1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the LiveDebugVariables analysis. 10 // 11 // Remove all DBG_VALUE instructions referencing virtual registers and replace 12 // them with a data structure tracking where live user variables are kept - in a 13 // virtual register or in a stack slot. 14 // 15 // Allow the data structure to be updated during register allocation when values 16 // are moved between registers and stack slots. Finally emit new DBG_VALUE 17 // instructions after register allocation is complete. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "LiveDebugVariables.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/IntervalMap.h" 25 #include "llvm/ADT/MapVector.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/ADT/StringRef.h" 31 #include "llvm/CodeGen/LexicalScopes.h" 32 #include "llvm/CodeGen/LiveInterval.h" 33 #include "llvm/CodeGen/LiveIntervals.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineDominators.h" 36 #include "llvm/CodeGen/MachineFunction.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineOperand.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetInstrInfo.h" 43 #include "llvm/CodeGen/TargetOpcodes.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSubtargetInfo.h" 46 #include "llvm/CodeGen/VirtRegMap.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/MC/MCRegisterInfo.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <iterator> 62 #include <memory> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "livedebugvars" 68 69 static cl::opt<bool> 70 EnableLDV("live-debug-variables", cl::init(true), 71 cl::desc("Enable the live debug variables pass"), cl::Hidden); 72 73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); 74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); 75 76 char LiveDebugVariables::ID = 0; 77 78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, 79 "Debug Variable Analysis", false, false) 80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, 83 "Debug Variable Analysis", false, false) 84 85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { 86 AU.addRequired<MachineDominatorTree>(); 87 AU.addRequiredTransitive<LiveIntervals>(); 88 AU.setPreservesAll(); 89 MachineFunctionPass::getAnalysisUsage(AU); 90 } 91 92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { 93 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); 94 } 95 96 enum : unsigned { UndefLocNo = ~0U }; 97 98 namespace { 99 /// Describes a debug variable value by location number and expression along 100 /// with some flags about the original usage of the location. 101 class DbgVariableValue { 102 public: 103 DbgVariableValue(unsigned LocNo, bool WasIndirect, 104 const DIExpression &Expression) 105 : LocNo(LocNo), WasIndirect(WasIndirect), Expression(&Expression) { 106 assert(getLocNo() == LocNo && "location truncation"); 107 } 108 109 DbgVariableValue() : LocNo(0), WasIndirect(0) {} 110 111 const DIExpression *getExpression() const { return Expression; } 112 unsigned getLocNo() const { 113 // Fix up the undef location number, which gets truncated. 114 return LocNo == INT_MAX ? UndefLocNo : LocNo; 115 } 116 bool getWasIndirect() const { return WasIndirect; } 117 bool isUndef() const { return getLocNo() == UndefLocNo; } 118 119 DbgVariableValue changeLocNo(unsigned NewLocNo) const { 120 return DbgVariableValue(NewLocNo, WasIndirect, *Expression); 121 } 122 123 friend inline bool operator==(const DbgVariableValue &LHS, 124 const DbgVariableValue &RHS) { 125 return LHS.LocNo == RHS.LocNo && LHS.WasIndirect == RHS.WasIndirect && 126 LHS.Expression == RHS.Expression; 127 } 128 129 friend inline bool operator!=(const DbgVariableValue &LHS, 130 const DbgVariableValue &RHS) { 131 return !(LHS == RHS); 132 } 133 134 private: 135 unsigned LocNo : 31; 136 unsigned WasIndirect : 1; 137 const DIExpression *Expression = nullptr; 138 }; 139 } // namespace 140 141 /// Map of where a user value is live to that value. 142 using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; 143 144 /// Map of stack slot offsets for spilled locations. 145 /// Non-spilled locations are not added to the map. 146 using SpillOffsetMap = DenseMap<unsigned, unsigned>; 147 148 namespace { 149 150 class LDVImpl; 151 152 /// A user value is a part of a debug info user variable. 153 /// 154 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register 155 /// holds part of a user variable. The part is identified by a byte offset. 156 /// 157 /// UserValues are grouped into equivalence classes for easier searching. Two 158 /// user values are related if they are held by the same virtual register. The 159 /// equivalence class is the transitive closure of that relation. 160 class UserValue { 161 const DILocalVariable *Variable; ///< The debug info variable we are part of. 162 /// The part of the variable we describe. 163 const Optional<DIExpression::FragmentInfo> Fragment; 164 DebugLoc dl; ///< The debug location for the variable. This is 165 ///< used by dwarf writer to find lexical scope. 166 UserValue *leader; ///< Equivalence class leader. 167 UserValue *next = nullptr; ///< Next value in equivalence class, or null. 168 169 /// Numbered locations referenced by locmap. 170 SmallVector<MachineOperand, 4> locations; 171 172 /// Map of slot indices where this value is live. 173 LocMap locInts; 174 175 /// Set of interval start indexes that have been trimmed to the 176 /// lexical scope. 177 SmallSet<SlotIndex, 2> trimmedDefs; 178 179 /// Insert a DBG_VALUE into MBB at Idx for DbgValue. 180 void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 181 SlotIndex StopIdx, DbgVariableValue DbgValue, 182 bool Spilled, unsigned SpillOffset, LiveIntervals &LIS, 183 const TargetInstrInfo &TII, 184 const TargetRegisterInfo &TRI); 185 186 /// Replace OldLocNo ranges with NewRegs ranges where NewRegs 187 /// is live. Returns true if any changes were made. 188 bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 189 LiveIntervals &LIS); 190 191 public: 192 /// Create a new UserValue. 193 UserValue(const DILocalVariable *var, 194 Optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, 195 LocMap::Allocator &alloc) 196 : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), 197 locInts(alloc) {} 198 199 /// Get the leader of this value's equivalence class. 