1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the LiveDebugVariables analysis. 11 // 12 // Remove all DBG_VALUE instructions referencing virtual registers and replace 13 // them with a data structure tracking where live user variables are kept - in a 14 // virtual register or in a stack slot. 15 // 16 // Allow the data structure to be updated during register allocation when values 17 // are moved between registers and stack slots. Finally emit new DBG_VALUE 18 // instructions after register allocation is complete. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "livedebug" 23 #include "LiveDebugVariables.h" 24 #include "VirtRegMap.h" 25 #include "llvm/Constants.h" 26 #include "llvm/Metadata.h" 27 #include "llvm/Value.h" 28 #include "llvm/ADT/IntervalMap.h" 29 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 30 #include "llvm/CodeGen/MachineDominators.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 40 using namespace llvm; 41 42 static cl::opt<bool> 43 EnableLDV("live-debug-variables", 44 cl::desc("Enable the live debug variables pass"), cl::Hidden); 45 46 char LiveDebugVariables::ID = 0; 47 48 INITIALIZE_PASS_BEGIN(LiveDebugVariables, "livedebugvars", 49 "Debug Variable Analysis", false, false) 50 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 51 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 52 INITIALIZE_PASS_END(LiveDebugVariables, "livedebugvars", 53 "Debug Variable Analysis", false, false) 54 55 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 56 AU.addRequired<MachineDominatorTree>(); 57 AU.addRequiredTransitive<LiveIntervals>(); 58 AU.setPreservesAll(); 59 MachineFunctionPass::getAnalysisUsage(AU); 60 } 61 62 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID), pImpl(0) { 63 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 64 } 65 66 /// Location - All the different places a user value can reside. 67 /// Note that this includes immediate values that technically aren't locations. 68 namespace { 69 struct Location { 70 /// kind - What kind of location is this? 71 enum Kind { 72 locUndef = 0, 73 locImm = 0x80000000, 74 locFPImm 75 }; 76 /// Kind - One of the following: 77 /// 1. locUndef 78 /// 2. Register number (physical or virtual), data.SubIdx is the subreg index. 79 /// 3. ~Frame index, data.Offset is the offset. 80 /// 4. locImm, data.ImmVal is the constant integer value. 81 /// 5. locFPImm, data.CFP points to the floating point constant. 82 unsigned Kind; 83 84 /// Data - Extra data about location. 85 union { 86 unsigned SubIdx; ///< For virtual registers. 87 int64_t Offset; ///< For frame indices. 88 int64_t ImmVal; ///< For locImm. 89 const ConstantFP *CFP; ///< For locFPImm. 90 } Data; 91 92 Location(const MachineOperand &MO) { 93 switch(MO.getType()) { 94 case MachineOperand::MO_Register: 95 Kind = MO.getReg(); 96 Data.SubIdx = MO.getSubReg(); 97 return; 98 case MachineOperand::MO_Immediate: 99 Kind = locImm; 100 Data.ImmVal = MO.getImm(); 101 return; 102 case MachineOperand::MO_FPImmediate: 103 Kind = locFPImm; 104 Data.CFP = MO.getFPImm(); 105 return; 106 case MachineOperand::MO_FrameIndex: 107 Kind = ~MO.getIndex(); 108 // FIXME: MO_FrameIndex should support an offset. 109 Data.Offset = 0; 110 return; 111 default: 112 Kind = locUndef; 113 return; 114 } 115 } 116 117 /// addOperand - Add this location as a machine operand to MI. 118 MachineInstrBuilder addOperand(MachineInstrBuilder MI) const { 119 switch (Kind) { 120 case locImm: 121 return MI.addImm(Data.ImmVal); 122 case locFPImm: 123 return MI.addFPImm(Data.CFP); 124 default: 125 if (isFrameIndex()) 126 return MI.addFrameIndex(getFrameIndex()); 127 else 128 return MI.addReg(Kind); // reg and undef. 