1 //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveDebugVariables analysis.
10 //
11 // Remove all DBG_VALUE instructions referencing virtual registers and replace
12 // them with a data structure tracking where live user variables are kept - in a
13 // virtual register or in a stack slot.
14 //
15 // Allow the data structure to be updated during register allocation when values
16 // are moved between registers and stack slots. Finally emit new DBG_VALUE
17 // instructions after register allocation is complete.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "LiveDebugVariables.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/IntervalMap.h"
25 #include "llvm/ADT/MapVector.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/CodeGen/LexicalScopes.h"
32 #include "llvm/CodeGen/LiveInterval.h"
33 #include "llvm/CodeGen/LiveIntervals.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineDominators.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/TargetInstrInfo.h"
43 #include "llvm/CodeGen/TargetOpcodes.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSubtargetInfo.h"
46 #include "llvm/CodeGen/VirtRegMap.h"
47 #include "llvm/Config/llvm-config.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/MC/MCRegisterInfo.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Compiler.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <iterator>
62 #include <memory>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "livedebugvars"
68 
69 static cl::opt<bool>
70 EnableLDV("live-debug-variables", cl::init(true),
71           cl::desc("Enable the live debug variables pass"), cl::Hidden);
72 
73 STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted");
74 STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted");
75 
76 char LiveDebugVariables::ID = 0;
77 
78 INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE,
79                 "Debug Variable Analysis", false, false)
80 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
81 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
82 INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE,
83                 "Debug Variable Analysis", false, false)
84 
85 void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const {
86   AU.addRequired<MachineDominatorTree>();
87   AU.addRequiredTransitive<LiveIntervals>();
88   AU.setPreservesAll();
89   MachineFunctionPass::getAnalysisUsage(AU);
90 }
91 
92 LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) {
93   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
94 }
95 
96 enum : unsigned { UndefLocNo = ~0U };
97 
98 /// Describes a location by number along with some flags about the original
99 /// usage of the location.
100 class DbgValueLocation {
101 public:
102   DbgValueLocation(unsigned LocNo)
103       : LocNo(LocNo) {
104     static_assert(sizeof(*this) == sizeof(unsigned), "bad bitfield packing");
105     assert(locNo() == LocNo && "location truncation");
106   }
107 
108   DbgValueLocation() : LocNo(0) {}
109 
110   unsigned locNo() const {
111     // Fix up the undef location number, which gets truncated.
112     return LocNo == INT_MAX ? UndefLocNo : LocNo;
113   }
114   bool isUndef() const { return locNo() == UndefLocNo; }
115 
116   DbgValueLocation changeLocNo(unsigned NewLocNo) const {
117     return DbgValueLocation(NewLocNo);
118   }
119 
120   friend inline bool operator==(const DbgValueLocation &LHS,
121                                 const DbgValueLocation &RHS) {
122     return LHS.LocNo == RHS.LocNo;
123   }
124 
125   friend inline bool operator!=(const DbgValueLocation &LHS,
126                                 const DbgValueLocation &RHS) {
127     return !(LHS == RHS);
128   }
129 
130 private:
131   unsigned LocNo;
132 };
133 
134 /// Map of where a user value is live, and its location.
135 using LocMap = IntervalMap<SlotIndex, DbgValueLocation, 4>;
136 
137 /// Map of stack slot offsets for spilled locations.
138 /// Non-spilled locations are not added to the map.
139 using SpillOffsetMap = DenseMap<unsigned, unsigned>;
140 
141 namespace {
142 
143 class LDVImpl;
144 
145 /// A user value is a part of a debug info user variable.
146 ///
147 /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register
148 /// holds part of a user variable. The part is identified by a byte offset.
149 ///
150 /// UserValues are grouped into equivalence classes for easier searching. Two
151 /// user values are related if they refer to the same variable, or if they are
152 /// held by the same virtual register. The equivalence class is the transitive
153 /// closure of that relation.
154 class UserValue {
155   const DILocalVariable *Variable; ///< The debug info variable we are part of.
156   const DIExpression *Expression; ///< Any complex address expression.
157   DebugLoc dl;            ///< The debug location for the variable. This is
158                           ///< used by dwarf writer to find lexical scope.
159   UserValue *leader;      ///< Equivalence class leader.
160   UserValue *next = nullptr; ///< Next value in equivalence class, or null.
161 
162   /// Numbered locations referenced by locmap.
163   SmallVector<MachineOperand, 4> locations;
164 
165   /// Map of slot indices where this value is live.
166   LocMap locInts;
167 
168   /// Insert a DBG_VALUE into MBB at Idx for LocNo.
169   void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
170                         SlotIndex StopIdx, DbgValueLocation Loc, bool Spilled,
171                         unsigned SpillOffset, LiveIntervals &LIS,
172                         const TargetInstrInfo &TII,
173                         const TargetRegisterInfo &TRI);
174 
175   /// Replace OldLocNo ranges with NewRegs ranges where NewRegs
176   /// is live. Returns true if any changes were made.
177   bool splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
178                      LiveIntervals &LIS);
179 
180 public:
181   /// Create a new UserValue.
182   UserValue(const DILocalVariable *var, const DIExpression *expr, DebugLoc L,
183             LocMap::Allocator &alloc)
184       : Variable(var), Expression(expr), dl(std::move(L)), leader(this),
185         locInts(alloc) {}
186 
187   /// Get the leader of this value's equivalence class.
188   UserValue *getLeader() {
189     UserValue *l = leader;
190     while (l != l->leader)
191       l = l->leader;
192     return leader = l;
193   }
194 
195   /// Return the next UserValue in the equivalence class.
196   UserValue *getNext() const { return next; }
197 
198   /// Does this UserValue match the parameters?
199   bool match(const DILocalVariable *Var, const DIExpression *Expr,
200              const DILocation *IA) const {
201     // FIXME: The fragment should be part of the equivalence class, but not
202     // other things in the expression like stack values.
203     return Var == Variable && Expr == Expression && dl->getInlinedAt() == IA;
204   }
205 
206   /// Merge equivalence classes.
207   static UserValue *merge(UserValue *L1, UserValue *L2) {
208     L2 = L2->getLeader();
209     if (!L1)
210       return L2;
211     L1 = L1->getLeader();
212     if (L1 == L2)
213       return L1;
214     // Splice L2 before L1's members.
215     UserValue *End = L2;
216     while (End->next) {
217       End->leader = L1;
218       End = End->next;
219     }
220     End->leader = L1;
221     End->next = L1->next;
222     L1->next = L2;
223     return L1;
224   }
225 
226   /// Return the location number that matches Loc.
