1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 namespace { 99 /// Describes a debug variable value by location number and expression along 100 /// with some flags about the original usage of the location. 101 class DbgVariableValue { 102 public: 103 DbgVariableValue(unsigned LocNo, bool WasIndirect, 104 const DIExpression &Expression) 105 : LocNo(LocNo), WasIndirect(WasIndirect), Expression(&Expression) { 106 assert(getLocNo() == LocNo && "location truncation"); 107 } 108 109 DbgVariableValue() : LocNo(0), WasIndirect(0) {} 110 111 const DIExpression *getExpression() const { return Expression; } 112 unsigned getLocNo() const { 113 // Fix up the undef location number, which gets truncated. 114 return LocNo == INT_MAX ? UndefLocNo : LocNo; 115 } 116 bool getWasIndirect() const { return WasIndirect; } 117 bool isUndef() const { return getLocNo() == UndefLocNo; } 118 119 DbgVariableValue changeLocNo(unsigned NewLocNo) const { 120 return DbgVariableValue(NewLocNo, WasIndirect, *Expression); 121 } 122 123 friend inline bool operator==(const DbgVariableValue &LHS, 124 const DbgVariableValue &RHS) { 125 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect && 126 LHS.Expression == RHS.Expression; 127 } 128 129 friend inline bool operator!=(const DbgVariableValue &LHS, 130 const DbgVariableValue &RHS) { 131 return !(LHS == RHS); 132 } 133 134 private: 135 unsigned LocNo : 31; 136 unsigned WasIndirect : 1; 137 const DIExpression *Expression = nullptr; 138 }; 139 } // namespace 140 141 /// Map of where a user value is live to that value. 142 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 143 144 /// Map of stack slot offsets for spilled locations. 145 /// Non-spilled locations are not added to the map. 146 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 147 148 /// Cache to save the location where it can be used as the starting 149 /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. 150 /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from 151 /// repeatedly searching the same set of PHIs/Labels/Debug instructions 152 /// if it is called many times for the same block. 153 using BlockSkipInstsMap = 154 DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; 155 156 namespace { 157 158 class LDVImpl; 159 160 /// A user value is a part of a debug info user variable. 161 /// 162 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 163 /// holds part of a user variable. The part is identified by a byte offset. 164 /// 165 /// UserValues are grouped into equivalence classes for easier searching. Two 166 /// user values are related if they are held by the same virtual register. The 167 /// equivalence class is the transitive closure of that relation. 168 class UserValue { 169 const DILocalVariable *Variable; ///< The debug info variable we are part of. 170 /// The part of the variable we describe. 171 const Optional<DIExpression::FragmentInfo> Fragment; 172 DebugLoc dl; ///< The debug location for the variable. This is 173 ///< used by dwarf writer to find lexical scope. 174 UserValue *leader; ///< Equivalence class leader. 175 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 176 177 /// Numbered locations referenced by locmap. 178 SmallVector<MachineOperand, 4> locations; 179 180 /// Map of slot indices where this value is live. 181 LocMap locInts; 182 183 /// Set of interval start indexes that have been trimmed to the 184 /// lexical scope. 185 SmallSet<SlotIndex, 2> trimmedDefs; 186 187 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 188 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 189 SlotIndex StopIdx, DbgVariableValue DbgValue, 190 bool Spilled, unsigned SpillOffset, LiveIntervals &LIS, 191 const TargetInstrInfo &TII, 192 const TargetRegisterInfo &TRI, 193 BlockSkipInstsMap &BBSkipInstsMap); 194 195 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 196 /// is live. Returns true if any changes were made. 197 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 198 LiveIntervals &LIS); 199 200 public: 201 /// Create a new UserValue. 202 UserValue(const DILocalVariable *var, 203 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 204 LocMap::Allocator &alloc) 205 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 206 locInts(alloc) {} 207 208 /// Get the leader of this value's equivalence class. 209 UserValue *getLeader() { 210 UserValue *l = leader; 211 while (l != l->leader) 212 l = l->leader; 213 return leader = l; 214 } 215 216 /// Return the next UserValue in the equivalence class. 217 UserValue *getNext() const { return next; } 218 219 /// Merge equivalence classes. 220 static UserValue *merge(UserValue *L1, UserValue *L2) { 221 L2 = L2->getLeader(); 222 if (!L1) 223 return L2; 224 L1 = L1->getLeader(); 225 if (L1 == L2) 226 return L1; 227 // Splice L2 before L1's members. 228 UserValue *End = L2; 229 while (End->next) { 230 End->leader = L1; 231 End = End->next; 232 } 233 End->leader = L1; 234 End->next = L1->next; 235 L1->next = L2; 236 return L1; 237 } 238 239 /// Return the location number that matches Loc. 240 /// 241 /// For undef values we always return location number UndefLocNo without 242 /// inserting anything in locations. Since locations is a vector and the 243 /// location number is the position in the vector and UndefLocNo is ~0, 244 /// we would need a very big vector to put the value at the right position. 245 unsigned getLocationNo(const MachineOperand &LocMO) { 246 if (LocMO.isReg()) { 247 if (LocMO.getReg() == 0) 248 return UndefLocNo; 249 // For register locations we dont care about use/def and other flags. 250 for (unsigned i = 0, e = locations.size(); i != e; ++i) 251 if (locations[i].isReg() && 252 locations[i].getReg() == LocMO.getReg() && 253 locations[i].getSubReg() == LocMO.getSubReg()) 254 return i; 255 } else 256 for (unsigned i = 0, e = locations.size(); i != e; ++i) 257 if (LocMO.isIdenticalTo(locations[i])) 258 return i; 259 locations.push_back(LocMO); 260 // We are storing a MachineOperand outside a MachineInstr. 261 locations.back().clearParent(); 262 // Don't store def operands. 263 if (locations.back().isReg()) { 264 if (locations.back().isDef()) 265 locations.back().setIsDead(false); 266 locations.back().setIsUse(); 267 } 268 return locations.size() - 1; 269 } 270 271 /// Remove (recycle) a location number. If \p LocNo still is used by the 272 /// locInts nothing is done. 273 void removeLocationIfUnused(unsigned LocNo) { 274 // Bail out if LocNo still is used. 275 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 276 DbgVariableValue DbgValue = I.value(); 277 if (DbgValue.getLocNo() == LocNo) 278 return; 279 } 280 // Remove the entry in the locations vector, and adjust all references to 281 // location numbers above the removed entry. 