129 } 130 } 131 132 bool operator==(const Location &RHS) const { 133 if (Kind != RHS.Kind) 134 return false; 135 switch (Kind) { 136 case locUndef: 137 return true; 138 case locImm: 139 return Data.ImmVal == RHS.Data.ImmVal; 140 case locFPImm: 141 return Data.CFP == RHS.Data.CFP; 142 default: 143 if (isReg()) 144 return Data.SubIdx == RHS.Data.SubIdx; 145 else 146 return Data.Offset == RHS.Data.Offset; 147 } 148 } 149 150 /// isUndef - is this the singleton undef? 151 bool isUndef() const { return Kind == locUndef; } 152 153 /// isReg - is this a register location? 154 bool isReg() const { return Kind && Kind < locImm; } 155 156 /// isFrameIndex - is this a frame index location? 157 bool isFrameIndex() const { return Kind > locFPImm; } 158 159 int getFrameIndex() const { return ~Kind; } 160 161 void print(raw_ostream&, const TargetRegisterInfo*); 162 }; 163 } 164 165 /// LocMap - Map of where a user value is live, and its location. 166 typedef IntervalMap<SlotIndex, unsigned, 4> LocMap; 167 168 /// UserValue - A user value is a part of a debug info user variable. 169 /// 170 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 171 /// holds part of a user variable. The part is identified by a byte offset. 172 /// 173 /// UserValues are grouped into equivalence classes for easier searching. Two 174 /// user values are related if they refer to the same variable, or if they are 175 /// held by the same virtual register. The equivalence class is the transitive 176 /// closure of that relation. 177 namespace { 178 class UserValue { 179 const MDNode *variable; ///< The debug info variable we are part of. 180 unsigned offset; ///< Byte offset into variable. 181 182 UserValue *leader; ///< Equivalence class leader. 183 UserValue *next; ///< Next value in equivalence class, or null. 184 185 /// Numbered locations referenced by locmap. 186 SmallVector<Location, 4> locations; 187 188 /// Map of slot indices where this value is live. 189 LocMap locInts; 190 191 /// insertDebugValue - Insert a DBG_VALUE into MBB at Idx for LocNo. 192 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, unsigned LocNo, 193 LiveIntervals &LIS, const TargetInstrInfo &TII); 194 195 /// insertDebugKill - Insert an undef DBG_VALUE into MBB at Idx. 196 void insertDebugKill(MachineBasicBlock *MBB, SlotIndex Idx, 197 LiveIntervals &LIS, const TargetInstrInfo &TII); 198 199 public: 200 /// UserValue - Create a new UserValue. 201 UserValue(const MDNode *var, unsigned o, LocMap::Allocator &alloc) 202 : variable(var), offset(o), leader(this), next(0), locInts(alloc) 203 {} 204 205 /// getLeader - Get the leader of this value's equivalence class. 206 UserValue *getLeader() { 207 UserValue *l = leader; 208 while (l != l->leader) 209 l = l->leader; 210 return leader = l; 211 } 212 213 /// getNext - Return the next UserValue in the equivalence class. 214 UserValue *getNext() const { return next; } 215 216 /// match - Does this UserValue match the aprameters? 217 bool match(const MDNode *Var, unsigned Offset) const { 218 return Var == variable && Offset == offset; 219 } 220 221 /// merge - Merge equivalence classes. 222 static UserValue *merge(UserValue *L1, UserValue *L2) { 223 L2 = L2->getLeader(); 224 if (!L1) 225 return L2; 226 L1 = L1->getLeader(); 227 if (L1 == L2) 228 return L1; 229 // Splice L2 before L1's members. 