227   ///
228   /// For undef values we always return location number UndefLocNo without
229   /// inserting anything in locations. Since locations is a vector and the
230   /// location number is the position in the vector and UndefLocNo is ~0,
231   /// we would need a very big vector to put the value at the right position.
232   unsigned getLocationNo(const MachineOperand &LocMO) {
233     if (LocMO.isReg()) {
234       if (LocMO.getReg() == 0)
235         return UndefLocNo;
236       // For register locations we dont care about use/def and other flags.
237       for (unsigned i = 0, e = locations.size(); i != e; ++i)
238         if (locations[i].isReg() &&
239             locations[i].getReg() == LocMO.getReg() &&
240             locations[i].getSubReg() == LocMO.getSubReg())
241           return i;
242     } else
243       for (unsigned i = 0, e = locations.size(); i != e; ++i)
244         if (LocMO.isIdenticalTo(locations[i]))
245           return i;
246     locations.push_back(LocMO);
247     // We are storing a MachineOperand outside a MachineInstr.
248     locations.back().clearParent();
249     // Don't store def operands.
250     if (locations.back().isReg()) {
251       if (locations.back().isDef())
252         locations.back().setIsDead(false);
253       locations.back().setIsUse();
254     }
255     return locations.size() - 1;
256   }
257 
258   /// Remove (recycle) a location number. If \p LocNo still is used by the
259   /// locInts nothing is done.
260   void removeLocationIfUnused(unsigned LocNo) {
261     // Bail out if LocNo still is used.
262     for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
263       DbgValueLocation Loc = I.value();
264       if (Loc.locNo() == LocNo)
265         return;
266     }
267     // Remove the entry in the locations vector, and adjust all references to
268     // location numbers above the removed entry.
269     locations.erase(locations.begin() + LocNo);
270     for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
271       DbgValueLocation Loc = I.value();
272       if (!Loc.isUndef() && Loc.locNo() > LocNo)
273         I.setValueUnchecked(Loc.changeLocNo(Loc.locNo() - 1));
274     }
275   }
276 
277   /// Ensure that all virtual register locations are mapped.
278   void mapVirtRegs(LDVImpl *LDV);
279 
280   /// Add a definition point to this value.
281   void addDef(SlotIndex Idx, const MachineOperand &LocMO) {
282     DbgValueLocation Loc(getLocationNo(LocMO));
283     // Add a singular (Idx,Idx) -> Loc mapping.
284     LocMap::iterator I = locInts.find(Idx);
285     if (!I.valid() || I.start() != Idx)
286       I.insert(Idx, Idx.getNextSlot(), Loc);
287     else
288       // A later DBG_VALUE at the same SlotIndex overrides the old location.
289       I.setValue(Loc);
290   }
291 
292   /// Extend the current definition as far as possible down.
293   ///
294   /// Stop when meeting an existing def or when leaving the live
295   /// range of VNI. End points where VNI is no longer live are added to Kills.
296   ///
297   /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a
298   /// data-flow analysis to propagate them beyond basic block boundaries.
299   ///
300   /// \param Idx Starting point for the definition.
301   /// \param Loc Location number to propagate.
302   /// \param LR Restrict liveness to where LR has the value VNI. May be null.
303   /// \param VNI When LR is not null, this is the value to restrict to.
304   /// \param [out] Kills Append end points of VNI's live range to Kills.
305   /// \param LIS Live intervals analysis.
306   void extendDef(SlotIndex Idx, DbgValueLocation Loc,
307                  LiveRange *LR, const VNInfo *VNI,
308                  SmallVectorImpl<SlotIndex> *Kills,
309                  LiveIntervals &LIS);
310 
311   /// The value in LI/LocNo may be copies to other registers. Determine if
312   /// any of the copies are available at the kill points, and add defs if
313   /// possible.
314   ///
315   /// \param LI Scan for copies of the value in LI->reg.
316   /// \param LocNo Location number of LI->reg.
317   /// \param Kills Points where the range of LocNo could be extended.
318   /// \param [in,out] NewDefs Append (Idx, LocNo) of inserted defs here.
319   void addDefsFromCopies(
320       LiveInterval *LI, unsigned LocNo,
321       const SmallVectorImpl<SlotIndex> &Kills,
322       SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
323       MachineRegisterInfo &MRI, LiveIntervals &LIS);
324 
325   /// Compute the live intervals of all locations after collecting all their
326   /// def points.
327   void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI,
328                         LiveIntervals &LIS, LexicalScopes &LS);
329 
330   /// Replace OldReg ranges with NewRegs ranges where NewRegs is
331   /// live. Returns true if any changes were made.
332   bool splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
333                      LiveIntervals &LIS);
334 
335   /// Rewrite virtual register locations according to the provided virtual
336   /// register map. Record the stack slot offsets for the locations that
337   /// were spilled.
338   void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
339                         const TargetInstrInfo &TII,
340                         const TargetRegisterInfo &TRI,
341                         SpillOffsetMap &SpillOffsets);
342 
343   /// Recreate DBG_VALUE instruction from data structures.
344   void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
345                        const TargetInstrInfo &TII,
346                        const TargetRegisterInfo &TRI,
347                        const SpillOffsetMap &SpillOffsets);
348 
349   /// Return DebugLoc of this UserValue.
350   DebugLoc getDebugLoc() { return dl;}
351 
352   void print(raw_ostream &, const TargetRegisterInfo *);
353 };
354 
355 /// A user label is a part of a debug info user label.
356 class UserLabel {
357   const DILabel *Label; ///< The debug info label we are part of.
358   DebugLoc dl;          ///< The debug location for the label. This is
359                         ///< used by dwarf writer to find lexical scope.
360   SlotIndex loc;        ///< Slot used by the debug label.
361 
362   /// Insert a DBG_LABEL into MBB at Idx.
363   void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
364                         LiveIntervals &LIS, const TargetInstrInfo &TII);
365 
366 public:
367   /// Create a new UserLabel.
368   UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx)
369       : Label(label), dl(std::move(L)), loc(Idx) {}
370 
371   /// Does this UserLabel match the parameters?
372   bool match(const DILabel *L, const DILocation *IA,
373              const SlotIndex Index) const {
374     return Label == L && dl->getInlinedAt() == IA && loc == Index;
375   }
376 
377   /// Recreate DBG_LABEL instruction from data structures.
378   void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII);
379 
380   /// Return DebugLoc of this UserLabel.
381   DebugLoc getDebugLoc() { return dl; }
382 
383   void print(raw_ostream &, const TargetRegisterInfo *);
384 };
385 
386 /// Implementation of the LiveDebugVariables pass.