282 locations.erase(locations.begin() + LocNo); 283 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 284 DbgVariableValue DbgValue = I.value(); 285 if (!DbgValue.isUndef() && DbgValue.getLocNo() > LocNo) 286 I.setValueUnchecked(DbgValue.changeLocNo(DbgValue.getLocNo() - 1)); 287 } 288 } 289 290 /// Ensure that all virtual register locations are mapped. 291 void mapVirtRegs(LDVImpl *LDV); 292 293 /// Add a definition point to this user value. 294 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect, 295 const DIExpression &Expr) { 296 DbgVariableValue DbgValue(getLocationNo(LocMO), IsIndirect, Expr); 297 // Add a singular (Idx,Idx) -> value mapping. 298 LocMap::iterator I = locInts.find(Idx); 299 if (!I.valid() || I.start() != Idx) 300 I.insert(Idx, Idx.getNextSlot(), DbgValue); 301 else 302 // A later DBG_VALUE at the same SlotIndex overrides the old location. 303 I.setValue(DbgValue); 304 } 305 306 /// Extend the current definition as far as possible down. 307 /// 308 /// Stop when meeting an existing def or when leaving the live 309 /// range of VNI. End points where VNI is no longer live are added to Kills. 310 /// 311 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 312 /// data-flow analysis to propagate them beyond basic block boundaries. 313 /// 314 /// \param Idx Starting point for the definition. 315 /// \param DbgValue value to propagate. 316 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 317 /// \param VNI When LR is not null, this is the value to restrict to. 318 /// \param [out] Kills Append end points of VNI's live range to Kills. 319 /// \param LIS Live intervals analysis. 320 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 321 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 322 LiveIntervals &LIS); 323 324 /// The value in LI may be copies to other registers. Determine if 325 /// any of the copies are available at the kill points, and add defs if 326 /// possible. 327 /// 328 /// \param LI Scan for copies of the value in LI->reg. 329 /// \param DbgValue Location number of LI->reg, and DIExpression. 330 /// \param Kills Points where the range of DbgValue could be extended. 331 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 332 void addDefsFromCopies( 333 LiveInterval *LI, DbgVariableValue DbgValue, 334 const SmallVectorImpl<SlotIndex> &Kills, 335 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 336 MachineRegisterInfo &MRI, LiveIntervals &LIS); 337 338 /// Compute the live intervals of all locations after collecting all their 339 /// def points. 340 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 341 LiveIntervals &LIS, LexicalScopes &LS); 342 343 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 344 /// live. Returns true if any changes were made. 345 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 346 LiveIntervals &LIS); 347 348 /// Rewrite virtual register locations according to the provided virtual 349 /// register map. Record the stack slot offsets for the locations that 350 /// were spilled. 351 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 352 const TargetInstrInfo &TII, 353 const TargetRegisterInfo &TRI, 354 SpillOffsetMap &SpillOffsets); 355 356 /// Recreate DBG_VALUE instruction from data structures. 357 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 358 const TargetInstrInfo &TII, 359 const TargetRegisterInfo &TRI, 360 const SpillOffsetMap &SpillOffsets, 361 BlockSkipInstsMap &BBSkipInstsMap); 362 363 /// Return DebugLoc of this UserValue. 364 DebugLoc getDebugLoc() { return dl;} 365 366 void print(raw_ostream &, const TargetRegisterInfo *); 367 }; 368 369 /// A user label is a part of a debug info user label. 370 class UserLabel { 371 const DILabel *Label; ///< The debug info label we are part of. 372 DebugLoc dl; ///< The debug location for the label. This is 373 ///< used by dwarf writer to find lexical scope. 374 SlotIndex loc; ///< Slot used by the debug label. 375 376 /// Insert a DBG_LABEL into MBB at Idx. 377 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 378 LiveIntervals &LIS, const TargetInstrInfo &TII, 379 BlockSkipInstsMap &BBSkipInstsMap); 380 381 public: 382 /// Create a new UserLabel. 383 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 384 : Label(label), dl(std::move(L)), loc(Idx) {} 385 386 /// Does this UserLabel match the parameters? 387 bool matches(const DILabel *L, const DILocation *IA, 388 const SlotIndex Index) const { 389 return Label == L && dl->getInlinedAt() == IA && loc == Index; 390 } 391 392 /// Recreate DBG_LABEL instruction from data structures. 393 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 394 BlockSkipInstsMap &BBSkipInstsMap); 395 396 /// Return DebugLoc of this UserLabel. 397 DebugLoc getDebugLoc() { return dl; } 398 399 void print(raw_ostream &, const TargetRegisterInfo *); 400 }; 401 402 /// Implementation of the LiveDebugVariables pass. 403 class LDVImpl { 404 LiveDebugVariables &pass; 405 LocMap::Allocator allocator; 406 MachineFunction *MF = nullptr; 407 LiveIntervals *LIS; 408 const TargetRegisterInfo *TRI; 409 410 using StashedInstrRef = 411 std::tuple<unsigned, unsigned, const DILocalVariable *, 412 const DIExpression *, DebugLoc>; 413 std::map<SlotIndex, std::vector<StashedInstrRef>> StashedInstrReferences; 414 415 /// Whether emitDebugValues is called. 416 bool EmitDone = false; 417 418 /// Whether the machine function is modified during the pass. 419 bool ModifiedMF = false; 420 421 /// All allocated UserValue instances. 422 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 423 424 /// All allocated UserLabel instances. 425 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 426 427 /// Map virtual register to eq class leader. 428 using VRMap = DenseMap<unsigned, UserValue *>; 429 VRMap virtRegToEqClass; 430 431 /// Map to find existing UserValue instances. 432 using UVMap = DenseMap<DebugVariable, UserValue *>; 433 UVMap userVarMap; 434 435 /// Find or create a UserValue. 436 UserValue *getUserValue(const DILocalVariable *Var, 437 Optional<DIExpression::FragmentInfo> Fragment, 438 const DebugLoc &DL); 439 440 /// Find the EC leader for VirtReg or null. 441 UserValue *lookupVirtReg(Register VirtReg); 442 443 /// Add DBG_VALUE instruction to our maps. 444 /// 445 /// \param MI DBG_VALUE instruction 446 /// \param Idx Last valid SLotIndex before instruction. 