200 UserValue *getLeader() { 201 UserValue *l = leader; 202 while (l != l->leader) 203 l = l->leader; 204 return leader = l; 205 } 206 207 /// Return the next UserValue in the equivalence class. 208 UserValue *getNext() const { return next; } 209 210 /// Merge equivalence classes. 211 static UserValue *merge(UserValue *L1, UserValue *L2) { 212 L2 = L2->getLeader(); 213 if (!L1) 214 return L2; 215 L1 = L1->getLeader(); 216 if (L1 == L2) 217 return L1; 218 // Splice L2 before L1's members. 219 UserValue *End = L2; 220 while (End->next) { 221 End->leader = L1; 222 End = End->next; 223 } 224 End->leader = L1; 225 End->next = L1->next; 226 L1->next = L2; 227 return L1; 228 } 229 230 /// Return the location number that matches Loc. 231 /// 232 /// For undef values we always return location number UndefLocNo without 233 /// inserting anything in locations. Since locations is a vector and the 234 /// location number is the position in the vector and UndefLocNo is ~0, 235 /// we would need a very big vector to put the value at the right position. 236 unsigned getLocationNo(const MachineOperand &LocMO) { 237 if (LocMO.isReg()) { 238 if (LocMO.getReg() == 0) 239 return UndefLocNo; 240 // For register locations we dont care about use/def and other flags. 241 for (unsigned i = 0, e = locations.size(); i != e; ++i) 242 if (locations[i].isReg() && 243 locations[i].getReg() == LocMO.getReg() && 244 locations[i].getSubReg() == LocMO.getSubReg()) 245 return i; 246 } else 247 for (unsigned i = 0, e = locations.size(); i != e; ++i) 248 if (LocMO.isIdenticalTo(locations[i])) 249 return i; 250 locations.push_back(LocMO); 251 // We are storing a MachineOperand outside a MachineInstr. 252 locations.back().clearParent(); 253 // Don't store def operands. 254 if (locations.back().isReg()) { 255 if (locations.back().isDef()) 256 locations.back().setIsDead(false); 257 locations.back().setIsUse(); 258 } 259 return locations.size() - 1; 260 } 261 262 /// Remove (recycle) a location number. If \p LocNo still is used by the 263 /// locInts nothing is done. 264 void removeLocationIfUnused(unsigned LocNo) { 265 // Bail out if LocNo still is used. 266 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 267 DbgVariableValue DbgValue = I.value(); 268 if (DbgValue.getLocNo() == LocNo) 269 return; 270 } 271 // Remove the entry in the locations vector, and adjust all references to 272 // location numbers above the removed entry. 273 locations.erase(locations.begin() + LocNo); 274 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 275 DbgVariableValue DbgValue = I.value(); 276 if (!DbgValue.isUndef() && DbgValue.getLocNo() > LocNo) 277 I.setValueUnchecked(DbgValue.changeLocNo(DbgValue.getLocNo() - 1)); 278 } 279 } 280 281 /// Ensure that all virtual register locations are mapped. 282 void mapVirtRegs(LDVImpl *LDV); 283 284 /// Add a definition point to this user value. 285 void addDef(SlotIndex Idx, const MachineOperand &LocMO, bool IsIndirect, 286 const DIExpression &Expr) { 287 DbgVariableValue DbgValue(getLocationNo(LocMO), IsIndirect, Expr); 288 // Add a singular (Idx,Idx) -> value mapping. 289 LocMap::iterator I = locInts.find(Idx); 290 if (!I.valid() || I.start() != Idx) 291 I.insert(Idx, Idx.getNextSlot(), DbgValue); 292 else 293 // A later DBG_VALUE at the same SlotIndex overrides the old location. 294 I.setValue(DbgValue); 295 } 296 297 /// Extend the current definition as far as possible down. 298 /// 299 /// Stop when meeting an existing def or when leaving the live 300 /// range of VNI. End points where VNI is no longer live are added to Kills. 301 /// 302 /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a 303 /// data-flow analysis to propagate them beyond basic block boundaries. 304 /// 305 /// \param Idx Starting point for the definition. 306 /// \param DbgValue value to propagate. 307 /// \param LR Restrict liveness to where LR has the value VNI. May be null. 308 /// \param VNI When LR is not null, this is the value to restrict to. 309 /// \param [out] Kills Append end points of VNI's live range to Kills. 310 /// \param LIS Live intervals analysis. 311 void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 312 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 313 LiveIntervals &LIS); 314 315 /// The value in LI may be copies to other registers. Determine if 316 /// any of the copies are available at the kill points, and add defs if 317 /// possible. 318 /// 319 /// \param LI Scan for copies of the value in LI->reg. 320 /// \param DbgValue Location number of LI->reg, and DIExpression. 321 /// \param Kills Points where the range of DbgValue could be extended. 322 /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. 323 void addDefsFromCopies( 324 LiveInterval *LI, DbgVariableValue DbgValue, 325 const SmallVectorImpl<SlotIndex> &Kills, 326 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 327 MachineRegisterInfo &MRI, LiveIntervals &LIS); 328 329 /// Compute the live intervals of all locations after collecting all their 330 /// def points. 331 void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, 332 LiveIntervals &LIS, LexicalScopes &LS); 333 334 /// Replace OldReg ranges with NewRegs ranges where NewRegs is 335 /// live. Returns true if any changes were made. 336 bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 337 LiveIntervals &LIS); 338 339 /// Rewrite virtual register locations according to the provided virtual 340 /// register map. Record the stack slot offsets for the locations that 341 /// were spilled. 342 void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 343 const TargetInstrInfo &TII, 344 const TargetRegisterInfo &TRI, 345 SpillOffsetMap &SpillOffsets); 346 347 /// Recreate DBG_VALUE instruction from data structures. 348 void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 349 const TargetInstrInfo &TII, 350 const TargetRegisterInfo &TRI, 351 const SpillOffsetMap &SpillOffsets); 352 353 /// Return DebugLoc of this UserValue. 354 DebugLoc getDebugLoc() { return dl;} 355 356 void print(raw_ostream &, const TargetRegisterInfo *); 357 }; 358 359 /// A user label is a part of a debug info user label. 360 class UserLabel { 361 const DILabel *Label; ///< The debug info label we are part of. 362 DebugLoc dl; ///< The debug location for the label. This is 363 ///< used by dwarf writer to find lexical scope. 364 SlotIndex loc; ///< Slot used by the debug label. 