387 class LDVImpl {
388   LiveDebugVariables &pass;
389   LocMap::Allocator allocator;
390   MachineFunction *MF = nullptr;
391   LiveIntervals *LIS;
392   const TargetRegisterInfo *TRI;
393 
394   /// Whether emitDebugValues is called.
395   bool EmitDone = false;
396 
397   /// Whether the machine function is modified during the pass.
398   bool ModifiedMF = false;
399 
400   /// All allocated UserValue instances.
401   SmallVector<std::unique_ptr<UserValue>, 8> userValues;
402 
403   /// All allocated UserLabel instances.
404   SmallVector<std::unique_ptr<UserLabel>, 2> userLabels;
405 
406   /// Map virtual register to eq class leader.
407   using VRMap = DenseMap<unsigned, UserValue *>;
408   VRMap virtRegToEqClass;
409 
410   /// Map user variable to eq class leader.
411   using UVMap = DenseMap<const DILocalVariable *, UserValue *>;
412   UVMap userVarMap;
413 
414   /// Find or create a UserValue.
415   UserValue *getUserValue(const DILocalVariable *Var, const DIExpression *Expr,
416                           const DebugLoc &DL);
417 
418   /// Find the EC leader for VirtReg or null.
419   UserValue *lookupVirtReg(unsigned VirtReg);
420 
421   /// Add DBG_VALUE instruction to our maps.
422   ///
423   /// \param MI DBG_VALUE instruction
424   /// \param Idx Last valid SLotIndex before instruction.
425   ///
426   /// \returns True if the DBG_VALUE instruction should be deleted.
427   bool handleDebugValue(MachineInstr &MI, SlotIndex Idx);
428 
429   /// Add DBG_LABEL instruction to UserLabel.
430   ///
431   /// \param MI DBG_LABEL instruction
432   /// \param Idx Last valid SlotIndex before instruction.
433   ///
434   /// \returns True if the DBG_LABEL instruction should be deleted.
435   bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx);
436 
437   /// Collect and erase all DBG_VALUE instructions, adding a UserValue def
438   /// for each instruction.
439   ///
440   /// \param mf MachineFunction to be scanned.
441   ///
442   /// \returns True if any debug values were found.
443   bool collectDebugValues(MachineFunction &mf);
444 
445   /// Compute the live intervals of all user values after collecting all
446   /// their def points.
447   void computeIntervals();
448 
449 public:
450   LDVImpl(LiveDebugVariables *ps) : pass(*ps) {}
451 
452   bool runOnMachineFunction(MachineFunction &mf);
453 
454   /// Release all memory.
455   void clear() {
456     MF = nullptr;
457     userValues.clear();
458     userLabels.clear();
459     virtRegToEqClass.clear();
460     userVarMap.clear();
461     // Make sure we call emitDebugValues if the machine function was modified.
462     assert((!ModifiedMF || EmitDone) &&
463            "Dbg values are not emitted in LDV");
464     EmitDone = false;
465     ModifiedMF = false;
466   }
467 
468   /// Map virtual register to an equivalence class.
469   void mapVirtReg(unsigned VirtReg, UserValue *EC);
470 
471   /// Replace all references to OldReg with NewRegs.
472   void splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs);
473 
474   /// Recreate DBG_VALUE instruction from data structures.
475   void emitDebugValues(VirtRegMap *VRM);
476 
477   void print(raw_ostream&);
478 };
479 
480 } // end anonymous namespace
481 
482 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
483 static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS,
484                           const LLVMContext &Ctx) {
485   if (!DL)
486     return;
487 
488   auto *Scope = cast<DIScope>(DL.getScope());
489   // Omit the directory, because it's likely to be long and uninteresting.
490   CommentOS << Scope->getFilename();
491   CommentOS << ':' << DL.getLine();
492   if (DL.getCol() != 0)
493     CommentOS << ':' << DL.getCol();
494 
495   DebugLoc InlinedAtDL = DL.getInlinedAt();
496   if (!InlinedAtDL)
497     return;
498 
499   CommentOS << " @[ ";
500   printDebugLoc(InlinedAtDL, CommentOS, Ctx);
501   CommentOS << " ]";
502 }
503 
504 static void printExtendedName(raw_ostream &OS, const DINode *Node,
505                               const DILocation *DL) {
506   const LLVMContext &Ctx = Node->getContext();
507   StringRef Res;
508   unsigned Line;
509   if (const auto *V = dyn_cast<const DILocalVariable>(Node)) {
510     Res = V->getName();
511     Line = V->getLine();
512   } else if (const auto *L = dyn_cast<const DILabel>(Node)) {
513     Res = L->getName();
514     Line = L->getLine();
515   }
516 
517   if (!Res.empty())
518     OS << Res << "," << Line;
519   auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr;
520   if (InlinedAt) {
521     if (DebugLoc InlinedAtDL = InlinedAt) {
522       OS << " @[";
523       printDebugLoc(InlinedAtDL, OS, Ctx);
524       OS << "]";
525     }
526   }
527 }
528 
529 void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
530   OS << "!\"";
531   printExtendedName(OS, Variable, dl);
532 
533   OS << "\"\t";
534   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) {
535     OS << " [" << I.start() << ';' << I.stop() << "):";
536     if (I.value().isUndef())
537       OS << "undef";
538     else {
539       OS << I.value().locNo();
540     }
541   }
542   for (unsigned i = 0, e = locations.size(); i != e; ++i) {
543     OS << " Loc" << i << '=';
544     locations[i].print(OS, TRI);
545   }
546   OS << '\n';
547 }
548 
549 void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
550   OS << "!\"";
551   printExtendedName(OS, Label, dl);
552 
553   OS << "\"\t";
554   OS << loc;
555   OS << '\n';
556 }
557 
558 void LDVImpl::print(raw_ostream &OS) {
559   OS << "********** DEBUG VARIABLES **********\n";
560   for (auto &userValue : userValues)
561     userValue->print(OS, TRI);
562   OS << "********** DEBUG LABELS **********\n";
563   for (auto &userLabel : userLabels)
564     userLabel->print(OS, TRI);
565 }
566 #endif
567 
568 void UserValue::mapVirtRegs(LDVImpl *LDV) {
569   for (unsigned i = 0, e = locations.size(); i != e; ++i)
570     if (locations[i].isReg() &&
571         Register::isVirtualRegister(locations[i].getReg()))
572       LDV->mapVirtReg(locations[i].getReg(), this);
573 }
574 
575 UserValue *LDVImpl::getUserValue(const DILocalVariable *Var,
576                                  const DIExpression *Expr, const DebugLoc &DL) {
577   UserValue *&Leader = userVarMap[Var];
578   if (Leader) {
579     UserValue *UV = Leader->getLeader();
580     Leader = UV;
581     for (; UV; UV = UV->getNext())
582       if (UV->match(Var, Expr, DL->getInlinedAt()))
583         return UV;
584   }
585 
586   userValues.push_back(
587       std::make_unique<UserValue>(Var, Expr, DL, allocator));
588   UserValue *UV = userValues.back().get();
589   Leader = UserValue::merge(Leader, UV);
590   return UV;
591 }
592 
593 void LDVImpl::mapVirtReg(unsigned VirtReg, UserValue *EC) {
594   assert(Register::isVirtualRegister(VirtReg) && "Only map VirtRegs");
595   UserValue *&Leader = virtRegToEqClass[VirtReg];
596   Leader = UserValue::merge(Leader, EC);
597 }
598 
599 UserValue *LDVImpl::lookupVirtReg(unsigned VirtReg) {
600   if (UserValue *UV = virtRegToEqClass.lookup(VirtReg))
601     return UV->getLeader();
602   return nullptr;
603 }
604 
605 bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) {
606   // DBG_VALUE loc, offset, variable
607   if (MI.getNumOperands() != 4 ||
608       !(MI.getOperand(1).isReg() || MI.getOperand(1).isImm()) ||
609       !MI.getOperand(2).isMetadata()) {
610     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
611     return false;
612   }
613 
614   // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual
615   // register that hasn't been defined yet. If we do not remove those here, then
616   // the re-insertion of the DBG_VALUE instruction after register allocation
617   // will be incorrect.