447 /// 448 /// \returns True if the DBG_VALUE instruction should be deleted. 449 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 450 451 /// Track a DBG_INSTR_REF. This needs to be removed from the MachineFunction 452 /// during regalloc -- but there's no need to maintain live ranges, as we 453 /// refer to a value rather than a location. 454 /// 455 /// \param MI DBG_INSTR_REF instruction 456 /// \param Idx Last valid SlotIndex before instruction 457 /// 458 /// \returns True if the DBG_VALUE instruction should be deleted. 459 bool handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx); 460 461 /// Add DBG_LABEL instruction to UserLabel. 462 /// 463 /// \param MI DBG_LABEL instruction 464 /// \param Idx Last valid SlotIndex before instruction. 465 /// 466 /// \returns True if the DBG_LABEL instruction should be deleted. 467 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 468 469 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 470 /// for each instruction. 471 /// 472 /// \param mf MachineFunction to be scanned. 473 /// 474 /// \returns True if any debug values were found. 475 bool collectDebugValues(MachineFunction &mf); 476 477 /// Compute the live intervals of all user values after collecting all 478 /// their def points. 479 void computeIntervals(); 480 481 public: 482 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 483 484 bool runOnMachineFunction(MachineFunction &mf); 485 486 /// Release all memory. 487 void clear() { 488 MF = nullptr; 489 StashedInstrReferences.clear(); 490 userValues.clear(); 491 userLabels.clear(); 492 virtRegToEqClass.clear(); 493 userVarMap.clear(); 494 // Make sure we call emitDebugValues if the machine function was modified. 495 assert((!ModifiedMF || EmitDone) && 496 "Dbg values are not emitted in LDV"); 497 EmitDone = false; 498 ModifiedMF = false; 499 } 500 501 /// Map virtual register to an equivalence class. 502 void mapVirtReg(Register VirtReg, UserValue *EC); 503 504 /// Replace all references to OldReg with NewRegs. 505 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 506 507 /// Recreate DBG_VALUE instruction from data structures. 508 void emitDebugValues(VirtRegMap *VRM); 509 510 void print(raw_ostream&); 511 }; 512 513 } // end anonymous namespace 514 515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 516 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 517 const LLVMContext &Ctx) { 518 if (!DL) 519 return; 520 521 auto *Scope = cast<DIScope>(DL.getScope()); 522 // Omit the directory, because it's likely to be long and uninteresting. 523 CommentOS << Scope->getFilename(); 524 CommentOS << ':' << DL.getLine(); 525 if (DL.getCol() != 0) 526 CommentOS << ':' << DL.getCol(); 527 528 DebugLoc InlinedAtDL = DL.getInlinedAt(); 529 if (!InlinedAtDL) 530 return; 531 532 CommentOS << " @[ "; 533 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 534 CommentOS << " ]"; 535 } 536 537 static void printExtendedName(raw_ostream &OS, const DINode *Node, 538 const DILocation *DL) { 539 const LLVMContext &Ctx = Node->getContext(); 540 StringRef Res; 541 unsigned Line = 0; 542 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 543 Res = V->getName(); 544 Line = V->getLine(); 545 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 546 Res = L->getName(); 547 Line = L->getLine(); 548 } 549 550 if (!Res.empty()) 551 OS << Res << "," << Line; 552 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 553 if (InlinedAt) { 554 if (DebugLoc InlinedAtDL = InlinedAt) { 555 OS << " @["; 556 printDebugLoc(InlinedAtDL, OS, Ctx); 557 OS << "]"; 558 } 559 } 560 } 561 562 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 563 OS << "!\""; 564 printExtendedName(OS, Variable, dl); 565 566 OS << "\"\t"; 567 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 568 OS << " [" << I.start() << ';' << I.stop() << "):"; 569 if (I.value().isUndef()) 570 OS << "undef"; 571 else { 572 OS << I.value().getLocNo(); 573 if (I.value().getWasIndirect()) 574 OS << " ind"; 575 } 576 } 577 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 578 OS << " Loc" << i << '='; 579 locations[i].print(OS, TRI); 580 } 581 OS << '\n'; 582 } 583 584 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 585 OS << "!\""; 586 printExtendedName(OS, Label, dl); 587 588 OS << "\"\t"; 589 OS << loc; 590 OS << '\n'; 591 } 592 593 void LDVImpl::print(raw_ostream &OS) { 594 OS << "********** DEBUG VARIABLES **********\n"; 595 for (auto &userValue : userValues) 596 userValue->print(OS, TRI); 597 OS << "********** DEBUG LABELS **********\n"; 598 for (auto &userLabel : userLabels) 599 userLabel->print(OS, TRI); 600 } 601 #endif 602 603 void UserValue::mapVirtRegs(LDVImpl *LDV) { 604 for (unsigned i = 0, e = locations.size(); i != e; ++i) 605 if (locations[i].isReg() && 606 Register::isVirtualRegister(locations[i].getReg())) 607 LDV->mapVirtReg(locations[i].getReg(), this); 608 } 609 610 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 611 Optional<DIExpression::FragmentInfo> Fragment, 612 const DebugLoc &DL) { 613 // FIXME: Handle partially overlapping fragments. See 614 // https://reviews.llvm.org/D70121#1849741. 615 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 616 UserValue *&UV = userVarMap[ID]; 617 if (!UV) { 618 userValues.push_back( 619 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 620 UV = userValues.back().get(); 621 } 622 return UV; 623 } 624 625 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 626 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 627 UserValue *&Leader = virtRegToEqClass[VirtReg]; 628 Leader = UserValue::merge(Leader, EC); 629 } 630 631 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 632 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 633 return UV->getLeader(); 634 return nullptr; 635 } 636 637 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 638 // DBG_VALUE loc, offset, variable 639 if (MI.getNumOperands() != 4 || 640 !(MI.getDebugOffset().isReg() || MI.getDebugOffset().isImm()) || 641 !MI.getDebugVariableOp().isMetadata()) { 642 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 643 return false; 644 } 645 646 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 647 // register that hasn't been defined yet. If we do not remove those here, then 648 // the re-insertion of the DBG_VALUE instruction after register allocation 649 // will be incorrect. 