230 UserValue *End = L2; 231 while (End->next) 232 End->leader = L1, End = End->next; 233 End->leader = L1; 234 End->next = L1->next; 235 L1->next = L2; 236 return L1; 237 } 238 239 /// getLocationNo - Return the location number that matches Loc. 240 unsigned getLocationNo(Location Loc) { 241 if (Loc.isUndef()) 242 return ~0u; 243 unsigned n = std::find(locations.begin(), locations.end(), Loc) - 244 locations.begin(); 245 if (n == locations.size()) 246 locations.push_back(Loc); 247 return n; 248 } 249 250 /// addDef - Add a definition point to this value. 251 void addDef(SlotIndex Idx, const MachineOperand &LocMO) { 252 // Add a singular (Idx,Idx) -> Loc mapping. 253 LocMap::iterator I = locInts.find(Idx); 254 if (!I.valid() || I.start() != Idx) 255 I.insert(Idx, Idx.getNextSlot(), getLocationNo(LocMO)); 256 } 257 258 /// extendDef - Extend the current definition as far as possible down the 259 /// dominator tree. Stop when meeting an existing def or when leaving the live 260 /// range of VNI. 261 /// @param Idx Starting point for the definition. 262 /// @param LocNo Location number to propagate. 263 /// @param LI Restrict liveness to where LI has the value VNI. May be null. 264 /// @param VNI When LI is not null, this is the value to restrict to. 265 /// @param LIS Live intervals analysis. 266 /// @param MDT Dominator tree. 267 void extendDef(SlotIndex Idx, unsigned LocNo, 268 LiveInterval *LI, const VNInfo *VNI, 269 LiveIntervals &LIS, MachineDominatorTree &MDT); 270 271 /// computeIntervals - Compute the live intervals of all locations after 272 /// collecting all their def points. 273 void computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT); 274 275 /// renameRegister - Update locations to rewrite OldReg as NewReg:SubIdx. 276 void renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx, 277 const TargetRegisterInfo *TRI); 278 279 /// rewriteLocations - Rewrite virtual register locations according to the 280 /// provided virtual register map. 281 void rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI); 282 283 /// emitDebugVariables - Recreate DBG_VALUE instruction from data structures. 284 void emitDebugValues(VirtRegMap *VRM, 285 LiveIntervals &LIS, const TargetInstrInfo &TRI); 286 287 void print(raw_ostream&, const TargetRegisterInfo*); 288 }; 289 } // namespace 290 291 /// LDVImpl - Implementation of the LiveDebugVariables pass. 292 namespace { 293 class LDVImpl { 294 LiveDebugVariables &pass; 295 LocMap::Allocator allocator; 296 MachineFunction *MF; 297 LiveIntervals *LIS; 298 MachineDominatorTree *MDT; 299 const TargetRegisterInfo *TRI; 300 301 /// userValues - All allocated UserValue instances. 302 SmallVector<UserValue*, 8> userValues; 303 304 /// Map virtual register to eq class leader. 305 typedef DenseMap<unsigned, UserValue*> VRMap; 306 VRMap virtRegMap; 307 308 /// Map user variable to eq class leader. 309 typedef DenseMap<const MDNode *, UserValue*> UVMap; 310 UVMap userVarMap; 311 312 /// getUserValue - Find or create a UserValue. 313 UserValue *getUserValue(const MDNode *Var, unsigned Offset); 314 315 /// lookupVirtReg - Find the EC leader for VirtReg or null. 316 UserValue *lookupVirtReg(unsigned VirtReg); 317 318 /// mapVirtReg - Map virtual register to an equivalence class. 319 void mapVirtReg(unsigned VirtReg, UserValue *EC); 320 321 /// handleDebugValue - Add DBG_VALUE instruction to our maps. 322 /// @param MI DBG_VALUE instruction 323 /// @param Idx Last valid SLotIndex before instruction. 324 /// @return True if the DBG_VALUE instruction should be deleted. 325 bool handleDebugValue(MachineInstr *MI, SlotIndex Idx); 326 327 /// collectDebugValues - Collect and erase all DBG_VALUE instructions, adding 328 /// a UserValue def for each instruction. 