618   // TODO: If earlier passes are corrected to generate sane debug information
619   // (and if the machine verifier is improved to catch this), then these checks
620   // could be removed or replaced by asserts.
621   bool Discard = false;
622   if (MI.getOperand(0).isReg() &&
623       Register::isVirtualRegister(MI.getOperand(0).getReg())) {
624     const Register Reg = MI.getOperand(0).getReg();
625     if (!LIS->hasInterval(Reg)) {
626       // The DBG_VALUE is described by a virtual register that does not have a
627       // live interval. Discard the DBG_VALUE.
628       Discard = true;
629       LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx
630                         << " " << MI);
631     } else {
632       // The DBG_VALUE is only valid if either Reg is live out from Idx, or Reg
633       // is defined dead at Idx (where Idx is the slot index for the instruction
634       // preceding the DBG_VALUE).
635       const LiveInterval &LI = LIS->getInterval(Reg);
636       LiveQueryResult LRQ = LI.Query(Idx);
637       if (!LRQ.valueOutOrDead()) {
638         // We have found a DBG_VALUE with the value in a virtual register that
639         // is not live. Discard the DBG_VALUE.
640         Discard = true;
641         LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx
642                           << " " << MI);
643       }
644     }
645   }
646 
647   // Get or create the UserValue for (variable,offset) here.
648   assert(!MI.getOperand(1).isImm() && "DBG_VALUE with indirect flag before "
649                                       "LiveDebugVariables");
650   const DILocalVariable *Var = MI.getDebugVariable();
651   const DIExpression *Expr = MI.getDebugExpression();
652   UserValue *UV =
653       getUserValue(Var, Expr, MI.getDebugLoc());
654   if (!Discard)
655     UV->addDef(Idx, MI.getOperand(0));
656   else {
657     MachineOperand MO = MachineOperand::CreateReg(0U, false);
658     MO.setIsDebug();
659     UV->addDef(Idx, MO);
660   }
661   return true;
662 }
663 
664 bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) {
665   // DBG_LABEL label
666   if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) {
667     LLVM_DEBUG(dbgs() << "Can't handle " << MI);
668     return false;
669   }
670 
671   // Get or create the UserLabel for label here.
672   const DILabel *Label = MI.getDebugLabel();
673   const DebugLoc &DL = MI.getDebugLoc();
674   bool Found = false;
675   for (auto const &L : userLabels) {
676     if (L->match(Label, DL->getInlinedAt(), Idx)) {
677       Found = true;
678       break;
679     }
680   }
681   if (!Found)
682     userLabels.push_back(std::make_unique<UserLabel>(Label, DL, Idx));
683 
684   return true;
685 }
686 
687 bool LDVImpl::collectDebugValues(MachineFunction &mf) {
688   bool Changed = false;
689   for (MachineFunction::iterator MFI = mf.begin(), MFE = mf.end(); MFI != MFE;
690        ++MFI) {
691     MachineBasicBlock *MBB = &*MFI;
692     for (MachineBasicBlock::iterator MBBI = MBB->begin(), MBBE = MBB->end();
693          MBBI != MBBE;) {
694       // Use the first debug instruction in the sequence to get a SlotIndex
695       // for following consecutive debug instructions.
696       if (!MBBI->isDebugInstr()) {
697         ++MBBI;
698         continue;
699       }
700       // Debug instructions has no slot index. Use the previous
701       // non-debug instruction's SlotIndex as its SlotIndex.
702       SlotIndex Idx =
703           MBBI == MBB->begin()
704               ? LIS->getMBBStartIdx(MBB)
705               : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot();
706       // Handle consecutive debug instructions with the same slot index.
707       do {
708         // Only handle DBG_VALUE in handleDebugValue(). Skip all other
709         // kinds of debug instructions.
710         if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) ||
711             (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) {
712           MBBI = MBB->erase(MBBI);
713           Changed = true;
714         } else
715           ++MBBI;
716       } while (MBBI != MBBE && MBBI->isDebugInstr());
717     }
718   }
719   return Changed;
720 }
721 
722 void UserValue::extendDef(SlotIndex Idx, DbgValueLocation Loc, LiveRange *LR,
723                           const VNInfo *VNI, SmallVectorImpl<SlotIndex> *Kills,
724                           LiveIntervals &LIS) {
725   SlotIndex Start = Idx;
726   MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start);
727   SlotIndex Stop = LIS.getMBBEndIdx(MBB);
728   LocMap::iterator I = locInts.find(Start);
729 
730   // Limit to VNI's live range.
731   bool ToEnd = true;
732   if (LR && VNI) {
733     LiveInterval::Segment *Segment = LR->getSegmentContaining(Start);
734     if (!Segment || Segment->valno != VNI) {
735       if (Kills)
736         Kills->push_back(Start);
737       return;
738     }
739     if (Segment->end < Stop) {
740       Stop = Segment->end;
741       ToEnd = false;
742     }
743   }
744 
745   // There could already be a short def at Start.
746   if (I.valid() && I.start() <= Start) {
747     // Stop when meeting a different location or an already extended interval.
748     Start = Start.getNextSlot();
749     if (I.value() != Loc || I.stop() != Start)
750       return;
751     // This is a one-slot placeholder. Just skip it.
752     ++I;
753   }
754 
755   // Limited by the next def.