650 // TODO: If earlier passes are corrected to generate sane debug information 651 // (and if the machine verifier is improved to catch this), then these checks 652 // could be removed or replaced by asserts. 653 bool Discard = false; 654 if (MI.getDebugOperand(0).isReg() && 655 Register::isVirtualRegister(MI.getDebugOperand(0).getReg())) { 656 const Register Reg = MI.getDebugOperand(0).getReg(); 657 if (!LIS->hasInterval(Reg)) { 658 // The DBG_VALUE is described by a virtual register that does not have a 659 // live interval. Discard the DBG_VALUE. 660 Discard = true; 661 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 662 << " " << MI); 663 } else { 664 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 665 // is defined dead at Idx (where Idx is the slot index for the instruction 666 // preceding the DBG_VALUE). 667 const LiveInterval &LI = LIS->getInterval(Reg); 668 LiveQueryResult LRQ = LI.Query(Idx); 669 if (!LRQ.valueOutOrDead()) { 670 // We have found a DBG_VALUE with the value in a virtual register that 671 // is not live. Discard the DBG_VALUE. 672 Discard = true; 673 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 674 << " " << MI); 675 } 676 } 677 } 678 679 // Get or create the UserValue for (variable,offset) here. 680 bool IsIndirect = MI.isDebugOffsetImm(); 681 if (IsIndirect) 682 assert(MI.getDebugOffset().getImm() == 0 && 683 "DBG_VALUE with nonzero offset"); 684 const DILocalVariable *Var = MI.getDebugVariable(); 685 const DIExpression *Expr = MI.getDebugExpression(); 686 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 687 if (!Discard) 688 UV->addDef(Idx, MI.getDebugOperand(0), IsIndirect, *Expr); 689 else { 690 MachineOperand MO = MachineOperand::CreateReg(0U, false); 691 MO.setIsDebug(); 692 UV->addDef(Idx, MO, false, *Expr); 693 } 694 return true; 695 } 696 697 bool LDVImpl::handleDebugInstrRef(MachineInstr &MI, SlotIndex Idx) { 698 assert(MI.isDebugRef()); 699 unsigned InstrNum = MI.getOperand(0).getImm(); 700 unsigned OperandNum = MI.getOperand(1).getImm(); 701 auto *Var = MI.getDebugVariable(); 702 auto *Expr = MI.getDebugExpression(); 703 auto &DL = MI.getDebugLoc(); 704 StashedInstrRef Stashed = 705 std::make_tuple(InstrNum, OperandNum, Var, Expr, DL); 706 StashedInstrReferences[Idx].push_back(Stashed); 707 return true; 708 } 709 710 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 711 // DBG_LABEL label 712 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 713 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 714 return false; 715 } 716 717 // Get or create the UserLabel for label here. 718 const DILabel *Label = MI.getDebugLabel(); 719 const DebugLoc &DL = MI.getDebugLoc(); 720 bool Found = false; 721 for (auto const &L : userLabels) { 722 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 723 Found = true; 724 break; 725 } 726 } 727 if (!Found) 728 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 729 730 return true; 731 } 732 733 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 734 bool Changed = false; 735 for (MachineBasicBlock &MBB : mf) { 736 for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); 737 MBBI != MBBE;) { 738 // Use the first debug instruction in the sequence to get a SlotIndex 739 // for following consecutive debug instructions. 740 if (!MBBI->isDebugInstr()) { 741 ++MBBI; 742 continue; 743 } 744 // Debug instructions has no slot index. Use the previous 745 // non-debug instruction's SlotIndex as its SlotIndex. 746 SlotIndex Idx = 747 MBBI == MBB.begin() 748 ? LIS->getMBBStartIdx(&MBB) 749 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 750 // Handle consecutive debug instructions with the same slot index. 751 do { 752 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 753 // kinds of debug instructions. 754 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 755 (MBBI->isDebugRef() && handleDebugInstrRef(*MBBI, Idx)) || 756 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 757 MBBI = MBB.erase(MBBI); 758 Changed = true; 759 } else 760 ++MBBI; 761 } while (MBBI != MBBE && MBBI->isDebugInstr()); 762 } 763 } 764 return Changed; 765 } 766 767 void UserValue::extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 768 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 769 LiveIntervals &LIS) { 770 SlotIndex Start = Idx; 771 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 772 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 773 LocMap::iterator I = locInts.find(Start); 774 775 // Limit to VNI's live range. 776 bool ToEnd = true; 777 if (LR && VNI) { 778 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 779 if (!Segment || Segment->valno != VNI) { 780 if (Kills) 781 Kills->push_back(Start); 782 return; 783 } 784 if (Segment->end < Stop) { 785 Stop = Segment->end; 786 ToEnd = false; 787 } 788 } 789 790 // There could already be a short def at Start. 791 if (I.valid() && I.start() <= Start) { 792 // Stop when meeting a different location or an already extended interval. 793 Start = Start.getNextSlot(); 794 if (I.value() != DbgValue || I.stop() != Start) 795 return; 796 // This is a one-slot placeholder. Just skip it. 797 ++I; 798 } 799 800 // Limited by the next def. 801 if (I.valid() && I.start() < Stop) 802 Stop = I.start(); 803 // Limited by VNI's live range. 804 else if (!ToEnd && Kills) 805 Kills->push_back(Stop); 806 807 if (Start < Stop) 808 I.insert(Start, Stop, DbgValue); 809 } 810 811 void UserValue::addDefsFromCopies( 812 LiveInterval *LI, DbgVariableValue DbgValue, 813 const SmallVectorImpl<SlotIndex> &Kills, 814 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 815 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 816 if (Kills.empty()) 817 return; 818 // Don't track copies from physregs, there are too many uses. 819 if (!Register::isVirtualRegister(LI->reg())) 820 return; 821 822 // Collect all the (vreg, valno) pairs that are copies of LI. 823 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 824 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 825 MachineInstr *MI = MO.getParent(); 826 // Copies of the full value. 827 if (MO.getSubReg() || !MI->isCopy()) 828 continue; 829 Register DstReg = MI->getOperand(0).getReg(); 830 831 // Don't follow copies to physregs. These are usually setting up call 832 // arguments, and the argument registers are always call clobbered. We are 833 // better off in the source register which could be a callee-saved register, 834 // or it could be spilled. 