329 /// @param mf MachineFunction to be scanned. 330 /// @return True if any debug values were found. 331 bool collectDebugValues(MachineFunction &mf); 332 333 /// computeIntervals - Compute the live intervals of all user values after 334 /// collecting all their def points. 335 void computeIntervals(); 336 337 public: 338 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 339 bool runOnMachineFunction(MachineFunction &mf); 340 341 /// clear - Relase all memory. 342 void clear() { 343 DeleteContainerPointers(userValues); 344 userValues.clear(); 345 virtRegMap.clear(); 346 userVarMap.clear(); 347 } 348 349 /// renameRegister - Replace all references to OldReg wiht NewReg:SubIdx. 350 void renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx); 351 352 /// emitDebugVariables - Recreate DBG_VALUE instruction from data structures. 353 void emitDebugValues(VirtRegMap *VRM); 354 355 void print(raw_ostream&); 356 }; 357 } // namespace 358 359 void Location::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 360 switch (Kind) { 361 case locUndef: 362 OS << "undef"; 363 return; 364 case locImm: 365 OS << "int:" << Data.ImmVal; 366 return; 367 case locFPImm: 368 OS << "fp:" << Data.CFP->getValueAPF().convertToDouble(); 369 return; 370 default: 371 if (isReg()) { 372 if (TargetRegisterInfo::isVirtualRegister(Kind)) { 373 OS << "%reg" << Kind; 374 if (Data.SubIdx) 375 OS << ':' << TRI->getSubRegIndexName(Data.SubIdx); 376 } else 377 OS << '%' << TRI->getName(Kind); 378 } else { 379 OS << "fi#" << ~Kind; 380 if (Data.Offset) 381 OS << '+' << Data.Offset; 382 } 383 return; 384 } 385 } 386 387 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 388 if (const MDString *MDS = dyn_cast<MDString>(variable->getOperand(2))) 389 OS << "!\"" << MDS->getString() << "\"\t"; 390 if (offset) 391 OS << '+' << offset; 392 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 393 OS << " [" << I.start() << ';' << I.stop() << "):"; 394 if (I.value() == ~0u) 395 OS << "undef"; 396 else 397 OS << I.value(); 398 } 399 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 400 OS << " Loc" << i << '='; 401 locations[i].print(OS, TRI); 402 } 403 OS << '\n'; 404 } 405 406 void LDVImpl::print(raw_ostream &OS) { 407 OS << "********** DEBUG VARIABLES **********\n"; 408 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 409 userValues[i]->print(OS, TRI); 410 } 411 412 UserValue *LDVImpl::getUserValue(const MDNode *Var, unsigned Offset) { 413 UserValue *&Leader = userVarMap[Var]; 414 if (Leader) { 415 UserValue *UV = Leader->getLeader(); 416 Leader = UV; 417 for (; UV; UV = UV->getNext()) 418 if (UV->match(Var, Offset)) 419 return UV; 420 } 421 422 UserValue *UV = new UserValue(Var, Offset, allocator); 423 userValues.push_back(UV); 424 Leader = UserValue::merge(Leader, UV); 425 return UV; 426 } 427 428 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) { 429 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 430 UserValue *&Leader = virtRegMap[VirtReg]; 431 Leader = UserValue::merge(Leader, EC); 432 } 433 434 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) { 435 if (UserValue *UV = virtRegMap.lookup(VirtReg)) 436 return UV->getLeader(); 437 return 0; 438 } 439 440 bool LDVImpl::handleDebugValue(MachineInstr *MI, SlotIndex Idx) { 441 // DBG_VALUE loc, offset, variable 442 if (MI->getNumOperands() != 3 || 443 !MI->getOperand(1).isImm() || !MI->getOperand(2).isMetadata()) { 444 DEBUG(dbgs() << "Can't handle " << *MI); 445 return false; 446 } 447 448 // Get or create the UserValue for (variable,offset). 