365 366 /// Insert a DBG_LABEL into MBB at Idx. 367 void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 368 LiveIntervals &LIS, const TargetInstrInfo &TII); 369 370 public: 371 /// Create a new UserLabel. 372 UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) 373 : Label(label), dl(std::move(L)), loc(Idx) {} 374 375 /// Does this UserLabel match the parameters? 376 bool matches(const DILabel *L, const DILocation *IA, 377 const SlotIndex Index) const { 378 return Label == L && dl->getInlinedAt() == IA && loc == Index; 379 } 380 381 /// Recreate DBG_LABEL instruction from data structures. 382 void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII); 383 384 /// Return DebugLoc of this UserLabel. 385 DebugLoc getDebugLoc() { return dl; } 386 387 void print(raw_ostream &, const TargetRegisterInfo *); 388 }; 389 390 /// Implementation of the LiveDebugVariables pass. 391 class LDVImpl { 392 LiveDebugVariables &pass; 393 LocMap::Allocator allocator; 394 MachineFunction *MF = nullptr; 395 LiveIntervals *LIS; 396 const TargetRegisterInfo *TRI; 397 398 /// Whether emitDebugValues is called. 399 bool EmitDone = false; 400 401 /// Whether the machine function is modified during the pass. 402 bool ModifiedMF = false; 403 404 /// All allocated UserValue instances. 405 SmallVector<std::unique_ptr<UserValue>, 8> userValues; 406 407 /// All allocated UserLabel instances. 408 SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; 409 410 /// Map virtual register to eq class leader. 411 using VRMap = DenseMap<unsigned, UserValue *>; 412 VRMap virtRegToEqClass; 413 414 /// Map to find existing UserValue instances. 415 using UVMap = DenseMap<DebugVariable, UserValue *>; 416 UVMap userVarMap; 417 418 /// Find or create a UserValue. 419 UserValue *getUserValue(const DILocalVariable *Var, 420 Optional<DIExpression::FragmentInfo> Fragment, 421 const DebugLoc &DL); 422 423 /// Find the EC leader for VirtReg or null. 424 UserValue *lookupVirtReg(Register VirtReg); 425 426 /// Add DBG_VALUE instruction to our maps. 427 /// 428 /// \param MI DBG_VALUE instruction 429 /// \param Idx Last valid SLotIndex before instruction. 430 /// 431 /// \returns True if the DBG_VALUE instruction should be deleted. 432 bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); 433 434 /// Add DBG_LABEL instruction to UserLabel. 435 /// 436 /// \param MI DBG_LABEL instruction 437 /// \param Idx Last valid SlotIndex before instruction. 438 /// 439 /// \returns True if the DBG_LABEL instruction should be deleted. 440 bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); 441 442 /// Collect and erase all DBG_VALUE instructions, adding a UserValue def 443 /// for each instruction. 444 /// 445 /// \param mf MachineFunction to be scanned. 446 /// 447 /// \returns True if any debug values were found. 448 bool collectDebugValues(MachineFunction &mf); 449 450 /// Compute the live intervals of all user values after collecting all 451 /// their def points. 452 void computeIntervals(); 453 454 public: 455 LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} 456 457 bool runOnMachineFunction(MachineFunction &mf); 458 459 /// Release all memory. 460 void clear() { 461 MF = nullptr; 462 userValues.clear(); 463 userLabels.clear(); 464 virtRegToEqClass.clear(); 465 userVarMap.clear(); 466 // Make sure we call emitDebugValues if the machine function was modified. 467 assert((!ModifiedMF || EmitDone) && 468 "Dbg values are not emitted in LDV"); 469 EmitDone = false; 470 ModifiedMF = false; 471 } 472 473 /// Map virtual register to an equivalence class. 474 void mapVirtReg(Register VirtReg, UserValue *EC); 475 476 /// Replace all references to OldReg with NewRegs. 477 void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); 478 479 /// Recreate DBG_VALUE instruction from data structures. 480 void emitDebugValues(VirtRegMap *VRM); 481 482 void print(raw_ostream&); 483 }; 484 485 } // end anonymous namespace 486 487 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 488 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, 489 const LLVMContext &Ctx) { 490 if (!DL) 491 return; 492 493 auto *Scope = cast<DIScope>(DL.getScope()); 494 // Omit the directory, because it's likely to be long and uninteresting. 495 CommentOS << Scope->getFilename(); 496 CommentOS << ':' << DL.getLine(); 497 if (DL.getCol() != 0) 498 CommentOS << ':' << DL.getCol(); 499 500 DebugLoc InlinedAtDL = DL.getInlinedAt(); 501 if (!InlinedAtDL) 502 return; 503 504 CommentOS << " @[ "; 505 printDebugLoc(InlinedAtDL, CommentOS, Ctx); 506 CommentOS << " ]"; 507 } 508 509 static void printExtendedName(raw_ostream &OS, const DINode *Node, 510 const DILocation *DL) { 511 const LLVMContext &Ctx = Node->getContext(); 512 StringRef Res; 513 unsigned Line = 0; 514 if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { 515 Res = V->getName(); 516 Line = V->getLine(); 517 } else if (const auto *L = dyn_cast<const DILabel>(Node)) { 518 Res = L->getName(); 519 Line = L->getLine(); 520 } 521 522 if (!Res.empty()) 523 OS << Res << "," << Line; 524 auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; 525 if (InlinedAt) { 526 if (DebugLoc InlinedAtDL = InlinedAt) { 527 OS << " @["; 528 printDebugLoc(InlinedAtDL, OS, Ctx); 529 OS << "]"; 530 } 531 } 532 } 533 534 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 535 OS << "!\""; 536 printExtendedName(OS, Variable, dl); 537 538 OS << "\"\t"; 539 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { 540 OS << " [" << I.start() << ';' << I.stop() << "):"; 541 if (I.value().isUndef()) 542 OS << "undef"; 543 else { 544 OS << I.value().getLocNo(); 545 if (I.value().getWasIndirect()) 546 OS << " ind"; 547 } 548 } 549 for (unsigned i = 0, e = locations.size(); i != e; ++i) { 550 OS << " Loc" << i << '='; 551 locations[i].print(OS, TRI); 552 } 553 OS << '\n'; 554 } 555 556 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { 557 OS << "!