835 if (!Register::isVirtualRegister(DstReg)) 836 continue; 837 838 // Is the value extended to reach this copy? If not, another def may be 839 // blocking it, or we are looking at a wrong value of LI. 840 SlotIndex Idx = LIS.getInstructionIndex(*MI); 841 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 842 if (!I.valid() || I.value() != DbgValue) 843 continue; 844 845 if (!LIS.hasInterval(DstReg)) 846 continue; 847 LiveInterval *DstLI = &LIS.getInterval(DstReg); 848 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 849 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 850 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 851 } 852 853 if (CopyValues.empty()) 854 return; 855 856 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 857 << '\n'); 858 859 // Try to add defs of the copied values for each kill point. 860 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 861 SlotIndex Idx = Kills[i]; 862 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 863 LiveInterval *DstLI = CopyValues[j].first; 864 const VNInfo *DstVNI = CopyValues[j].second; 865 if (DstLI->getVNInfoAt(Idx) != DstVNI) 866 continue; 867 // Check that there isn't already a def at Idx 868 LocMap::iterator I = locInts.find(Idx); 869 if (I.valid() && I.start() <= Idx) 870 continue; 871 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 872 << DstVNI->id << " in " << *DstLI << '\n'); 873 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 874 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 875 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 876 DbgVariableValue NewValue = DbgValue.changeLocNo(LocNo); 877 I.insert(Idx, Idx.getNextSlot(), NewValue); 878 NewDefs.push_back(std::make_pair(Idx, NewValue)); 879 break; 880 } 881 } 882 } 883 884 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 885 const TargetRegisterInfo &TRI, 886 LiveIntervals &LIS, LexicalScopes &LS) { 887 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 888 889 // Collect all defs to be extended (Skipping undefs). 890 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 891 if (!I.value().isUndef()) 892 Defs.push_back(std::make_pair(I.start(), I.value())); 893 894 // Extend all defs, and possibly add new ones along the way. 895 for (unsigned i = 0; i != Defs.size(); ++i) { 896 SlotIndex Idx = Defs[i].first; 897 DbgVariableValue DbgValue = Defs[i].second; 898 const MachineOperand &LocMO = locations[DbgValue.getLocNo()]; 899 900 if (!LocMO.isReg()) { 901 extendDef(Idx, DbgValue, nullptr, nullptr, nullptr, LIS); 902 continue; 903 } 904 905 // Register locations are constrained to where the register value is live. 906 if (Register::isVirtualRegister(LocMO.getReg())) { 907 LiveInterval *LI = nullptr; 908 const VNInfo *VNI = nullptr; 909 if (LIS.hasInterval(LocMO.getReg())) { 910 LI = &LIS.getInterval(LocMO.getReg()); 911 VNI = LI->getVNInfoAt(Idx); 912 } 913 SmallVector<SlotIndex, 16> Kills; 914 extendDef(Idx, DbgValue, LI, VNI, &Kills, LIS); 915 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 916 // if the original location for example is %vreg0:sub_hi, and we find a 917 // full register copy in addDefsFromCopies (at the moment it only handles 918 // full register copies), then we must add the sub1 sub-register index to 919 // the new location. However, that is only possible if the new virtual 920 // register is of the same regclass (or if there is an equivalent 921 // sub-register in that regclass). For now, simply skip handling copies if 922 // a sub-register is involved. 923 if (LI && !LocMO.getSubReg()) 924 addDefsFromCopies(LI, DbgValue, Kills, Defs, MRI, LIS); 925 continue; 926 } 927 928 // For physregs, we only mark the start slot idx. DwarfDebug will see it 929 // as if the DBG_VALUE is valid up until the end of the basic block, or 930 // the next def of the physical register. So we do not need to extend the 931 // range. It might actually happen that the DBG_VALUE is the last use of 932 // the physical register (e.g. if this is an unused input argument to a 933 // function). 934 } 935 936 // The computed intervals may extend beyond the range of the debug 937 // location's lexical scope. In this case, splitting of an interval 938 // can result in an interval outside of the scope being created, 939 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 940 // this, trim the intervals to the lexical scope. 941 942 LexicalScope *Scope = LS.findLexicalScope(dl); 943 if (!Scope) 944 return; 945 946 SlotIndex PrevEnd; 947 LocMap::iterator I = locInts.begin(); 948 949 // Iterate over the lexical scope ranges. Each time round the loop 950 // we check the intervals for overlap with the end of the previous 951 // range and the start of the next. The first range is handled as 952 // a special case where there is no PrevEnd. 953 for (const InsnRange &Range : Scope->getRanges()) { 954 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 955 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 956 957 // Variable locations at the first instruction of a block should be 958 // based on the block's SlotIndex, not the first instruction's index. 959 if (Range.first == Range.first->getParent()->begin()) 960 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 961 962 // At the start of each iteration I has been advanced so that 963 // I.stop() >= PrevEnd. Check for overlap. 964 if (PrevEnd && I.start() < PrevEnd) { 965 SlotIndex IStop = I.stop(); 966 DbgVariableValue DbgValue = I.value(); 967 968 // Stop overlaps previous end - trim the end of the interval to 969 // the scope range. 970 I.setStopUnchecked(PrevEnd); 971 ++I; 972 973 // If the interval also overlaps the start of the "next" (i.e. 974 // current) range create a new interval for the remainder (which 975 // may be further trimmed). 976 if (RStart < IStop) 977 I.insert(RStart, IStop, DbgValue); 978 } 979 980 // Advance I so that I.stop() >= RStart, and check for overlap. 981 I.advanceTo(RStart); 982 if (!I.valid()) 983 return; 984 985 if (I.start() < RStart) { 986 // Interval start overlaps range - trim to the scope range. 987 I.setStartUnchecked(RStart); 988 // Remember that this interval was trimmed. 989 trimmedDefs.insert(RStart); 990 } 991 992 // The end of a lexical scope range is the last instruction in the 993 // range. To convert to an interval we need the index of the 994 // instruction after it. 995 REnd = REnd.getNextIndex(); 996 997 // Advance I to first interval outside current range. 998 I.advanceTo(REnd); 999 if (!I.valid()) 1000 return; 1001 1002 PrevEnd = REnd; 1003 } 1004 1005 // Check for overlap with end of final range. 