449 unsigned Offset = MI->getOperand(1).getImm(); 450 const MDNode *Var = MI->getOperand(2).getMetadata(); 451 UserValue *UV = getUserValue(Var, Offset); 452 453 // If the location is a virtual register, make sure it is mapped. 454 if (MI->getOperand(0).isReg()) { 455 unsigned Reg = MI->getOperand(0).getReg(); 456 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) 457 mapVirtReg(Reg, UV); 458 } 459 460 UV->addDef(Idx, MI->getOperand(0)); 461 return true; 462 } 463 464 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 465 bool Changed = false; 466 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 467 ++MFI) { 468 MachineBasicBlock *MBB = MFI; 469 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 470 MBBI != MBBE;) { 471 if (!MBBI->isDebugValue()) { 472 ++MBBI; 473 continue; 474 } 475 // DBG_VALUE has no slot index, use the previous instruction instead. 476 SlotIndex Idx = MBBI == MBB->begin() ? 477 LIS->getMBBStartIdx(MBB) : 478 LIS->getInstructionIndex(llvm::prior(MBBI)).getDefIndex(); 479 // Handle consecutive DBG_VALUE instructions with the same slot index. 480 do { 481 if (handleDebugValue(MBBI, Idx)) { 482 MBBI = MBB->erase(MBBI); 483 Changed = true; 484 } else 485 ++MBBI; 486 } while (MBBI != MBBE && MBBI->isDebugValue()); 487 } 488 } 489 return Changed; 490 } 491 492 void UserValue::extendDef(SlotIndex Idx, unsigned LocNo, 493 LiveInterval *LI, const VNInfo *VNI, 494 LiveIntervals &LIS, MachineDominatorTree &MDT) { 495 SmallVector<SlotIndex, 16> Todo; 496 Todo.push_back(Idx); 497 498 do { 499 SlotIndex Start = Todo.pop_back_val(); 500 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 501 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 502 LocMap::iterator I = locInts.find(Idx); 503 504 // Limit to VNI's live range. 505 bool ToEnd = true; 506 if (LI && VNI) { 507 LiveRange *Range = LI->getLiveRangeContaining(Start); 508 if (!Range || Range->valno != VNI) 509 continue; 510 if (Range->end < Stop) 511 Stop = Range->end, ToEnd = false; 512 } 513 514 // There could already be a short def at Start. 515 if (I.valid() && I.start() <= Start) { 516 // Stop when meeting a different location or an already extended interval. 517 Start = Start.getNextSlot(); 518 if (I.value() != LocNo || I.stop() != Start) 519 continue; 520 // This is a one-slot placeholder. Just skip it. 521 ++I; 522 } 523 524 // Limited by the next def. 525 if (I.valid() && I.start() < Stop) 526 Stop = I.start(), ToEnd = false; 527 528 if (Start >= Stop) 529 continue; 530 531 I.insert(Start, Stop, LocNo); 532 533 // If we extended to the MBB end, propagate down the dominator tree. 534 if (!ToEnd) 535 continue; 536 const std::vector<MachineDomTreeNode*> &Children = 537 MDT.getNode(MBB)->getChildren(); 538 for (unsigned i = 0, e = Children.size(); i != e; ++i) 539 Todo.push_back(LIS.getMBBStartIdx(Children[i]->getBlock())); 540 } while (!Todo.empty()); 541 } 542 543 void 544 UserValue::computeIntervals(LiveIntervals &LIS, MachineDominatorTree &MDT) { 545 SmallVector<std::pair<SlotIndex, unsigned>, 16> Defs; 546 547 // Collect all defs to be extended (Skipping undefs). 548 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 549 if (I.value() != ~0u) 550 Defs.push_back(std::make_pair(I.start(), I.value())); 551 552 for (unsigned i = 0, e = Defs.size(); i != e; ++i) { 553 SlotIndex Idx = Defs[i].first; 554 unsigned LocNo = Defs[i].second; 555 const Location &Loc = locations[LocNo]; 556 557 // Register locations are constrained to where the register value is live. 558 if (Loc.isReg() && LIS.hasInterval(Loc.Kind)) { 559 LiveInterval *LI = &LIS.getInterval(Loc.Kind); 560 const VNInfo *VNI = LI->getVNInfoAt(Idx); 561 extendDef(Idx, LocNo, LI, VNI, LIS, MDT); 562 } else 563 extendDef(Idx, LocNo, 0, 0, LIS, MDT); 564 } 565 566 // Finally, erase all the undefs. 