\""; 558 printExtendedName(OS, Label, dl); 559 560 OS << "\"\t"; 561 OS << loc; 562 OS << '\n'; 563 } 564 565 void LDVImpl::print(raw_ostream &OS) { 566 OS << "********** DEBUG VARIABLES **********\n"; 567 for (auto &userValue : userValues) 568 userValue->print(OS, TRI); 569 OS << "********** DEBUG LABELS **********\n"; 570 for (auto &userLabel : userLabels) 571 userLabel->print(OS, TRI); 572 } 573 #endif 574 575 void UserValue::mapVirtRegs(LDVImpl *LDV) { 576 for (unsigned i = 0, e = locations.size(); i != e; ++i) 577 if (locations[i].isReg() && 578 Register::isVirtualRegister(locations[i].getReg())) 579 LDV->mapVirtReg(locations[i].getReg(), this); 580 } 581 582 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var, 583 Optional<DIExpression::FragmentInfo> Fragment, 584 const DebugLoc &DL) { 585 // FIXME: Handle partially overlapping fragments. See 586 // https://reviews.llvm.org/D70121#1849741. 587 DebugVariable ID(Var, Fragment, DL->getInlinedAt()); 588 UserValue *&UV = userVarMap[ID]; 589 if (!UV) { 590 userValues.push_back( 591 std::make_unique<UserValue>(Var, Fragment, DL, allocator)); 592 UV = userValues.back().get(); 593 } 594 return UV; 595 } 596 597 void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { 598 assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs"); 599 UserValue *&Leader = virtRegToEqClass[VirtReg]; 600 Leader = UserValue::merge(Leader, EC); 601 } 602 603 UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { 604 if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) 605 return UV->getLeader(); 606 return nullptr; 607 } 608 609 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { 610 // DBG_VALUE loc, offset, variable 611 if (MI.getNumOperands() != 4 || 612 !(MI.getDebugOffset().isReg() || MI.getDebugOffset().isImm()) || 613 !MI.getDebugVariableOp().isMetadata()) { 614 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 615 return false; 616 } 617 618 // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual 619 // register that hasn't been defined yet. If we do not remove those here, then 620 // the re-insertion of the DBG_VALUE instruction after register allocation 621 // will be incorrect. 622 // TODO: If earlier passes are corrected to generate sane debug information 623 // (and if the machine verifier is improved to catch this), then these checks 624 // could be removed or replaced by asserts. 625 bool Discard = false; 626 if (MI.getDebugOperand(0).isReg() && 627 Register::isVirtualRegister(MI.getDebugOperand(0).getReg())) { 628 const Register Reg = MI.getDebugOperand(0).getReg(); 629 if (!LIS->hasInterval(Reg)) { 630 // The DBG_VALUE is described by a virtual register that does not have a 631 // live interval. Discard the DBG_VALUE. 632 Discard = true; 633 LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx 634 << " " << MI); 635 } else { 636 // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg 637 // is defined dead at Idx (where Idx is the slot index for the instruction 638 // preceding the DBG_VALUE). 639 const LiveInterval &LI = LIS->getInterval(Reg); 640 LiveQueryResult LRQ = LI.Query(Idx); 641 if (!LRQ.valueOutOrDead()) { 642 // We have found a DBG_VALUE with the value in a virtual register that 643 // is not live. Discard the DBG_VALUE. 644 Discard = true; 645 LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx 646 << " " << MI); 647 } 648 } 649 } 650 651 // Get or create the UserValue for (variable,offset) here. 652 bool IsIndirect = MI.isDebugOffsetImm(); 653 if (IsIndirect) 654 assert(MI.getDebugOffset().getImm() == 0 && 655 "DBG_VALUE with nonzero offset"); 656 const DILocalVariable *Var = MI.getDebugVariable(); 657 const DIExpression *Expr = MI.getDebugExpression(); 658 UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); 659 if (!Discard) 660 UV->addDef(Idx, MI.getDebugOperand(0), IsIndirect, *Expr); 661 else { 662 MachineOperand MO = MachineOperand::CreateReg(0U, false); 663 MO.setIsDebug(); 664 UV->addDef(Idx, MO, false, *Expr); 665 } 666 return true; 667 } 668 669 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { 670 // DBG_LABEL label 671 if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { 672 LLVM_DEBUG(dbgs() << "Can't handle " << MI); 673 return false; 674 } 675 676 // Get or create the UserLabel for label here. 677 const DILabel *Label = MI.getDebugLabel(); 678 const DebugLoc &DL = MI.getDebugLoc(); 679 bool Found = false; 680 for (auto const &L : userLabels) { 681 if (L->matches(Label, DL->getInlinedAt(), Idx)) { 682 Found = true; 683 break; 684 } 685 } 686 if (!Found) 687 userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx)); 688 689 return true; 690 } 691 692 bool LDVImpl::collectDebugValues(MachineFunction &mf) { 693 bool Changed = false; 694 for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE; 695 ++MFI) { 696 MachineBasicBlock *MBB = &*MFI; 697 for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end(); 698 MBBI != MBBE;) { 699 // Use the first debug instruction in the sequence to get a SlotIndex 700 // for following consecutive debug instructions. 701 if (!MBBI->isDebugInstr()) { 702 ++MBBI; 703 continue; 704 } 705 // Debug instructions has no slot index. Use the previous 706 // non-debug instruction's SlotIndex as its SlotIndex. 707 SlotIndex Idx = 708 MBBI == MBB->begin() 709 ? LIS->getMBBStartIdx(MBB) 710 : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); 711 // Handle consecutive debug instructions with the same slot index. 712 do { 713 // Only handle DBG_VALUE in handleDebugValue(). Skip all other 714 // kinds of debug instructions. 715 if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || 716 (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { 717 MBBI = MBB->erase(MBBI); 718 Changed = true; 719 } else 720 ++MBBI; 721 } while (MBBI != MBBE && MBBI->isDebugInstr()); 722 } 723 } 724 return Changed; 725 } 726 727 void UserValue::extendDef(SlotIndex Idx, DbgVariableValue DbgValue, LiveRange *LR, 728 const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills, 729 LiveIntervals &LIS) { 730 SlotIndex Start = Idx; 731 MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); 732 SlotIndex Stop = LIS.getMBBEndIdx(MBB); 733 LocMap::iterator I = locInts.find(Start); 734 735 // Limit to VNI's live range. 736 bool ToEnd = true; 737 if (LR && VNI) { 738 LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); 739 if (!Segment || Segment->valno != VNI) { 740 if (Kills) 741 Kills->push_back(Start); 742 return; 743 } 744 if (Segment->end < Stop) { 745 Stop = Segment->end; 746 ToEnd = false; 747 } 748 } 749 750 // There could already be a short def at Start. 751 if (I.valid() && I.start() <= Start) { 752 // Stop when meeting a different location or an already extended interval. 