1006 if (PrevEnd && I.start() < PrevEnd) 1007 I.setStopUnchecked(PrevEnd); 1008 } 1009 1010 void LDVImpl::computeIntervals() { 1011 LexicalScopes LS; 1012 LS.initialize(*MF); 1013 1014 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 1015 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 1016 userValues[i]->mapVirtRegs(this); 1017 } 1018 } 1019 1020 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 1021 clear(); 1022 MF = &mf; 1023 LIS = &pass.getAnalysis<LiveIntervals>(); 1024 TRI = mf.getSubtarget().getRegisterInfo(); 1025 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 1026 << mf.getName() << " **********\n"); 1027 1028 bool Changed = collectDebugValues(mf); 1029 computeIntervals(); 1030 LLVM_DEBUG(print(dbgs())); 1031 ModifiedMF = Changed; 1032 return Changed; 1033 } 1034 1035 static void removeDebugInstrs(MachineFunction &mf) { 1036 for (MachineBasicBlock &MBB : mf) { 1037 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 1038 if (!MBBI->isDebugInstr()) { 1039 ++MBBI; 1040 continue; 1041 } 1042 MBBI = MBB.erase(MBBI); 1043 } 1044 } 1045 } 1046 1047 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1048 if (!EnableLDV) 1049 return false; 1050 if (!mf.getFunction().getSubprogram()) { 1051 removeDebugInstrs(mf); 1052 return false; 1053 } 1054 if (!pImpl) 1055 pImpl = new LDVImpl(this); 1056 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1057 } 1058 1059 void LiveDebugVariables::releaseMemory() { 1060 if (pImpl) 1061 static_cast<LDVImpl*>(pImpl)->clear(); 1062 } 1063 1064 LiveDebugVariables::~LiveDebugVariables() { 1065 if (pImpl) 1066 delete static_cast<LDVImpl*>(pImpl); 1067 } 1068 1069 //===----------------------------------------------------------------------===// 1070 // Live Range Splitting 1071 //===----------------------------------------------------------------------===// 1072 1073 bool 1074 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1075 LiveIntervals& LIS) { 1076 LLVM_DEBUG({ 1077 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1078 print(dbgs(), nullptr); 1079 }); 1080 bool DidChange = false; 1081 LocMap::iterator LocMapI; 1082 LocMapI.setMap(locInts); 1083 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1084 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1085 if (LI->empty()) 1086 continue; 1087 1088 // Don't allocate the new LocNo until it is needed. 1089 unsigned NewLocNo = UndefLocNo; 1090 1091 // Iterate over the overlaps between locInts and LI. 1092 LocMapI.find(LI->beginIndex()); 1093 if (!LocMapI.valid()) 1094 continue; 1095 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1096 LiveInterval::iterator LIE = LI->end(); 1097 while (LocMapI.valid() && LII != LIE) { 1098 // At this point, we know that LocMapI.stop() > LII->start. 1099 LII = LI->advanceTo(LII, LocMapI.start()); 1100 if (LII == LIE) 1101 break; 1102 1103 // Now LII->end > LocMapI.start(). Do we have an overlap? 1104 if (LocMapI.value().getLocNo() == OldLocNo && 1105 LII->start < LocMapI.stop()) { 1106 // Overlapping correct location. Allocate NewLocNo now. 1107 if (NewLocNo == UndefLocNo) { 1108 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1109 MO.setSubReg(locations[OldLocNo].getSubReg()); 1110 NewLocNo = getLocationNo(MO); 1111 DidChange = true; 1112 } 1113 1114 SlotIndex LStart = LocMapI.start(); 1115 SlotIndex LStop = LocMapI.stop(); 1116 DbgVariableValue OldDbgValue = LocMapI.value(); 1117 1118 // Trim LocMapI down to the LII overlap. 1119 if (LStart < LII->start) 1120 LocMapI.setStartUnchecked(LII->start); 1121 if (LStop > LII->end) 1122 LocMapI.setStopUnchecked(LII->end); 1123 1124 // Change the value in the overlap. This may trigger coalescing. 1125 LocMapI.setValue(OldDbgValue.changeLocNo(NewLocNo)); 1126 1127 // Re-insert any removed OldDbgValue ranges. 1128 if (LStart < LocMapI.start()) { 1129 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1130 ++LocMapI; 1131 assert(LocMapI.valid() && "Unexpected coalescing"); 1132 } 1133 if (LStop > LocMapI.stop()) { 1134 ++LocMapI; 1135 LocMapI.insert(LII->end, LStop, OldDbgValue); 1136 --LocMapI; 1137 } 1138 } 1139 1140 // Advance to the next overlap. 1141 if (LII->end < LocMapI.stop()) { 1142 if (++LII == LIE) 1143 break; 1144 LocMapI.advanceTo(LII->start); 1145 } else { 1146 ++LocMapI; 1147 if (!LocMapI.valid()) 1148 break; 1149 LII = LI->advanceTo(LII, LocMapI.start()); 1150 } 1151 } 1152 } 1153 1154 // Finally, remove OldLocNo unless it is still used by some interval in the 1155 // locInts map. One case when OldLocNo still is in use is when the register 1156 // has been spilled. In such situations the spilled register is kept as a 1157 // location until rewriteLocations is called (VirtRegMap is mapping the old 1158 // register to the spill slot). So for a while we can have locations that map 1159 // to virtual registers that have been removed from both the MachineFunction 1160 // and from LiveIntervals. 1161 // 1162 // We may also just be using the location for a value with a different 1163 // expression. 1164 removeLocationIfUnused(OldLocNo); 1165 1166 LLVM_DEBUG({ 1167 dbgs() << "Split result: \t"; 1168 print(dbgs(), nullptr); 1169 }); 1170 return DidChange; 1171 } 1172 1173 bool 1174 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1175 LiveIntervals &LIS) { 1176 bool DidChange = false; 1177 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1178 // safely erase unused locations. 1179 for (unsigned i = locations.size(); i ; --i) { 1180 unsigned LocNo = i-1; 1181 const MachineOperand *Loc = &locations[LocNo]; 1182 if (!Loc->isReg() || Loc->getReg() != OldReg) 1183 continue; 1184 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1185 } 1186 return DidChange; 1187 } 1188 1189 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1190 bool DidChange = false; 1191 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1192 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1193 1194 if (!DidChange) 1195 return; 1196 1197 // Map all of the new virtual registers. 1198 UserValue *UV = lookupVirtReg(OldReg); 1199 for (unsigned i = 0; i != NewRegs.size(); ++i) 1200 mapVirtReg(NewRegs[i], UV); 1201 } 1202 1203 void LiveDebugVariables:: 1204 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1205 if (pImpl) 1206 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1207 } 1208 1209 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1210 const TargetInstrInfo &TII, 1211 const TargetRegisterInfo &TRI, 1212 SpillOffsetMap &SpillOffsets) { 1213 // Build a set of new locations with new numbers so we can coalesce our 1214 // IntervalMap if two vreg intervals collapse to the same physical location. 