567 for (LocMap::iterator I = locInts.begin(); I.valid();) 568 if (I.value() == ~0u) 569 I.erase(); 570 else 571 ++I; 572 } 573 574 void LDVImpl::computeIntervals() { 575 for (unsigned i = 0, e = userValues.size(); i != e; ++i) 576 userValues[i]->computeIntervals(*LIS, *MDT); 577 } 578 579 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 580 MF = &mf; 581 LIS = &pass.getAnalysis<LiveIntervals>(); 582 MDT = &pass.getAnalysis<MachineDominatorTree>(); 583 TRI = mf.getTarget().getRegisterInfo(); 584 clear(); 585 DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 586 << ((Value*)mf.getFunction())->getName() 587 << " **********\n"); 588 589 bool Changed = collectDebugValues(mf); 590 computeIntervals(); 591 DEBUG(print(dbgs())); 592 return Changed; 593 } 594 595 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 596 if (!EnableLDV) 597 return false; 598 if (!pImpl) 599 pImpl = new LDVImpl(this); 600 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 601 } 602 603 void LiveDebugVariables::releaseMemory() { 604 if (pImpl) 605 static_cast<LDVImpl*>(pImpl)->clear(); 606 } 607 608 LiveDebugVariables::~LiveDebugVariables() { 609 if (pImpl) 610 delete static_cast<LDVImpl*>(pImpl); 611 } 612 613 void UserValue:: 614 renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx, 615 const TargetRegisterInfo *TRI) { 616 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 617 Location &Loc = locations[i]; 618 if (Loc.Kind != OldReg) 619 continue; 620 Loc.Kind = NewReg; 621 if (SubIdx && Loc.Data.SubIdx) 622 Loc.Data.SubIdx = TRI->composeSubRegIndices(SubIdx, Loc.Data.SubIdx); 623 } 624 } 625 626 void LDVImpl:: 627 renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx) { 628 UserValue *UV = lookupVirtReg(OldReg); 629 if (!UV) 630 return; 631 632 if (TargetRegisterInfo::isVirtualRegister(NewReg)) 633 mapVirtReg(NewReg, UV); 634 virtRegMap.erase(OldReg); 635 636 do { 637 UV->renameRegister(OldReg, NewReg, SubIdx, TRI); 638 UV = UV->getNext(); 639 } while (UV); 640 } 641 642 void LiveDebugVariables:: 643 renameRegister(unsigned OldReg, unsigned NewReg, unsigned SubIdx) { 644 if (pImpl) 645 static_cast<LDVImpl*>(pImpl)->renameRegister(OldReg, NewReg, SubIdx); 646 } 647 648 void 649 UserValue::rewriteLocations(VirtRegMap &VRM, const TargetRegisterInfo &TRI) { 650 // Iterate over locations in reverse makes it easier to handle coalescing. 651 for (unsigned i = locations.size(); i ; --i) { 652 unsigned LocNo = i-1; 653 Location &Loc = locations[LocNo]; 654 // Only virtual registers are rewritten. 655 if (!Loc.isReg() || !TargetRegisterInfo::isVirtualRegister(Loc.Kind)) 656 continue; 657 unsigned VirtReg = Loc.Kind; 658 if (VRM.isAssignedReg(VirtReg)) { 659 unsigned PhysReg = VRM.getPhys(VirtReg); 660 if (Loc.Data.SubIdx) 661 PhysReg = TRI.getSubReg(PhysReg, Loc.Data.SubIdx); 662 Loc.Kind = PhysReg; 663 Loc.Data.SubIdx = 0; 664 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 665 Loc.Kind = ~VRM.getStackSlot(VirtReg); 666 // FIXME: Translate SubIdx to a stackslot offset. 667 Loc.Data.Offset = 0; 668 } else { 669 Loc.Kind = Location::locUndef; 670 } 671 } 672 DEBUG(print(dbgs(), &TRI)); 673 } 674 675 /// findInsertLocation - Find an iterator and DebugLoc for inserting a DBG_VALUE 676 /// instruction. 