753 Start = Start.getNextSlot(); 754 if (I.value() != DbgValue || I.stop() != Start) 755 return; 756 // This is a one-slot placeholder. Just skip it. 757 ++I; 758 } 759 760 // Limited by the next def. 761 if (I.valid() && I.start() < Stop) 762 Stop = I.start(); 763 // Limited by VNI's live range. 764 else if (!ToEnd && Kills) 765 Kills->push_back(Stop); 766 767 if (Start < Stop) 768 I.insert(Start, Stop, DbgValue); 769 } 770 771 void UserValue::addDefsFromCopies( 772 LiveInterval *LI, DbgVariableValue DbgValue, 773 const SmallVectorImpl<SlotIndex> &Kills, 774 SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, 775 MachineRegisterInfo &MRI, LiveIntervals &LIS) { 776 if (Kills.empty()) 777 return; 778 // Don't track copies from physregs, there are too many uses. 779 if (!Register::isVirtualRegister(LI->reg())) 780 return; 781 782 // Collect all the (vreg, valno) pairs that are copies of LI. 783 SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues; 784 for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { 785 MachineInstr *MI = MO.getParent(); 786 // Copies of the full value. 787 if (MO.getSubReg() || !MI->isCopy()) 788 continue; 789 Register DstReg = MI->getOperand(0).getReg(); 790 791 // Don't follow copies to physregs. These are usually setting up call 792 // arguments, and the argument registers are always call clobbered. We are 793 // better off in the source register which could be a callee-saved register, 794 // or it could be spilled. 795 if (!Register::isVirtualRegister(DstReg)) 796 continue; 797 798 // Is the value extended to reach this copy? If not, another def may be 799 // blocking it, or we are looking at a wrong value of LI. 800 SlotIndex Idx = LIS.getInstructionIndex(*MI); 801 LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); 802 if (!I.valid() || I.value() != DbgValue) 803 continue; 804 805 if (!LIS.hasInterval(DstReg)) 806 continue; 807 LiveInterval *DstLI = &LIS.getInterval(DstReg); 808 const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); 809 assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); 810 CopyValues.push_back(std::make_pair(DstLI, DstVNI)); 811 } 812 813 if (CopyValues.empty()) 814 return; 815 816 LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI 817 << '\n'); 818 819 // Try to add defs of the copied values for each kill point. 820 for (unsigned i = 0, e = Kills.size(); i != e; ++i) { 821 SlotIndex Idx = Kills[i]; 822 for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) { 823 LiveInterval *DstLI = CopyValues[j].first; 824 const VNInfo *DstVNI = CopyValues[j].second; 825 if (DstLI->getVNInfoAt(Idx) != DstVNI) 826 continue; 827 // Check that there isn't already a def at Idx 828 LocMap::iterator I = locInts.find(Idx); 829 if (I.valid() && I.start() <= Idx) 830 continue; 831 LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #" 832 << DstVNI->id << " in " << *DstLI << '\n'); 833 MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); 834 assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); 835 unsigned LocNo = getLocationNo(CopyMI->getOperand(0)); 836 DbgVariableValue NewValue = DbgValue.changeLocNo(LocNo); 837 I.insert(Idx, Idx.getNextSlot(), NewValue); 838 NewDefs.push_back(std::make_pair(Idx, NewValue)); 839 break; 840 } 841 } 842 } 843 844 void UserValue::computeIntervals(MachineRegisterInfo &MRI, 845 const TargetRegisterInfo &TRI, 846 LiveIntervals &LIS, LexicalScopes &LS) { 847 SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; 848 849 // Collect all defs to be extended (Skipping undefs). 850 for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) 851 if (!I.value().isUndef()) 852 Defs.push_back(std::make_pair(I.start(), I.value())); 853 854 // Extend all defs, and possibly add new ones along the way. 855 for (unsigned i = 0; i != Defs.size(); ++i) { 856 SlotIndex Idx = Defs[i].first; 857 DbgVariableValue DbgValue = Defs[i].second; 858 const MachineOperand &LocMO = locations[DbgValue.getLocNo()]; 859 860 if (!LocMO.isReg()) { 861 extendDef(Idx, DbgValue, nullptr, nullptr, nullptr, LIS); 862 continue; 863 } 864 865 // Register locations are constrained to where the register value is live. 866 if (Register::isVirtualRegister(LocMO.getReg())) { 867 LiveInterval *LI = nullptr; 868 const VNInfo *VNI = nullptr; 869 if (LIS.hasInterval(LocMO.getReg())) { 870 LI = &LIS.getInterval(LocMO.getReg()); 871 VNI = LI->getVNInfoAt(Idx); 872 } 873 SmallVector<SlotIndex, 16> Kills; 874 extendDef(Idx, DbgValue, LI, VNI, &Kills, LIS); 875 // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that 876 // if the original location for example is %vreg0:sub_hi, and we find a 877 // full register copy in addDefsFromCopies (at the moment it only handles 878 // full register copies), then we must add the sub1 sub-register index to 879 // the new location. However, that is only possible if the new virtual 880 // register is of the same regclass (or if there is an equivalent 881 // sub-register in that regclass). For now, simply skip handling copies if 882 // a sub-register is involved. 883 if (LI && !LocMO.getSubReg()) 884 addDefsFromCopies(LI, DbgValue, Kills, Defs, MRI, LIS); 885 continue; 886 } 887 888 // For physregs, we only mark the start slot idx. DwarfDebug will see it 889 // as if the DBG_VALUE is valid up until the end of the basic block, or 890 // the next def of the physical register. So we do not need to extend the 891 // range. It might actually happen that the DBG_VALUE is the last use of 892 // the physical register (e.g. if this is an unused input argument to a 893 // function). 894 } 895 896 // The computed intervals may extend beyond the range of the debug 897 // location's lexical scope. In this case, splitting of an interval 898 // can result in an interval outside of the scope being created, 899 // causing extra unnecessary DBG_VALUEs to be emitted. To prevent 900 // this, trim the intervals to the lexical scope. 901 902 LexicalScope *Scope = LS.findLexicalScope(dl); 903 if (!Scope) 904 return; 905 906 SlotIndex PrevEnd; 907 LocMap::iterator I = locInts.begin(); 908 909 // Iterate over the lexical scope ranges. Each time round the loop 910 // we check the intervals for overlap with the end of the previous 911 // range and the start of the next. The first range is handled as 912 // a special case where there is no PrevEnd. 