756   if (I.valid() && I.start() < Stop)
757     Stop = I.start();
758   // Limited by VNI's live range.
759   else if (!ToEnd && Kills)
760     Kills->push_back(Stop);
761 
762   if (Start < Stop)
763     I.insert(Start, Stop, Loc);
764 }
765 
766 void UserValue::addDefsFromCopies(
767     LiveInterval *LI, unsigned LocNo,
768     const SmallVectorImpl<SlotIndex> &Kills,
769     SmallVectorImpl<std::pair<SlotIndex, DbgValueLocation>> &NewDefs,
770     MachineRegisterInfo &MRI, LiveIntervals &LIS) {
771   if (Kills.empty())
772     return;
773   // Don't track copies from physregs, there are too many uses.
774   if (!Register::isVirtualRegister(LI->reg))
775     return;
776 
777   // Collect all the (vreg, valno) pairs that are copies of LI.
778   SmallVector<std::pair<LiveInterval*, const VNInfo*>, 8> CopyValues;
779   for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg)) {
780     MachineInstr *MI = MO.getParent();
781     // Copies of the full value.
782     if (MO.getSubReg() || !MI->isCopy())
783       continue;
784     Register DstReg = MI->getOperand(0).getReg();
785 
786     // Don't follow copies to physregs. These are usually setting up call
787     // arguments, and the argument registers are always call clobbered. We are
788     // better off in the source register which could be a callee-saved register,
789     // or it could be spilled.
790     if (!Register::isVirtualRegister(DstReg))
791       continue;
792 
793     // Is LocNo extended to reach this copy? If not, another def may be blocking
794     // it, or we are looking at a wrong value of LI.
795     SlotIndex Idx = LIS.getInstructionIndex(*MI);
796     LocMap::iterator I = locInts.find(Idx.getRegSlot(true));
797     if (!I.valid() || I.value().locNo() != LocNo)
798       continue;
799 
800     if (!LIS.hasInterval(DstReg))
801       continue;
802     LiveInterval *DstLI = &LIS.getInterval(DstReg);
803     const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot());
804     assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value");
805     CopyValues.push_back(std::make_pair(DstLI, DstVNI));
806   }
807 
808   if (CopyValues.empty())
809     return;
810 
811   LLVM_DEBUG(dbgs() << "Got " << CopyValues.size() << " copies of " << *LI
812                     << '\n');
813 
814   // Try to add defs of the copied values for each kill point.
815   for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
816     SlotIndex Idx = Kills[i];
817     for (unsigned j = 0, e = CopyValues.size(); j != e; ++j) {
818       LiveInterval *DstLI = CopyValues[j].first;
819       const VNInfo *DstVNI = CopyValues[j].second;
820       if (DstLI->getVNInfoAt(Idx) != DstVNI)
821         continue;
822       // Check that there isn't already a def at Idx
823       LocMap::iterator I = locInts.find(Idx);
824       if (I.valid() && I.start() <= Idx)
825         continue;
826       LLVM_DEBUG(dbgs() << "Kill at " << Idx << " covered by valno #"
827                         << DstVNI->id << " in " << *DstLI << '\n');
828       MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def);
829       assert(CopyMI && CopyMI->isCopy() && "Bad copy value");
830       unsigned LocNo = getLocationNo(CopyMI->getOperand(0));
831       DbgValueLocation NewLoc(LocNo);
832       I.insert(Idx, Idx.getNextSlot(), NewLoc);
833       NewDefs.push_back(std::make_pair(Idx, NewLoc));
834       break;
835     }
836   }
837 }
838 
839 void UserValue::computeIntervals(MachineRegisterInfo &MRI,
840                                  const TargetRegisterInfo &TRI,
841                                  LiveIntervals &LIS, LexicalScopes &LS) {
842   SmallVector<std::pair<SlotIndex, DbgValueLocation>, 16> Defs;
843 
844   // Collect all defs to be extended (Skipping undefs).
845   for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I)
846     if (!I.value().isUndef())
847       Defs.push_back(std::make_pair(I.start(), I.value()));
848 
849   // Extend all defs, and possibly add new ones along the way.
850   for (unsigned i = 0; i != Defs.size(); ++i) {
851     SlotIndex Idx = Defs[i].first;
852     DbgValueLocation Loc = Defs[i].second;
853     const MachineOperand &LocMO = locations[Loc.locNo()];
854 
855     if (!LocMO.isReg()) {
856       extendDef(Idx, Loc, nullptr, nullptr, nullptr, LIS);
857       continue;
858     }
859 
860     // Register locations are constrained to where the register value is live.
861     if (Register::isVirtualRegister(LocMO.getReg())) {
862       LiveInterval *LI = nullptr;
863       const VNInfo *VNI = nullptr;
864       if (LIS.hasInterval(LocMO.getReg())) {
865         LI = &LIS.getInterval(LocMO.getReg());
866         VNI = LI->getVNInfoAt(Idx);
867       }
868       SmallVector<SlotIndex, 16> Kills;
869       extendDef(Idx, Loc, LI, VNI, &Kills, LIS);
870       // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that
871       // if the original location for example is %vreg0:sub_hi, and we find a
872       // full register copy in addDefsFromCopies (at the moment it only handles
873       // full register copies), then we must add the sub1 sub-register index to
874       // the new location. However, that is only possible if the new virtual
875       // register is of the same regclass (or if there is an equivalent
876       // sub-register in that regclass). For now, simply skip handling copies if
877       // a sub-register is involved.
878       if (LI && !LocMO.getSubReg())
879         addDefsFromCopies(LI, Loc.locNo(), Kills, Defs, MRI, LIS);
880       continue;
881     }
882 
883     // For physregs, we only mark the start slot idx. DwarfDebug will see it
884     // as if the DBG_VALUE is valid up until the end of the basic block, or
885     // the next def of the physical register. So we do not need to extend the
886     // range. It might actually happen that the DBG_VALUE is the last use of
887     // the physical register (e.g. if this is an unused input argument to a
888     // function).
889   }
890 
891   // The computed intervals may extend beyond the range of the debug
892   // location's lexical scope. In this case, splitting of an interval
893   // can result in an interval outside of the scope being created,
894   // causing extra unnecessary DBG_VALUEs to be emitted. To prevent
895   // this, trim the intervals to the lexical scope.
896 
897   LexicalScope *Scope = LS.findLexicalScope(dl);
898   if (!Scope)
899     return;
900 
901   SlotIndex PrevEnd;
902   LocMap::iterator I = locInts.begin();
903 
904   // Iterate over the lexical scope ranges. Each time round the loop
905   // we check the intervals for overlap with the end of the previous
906   // range and the start of the next. The first range is handled as
907   // a special case where there is no PrevEnd.
