getInlinedAt(); 372 if (!InlinedAtDL) 373 return; 374 375 CommentOS << " @[ "; 376 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 377 CommentOS << " ]"; 378 } 379 380 static void printExtendedName(raw_ostream &OS, const DILocalVariable *V, 381 const DILocation *DL) { 382 const LLVMContext &Ctx = V->getContext(); 383 StringRef Res = V->getName(); 384 if (!Res.empty()) 385 OS << Res << "," << V->getLine(); 386 if (auto *InlinedAt = DL->getInlinedAt()) { 387 if (DebugLoc InlinedAtDL = InlinedAt) { 388 OS << " @["; 389 printDebugLoc(InlinedAtDL, OS, Ctx); 390 OS << "]"; 391 } 392 } 393 } 394 395 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 396 auto *DV = cast<DILocalVariable>(Variable); 397 OS << "!\""; 398 printExtendedName(OS, DV, dl); 399 400 OS << "\"\t"; 401 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 402 OS << " [" << I.start() << ';' << I.stop() << "):"; 403 if (I.value() == ~0u) 404 OS << "undef"; 405 else 406 OS << I.value(); 407 } 408 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 409 OS << " Loc" << i << '='; 410 locations[i].print(OS, TRI); 411 } 412 OS << '\n'; 413 } 414 415 void LDVImpl::print(raw_ostream &OS) { 416 OS << "********** DEBUG VARIABLES **********\n"; 417 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 418 userValues[i]->print(OS, TRI); 419 } 420 #endif 421 422 void UserValue::coalesceLocation(unsigned LocNo) { 423 unsigned KeepLoc = 0; 424 for (unsigned e = locations.size(); KeepLoc != e; ++KeepLoc) { 425 if (KeepLoc == LocNo) 426 continue; 427 if (locations[KeepLoc].isIdenticalTo(locations[LocNo])) 428 break; 429 } 430 // No matches. 431 if (KeepLoc == locations.size()) 432 return; 433 434 // Keep the smaller location, erase the larger one. 435 unsigned EraseLoc = LocNo; 436 if (KeepLoc > EraseLoc) 437 std::swap(KeepLoc, EraseLoc); 438 locations.erase(locations.begin() + EraseLoc); 439 440 // Rewrite values. 441 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 442 unsigned v = I.value(); 443 if (v == EraseLoc) 444 I.setValue(KeepLoc); // Coalesce when possible. 445 else if (v > EraseLoc) 446 I.setValueUnchecked(v-1); // Avoid coalescing with untransformed values. 447 } 448 } 449 450 void UserValue::mapVirtRegs(LDVImpl *LDV) { 451 for (unsigned i = 0, e = locations.size(); i != e; ++i) 452 if (locations[i].isReg() && 453 TargetRegisterInfo::isVirtualRegister(locations[i].getReg())) 454 LDV->mapVirtReg(locations[i].getReg(), this); 455 } 456 457 UserValue *LDVImpl::getUserValue(const MDNode *Var, const MDNode *Expr, 458 bool IsIndirect, const DebugLoc &DL) { 459 UserValue *&Leader = userVarMap[Var]; 460 if (Leader) { 461 UserValue *UV = Leader->getLeader(); 462 Leader = UV; 463 for (; UV; UV = UV->getNext()) 464 if (UV->match(Var, Expr, DL->getInlinedAt(), IsIndirect)) 465 return UV; 466 } 467 468 userValues.push_back( 469 llvm::make_unique<UserValue>(Var, Expr, IsIndirect, DL, allocator)); 470 UserValue *UV = userValues.back().get(); 471 Leader = UserValue::merge(Leader, UV); 472 return UV; 473 } 474 475 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 476 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 477 UserValue *&Leader = virtRegToEqClass[VirtReg]; 478 Leader = UserValue::merge(Leader, EC); 479 } 480 481 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 482 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 483 return UV->getLeader(); 484 return nullptr; 485 } 486 487 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 488 // DBG_VALUE loc, offset, variable 489 if (MI.getNumOperands() != 4 || 490 !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) || 491 !MI.getOperand(2).isMetadata()) { 492 DEBUG(dbgs() << "Can't handle " << MI); 493 return false; 494 } 495 496 // Get or create the UserValue for (variable,offset). 