913 for (const InsnRange &Range : Scope->getRanges()) { 914 SlotIndex RStart = LIS.getInstructionIndex(*Range.first); 915 SlotIndex REnd = LIS.getInstructionIndex(*Range.second); 916 917 // Variable locations at the first instruction of a block should be 918 // based on the block's SlotIndex, not the first instruction's index. 919 if (Range.first == Range.first->getParent()->begin()) 920 RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); 921 922 // At the start of each iteration I has been advanced so that 923 // I.stop() >= PrevEnd. Check for overlap. 924 if (PrevEnd && I.start() < PrevEnd) { 925 SlotIndex IStop = I.stop(); 926 DbgVariableValue DbgValue = I.value(); 927 928 // Stop overlaps previous end - trim the end of the interval to 929 // the scope range. 930 I.setStopUnchecked(PrevEnd); 931 ++I; 932 933 // If the interval also overlaps the start of the "next" (i.e. 934 // current) range create a new interval for the remainder (which 935 // may be further trimmed). 936 if (RStart < IStop) 937 I.insert(RStart, IStop, DbgValue); 938 } 939 940 // Advance I so that I.stop() >= RStart, and check for overlap. 941 I.advanceTo(RStart); 942 if (!I.valid()) 943 return; 944 945 if (I.start() < RStart) { 946 // Interval start overlaps range - trim to the scope range. 947 I.setStartUnchecked(RStart); 948 // Remember that this interval was trimmed. 949 trimmedDefs.insert(RStart); 950 } 951 952 // The end of a lexical scope range is the last instruction in the 953 // range. To convert to an interval we need the index of the 954 // instruction after it. 955 REnd = REnd.getNextIndex(); 956 957 // Advance I to first interval outside current range. 958 I.advanceTo(REnd); 959 if (!I.valid()) 960 return; 961 962 PrevEnd = REnd; 963 } 964 965 // Check for overlap with end of final range. 966 if (PrevEnd && I.start() < PrevEnd) 967 I.setStopUnchecked(PrevEnd); 968 } 969 970 void LDVImpl::computeIntervals() { 971 LexicalScopes LS; 972 LS.initialize(*MF); 973 974 for (unsigned i = 0, e = userValues.size(); i != e; ++i) { 975 userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); 976 userValues[i]->mapVirtRegs(this); 977 } 978 } 979 980 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) { 981 clear(); 982 MF = &mf; 983 LIS = &pass.getAnalysis<LiveIntervals>(); 984 TRI = mf.getSubtarget().getRegisterInfo(); 985 LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " 986 << mf.getName() << " **********\n"); 987 988 bool Changed = collectDebugValues(mf); 989 computeIntervals(); 990 LLVM_DEBUG(print(dbgs())); 991 ModifiedMF = Changed; 992 return Changed; 993 } 994 995 static void removeDebugValues(MachineFunction &mf) { 996 for (MachineBasicBlock &MBB : mf) { 997 for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) { 998 if (!MBBI->isDebugValue()) { 999 ++MBBI; 1000 continue; 1001 } 1002 MBBI = MBB.erase(MBBI); 1003 } 1004 } 1005 } 1006 1007 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { 1008 if (!EnableLDV) 1009 return false; 1010 if (!mf.getFunction().getSubprogram()) { 1011 removeDebugValues(mf); 1012 return false; 1013 } 1014 if (!pImpl) 1015 pImpl = new LDVImpl(this); 1016 return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf); 1017 } 1018 1019 void LiveDebugVariables::releaseMemory() { 1020 if (pImpl) 1021 static_cast<LDVImpl*>(pImpl)->clear(); 1022 } 1023 1024 LiveDebugVariables::~LiveDebugVariables() { 1025 if (pImpl) 1026 delete static_cast<LDVImpl*>(pImpl); 1027 } 1028 1029 //===----------------------------------------------------------------------===// 1030 // Live Range Splitting 1031 //===----------------------------------------------------------------------===// 1032 1033 bool 1034 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, 1035 LiveIntervals& LIS) { 1036 LLVM_DEBUG({ 1037 dbgs() << "Splitting Loc" << OldLocNo << '\t'; 1038 print(dbgs(), nullptr); 1039 }); 1040 bool DidChange = false; 1041 LocMap::iterator LocMapI; 1042 LocMapI.setMap(locInts); 1043 for (unsigned i = 0; i != NewRegs.size(); ++i) { 1044 LiveInterval *LI = &LIS.getInterval(NewRegs[i]); 1045 if (LI->empty()) 1046 continue; 1047 1048 // Don't allocate the new LocNo until it is needed. 1049 unsigned NewLocNo = UndefLocNo; 1050 1051 // Iterate over the overlaps between locInts and LI. 1052 LocMapI.find(LI->beginIndex()); 1053 if (!LocMapI.valid()) 1054 continue; 1055 LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); 1056 LiveInterval::iterator LIE = LI->end(); 1057 while (LocMapI.valid() && LII != LIE) { 1058 // At this point, we know that LocMapI.stop() > LII->start. 1059 LII = LI->advanceTo(LII, LocMapI.start()); 1060 if (LII == LIE) 1061 break; 1062 1063 // Now LII->end > LocMapI.start(). Do we have an overlap? 1064 if (LocMapI.value().getLocNo() == OldLocNo && 1065 LII->start < LocMapI.stop()) { 1066 // Overlapping correct location. Allocate NewLocNo now. 1067 if (NewLocNo == UndefLocNo) { 1068 MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); 1069 MO.setSubReg(locations[OldLocNo].getSubReg()); 1070 NewLocNo = getLocationNo(MO); 1071 DidChange = true; 1072 } 1073 1074 SlotIndex LStart = LocMapI.start(); 1075 SlotIndex LStop = LocMapI.stop(); 1076 DbgVariableValue OldDbgValue = LocMapI.value(); 1077 1078 // Trim LocMapI down to the LII overlap. 1079 if (LStart < LII->start) 1080 LocMapI.setStartUnchecked(LII->start); 1081 if (LStop > LII->end) 1082 LocMapI.setStopUnchecked(LII->end); 1083 1084 // Change the value in the overlap. This may trigger coalescing. 1085 LocMapI.setValue(OldDbgValue.changeLocNo(NewLocNo)); 1086 1087 // Re-insert any removed OldDbgValue ranges. 1088 if (LStart < LocMapI.start()) { 1089 LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); 1090 ++LocMapI; 1091 assert(LocMapI.valid() && "Unexpected coalescing"); 1092 } 1093 if (LStop > LocMapI.stop()) { 1094 ++LocMapI; 1095 LocMapI.insert(LII->end, LStop, OldDbgValue); 1096 --LocMapI; 1097 } 1098 } 1099 1100 // Advance to the next overlap. 1101 if (LII->end < LocMapI.stop()) { 1102 if (++LII == LIE) 1103 break; 1104 LocMapI.advanceTo(LII->start); 1105 } else { 1106 ++LocMapI; 1107 if (!LocMapI.valid()) 1108 break; 1109 LII = LI->advanceTo(LII, LocMapI.start()); 1110 } 1111 } 1112 } 1113 1114 // Finally, remove OldLocNo unless it is still used by some interval in the 1115 // locInts map. One case when OldLocNo still is in use is when the register 1116 // has been spilled. In such situations the spilled register is kept as a 1117 // location until rewriteLocations is called (VirtRegMap is mapping the old 1118 // register to the spill slot). So for a while we can have locations that map 1119 // to virtual registers that have been removed from both the MachineFunction 1120 // and from LiveIntervals. 