1215 // Use MapVector instead of SetVector because MapVector::insert returns the 1216 // position of the previously or newly inserted element. The boolean value 1217 // tracks if the location was produced by a spill. 1218 // FIXME: This will be problematic if we ever support direct and indirect 1219 // frame index locations, i.e. expressing both variables in memory and 1220 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1221 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1222 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1223 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1224 bool Spilled = false; 1225 unsigned SpillOffset = 0; 1226 MachineOperand Loc = locations[I]; 1227 // Only virtual registers are rewritten. 1228 if (Loc.isReg() && Loc.getReg() && 1229 Register::isVirtualRegister(Loc.getReg())) { 1230 Register VirtReg = Loc.getReg(); 1231 if (VRM.isAssignedReg(VirtReg) && 1232 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1233 // This can create a %noreg operand in rare cases when the sub-register 1234 // index is no longer available. That means the user value is in a 1235 // non-existent sub-register, and %noreg is exactly what we want. 1236 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1237 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1238 // Retrieve the stack slot offset. 1239 unsigned SpillSize; 1240 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1241 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1242 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1243 SpillOffset, MF); 1244 1245 // FIXME: Invalidate the location if the offset couldn't be calculated. 1246 (void)Success; 1247 1248 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1249 Spilled = true; 1250 } else { 1251 Loc.setReg(0); 1252 Loc.setSubReg(0); 1253 } 1254 } 1255 1256 // Insert this location if it doesn't already exist and record a mapping 1257 // from the old number to the new number. 1258 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1259 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1260 LocNoMap[I] = NewLocNo; 1261 } 1262 1263 // Rewrite the locations and record the stack slot offsets for spills. 1264 locations.clear(); 1265 SpillOffsets.clear(); 1266 for (auto &Pair : NewLocations) { 1267 bool Spilled; 1268 unsigned SpillOffset; 1269 std::tie(Spilled, SpillOffset) = Pair.second; 1270 locations.push_back(Pair.first); 1271 if (Spilled) { 1272 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1273 SpillOffsets[NewLocNo] = SpillOffset; 1274 } 1275 } 1276 1277 // Update the interval map, but only coalesce left, since intervals to the 1278 // right use the old location numbers. This should merge two contiguous 1279 // DBG_VALUE intervals with different vregs that were allocated to the same 1280 // physical register. 1281 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1282 DbgVariableValue DbgValue = I.value(); 1283 // Undef values don't exist in locations (and thus not in LocNoMap either) 1284 // so skip over them. See getLocationNo(). 1285 if (DbgValue.isUndef()) 1286 continue; 1287 unsigned NewLocNo = LocNoMap[DbgValue.getLocNo()]; 1288 I.setValueUnchecked(DbgValue.changeLocNo(NewLocNo)); 1289 I.setStart(I.start()); 1290 } 1291 } 1292 1293 /// Find an iterator for inserting a DBG_VALUE instruction. 1294 static MachineBasicBlock::iterator 1295 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, 1296 BlockSkipInstsMap &BBSkipInstsMap) { 1297 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1298 Idx = Idx.getBaseIndex(); 1299 1300 // Try to find an insert location by going backwards from Idx. 1301 MachineInstr *MI; 1302 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1303 // We've reached the beginning of MBB. 1304 if (Idx == Start) { 1305 // Retrieve the last PHI/Label/Debug location found when calling 1306 // SkipPHIsLabelsAndDebug last time. Start searching from there. 1307 // 1308 // Note the iterator kept in BBSkipInstsMap is one step back based 1309 // on the iterator returned by SkipPHIsLabelsAndDebug last time. 1310 // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), 1311 // BBSkipInstsMap won't save it. This is to consider the case that 1312 // new instructions may be inserted at the beginning of MBB after 1313 // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in 1314 // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions 1315 // are inserted at the beginning of the MBB, the iterator in 1316 // BBSkipInstsMap won't point to the beginning of the MBB anymore. 1317 // Therefore The next search in SkipPHIsLabelsAndDebug will skip those 1318 // newly added instructions and that is unwanted. 1319 MachineBasicBlock::iterator BeginIt; 1320 auto MapIt = BBSkipInstsMap.find(MBB); 1321 if (MapIt == BBSkipInstsMap.end()) 1322 BeginIt = MBB->begin(); 1323 else 1324 BeginIt = std::next(MapIt->second); 1325 auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); 1326 if (I != BeginIt) 1327 BBSkipInstsMap[MBB] = std::prev(I); 1328 return I; 1329 } 1330 Idx = Idx.getPrevIndex(); 1331 } 1332 1333 // Don't insert anything after the first terminator, though. 1334 return MI->isTerminator() ? MBB->getFirstTerminator() : 1335 std::next(MachineBasicBlock::iterator(MI)); 1336 } 1337 1338 /// Find an iterator for inserting the next DBG_VALUE instruction 1339 /// (or end if no more insert locations found). 1340 static MachineBasicBlock::iterator 1341 findNextInsertLocation(MachineBasicBlock *MBB, 1342 MachineBasicBlock::iterator I, 1343 SlotIndex StopIdx, MachineOperand &LocMO, 1344 LiveIntervals &LIS, 1345 const TargetRegisterInfo &TRI) { 1346 if (!LocMO.isReg()) 1347 return MBB->instr_end(); 1348 Register Reg = LocMO.getReg(); 1349 1350 // Find the next instruction in the MBB that define the register Reg. 1351 while (I != MBB->end() && !I->isTerminator()) { 1352 if (!LIS.isNotInMIMap(*I) && 1353 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1354 break; 1355 if (I->definesRegister(Reg, &TRI)) 1356 // The insert location is directly after the instruction/bundle. 1357 return std::next(I); 1358 ++I; 1359 } 1360 return MBB->end(); 1361 } 1362 1363 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1364 SlotIndex StopIdx, DbgVariableValue DbgValue, 1365 bool Spilled, unsigned SpillOffset, 1366 LiveIntervals &LIS, const TargetInstrInfo &TII, 1367 const TargetRegisterInfo &TRI, 1368 BlockSkipInstsMap &BBSkipInstsMap) { 1369 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1370 // Only search within the current MBB. 1371 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1372 MachineBasicBlock::iterator I = 1373 findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); 1374 // Undef values don't exist in locations so create new "noreg" register MOs 1375 // for them. See getLocationNo(). 