497 bool IsIndirect = MI.isIndirectDebugValue(); 498 if (IsIndirect) 499 assert(MI.getOperand(1).getImm() == 0 && "DBG_VALUE with nonzero offset"); 500 const MDNode *Var = MI.getDebugVariable(); 501 const MDNode *Expr = MI.getDebugExpression(); 502 //here. 503 UserValue *UV = getUserValue(Var, Expr, IsIndirect, MI.getDebugLoc()); 504 UV->addDef(Idx, MI.getOperand(0)); 505 return true; 506 } 507 508 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 509 bool Changed = false; 510 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 511 ++MFI) { 512 MachineBasicBlock *MBB = &*MFI; 513 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 514 MBBI != MBBE;) { 515 if (!MBBI->isDebugValue()) { 516 ++MBBI; 517 continue; 518 } 519 // DBG_VALUE has no slot index, use the previous instruction instead. 520 SlotIndex Idx = 521 MBBI == MBB->begin() 522 ? LIS->getMBBStartIdx(MBB) 523 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 524 // Handle consecutive DBG_VALUE instructions with the same slot index. 525 do { 526 if (handleDebugValue(*MBBI, Idx)) { 527 MBBI = MBB->erase(MBBI); 528 Changed = true; 529 } else 530 ++MBBI; 531 } while (MBBI != MBBE && MBBI->isDebugValue()); 532 } 533 } 534 return Changed; 535 } 536 537 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 538 /// data-flow analysis to propagate them beyond basic block boundaries. 539 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, LiveRange *LR, 540 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 541 LiveIntervals &LIS) { 542 SlotIndex Start = Idx; 543 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 544 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 545 LocMap::iterator I = locInts.find(Start); 546 547 // Limit to VNI's live range. 548 bool ToEnd = true; 549 if (LR && VNI) { 550 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 551 if (!Segment || Segment->valno != VNI) { 552 if (Kills) 553 Kills->push_back(Start); 554 return; 555 } 556 if (Segment->end < Stop) { 557 Stop = Segment->end; 558 ToEnd = false; 559 } 560 } 561 562 // There could already be a short def at Start. 563 if (I.valid() && I.start() <= Start) { 564 // Stop when meeting a different location or an already extended interval. 565 Start = Start.getNextSlot(); 566 if (I.value() != LocNo || I.stop() != Start) 567 return; 568 // This is a one-slot placeholder. Just skip it. 569 ++I; 570 } 571 572 // Limited by the next def. 573 if (I.valid() && I.start() < Stop) { 574 Stop = I.start(); 575 ToEnd = false; 576 } 577 // Limited by VNI's live range. 578 else if (!ToEnd && Kills) 579 Kills->push_back(Stop); 580 581 if (Start < Stop) 582 I.insert(Start, Stop, LocNo); 583 } 584 585 void 586 UserValue::addDefsFromCopies(LiveInterval *LI, unsigned LocNo, 587 const SmallVectorImpl<SlotIndex> &Kills, 588 SmallVectorImpl<std::pair<SlotIndex, unsigned>> &NewDefs, 589 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 590 if (Kills.empty()) 591 return; 592 // Don't track copies from physregs, there are too many uses. 593 if (!TargetRegisterInfo::isVirtualRegister(LI->reg)) 594 return; 595 596 // Collect all the (vreg, valno) pairs that are copies of LI. 597 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 598 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) { 599 MachineInstr *MI = MO.getParent(); 600 // Copies of the full value. 601 if (MO.getSubReg() || !MI->isCopy()) 602 continue; 603 unsigned DstReg = MI->getOperand(0).getReg(); 604 605 // Don't follow copies to physregs. These are usually setting up call 606 // arguments, and the argument registers are always call clobbered. We are 607 // better off in the source register which could be a callee-saved register, 608 // or it could be spilled. 609 if (!TargetRegisterInfo::isVirtualRegister(DstReg)) 610 continue; 611 612 // Is LocNo extended to reach this copy? If not, another def may be blocking 613 // it, or we are looking at a wrong value of LI. 614 SlotIndex Idx = LIS.getInstructionIndex(*MI); 615 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 616 if (!I.valid() || I.value() != LocNo) 617 continue; 618 619 if (!LIS.hasInterval(DstReg)) 620 continue; 621 LiveInterval *DstLI = &LIS.getInterval(DstReg); 622 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 623 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 624 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 625 } 626 627 if (CopyValues.empty()) 628 return; 629 630 DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI << '\n'); 631 632 // Try to add defs of the copied values for each kill point. 