908   for (const InsnRange &Range : Scope->getRanges()) {
909     SlotIndex RStart = LIS.getInstructionIndex(*Range.first);
910     SlotIndex REnd = LIS.getInstructionIndex(*Range.second);
911 
912     // At the start of each iteration I has been advanced so that
913     // I.stop() >= PrevEnd. Check for overlap.
914     if (PrevEnd && I.start() < PrevEnd) {
915       SlotIndex IStop = I.stop();
916       DbgValueLocation Loc = I.value();
917 
918       // Stop overlaps previous end - trim the end of the interval to
919       // the scope range.
920       I.setStopUnchecked(PrevEnd);
921       ++I;
922 
923       // If the interval also overlaps the start of the "next" (i.e.
924       // current) range create a new interval for the remainder
925       if (RStart < IStop)
926         I.insert(RStart, IStop, Loc);
927     }
928 
929     // Advance I so that I.stop() >= RStart, and check for overlap.
930     I.advanceTo(RStart);
931     if (!I.valid())
932       return;
933 
934     // The end of a lexical scope range is the last instruction in the
935     // range. To convert to an interval we need the index of the
936     // instruction after it.
937     REnd = REnd.getNextIndex();
938 
939     // Advance I to first interval outside current range.
940     I.advanceTo(REnd);
941     if (!I.valid())
942       return;
943 
944     PrevEnd = REnd;
945   }
946 
947   // Check for overlap with end of final range.
948   if (PrevEnd && I.start() < PrevEnd)
949     I.setStopUnchecked(PrevEnd);
950 }
951 
952 void LDVImpl::computeIntervals() {
953   LexicalScopes LS;
954   LS.initialize(*MF);
955 
956   for (unsigned i = 0, e = userValues.size(); i != e; ++i) {
957     userValues[i]->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS);
958     userValues[i]->mapVirtRegs(this);
959   }
960 }
961 
962 bool LDVImpl::runOnMachineFunction(MachineFunction &mf) {
963   clear();
964   MF = &mf;
965   LIS = &pass.getAnalysis<LiveIntervals>();
966   TRI = mf.getSubtarget().getRegisterInfo();
967   LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: "
968                     << mf.getName() << " **********\n");
969 
970   bool Changed = collectDebugValues(mf);
971   computeIntervals();
972   LLVM_DEBUG(print(dbgs()));
973   ModifiedMF = Changed;
974   return Changed;
975 }
976 
977 static void removeDebugValues(MachineFunction &mf) {
978   for (MachineBasicBlock &MBB : mf) {
979     for (auto MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ) {
980       if (!MBBI->isDebugValue()) {
981         ++MBBI;
982         continue;
983       }
984       MBBI = MBB.erase(MBBI);
985     }
986   }
987 }
988 
989 bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) {
990   if (!EnableLDV)
991     return false;
992   if (!mf.getFunction().getSubprogram()) {
993     removeDebugValues(mf);
994     return false;
995   }
996   if (!pImpl)
997     pImpl = new LDVImpl(this);
998   return static_cast<LDVImpl*>(pImpl)->runOnMachineFunction(mf);
999 }
1000 
1001 void LiveDebugVariables::releaseMemory() {
1002   if (pImpl)
1003     static_cast<LDVImpl*>(pImpl)->clear();
1004 }
1005 
1006 LiveDebugVariables::~LiveDebugVariables() {
1007   if (pImpl)
1008     delete static_cast<LDVImpl*>(pImpl);
1009 }
1010 
1011 //===----------------------------------------------------------------------===//
1012 //                           Live Range Splitting
1013 //===----------------------------------------------------------------------===//
1014 
1015 bool
1016 UserValue::splitLocation(unsigned OldLocNo, ArrayRef<unsigned> NewRegs,
1017                          LiveIntervals& LIS) {
1018   LLVM_DEBUG({
1019     dbgs() << "Splitting Loc" << OldLocNo << '\t';
1020     print(dbgs(), nullptr);
1021   });
1022   bool DidChange = false;
1023   LocMap::iterator LocMapI;
1024   LocMapI.setMap(locInts);
1025   for (unsigned i = 0; i != NewRegs.size(); ++i) {
1026     LiveInterval *LI = &LIS.getInterval(NewRegs[i]);
1027     if (LI->empty())
1028       continue;
1029 
1030     // Don't allocate the new LocNo until it is needed.
1031     unsigned NewLocNo = UndefLocNo;
1032 
1033     // Iterate over the overlaps between locInts and LI.
1034     LocMapI.find(LI->beginIndex());
1035     if (!LocMapI.valid())
1036       continue;
1037     LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start());
1038     LiveInterval::iterator LIE = LI->end();
1039     while (LocMapI.valid() && LII != LIE) {
1040       // At this point, we know that LocMapI.stop() > LII->start.
1041       LII = LI->advanceTo(LII, LocMapI.start());
1042       if (LII == LIE)
1043         break;
1044 
1045       // Now LII->end > LocMapI.start(). Do we have an overlap?
1046       if (LocMapI.value().locNo() == OldLocNo && LII->start < LocMapI.stop()) {
1047         // Overlapping correct location. Allocate NewLocNo now.
1048         if (NewLocNo == UndefLocNo) {
1049           MachineOperand MO = MachineOperand::CreateReg(LI->reg, false);
1050           MO.setSubReg(locations[OldLocNo].getSubReg());
1051           NewLocNo = getLocationNo(MO);
1052           DidChange = true;
1053         }
1054 
1055         SlotIndex LStart = LocMapI.start();
1056         SlotIndex LStop  = LocMapI.stop();
1057         DbgValueLocation OldLoc = LocMapI.value();
1058 
1059         // Trim LocMapI down to the LII overlap.
1060         if (LStart < LII->start)
1061           LocMapI.setStartUnchecked(LII->start);
1062         if (LStop > LII->end)
1063           LocMapI.setStopUnchecked(LII->end);
1064 
1065         // Change the value in the overlap. This may trigger coalescing.
1066         LocMapI.setValue(OldLoc.changeLocNo(NewLocNo));
1067 
1068         // Re-insert any removed OldLocNo ranges.
1069         if (LStart < LocMapI.start()) {
1070           LocMapI.insert(LStart, LocMapI.start(), OldLoc);
1071           ++LocMapI;
1072           assert(LocMapI.valid() && "Unexpected coalescing");
1073         }
1074         if (LStop > LocMapI.stop()) {
1075           ++LocMapI;
1076           LocMapI.insert(LII->end, LStop, OldLoc);
1077           --LocMapI;
1078         }
1079       }
1080 
1081       // Advance to the next overlap.