1121 // 1122 // We may also just be using the location for a value with a different 1123 // expression. 1124 removeLocationIfUnused(OldLocNo); 1125 1126 LLVM_DEBUG({ 1127 dbgs() << "Split result: \t"; 1128 print(dbgs(), nullptr); 1129 }); 1130 return DidChange; 1131 } 1132 1133 bool 1134 UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, 1135 LiveIntervals &LIS) { 1136 bool DidChange = false; 1137 // Split locations referring to OldReg. Iterate backwards so splitLocation can 1138 // safely erase unused locations. 1139 for (unsigned i = locations.size(); i ; --i) { 1140 unsigned LocNo = i-1; 1141 const MachineOperand *Loc = &locations[LocNo]; 1142 if (!Loc->isReg() || Loc->getReg() != OldReg) 1143 continue; 1144 DidChange |= splitLocation(LocNo, NewRegs, LIS); 1145 } 1146 return DidChange; 1147 } 1148 1149 void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { 1150 bool DidChange = false; 1151 for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) 1152 DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); 1153 1154 if (!DidChange) 1155 return; 1156 1157 // Map all of the new virtual registers. 1158 UserValue *UV = lookupVirtReg(OldReg); 1159 for (unsigned i = 0; i != NewRegs.size(); ++i) 1160 mapVirtReg(NewRegs[i], UV); 1161 } 1162 1163 void LiveDebugVariables:: 1164 splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { 1165 if (pImpl) 1166 static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); 1167 } 1168 1169 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, 1170 const TargetInstrInfo &TII, 1171 const TargetRegisterInfo &TRI, 1172 SpillOffsetMap &SpillOffsets) { 1173 // Build a set of new locations with new numbers so we can coalesce our 1174 // IntervalMap if two vreg intervals collapse to the same physical location. 1175 // Use MapVector instead of SetVector because MapVector::insert returns the 1176 // position of the previously or newly inserted element. The boolean value 1177 // tracks if the location was produced by a spill. 1178 // FIXME: This will be problematic if we ever support direct and indirect 1179 // frame index locations, i.e. expressing both variables in memory and 1180 // 'int x, *px = &x'. The "spilled" bit must become part of the location. 1181 MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; 1182 SmallVector<unsigned, 4> LocNoMap(locations.size()); 1183 for (unsigned I = 0, E = locations.size(); I != E; ++I) { 1184 bool Spilled = false; 1185 unsigned SpillOffset = 0; 1186 MachineOperand Loc = locations[I]; 1187 // Only virtual registers are rewritten. 1188 if (Loc.isReg() && Loc.getReg() && 1189 Register::isVirtualRegister(Loc.getReg())) { 1190 Register VirtReg = Loc.getReg(); 1191 if (VRM.isAssignedReg(VirtReg) && 1192 Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { 1193 // This can create a %noreg operand in rare cases when the sub-register 1194 // index is no longer available. That means the user value is in a 1195 // non-existent sub-register, and %noreg is exactly what we want. 1196 Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); 1197 } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { 1198 // Retrieve the stack slot offset. 1199 unsigned SpillSize; 1200 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1201 const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); 1202 bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, 1203 SpillOffset, MF); 1204 1205 // FIXME: Invalidate the location if the offset couldn't be calculated. 1206 (void)Success; 1207 1208 Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); 1209 Spilled = true; 1210 } else { 1211 Loc.setReg(0); 1212 Loc.setSubReg(0); 1213 } 1214 } 1215 1216 // Insert this location if it doesn't already exist and record a mapping 1217 // from the old number to the new number. 1218 auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); 1219 unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); 1220 LocNoMap[I] = NewLocNo; 1221 } 1222 1223 // Rewrite the locations and record the stack slot offsets for spills. 1224 locations.clear(); 1225 SpillOffsets.clear(); 1226 for (auto &Pair : NewLocations) { 1227 bool Spilled; 1228 unsigned SpillOffset; 1229 std::tie(Spilled, SpillOffset) = Pair.second; 1230 locations.push_back(Pair.first); 1231 if (Spilled) { 1232 unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); 1233 SpillOffsets[NewLocNo] = SpillOffset; 1234 } 1235 } 1236 1237 // Update the interval map, but only coalesce left, since intervals to the 1238 // right use the old location numbers. This should merge two contiguous 1239 // DBG_VALUE intervals with different vregs that were allocated to the same 1240 // physical register. 1241 for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { 1242 DbgVariableValue DbgValue = I.value(); 1243 // Undef values don't exist in locations (and thus not in LocNoMap either) 1244 // so skip over them. See getLocationNo(). 1245 if (DbgValue.isUndef()) 1246 continue; 1247 unsigned NewLocNo = LocNoMap[DbgValue.getLocNo()]; 1248 I.setValueUnchecked(DbgValue.changeLocNo(NewLocNo)); 1249 I.setStart(I.start()); 1250 } 1251 } 1252 1253 /// Find an iterator for inserting a DBG_VALUE instruction. 1254 static MachineBasicBlock::iterator 1255 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, 1256 LiveIntervals &LIS) { 1257 SlotIndex Start = LIS.getMBBStartIdx(MBB); 1258 Idx = Idx.getBaseIndex(); 1259 1260 // Try to find an insert location by going backwards from Idx. 1261 MachineInstr *MI; 1262 while (!(MI = LIS.getInstructionFromIndex(Idx))) { 1263 // We've reached the beginning of MBB. 1264 if (Idx == Start) { 1265 MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin()); 1266 return I; 1267 } 1268 Idx = Idx.getPrevIndex(); 1269 } 1270 1271 // Don't insert anything after the first terminator, though. 1272 return MI->isTerminator() ? MBB->getFirstTerminator() : 1273 std::next(MachineBasicBlock::iterator(MI)); 1274 } 1275 1276 /// Find an iterator for inserting the next DBG_VALUE instruction 1277 /// (or end if no more insert locations found). 