633 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 634 SlotIndex Idx = Kills[i]; 635 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 636 LiveInterval *DstLI = CopyValues[j].first; 637 const VNInfo *DstVNI = CopyValues[j].second; 638 if (DstLI->getVNInfoAt(Idx) != DstVNI) 639 continue; 640 // Check that there isn't already a def at Idx 641 LocMap::iterator I = locInts.find(Idx); 642 if (I.valid() && I.start() <= Idx) 643 continue; 644 DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 645 << DstVNI->id << " in " << *DstLI << '\n'); 646 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 647 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 648 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 649 I.insert(Idx, Idx.getNextSlot(), LocNo); 650 NewDefs.push_back(std::make_pair(Idx, LocNo)); 651 break; 652 } 653 } 654 } 655 656 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 657 const TargetRegisterInfo &TRI, 658 LiveIntervals &LIS, LexicalScopes &LS) { 659 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 660 661 // Collect all defs to be extended (Skipping undefs). 662 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 663 if (I.value() != ~0u) 664 Defs.push_back(std::make_pair(I.start(), I.value())); 665 666 // Extend all defs, and possibly add new ones along the way. 667 for (unsigned i = 0; i != Defs.size(); ++i) { 668 SlotIndex Idx = Defs[i].first; 669 unsigned LocNo = Defs[i].second; 670 const MachineOperand &Loc = locations[LocNo]; 671 672 if (!Loc.isReg()) { 673 extendDef(Idx, LocNo, nullptr, nullptr, nullptr, LIS); 674 continue; 675 } 676 677 // Register locations are constrained to where the register value is live. 678 if (TargetRegisterInfo::isVirtualRegister(Loc.getReg())) { 679 LiveInterval *LI = nullptr; 680 const VNInfo *VNI = nullptr; 681 if (LIS.hasInterval(Loc.getReg())) { 682 LI = &LIS.getInterval(Loc.getReg()); 683 VNI = LI->getVNInfoAt(Idx); 684 } 685 SmallVector<SlotIndex, 16> Kills; 686 extendDef(Idx, LocNo, LI, VNI, &Kills, LIS); 687 if (LI) 688 addDefsFromCopies(LI, LocNo, Kills, Defs, MRI, LIS); 689 continue; 690 } 691 692 // For physregs, use the live range of the first regunit as a guide. 693 unsigned Unit = *MCRegUnitIterator(Loc.getReg(), &TRI); 694 LiveRange *LR = &LIS.getRegUnit(Unit); 695 const VNInfo *VNI = LR->getVNInfoAt(Idx); 696 // Don't track copies from physregs, it is too expensive. 697 extendDef(Idx, LocNo, LR, VNI, nullptr, LIS); 698 } 699 700 // Erase all the undefs. 701 for (LocMap::iterator I = locInts.begin(); I.valid();) 702 if (I.value() == ~0u) 703 I.erase(); 704 else 705 ++I; 706 707 // The computed intervals may extend beyond the range of the debug 708 // location's lexical scope. In this case, splitting of an interval 709 // can result in an interval outside of the scope being created, 710 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 711 // this, trim the intervals to the lexical scope. 712 713 LexicalScope *Scope = LS.findLexicalScope(dl); 714 if (!Scope) 715 return; 716 717 SlotIndex PrevEnd; 718 LocMap::iterator I = locInts.begin(); 719 720 // Iterate over the lexical scope ranges. Each time round the loop 721 // we check the intervals for overlap with the end of the previous 722 // range and the start of the next. The first range is handled as 723 // a special case where there is no PrevEnd. 724 for (const InsnRange &Range : Scope->getRanges()) { 725 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 726 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 727 728 // At the start of each iteration I has been advanced so that 729 // I.stop() >= PrevEnd. Check for overlap. 