1082       if (LII->end < LocMapI.stop()) {
1083         if (++LII == LIE)
1084           break;
1085         LocMapI.advanceTo(LII->start);
1086       } else {
1087         ++LocMapI;
1088         if (!LocMapI.valid())
1089           break;
1090         LII = LI->advanceTo(LII, LocMapI.start());
1091       }
1092     }
1093   }
1094 
1095   // Finally, remove OldLocNo unless it is still used by some interval in the
1096   // locInts map. One case when OldLocNo still is in use is when the register
1097   // has been spilled. In such situations the spilled register is kept as a
1098   // location until rewriteLocations is called (VirtRegMap is mapping the old
1099   // register to the spill slot). So for a while we can have locations that map
1100   // to virtual registers that have been removed from both the MachineFunction
1101   // and from LiveIntervals.
1102   removeLocationIfUnused(OldLocNo);
1103 
1104   LLVM_DEBUG({
1105     dbgs() << "Split result: \t";
1106     print(dbgs(), nullptr);
1107   });
1108   return DidChange;
1109 }
1110 
1111 bool
1112 UserValue::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs,
1113                          LiveIntervals &LIS) {
1114   bool DidChange = false;
1115   // Split locations referring to OldReg. Iterate backwards so splitLocation can
1116   // safely erase unused locations.
1117   for (unsigned i = locations.size(); i ; --i) {
1118     unsigned LocNo = i-1;
1119     const MachineOperand *Loc = &locations[LocNo];
1120     if (!Loc->isReg() || Loc->getReg() != OldReg)
1121       continue;
1122     DidChange |= splitLocation(LocNo, NewRegs, LIS);
1123   }
1124   return DidChange;
1125 }
1126 
1127 void LDVImpl::splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs) {
1128   bool DidChange = false;
1129   for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext())
1130     DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS);
1131 
1132   if (!DidChange)
1133     return;
1134 
1135   // Map all of the new virtual registers.
1136   UserValue *UV = lookupVirtReg(OldReg);
1137   for (unsigned i = 0; i != NewRegs.size(); ++i)
1138     mapVirtReg(NewRegs[i], UV);
1139 }
1140 
1141 void LiveDebugVariables::
1142 splitRegister(unsigned OldReg, ArrayRef<unsigned> NewRegs, LiveIntervals &LIS) {
1143   if (pImpl)
1144     static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs);
1145 }
1146 
1147 void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF,
1148                                  const TargetInstrInfo &TII,
1149                                  const TargetRegisterInfo &TRI,
1150                                  SpillOffsetMap &SpillOffsets) {
1151   // Build a set of new locations with new numbers so we can coalesce our
1152   // IntervalMap if two vreg intervals collapse to the same physical location.
1153   // Use MapVector instead of SetVector because MapVector::insert returns the
1154   // position of the previously or newly inserted element. The boolean value
1155   // tracks if the location was produced by a spill.
1156   // FIXME: This will be problematic if we ever support direct and indirect
1157   // frame index locations, i.e. expressing both variables in memory and
1158   // 'int x, *px = &x'. The "spilled" bit must become part of the location.
1159   MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations;
1160   SmallVector<unsigned, 4> LocNoMap(locations.size());
1161   for (unsigned I = 0, E = locations.size(); I != E; ++I) {
1162     bool Spilled = false;
1163     unsigned SpillOffset = 0;
1164     MachineOperand Loc = locations[I];
1165     // Only virtual registers are rewritten.
1166     if (Loc.isReg() && Loc.getReg() &&
1167         Register::isVirtualRegister(Loc.getReg())) {
1168       Register VirtReg = Loc.getReg();
1169       if (VRM.isAssignedReg(VirtReg) &&
1170           Register::isPhysicalRegister(VRM.getPhys(VirtReg))) {
1171         // This can create a %noreg operand in rare cases when the sub-register
1172         // index is no longer available. That means the user value is in a
1173         // non-existent sub-register, and %noreg is exactly what we want.
1174         Loc.substPhysReg(VRM.getPhys(VirtReg), TRI);
1175       } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) {
1176         // Retrieve the stack slot offset.
1177         unsigned SpillSize;
1178         const MachineRegisterInfo &MRI = MF.getRegInfo();
1179         const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg);
1180         bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize,
1181                                              SpillOffset, MF);
1182 
1183         // FIXME: Invalidate the location if the offset couldn't be calculated.
1184         (void)Success;
1185 
1186         Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg));
1187         Spilled = true;
1188       } else {
1189         Loc.setReg(0);
1190         Loc.setSubReg(0);
1191       }
1192     }
1193 
1194     // Insert this location if it doesn't already exist and record a mapping
1195     // from the old number to the new number.
1196     auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}});
1197     unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first);
1198     LocNoMap[I] = NewLocNo;
1199   }
1200 
1201   // Rewrite the locations and record the stack slot offsets for spills.
1202   locations.clear();
1203   SpillOffsets.clear();
1204   for (auto &Pair : NewLocations) {
1205     bool Spilled;
1206     unsigned SpillOffset;
1207     std::tie(Spilled, SpillOffset) = Pair.second;
1208     locations.push_back(Pair.first);
1209     if (Spilled) {
1210       unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair);
1211       SpillOffsets[NewLocNo] = SpillOffset;
1212     }
1213   }
1214 
1215   // Update the interval map, but only coalesce left, since intervals to the
1216   // right use the old location numbers. This should merge two contiguous
1217   // DBG_VALUE intervals with different vregs that were allocated to the same
1218   // physical register.
1219   for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) {
1220     DbgValueLocation Loc = I.value();
1221     // Undef values don't exist in locations (and thus not in LocNoMap either)
1222     // so skip over them. See getLocationNo().
1223     if (Loc.isUndef())
1224       continue;
1225     unsigned NewLocNo = LocNoMap[Loc.locNo()];
1226     I.setValueUnchecked(Loc.changeLocNo(NewLocNo));
1227     I.setStart(I.start());
1228   }
1229 }
1230 
1231 /// Find an iterator for inserting a DBG_VALUE instruction.
1232 static MachineBasicBlock::iterator
1233 findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx,
1234                    LiveIntervals &LIS) {
1235   SlotIndex Start = LIS.getMBBStartIdx(MBB);
1236   Idx = Idx.getBaseIndex();
1237 
1238   // Try to find an insert location by going backwards from Idx.
1239   MachineInstr *MI;
1240   while (!(MI = LIS.getInstructionFromIndex(Idx))) {
1241     // We've reached the beginning of MBB.
1242     if (Idx == Start) {
1243       MachineBasicBlock::iterator I = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
1244       return I;
1245     }
1246     Idx = Idx.getPrevIndex();
1247   }
1248 
1249   // Don't insert anything after the first terminator, though.