1278 static MachineBasicBlock::iterator 1279 findNextInsertLocation(MachineBasicBlock *MBB, 1280 MachineBasicBlock::iterator I, 1281 SlotIndex StopIdx, MachineOperand &LocMO, 1282 LiveIntervals &LIS, 1283 const TargetRegisterInfo &TRI) { 1284 if (!LocMO.isReg()) 1285 return MBB->instr_end(); 1286 Register Reg = LocMO.getReg(); 1287 1288 // Find the next instruction in the MBB that define the register Reg. 1289 while (I != MBB->end() && !I->isTerminator()) { 1290 if (!LIS.isNotInMIMap(*I) && 1291 SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) 1292 break; 1293 if (I->definesRegister(Reg, &TRI)) 1294 // The insert location is directly after the instruction/bundle. 1295 return std::next(I); 1296 ++I; 1297 } 1298 return MBB->end(); 1299 } 1300 1301 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, 1302 SlotIndex StopIdx, DbgVariableValue DbgValue, 1303 bool Spilled, unsigned SpillOffset, 1304 LiveIntervals &LIS, const TargetInstrInfo &TII, 1305 const TargetRegisterInfo &TRI) { 1306 SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); 1307 // Only search within the current MBB. 1308 StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; 1309 MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS); 1310 // Undef values don't exist in locations so create new "noreg" register MOs 1311 // for them. See getLocationNo(). 1312 MachineOperand MO = 1313 !DbgValue.isUndef() 1314 ? locations[DbgValue.getLocNo()] 1315 : MachineOperand::CreateReg( 1316 /* Reg */ 0, /* isDef */ false, /* isImp */ false, 1317 /* isKill */ false, /* isDead */ false, 1318 /* isUndef */ false, /* isEarlyClobber */ false, 1319 /* SubReg */ 0, /* isDebug */ true); 1320 1321 ++NumInsertedDebugValues; 1322 1323 assert(cast<DILocalVariable>(Variable) 1324 ->isValidLocationForIntrinsic(getDebugLoc()) && 1325 "Expected inlined-at fields to agree"); 1326 1327 // If the location was spilled, the new DBG_VALUE will be indirect. If the 1328 // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate 1329 // that the original virtual register was a pointer. Also, add the stack slot 1330 // offset for the spilled register to the expression. 1331 const DIExpression *Expr = DbgValue.getExpression(); 1332 uint8_t DIExprFlags = DIExpression::ApplyOffset; 1333 bool IsIndirect = DbgValue.getWasIndirect(); 1334 if (Spilled) { 1335 if (IsIndirect) 1336 DIExprFlags |= DIExpression::DerefAfter; 1337 Expr = 1338 DIExpression::prepend(Expr, DIExprFlags, SpillOffset); 1339 IsIndirect = true; 1340 } 1341 1342 assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index"); 1343 1344 do { 1345 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE), 1346 IsIndirect, MO, Variable, Expr); 1347 1348 // Continue and insert DBG_VALUES after every redefinition of register 1349 // associated with the debug value within the range 1350 I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI); 1351 } while (I != MBB->end()); 1352 } 1353 1354 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, 1355 LiveIntervals &LIS, 1356 const TargetInstrInfo &TII) { 1357 MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS); 1358 ++NumInsertedDebugLabels; 1359 BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) 1360 .addMetadata(Label); 1361 } 1362 1363 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, 1364 const TargetInstrInfo &TII, 1365 const TargetRegisterInfo &TRI, 1366 const SpillOffsetMap &SpillOffsets) { 1367 MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); 1368 1369 for (LocMap::const_iterator I = locInts.begin(); I.valid();) { 1370 SlotIndex Start = I.start(); 1371 SlotIndex Stop = I.stop(); 1372 DbgVariableValue DbgValue = I.value(); 1373 auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(DbgValue.getLocNo()) 1374 : SpillOffsets.end(); 1375 bool Spilled = SpillIt != SpillOffsets.end(); 1376 unsigned SpillOffset = Spilled ? SpillIt->second : 0; 1377 1378 // If the interval start was trimmed to the lexical scope insert the 1379 // DBG_VALUE at the previous index (otherwise it appears after the 1380 // first instruction in the range). 1381 if (trimmedDefs.count(Start)) 1382 Start = Start.getPrevIndex(); 1383 1384 LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop 1385 << "):" << DbgValue.getLocNo()); 1386 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1387 SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); 1388 1389 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1390 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1391 TII, TRI); 1392 // This interval may span multiple basic blocks. 1393 // Insert a DBG_VALUE into each one. 1394 while (Stop > MBBEnd) { 1395 // Move to the next block. 1396 Start = MBBEnd; 1397 if (++MBB == MFEnd) 1398 break; 1399 MBBEnd = LIS.getMBBEndIdx(&*MBB); 1400 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); 1401 insertDebugValue(&*MBB, Start, Stop, DbgValue, Spilled, SpillOffset, LIS, 1402 TII, TRI); 1403 } 1404 LLVM_DEBUG(dbgs() << '\n'); 1405 if (MBB == MFEnd) 1406 break; 1407 1408 ++I; 1409 } 1410 } 1411 1412 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) { 1413 LLVM_DEBUG(dbgs() << "\t" << loc); 1414 MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); 1415 1416 LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); 1417 insertDebugLabel(&*MBB, loc, LIS, TII); 1418 1419 LLVM_DEBUG(dbgs() << '\n'); 1420 } 1421 1422 void LDVImpl::emitDebugValues(VirtRegMap *VRM) { 1423 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); 1424 if (!MF) 1425 return; 1426 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 1427 SpillOffsetMap SpillOffsets; 1428 for (auto &userValue : userValues) { 1429 LLVM_DEBUG(userValue->print(dbgs(), TRI)); 1430 userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); 1431 userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets); 1432 } 1433 LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); 1434 for (auto &userLabel : userLabels) { 1435 LLVM_DEBUG(userLabel->print(dbgs(), TRI)); 1436 userLabel->emitDebugLabel(*LIS, *TII); 1437 } 1438 EmitDone = true; 1439 } 1440 1441 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { 1442 if (pImpl) 1443 static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); 1444 } 1445 1446 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1447 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { 1448 if (pImpl) 1449 static_cast<LDVImpl*>(pImpl)->print(dbgs()); 1450 } 1451 #endif 1452