730 if (PrevEnd && I.start() < PrevEnd) { 731 SlotIndex IStop = I.stop(); 732 unsigned LocNo = I.value(); 733 734 // Stop overlaps previous end - trim the end of the interval to 735 // the scope range. 736 I.setStopUnchecked(PrevEnd); 737 ++I; 738 739 // If the interval also overlaps the start of the "next" (i.e. 740 // current) range create a new interval for the remainder (which 741 // may be further trimmed). 742 if (RStart < IStop) 743 I.insert(RStart, IStop, LocNo); 744 } 745 746 // Advance I so that I.stop() >= RStart, and check for overlap. 747 I.advanceTo(RStart); 748 if (!I.valid()) 749 return; 750 751 if (I.start() < RStart) { 752 // Interval start overlaps range - trim to the scope range. 753 I.setStartUnchecked(RStart); 754 // Remember that this interval was trimmed. 755 trimmedDefs.insert(RStart); 756 } 757 758 // The end of a lexical scope range is the last instruction in the 759 // range. To convert to an interval we need the index of the 760 // instruction after it. 761 REnd = REnd.getNextIndex(); 762 763 // Advance I to first interval outside current range. 764 I.advanceTo(REnd); 765 if (!I.valid()) 766 return; 767 768 PrevEnd = REnd; 769 } 770 771 // Check for overlap with end of final range. 772 if (PrevEnd && I.start() < PrevEnd) 773 I.setStopUnchecked(PrevEnd); 774 } 775 776 void LDVImpl::computeIntervals() { 777 LexicalScopes LS; 778 LS.initialize(*MF); 779 780 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 781 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 782 userValues[i]->mapVirtRegs(this); 783 } 784 } 785 786 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 787 clear(); 788 MF = &mf; 789 LIS = &pass.getAnalysis<LiveIntervals>(); 790 TRI = mf.getSubtarget().getRegisterInfo(); 791 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 792 << mf.getName() << " **********\n"); 793 794 bool Changed = collectDebugValues(mf); 795 computeIntervals(); 796 DEBUG(print(dbgs())); 797 ModifiedMF = Changed; 798 return Changed; 799 } 800 801 static void removeDebugValues(MachineFunction &mf) { 802 for (MachineBasicBlock &MBB : mf) { 803 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 804 if (!MBBI->isDebugValue()) { 805 ++MBBI; 806 continue; 807 } 808 MBBI = MBB.erase(MBBI); 809 } 810 } 811 } 812 813 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 814 if (!EnableLDV) 815 return false; 816 if (!mf.getFunction()->getSubprogram()) { 817 removeDebugValues(mf); 818 return false; 819 } 820 if (!pImpl) 821 pImpl = new LDVImpl(this); 822 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 823 } 824 825 void LiveDebugVariables::releaseMemory() { 826 if (pImpl) 827 static_cast<LDVImpl*>(pImpl)->clear(); 828 } 829 830 LiveDebugVariables::~LiveDebugVariables() { 831 if (pImpl) 832 delete static_cast<LDVImpl*>(pImpl); 833 } 834 835 //===----------------------------------------------------------------------===// 836 // Live Range Splitting 837 //===----------------------------------------------------------------------===// 838 839 bool 840 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs, 841 LiveIntervals& LIS) { 842 DEBUG({ 843 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 844 print(dbgs(), nullptr); 845 }); 846 bool DidChange = false; 847 LocMap::iterator LocMapI; 848 LocMapI.setMap(locInts); 849 for (unsigned i = 0; i != NewRegs.size(); ++i) { 850 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 851 if (LI->empty()) 852 continue; 853 854 // Don't allocate the new LocNo until it is needed. 855 unsigned NewLocNo = ~0u; 856 857 // Iterate over the overlaps between locInts and LI. 858 LocMapI.find(LI->beginIndex()); 859 if (!LocMapI.valid()) 860 continue; 861 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 862 LiveInterval::iterator LIE = LI->end(); 863 while (LocMapI.valid() && LII != LIE) { 864 // At this point, we know that LocMapI.stop() > LII->start. 865 LII = LI->advanceTo(LII, LocMapI.start()); 866 if (LII == LIE) 867 break; 868 869 // Now LII->end > LocMapI.start(). Do we have an overlap? 