1250   return MI->isTerminator() ? MBB->getFirstTerminator() :
1251                               std::next(MachineBasicBlock::iterator(MI));
1252 }
1253 
1254 /// Find an iterator for inserting the next DBG_VALUE instruction
1255 /// (or end if no more insert locations found).
1256 static MachineBasicBlock::iterator
1257 findNextInsertLocation(MachineBasicBlock *MBB,
1258                        MachineBasicBlock::iterator I,
1259                        SlotIndex StopIdx, MachineOperand &LocMO,
1260                        LiveIntervals &LIS,
1261                        const TargetRegisterInfo &TRI) {
1262   if (!LocMO.isReg())
1263     return MBB->instr_end();
1264   Register Reg = LocMO.getReg();
1265 
1266   // Find the next instruction in the MBB that define the register Reg.
1267   while (I != MBB->end() && !I->isTerminator()) {
1268     if (!LIS.isNotInMIMap(*I) &&
1269         SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I)))
1270       break;
1271     if (I->definesRegister(Reg, &TRI))
1272       // The insert location is directly after the instruction/bundle.
1273       return std::next(I);
1274     ++I;
1275   }
1276   return MBB->end();
1277 }
1278 
1279 void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx,
1280                                  SlotIndex StopIdx, DbgValueLocation Loc,
1281                                  bool Spilled, unsigned SpillOffset,
1282                                  LiveIntervals &LIS, const TargetInstrInfo &TII,
1283                                  const TargetRegisterInfo &TRI) {
1284   SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB);
1285   // Only search within the current MBB.
1286   StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx;
1287   MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS);
1288   // Undef values don't exist in locations so create new "noreg" register MOs
1289   // for them. See getLocationNo().
1290   MachineOperand MO = !Loc.isUndef() ?
1291     locations[Loc.locNo()] :
1292     MachineOperand::CreateReg(/* Reg */ 0, /* isDef */ false, /* isImp */ false,
1293                               /* isKill */ false, /* isDead */ false,
1294                               /* isUndef */ false, /* isEarlyClobber */ false,
1295                               /* SubReg */ 0, /* isDebug */ true);
1296 
1297   ++NumInsertedDebugValues;
1298 
1299   assert(cast<DILocalVariable>(Variable)
1300              ->isValidLocationForIntrinsic(getDebugLoc()) &&
1301          "Expected inlined-at fields to agree");
1302 
1303   // If the location was spilled, the new DBG_VALUE will be indirect. If the
1304   // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate
1305   // that the original virtual register was a pointer. Also, add the stack slot
1306   // offset for the spilled register to the expression.
1307   const DIExpression *Expr = Expression;
1308   if (Spilled)
1309     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, SpillOffset);
1310 
1311   assert((!Spilled || MO.isFI()) && "a spilled location must be a frame index");
1312 
1313   do {
1314     BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_VALUE),
1315             Spilled, MO, Variable, Expr);
1316 
1317     // Continue and insert DBG_VALUES after every redefinition of register
1318     // associated with the debug value within the range
1319     I = findNextInsertLocation(MBB, I, StopIdx, MO, LIS, TRI);
1320   } while (I != MBB->end());
1321 }
1322 
1323 void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx,
1324                                  LiveIntervals &LIS,
1325                                  const TargetInstrInfo &TII) {
1326   MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS);
1327   ++NumInsertedDebugLabels;
1328   BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL))
1329       .addMetadata(Label);
1330 }
1331 
1332 void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS,
1333                                 const TargetInstrInfo &TII,
1334                                 const TargetRegisterInfo &TRI,
1335                                 const SpillOffsetMap &SpillOffsets) {
1336   MachineFunction::iterator MFEnd = VRM->getMachineFunction().end();
1337 
1338   for (LocMap::const_iterator I = locInts.begin(); I.valid();) {
1339     SlotIndex Start = I.start();
1340     SlotIndex Stop = I.stop();
1341     DbgValueLocation Loc = I.value();
1342     auto SpillIt =
1343         !Loc.isUndef() ? SpillOffsets.find(Loc.locNo()) : SpillOffsets.end();
1344     bool Spilled = SpillIt != SpillOffsets.end();
1345     unsigned SpillOffset = Spilled ? SpillIt->second : 0;
1346 
1347     LLVM_DEBUG(dbgs() << "\t[" << Start << ';' << Stop << "):" << Loc.locNo());
1348     MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1349     SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB);
1350 
1351     LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1352     insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1353                      TRI);
1354     // This interval may span multiple basic blocks.
1355     // Insert a DBG_VALUE into each one.
1356     while (Stop > MBBEnd) {
1357       // Move to the next block.
1358       Start = MBBEnd;
1359       if (++MBB == MFEnd)
1360         break;
1361       MBBEnd = LIS.getMBBEndIdx(&*MBB);
1362       LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd);
1363       insertDebugValue(&*MBB, Start, Stop, Loc, Spilled, SpillOffset, LIS, TII,
1364                        TRI);
1365     }
1366     LLVM_DEBUG(dbgs() << '\n');
1367     if (MBB == MFEnd)
1368       break;
1369 
1370     ++I;
1371   }
1372 }
1373 
1374 void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII) {
1375   LLVM_DEBUG(dbgs() << "\t" << loc);
1376   MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator();
1377 
1378   LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB));
1379   insertDebugLabel(&*MBB, loc, LIS, TII);
1380 
1381   LLVM_DEBUG(dbgs() << '\n');
1382 }
1383 
1384 void LDVImpl::emitDebugValues(VirtRegMap *VRM) {
1385   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n");
1386   if (!MF)
1387     return;
1388   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1389   SpillOffsetMap SpillOffsets;
1390   for (auto &userValue : userValues) {
1391     LLVM_DEBUG(userValue->print(dbgs(), TRI));
1392     userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets);
1393     userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets);
1394   }
1395   LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n");
1396   for (auto &userLabel : userLabels) {
1397     LLVM_DEBUG(userLabel->print(dbgs(), TRI));
1398     userLabel->emitDebugLabel(*LIS, *TII);
1399   }
1400   EmitDone = true;
1401 }
1402 
1403 void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) {
1404   if (pImpl)
1405     static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM);
1406 }
1407 
1408 bool LiveDebugVariables::doInitialization(Module &M) {
1409   return Pass::doInitialization(M);
1410 }
1411 
1412 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1413 LLVM_DUMP_METHOD void LiveDebugVariables::dump() const {
1414   if (pImpl)
1415     static_cast<LDVImpl*>(pImpl)->print(dbgs());
1416 }
1417 #endif
1418