1376 MachineOperand MO = 1377 !DbgValue.isUndef() 1378 ? locations[DbgValue.getLocNo()] 1379 : MachineOperand::CreateReg( 1380 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1381 /* isKill */ false, /* isDead */ false, 1382 /* isUndef */ false, /* isEarlyClobber */ false, 1383 /* SubReg */ 0, /* isDebug */ true); 1384 1385 ++NumInsertedDebugValues; 1386 1387 assert(cast<DILocalVariable>(Variable) 1388 ->isValidLocationForIntrinsic(getDebugLoc()) && 1389 "Expected inlined-at fields to agree"); 1390 1391 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1392 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1393 // that the original virtual register was a pointer. Also, add the stack slot 1394 // offset for the spilled register to the expression. 1395 const DIExpression *Expr = DbgValue.getExpression(); 1396 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1397 bool IsIndirect = DbgValue.getWasIndirect(); 1398 if (Spilled) { 1399 if (IsIndirect) 1400 DIExprFlags |= DIExpression::DerefAfter; 1401 Expr = 1402 DIExpression::prepend(Expr, DIExprFlags, SpillOffset); 1403 IsIndirect = true; 1404 } 1405 1406 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1407 1408 do { 1409 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1410 IsIndirect, MO, Variable, Expr); 1411 1412 // Continue and insert DBG_VALUES after every redefinition of register 1413 // associated with the debug value within the range 1414 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1415 } while (I != MBB->end()); 1416 } 1417 1418 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1419 LiveIntervals &LIS, const TargetInstrInfo &TII, 1420 BlockSkipInstsMap &BBSkipInstsMap) { 1421 MachineBasicBlock::iterator I = 1422 findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); 1423 ++NumInsertedDebugLabels; 1424 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1425 .addMetadata(Label); 1426 } 1427 1428 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1429 const TargetInstrInfo &TII, 1430 const TargetRegisterInfo &TRI, 1431 const SpillOffsetMap &SpillOffsets, 1432 BlockSkipInstsMap &BBSkipInstsMap) { 1433 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1434 1435 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1436 SlotIndex Start = I.start(); 1437 SlotIndex Stop = I.stop(); 1438 DbgVariableValue DbgValue = I.value(); 1439 auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(DbgValue.getLocNo()) 1440 : SpillOffsets.end(); 1441 bool Spilled = SpillIt != SpillOffsets.end(); 1442 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1443 1444 // If the interval start was trimmed to the lexical scope insert the 1445 // DBG_VALUE at the previous index (otherwise it appears after the 1446 // first instruction in the range). 1447 if (trimmedDefs.count(Start)) 1448 Start = Start.getPrevIndex(); 1449 1450 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop 1451 << "):" << DbgValue.getLocNo()); 1452 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1453 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1454 1455 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1456 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1457 TII, TRI, BBSkipInstsMap); 1458 // This interval may span multiple basic blocks. 1459 // Insert a DBG_VALUE into each one. 1460 while (Stop > MBBEnd) { 1461 // Move to the next block. 1462 Start = MBBEnd; 1463 if (++MBB == MFEnd) 1464 break; 1465 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1466 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1467 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1468 TII, TRI, BBSkipInstsMap); 1469 } 1470 LLVM_DEBUG(dbgs() << '\n'); 1471 if (MBB == MFEnd) 1472 break; 1473 1474 ++I; 1475 } 1476 } 1477 1478 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, 1479 BlockSkipInstsMap &BBSkipInstsMap) { 1480 LLVM_DEBUG(dbgs() << "\t" << loc); 1481 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1482 1483 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1484 insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); 1485 1486 LLVM_DEBUG(dbgs() << '\n'); 1487 } 1488 1489 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1490 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1491 if (!MF) 1492 return; 1493 1494 BlockSkipInstsMap BBSkipInstsMap; 1495 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1496 SpillOffsetMap SpillOffsets; 1497 for (auto &userValue : userValues) { 1498 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1499 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1500 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, 1501 BBSkipInstsMap); 1502 } 1503 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1504 for (auto &userLabel : userLabels) { 1505 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1506 userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); 1507 } 1508 1509 LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); 1510 1511 // Re-insert any DBG_INSTR_REFs back in the position they were. Ordering 1512 // is preserved by vector. 1513 auto Slots = LIS->getSlotIndexes(); 1514 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF); 1515 for (auto &P : StashedInstrReferences) { 1516 const SlotIndex &Idx = P.first; 1517 auto *MBB = Slots->getMBBFromIndex(Idx); 1518 MachineBasicBlock::iterator insertPos = 1519 findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); 1520 for (auto &Stashed : P.second) { 1521 auto MIB = BuildMI(*MF, std::get<4>(Stashed), RefII); 1522 MIB.addImm(std::get<0>(Stashed)); 1523 MIB.addImm(std::get<1>(Stashed)); 1524 MIB.addMetadata(std::get<2>(Stashed)); 1525 MIB.addMetadata(std::get<3>(Stashed)); 1526 MachineInstr *New = MIB; 1527 MBB->insert(insertPos, New); 1528 } 1529 } 1530 1531 EmitDone = true; 1532 BBSkipInstsMap.clear(); 1533 } 1534 1535 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1536 if (pImpl) 1537 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1538 } 1539 1540 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1541 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1542 if (pImpl) 1543 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1544 } 1545 #endif 1546