870 if (LocMapI.value() == OldLocNo && LII->start < LocMapI.stop()) { 871 // Overlapping correct location. Allocate NewLocNo now. 872 if (NewLocNo == ~0u) { 873 MachineOperand MO = MachineOperand::CreateReg(LI->reg, false); 874 MO.setSubReg(locations[OldLocNo].getSubReg()); 875 NewLocNo = getLocationNo(MO); 876 DidChange = true; 877 } 878 879 SlotIndex LStart = LocMapI.start(); 880 SlotIndex LStop = LocMapI.stop(); 881 882 // Trim LocMapI down to the LII overlap. 883 if (LStart < LII->start) 884 LocMapI.setStartUnchecked(LII->start); 885 if (LStop > LII->end) 886 LocMapI.setStopUnchecked(LII->end); 887 888 // Change the value in the overlap. This may trigger coalescing. 889 LocMapI.setValue(NewLocNo); 890 891 // Re-insert any removed OldLocNo ranges. 892 if (LStart < LocMapI.start()) { 893 LocMapI.insert(LStart, LocMapI.start(), OldLocNo); 894 ++LocMapI; 895 assert(LocMapI.valid() && "Unexpected coalescing"); 896 } 897 if (LStop > LocMapI.stop()) { 898 ++LocMapI; 899 LocMapI.insert(LII->end, LStop, OldLocNo); 900 --LocMapI; 901 } 902 } 903 904 // Advance to the next overlap. 905 if (LII->end < LocMapI.stop()) { 906 if (++LII == LIE) 907 break; 908 LocMapI.advanceTo(LII->start); 909 } else { 910 ++LocMapI; 911 if (!LocMapI.valid()) 912 break; 913 LII = LI->advanceTo(LII, LocMapI.start()); 914 } 915 } 916 } 917 918 // Finally, remove any remaining OldLocNo intervals and OldLocNo itself. 919 locations.erase(locations.begin() + OldLocNo); 920 LocMapI.goToBegin(); 921 while (LocMapI.valid()) { 922 unsigned v = LocMapI.value(); 923 if (v == OldLocNo) { 924 DEBUG(dbgs() << "Erasing [" << LocMapI.start() << ';' 925 << LocMapI.stop() << ")\n"); 926 LocMapI.erase(); 927 } else { 928 if (v > OldLocNo) 929 LocMapI.setValueUnchecked(v-1); 930 ++LocMapI; 931 } 932 } 933 934 DEBUG({dbgs() << "Split result: \t"; print(dbgs(), nullptr);}); 935 return DidChange; 936 } 937 938 bool 939 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, 940 LiveIntervals &LIS) { 941 bool DidChange = false; 942 // Split locations referring to OldReg. Iterate backwards so splitLocation can 943 // safely erase unused locations. 944 for (unsigned i = locations.size(); i ; --i) { 945 unsigned LocNo = i-1; 946 const MachineOperand *Loc = &locations[LocNo]; 947 if (!Loc->isReg() || Loc->getReg() != OldReg) 948 continue; 949 DidChange |= splitLocation(LocNo, NewRegs, LIS); 950 } 951 return DidChange; 952 } 953 954 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) { 955 bool DidChange = false; 956 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 957 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 958 959 if (!DidChange) 960 return; 961 962 // Map all of the new virtual registers. 963 UserValue *UV = lookupVirtReg(OldReg); 964 for (unsigned i = 0; i != NewRegs.size(); ++i) 965 mapVirtReg(NewRegs[i], UV); 966 } 967 968 void LiveDebugVariables:: 969 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) { 970 if (pImpl) 971 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 972 } 973 974 void 975 UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) { 976 // Iterate over locations in reverse makes it easier to handle coalescing. 977 for (unsigned i = locations.size(); i ; --i) { 978 unsigned LocNo = i-1; 979 MachineOperand &Loc = locations[LocNo]; 980 // Only virtual registers are rewritten. 981 if (!Loc.isReg() || !Loc.getReg() || 982 !TargetRegisterInfo::isVirtualRegister(Loc.getReg())) 983 continue; 984 unsigned VirtReg = Loc.getReg(); 985 if (VRM.isAssignedReg(VirtReg) && 986 TargetRegisterInfo::isPhysicalRegister(VRM.getPhys(VirtReg))) { 987 // This can create a %noreg operand in rare cases when the sub-register 988 // index is no longer available. That means the user value is in a 989 // non-existent sub-register, and %noreg is exactly what we want. 990 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 991 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 992 // FIXME: Translate SubIdx to a stackslot offset. 