677 static MachineBasicBlock::iterator 678 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, DebugLoc &DL, 679 LiveIntervals &LIS) { 680 SlotIndex Start = LIS.getMBBStartIdx(MBB); 681 Idx = Idx.getBaseIndex(); 682 683 // Try to find an insert location by going backwards from Idx. 684 MachineInstr *MI; 685 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 686 // We've reached the beginning of MBB. 687 if (Idx == Start) { 688 MachineBasicBlock::iterator I = MBB->SkipPHIsAndLabels(MBB->begin()); 689 if (I != MBB->end()) 690 DL = I->getDebugLoc(); 691 return I; 692 } 693 Idx = Idx.getPrevIndex(); 694 } 695 // We found an instruction. The insert point is after the instr. 696 DL = MI->getDebugLoc(); 697 return llvm::next(MachineBasicBlock::iterator(MI)); 698 } 699 700 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex Idx, 701 unsigned LocNo, 702 LiveIntervals &LIS, 703 const TargetInstrInfo &TII) { 704 DebugLoc DL; 705 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, DL, LIS); 706 Location &Loc = locations[LocNo]; 707 708 // Frame index locations may require a target callback. 709 if (Loc.isFrameIndex()) { 710 MachineInstr *MI = TII.emitFrameIndexDebugValue(*MBB->getParent(), 711 Loc.getFrameIndex(), 712 offset, variable, DL); 713 if (MI) { 714 MBB->insert(I, MI); 715 return; 716 } 717 } 718 // This is not a frame index, or the target is happy with a standard FI. 719 Loc.addOperand(BuildMI(*MBB, I, DL, TII.get(TargetOpcode::DBG_VALUE))) 720 .addImm(offset).addMetadata(variable); 721 } 722 723 void UserValue::insertDebugKill(MachineBasicBlock *MBB, SlotIndex Idx, 724 LiveIntervals &LIS, const TargetInstrInfo &TII) { 725 DebugLoc DL; 726 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, DL, LIS); 727 BuildMI(*MBB, I, DL, TII.get(TargetOpcode::DBG_VALUE)).addReg(0) 728 .addImm(offset).addMetadata(variable); 729 } 730 731 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 732 const TargetInstrInfo &TII) { 733 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 734 735 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 736 SlotIndex Start = I.start(); 737 SlotIndex Stop = I.stop(); 738 unsigned LocNo = I.value(); 739 DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << LocNo); 740 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 741 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 742 743 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 744 insertDebugValue(MBB, Start, LocNo, LIS, TII); 745 746 // This interval may span multiple basic blocks. 747 // Insert a DBG_VALUE into each one. 748 while(Stop > MBBEnd) { 749 // Move to the next block. 750 Start = MBBEnd; 751 if (++MBB == MFEnd) 752 break; 753 MBBEnd = LIS.getMBBEndIdx(MBB); 754 DEBUG(dbgs() << " BB#" << MBB->getNumber() << '-' << MBBEnd); 755 insertDebugValue(MBB, Start, LocNo, LIS, TII); 756 } 757 DEBUG(dbgs() << '\n'); 758 if (MBB == MFEnd) 759 break; 760 761 ++I; 762 if (Stop == MBBEnd) 763 continue; 764 // The current interval ends before MBB. 765 // Insert a kill if there is a gap. 766 if (!I.valid() || I.start() > Stop) 767 insertDebugKill(MBB, Stop, LIS, TII); 768 } 769 } 770 771 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 772 DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 773 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); 774 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 775 userValues[i]->rewriteLocations(*VRM, *TRI); 776 userValues[i]->emitDebugValues(VRM, *LIS, *TII); 777 } 778 } 779 780 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 781 if (pImpl) 782 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 783 } 784 785 786 #ifndef NDEBUG 787 void LiveDebugVariables::dump() { 788 if (pImpl) 789 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 790 } 791 #endif 792 793