993 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 994 } else { 995 Loc.setReg(0); 996 Loc.setSubReg(0); 997 } 998 coalesceLocation(LocNo); 999 } 1000 } 1001 1002 /// findInsertLocation - Find an iterator for inserting a DBG_VALUE 1003 /// instruction. 1004 static MachineBasicBlock::iterator 1005 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1006 LiveIntervals &LIS) { 1007 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1008 Idx = Idx.getBaseIndex(); 1009 1010 // Try to find an insert location by going backwards from Idx. 1011 MachineInstr *MI; 1012 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1013 // We've reached the beginning of MBB. 1014 if (Idx == Start) { 1015 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1016 return I; 1017 } 1018 Idx = Idx.getPrevIndex(); 1019 } 1020 1021 // Don't insert anything after the first terminator, though. 1022 return MI->isTerminator() ? MBB->getFirstTerminator() : 1023 std::next(MachineBasicBlock::iterator(MI)); 1024 } 1025 1026 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 1027 unsigned LocNo, 1028 LiveIntervals &LIS, 1029 const TargetInstrInfo &TII) { 1030 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1031 MachineOperand &Loc = locations[LocNo]; 1032 ++NumInsertedDebugValues; 1033 1034 assert(cast<DILocalVariable>(Variable) 1035 ->isValidLocationForIntrinsic(getDebugLoc()) && 1036 "Expected inlined-at fields to agree"); 1037 if (Loc.isReg()) 1038 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1039 IsIndirect, Loc.getReg(), Variable, Expression); 1040 else 1041 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE)) 1042 .add(Loc) 1043 .addImm(0U) 1044 .addMetadata(Variable) 1045 .addMetadata(Expression); 1046 } 1047 1048 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1049 const TargetInstrInfo &TII) { 1050 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1051 1052 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1053 SlotIndex Start = I.start(); 1054 SlotIndex Stop = I.stop(); 1055 unsigned LocNo = I.value(); 1056 1057 // If the interval start was trimmed to the lexical scope insert the 1058 // DBG_VALUE at the previous index (otherwise it appears after the 1059 // first instruction in the range). 1060 if (trimmedDefs.count(Start)) 1061 Start = Start.getPrevIndex(); 1062 1063 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 1064 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1065 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1066 1067 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1068 insertDebugValue(&*MBB, Start, LocNo, LIS, TII); 1069 // This interval may span multiple basic blocks. 1070 // Insert a DBG_VALUE into each one. 1071 while(Stop > MBBEnd) { 1072 // Move to the next block. 1073 Start = MBBEnd; 1074 if (++MBB == MFEnd) 1075 break; 1076 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1077 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 1078 insertDebugValue(&*MBB, Start, LocNo, LIS, TII); 1079 } 1080 DEBUG(dbgs() << '\n'); 1081 if (MBB == MFEnd) 1082 break; 1083 1084 ++I; 1085 } 1086 } 1087 1088 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1089 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1090 if (!MF) 1091 return; 1092 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1093 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1094 DEBUG(userValues[i]->print(dbgs(), TRI)); 1095 userValues[i]->rewriteLocations(*VRM, *TRI); 1096 userValues[i]->emitDebugValues(VRM, *LIS, *TII); 1097 } 1098 EmitDone = true; 1099 } 1100 1101 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1102 if (pImpl) 1103 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1104 } 1105 1106 bool LiveDebugVariables::doInitialization(Module &M) { 1107 return Pass::doInitialization(M); 1108 } 1109 1110 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1111 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1112 if (pImpl) 1113 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1114 } 1115 #endif 1116